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General Introduction

Problem statement

The work presented in this PhD thesis has been produced thanks to the collaboration between

the department ”Communications et Électronique” (COMELEC) of Télécom ParisTech and the

”Secteur Temps Réel” (STR) of Thales Communications and Security, in the framework of a

”thèse en situation de travail”, i.e., a PhD while working. This thesis is devoted to the study

of ad hoc network clustering, which consists in building sets of nodes called clusters in order to

introduce hierarchy in the network and thus improve its scalability.

An ad hoc network is an infrastructure-less multi-hop wireless network where each node

participates in routing by forwarding data for other nodes. Those networks are self-organizing

and are used when usual infrastructure based networks are not available or not suitable, e.g., in

wireless sensor networks (WSN), vehicular networks (VANET) or military networks. In order

to implement practical large ad hoc networks, gathering nodes in clusters was proposed in the

early 80s for networking purposes, and then in the 90s to sustain good Quality of Service (QoS).

Notably, clustering the network has been proposed in [1] as a way to enable the rapid deploy-

ment and dynamic reconfiguration of a scalable wireless network, with support of multimedia

applications combining real-time and bursty traffic. In [2], a cluster-based multichannel commu-

nications system for VANETs is detailed. In this scheme, the elected cluster-head (CH) operates

as the coordinator to collect/deliver the real-time safety messages within its own cluster, and

forward the consolidated safety messages to the neighboring CHs. The CH also controls channel

assignments for cluster members transmitting/receiving the non-real-time traffics, to improve

radio resource allocation (RRA) efficiency. In [3], the authors propose a cluster-based frame-

work to form a wireless mesh network in the context of open spectrum sharing, where the nodes

are secondary users of spectrum. When a node not yet member of any cluster finds a channel

that is unused by primary users, it becomes CH and invites neighbor nodes sharing the same

channel to join the new cluster. The CH node is responsible for intra-cluster channel access

control and inter-cluster communications. Then, by negotiating gateway (GW) nodes between

clusters, clusters are interconnected into a large network. A clustered network is proposed in [4]

to implement large cognitive radio networks, in which the clustering scheme works in conjunc-

tion with a network coded cognitive control channel in order to allow cognitive radio devices to

opportunistically access the unused spectrum. From a network perspective, cluster-based hier-

archical routing has been proved to introduce exponential savings in the amount of information

to be stored and exchanged in a large ad hoc network [5], thus allowing the routing to scale.

Cellular networks have also used an approach similar to clustering to enable the deployment of
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femtocells [6].

Before introducing the different processes needed to build and operate a clustered ad hoc

network, let us introduce a key assumption underlying the work presented in this document.

Within a cluster, the members delegate intra-cluster RRA to their resource allocator (RA) node

which can optimize it locally, similarly to what is done by base stations in cellular systems. A

direct consequence of this assumption is that the intra-cluster communications benefit from a

more efficient RRA process than the inter-cluster communications, highlighting the importance

of building clusters in the right way. As a consequence, we need to impose basic topological

properties to the clusters, that we will call constraints in the sequel:

• The induced subgraph of the cluster members must be connected, meaning that only intra-

cluster links are required to perform communication between two cluster members.

• The cluster size, i.e., the number of cluster members, must be limited to control the signaling

overhead.

• The cluster diameter, i.e., the length of the longest shortest path between any pair of the

vertices in the induced subgraph of the cluster, must be limited, to prevent the delay and cost

of communication between cluster members from increasing too much.

Operating a clustered ad hoc network necessitates running continuously and in parallel sev-

eral processes. Initially, all nodes are standalone in their own singleton cluster. One of these

processes is cluster building. During this process, all nodes detect their radio neighborhood

and exchange enough information to form the clusters. Another process consists in allocating

one set of radio resources, e.g., one frequency band or one CDMA code, to each cluster. To

reduce the interference suffered by a cluster, its neighboring clusters should use sets or radio

resources that are orthogonal or quasi-orthogonal to the one used by this cluster. Thanks to this

approach, within a cluster the RA dynamically shares these resources with the members of its

cluster without worrying of what happens in the neighbor clusters, thus simplifying the RRA.

The two last processes are first to perform the RRA within clusters, and second to allocate

the radio resources needed to perform inter-cluster communications. One may envision a joint

optimization of these four processes. Because the protocols and algorithms used to implement

an ad hoc network should be fully distributed, such optimization does not seem feasible to us.

Therefore, we have decided to handle separately those different issues, this thesis focusing on

the cluster building one. Note that the four processes mentioned above mainly concern the

lower layers of the protocol stack, i.e., physical and data link layer, and possibly the network

layer depending on how the responsibilities are shared between the data link and network layers.

Usually, in the literature, ad hoc networks are unstructured: there is no special organization

of the network and all nodes share the same operational role, i.e., are equal to each other. In

this thesis, beyond these usual unstructured networks, we also study the structured networks

that have an inherent hierarchical structure associated with their raison d’être, and in which

single nodes are gathered in operational groups (e.g., squad, section). Examples of such networks

are public safety and military networks. For the sake of readability, in the sequel group refers

to operational group. The existence of groups raises two major differences with respect to

unstructured networks. Firstly, the traffic is strongly dependent on the network hierarchical
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organization, being mostly concentrated within groups. Secondly, the nodes from the same

group are very likely to move in the same direction. For these two reasons, we will show that it

is beneficial to design clustering solutions that take into account group information, in order to

provide more stable networks as well as better end-to-end QoS.

Most existing work about ad hoc network clustering has focused on unstructured networks.

For example in [1] the authors propose the LID and HC clustering algorithms where nodes with

the lowest identifier, respectively the highest degree, become CH. Non-CH nodes affiliate to

their neighbor CH with the lowest identifier, respectively the highest degree. The stability of

the clusters formed with LID or HC, which suffer from the ripple effect1, has been improved

in [7] thanks to the LCC mechanism that only performs re-clustering when multiple CH nodes

become neighbors. The GDMAC algorithm detailed in [8] can be seen as a generalization of

LCC, allowing up to K CH nodes to be neighbors. In the VOTE proposal [9], non-CH nodes

join a CH only if the number of its cluster members is below a threshold, thus limiting the

cluster size. Thanks to the knowledge of node location information, DGMA [10] attempts to

estimate nodes relative mobilities and capture group mobility patterns to form stable clusters. A

similar approach is followed by LACA [11], which proposes to build clusters using past, current

and predicted nodes’ positions thanks to the help of a learning automaton, and by GMCA [12]

which uses a Gauss-Markov model to calculate the velocity and direction of the nodes. The

novelty of SECA [13], lies in the introduction of link qualities (based on received signal strength)

combined with the nodes relative mobilities to determine if a node becomes CH. Authors in [14]

use centralized genetic algorithms and particle swarm optimization to select stable CH. The

above examples constitute a representative extract of a rich literature which shows that a lot of

research was done, and is still being done about clustering in unstructured ad hoc networks.

By contrast, only very few papers tackle the problem of clustering in structured networks.

The authors in [15] introduce the type-based clustering algorithm (TCA). This clustering scheme

associates a stability factor to each node and selects as CH the nodes that have the highest sta-

bility factor in a radio neighborhood. The stability factor takes group membership (identified

thanks to the IP subnet of each node) into account. A limitation of TCA lies in the fact that

two CH nodes cannot be neighbors. A direct consequence in dense networks is the formation

of large clusters (with a lot of members). A second example is detailed in [16] which proposes

a topology management mechanism for hierarchical group oriented networks, where groups are

based on geographical locations.

According to the previous state of the art we have identified the two following interesting

research tracks that would need further investigation and that will be addressed in this thesis:

• Network performance metrics. Usually the clustering solutions are compared using met-

rics focused on the technical details of the clusters themselves (e.g., number of clusters, number

of cluster modifications, lifetime of CH nodes, amount of signaling, etc.). These metrics pro-

vide only indirect information about the QoS provided to the user. To fill this gap, some

authors have selected various metrics derived from user throughput. In that case some as-

sumptions are made about the type of i) medium access control (MAC), e.g., any version of

WiFi, and ii) the user traffic profile. As detailed above, four different processes are required

1The expression ripple effect describes a drawback of some clustering schemes for which a local cluster modi-

fication somewhere in the network leads to numerous cluster modifications in the whole network.
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to build and operate a clustered network, and from the beginning of the thesis we wanted to

be as agnostic as possible about the type of MAC used in the system. We only knew that

inter-cluster communications would be implemented in a less efficient way than intra-cluster

communications. Consequently, we decided to elaborate a new versatile metric which is able

to take into account the cluster and group structures.

• Distributed clustering algorithms. In addition to the gap identified for the structured

networks, the clustering algorithms proposed for unstructured networks do not fully satisfy

our requirements. Indeed, none of these schemes simultaneously handle both cluster size and

intra-cluster link quality. In addition, the availability of node locations and velocities is often a

key underlying assumption of the most recent proposals, which cannot always be guaranteed.

We thus identified the need for new distributed clustering algorithms to cover the case of

structured networks, and in unstructured networks, to form clusters satisfying the topology

constraints.

Additionally, the existing literature about ad hoc network clustering lacks a theoretical

framework. Looking for such a framework, we found out that coalition game theory should be a

relevant one. Indeed, it is a branch of game theory used to study the behavior of players when

they cooperate among themselves [17]. Considering coalitions as clusters, we thus decided to

use coalition game theory for our research of new clustering algorithms.

Coalition game theory has been used for many different applications. For example in [18]

an algorithm is proposed for cognitive networks with primary and secondary users (SU) to form

disjoint coalitions of SUs, in order to perform collaborative sensing while maximizing the utility

in terms of probability of detection and accounting for a false alarm cost. In [19] the players

are small cell base stations (SBS) that cooperate to share their radio resources, in order to

deal with OFDMA downlink co-tier interference suffered by the small cell user devices from

neighboring SBSs. The SBSs form overlapping coalitions and dedicate part of their frequency

resources (OFDMA subchannels) to each coalition they belong to, in order to maximize the

sum rate. Proposals suited to VANET have also been published. For example, in [20], the

roadside units (RSU) receive a payoff based on the amount and class of data sent to vehicles

moving in their area. Considering that the moving vehicles can use the underlying vehicle-to-

vehicle (V2V) network to exchange data received from the RSUs, the RSUs can form coalitions

in order to diversify the classes of data they transmit to the vehicles. This cooperation allows

them to increase their revenue. In [21], the vehicles use a coalition formation algorithm to build

clusters in order to optimize the V2V exchange of context information about road conditions

or driving safety. Within a cluster, the CH gathers information from all its cluster members,

performs data fusion and then sends back the result. The authors of [22] propose a distributed

algorithm to achieve cooperative communications in ad hoc networks (with multiple sources and

one destination, similarly to a WSN), in order to increase the achievable rate. Within a coali-

tion the communications are performed over two phases: the broadcasting and the cooperation

phases. During each slot of the broadcasting phase, one coalition member performs broadcast

transmission, while the other coalition members are listening. Then, during the cooperation

phase, all coalition members transmit a linearly coded signal of all signals received during the

previous broadcasting phase, and the destination performs multiuser detection to extract the

per node signal. Device-to-device (D2D) communications are the subject of [23] which proposes
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a distributed resource management scheme to jointly solve the problem of resource sharing mode

selection and spectrum sharing. Here sharing mode can be i) cellular mode, ii) dedicated D2D

mode and iii) hybrid mode, where D2D reuse the resources of some cellular links. Single or

pairs of cellular users form coalitions to improve the achievable sum rate of the D2D system.

These examples confirm that coalitional game theory is a relevant framework to study ad hoc

network clustering.

Outline and contributions

In this section, we give the thesis outline, and we mention the most important results.

In Chapter 1 we define network cost functions to benchmark clustering solutions from a

system point of view. We want these cost functions to take into account the costs of com-

munications along end-to-end paths. To do that, we start by recalling that the quality of

network paths depend on the routing capabilities in the network layer, and justify why a network

cost function used to assess the system performance should take them into account. We then

consider in detail the case of additive metrics (e.g., delay) and define a novel network cost

function J0 incorporating the traffic structure and the inter-cluster communication

cost. We then apply it to structured networks, and perform a detailed numerical analysis show-

ing that the clustering solutions providing the best QoS to the end-user depend on

the group structure. Then we extend J0 to better handle the constraint that cluster size

should be limited. Finally we define the network cost function T0, derived from J0, and suited

to the throughput metric.

In Chapter 2 we design a distributed clustering algorithm suited to structured net-

works. First, we identify the key parameters that should be used to build good clusters. Then,

we detail the distributed clustering with operational groups algorithm, denoted DCOG.

This algorithm is run at the cluster level and is designed to achieve the following properties: each

cluster includes the largest possible number of members of some operational groups, each cluster

size is the closest possible to a given maximum, and the diameter of each cluster is limited to a

maximum. A key characteristic of DCOG, which differentiates it from the conventional cluster-

ing schemes, is that it does not need to resort to the notion of CH node. After proving

the theoretical convergence of DCOG, we compare by simulation its performance against

five other clustering algorithms. The first two algorithms are GDMAC and VOTE, chosen from

the literature, and the last three are extensions of GDMAC and VOTE that we designed to

better handle the network group structure. Our simulations show that DCOG leads to better

application level performance (measured thanks to J0) and offers a better stability to mobility.

In Chapter 3, we revisit DCOG within the coalitional game theory framework.

After specifying how we use the common coalitional game theory notions of coalition utility,

value and cost, we formally identify coalitions as clusters and players as nodes, and define a

generic coalition formation algorithm for clustering. This algorithm is run at the node

level, and is split in two procedures. The first one performs switch operations, i.e., the transfer

of some nodes between two clusters, such that the sum of cluster values is always increased, thus
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guaranteeing convergence to a Nash-stable partition of the network. The second one is

used when, due to mobility, a cluster no longer satisfies some topology constraints. In that

case a switch operation may have to be performed to restore a correct topology. The important

design parameters of this algorithm are i) the heuristics used to select the candidate sets of

nodes involved in the switch operations, and ii) the utility and the associated cost functions

used to calculate the switch operation gains. Then we customize this generic algorithm for

the two cases of structured and unstructured network, leading to the COG and CLQ

algorithms respectively. In each case, we define specific utility functions and node selection

heuristics. Finally, we assess the performance of our algorithms by simulation. We first show

that COG builds stable clusters that include most members of one or several groups.

Then, in unstructured networks, we show that CLQ performs better than LCC, SECA

and VOTE, three clustering schemes from the literature.

Is clustering really clustering?

Clustering algorithms are also used for several other applications or contexts than the ad hoc

networks considered in this thesis. Even if behind all these concepts, the idea is always to gather

elements in groups called clusters, it appears that they usually differ along several lines such as

the underlying graph topology hypothesis, the theoretical tools used to solve the problem, and

the capability to enforce some constraints. We give here some different clustering examples (not

meant to be exhaustive) and try to stress the main differences with our problem.

Clustering can be found for instance in data analysis. Let us quote A. K. Jain in 1999 [24]:

”Clustering is the unsupervised classification of patterns (observations, data items, or feature

vectors) into groups (clusters). The clustering problem has been addressed in many contexts

and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of

the steps in exploratory data analysis.” With the rise of big data, this quote is even more true

than when it was initially written. Within the large scope of data analysis domain, it is worth

mentioning the field of community detection (CD) [25], where searching for communities in a

graph is often referred to as clustering. This example of clustering was brought to our attention

thanks to Pierre Borgnat (ENS Lyon) and our colleague Jean-François Marcotorchino (Scientific

Director at Thales Communications & Security).

Another example of clustering can be found in the signal processing community [26] where the

authors use a diffusion LMS algorithm drawn from the field of distributed adaptive estimation.

It is based upon the fact that nodes receiving noisy versions of a given vector of parameters

can converge to a consistent estimation of the parameters by exchanging information between

nodes. In this paper, they extend this principle to the case where different groups of nodes

receive different vectors of parameters. They observe that the algorithm converges towards a

state where information exchanged between nodes that are not receiving the same parameters

vanishes (whereas within a group, the nodes still continue to estimate correctly the parameters

they receive) and thus separates naturally the set of nodes in clusters.

In CD (unweighted) graphs, vertices are connected when they share a given relation (e.g.,

friends on social network). Thus researching a community can be roughly explained as identifying

a group of nodes that are more in relationship altogether than with the rest of the remaining part

of the graph. In other words, there must be more edges inside the community than edges linking
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vertices of the community with the rest of the graph. In wireless network (unweighted) graphs,

connection between vertices (nodes) follows from the radio coverage and thus depends on the

geographical nodes’ distribution. In that case, the relation is equivalent to the two nodes are in

range. Moreover, two nodes in range (i.e., two connected vertices) do not necessarily exchange

information, which constitutes a difference with the graphs used in community detection. More

important, the main difference between the two clustering contexts is that in the case of ad

hoc networks, we impose constraints to the resulting cluster topology such as maximal size,

maximal diameter, etc., whereas in detection community, the clusters are what they are. To

illustrate this difference, let us take the extreme case (but not unrealistic in communications)

of a fully connected wireless network graph (leading to a clique). Any community detection

algorithm will find obviously only one community, whereas the clustering algorithm will have to

find as many clusters as necessary to enforce the constraints (e.g., for a 200 node network, and

a maximal cluster size of 10, the minimum number of clusters is equal to 20). Moreover, we also

address the problem of clustering taking into account the fact that nodes may follow specific

organizations. As a consequence, the clustering algorithms are tailored to include the maximum

number of members of the same group inside the same cluster. Up to our knowledge, clustering

algorithms from community detection domain do not cover such case. Lastly, it appeared to us

that most of the metrics used in CD, and more generally in data analysis, require the knowledge

of the whole graph, leading to centralized algorithms. In our case, we are looking for non-

centralized algorithms, i.e., working with local (thus partial) information of the graph. For

instance, let us consider the modularity measure that is a popular metric used to identify good

communities [27]. Using this measure to valued graph in the context of ad hoc networks (e.g.

using weights proportional to the link capacity) might work provided constraints can be handled.

But computing the modularity needs to know the number of links of the whole graph. Thus,

this cannot lead to non-centralized solutions since collecting this information across the network

would be prohibitive. We identified recent work in [28–30], where the authors modified the label

propagation algorithm [31] (issued from the CD domain) to perform distributed clustering in

mobile ad hoc networks. However, these proposals do not take into account the cluster size and

diameter constraints.

Regarding the clustering example from the signal processing paper, it appears that the

context is different from ours and suffers from the main issues listed above for CD and data

analysis (except the fact that it is distributed).

To conclude, since the thesis was quickly oriented towards the use of the coalition game

theoretical framework, looking thoroughly to clustering algorithms from other domains as the

ones mentioned above was clearly out of scope. However, our quick review shows that the

other clustering algorithms cannot be applied directly to our problem and suffer from several

drawbacks (not distributed, not taking constraints into account, not taking group structure into

account, ...). Thus, even though a deep investigation of existing solutions along with compulsory

adaptations to our context might lead to interesting algorithms, it is left for further studies (for

instance, tweaking the label propagation algorithm to handle the constraints).
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Chapter 1

Metrics for clustered networks

performance evaluation

The work presented in this chapter has been partially published in [32].

1.1 Introduction

Ad hoc networks clustering has attracted and is still attracting a lot of interest and a lot of

algorithms have been proposed. The performance of these clustering schemes are evaluated

using various metrics. A first category of metrics is dedicated to assess the performance in static

networks. Examples of metrics of this kind are the number of clusters (similar to the cluster

size) [8, 9, 13, 15, 16], the percentage of nodes that are not connected to the network due to

clustering [16], the average path size for any pair of source and destination [16]. Another family

of metrics is used to measure the performance in dynamic networks. In this category can be

found the number of cluster modifications [9,15], the lifetime of CH nodes [8,10,13], the duration

a non CH node is affiliated to a given CH [8], the average number of cluster re-affiliations per

second [10], the number of times a node becomes CH or loses its CH state, or a non CH node

affiliates to another CH [8,15]. Some metrics fit both categories, such as the one measuring the

number of signaling messages sent [8, 10]. These metrics are focused on the technical details of

the clustering solutions and dot not give any detail about the QoS provided to the user by the

network, which is the most interesting for us.

The end-to-end throughput metric from [1] is more attractive. It is defined as follows:

T̂h :=

Q∑
i=1

fi
Thi
Li

,

with Q the number of connected components in the graph, Thi the cumulated link throughput

of the ith connected component Qi. Li the average hop length in Qi and fi the fraction of

node pairs interconnected within Qi. In a connected network this metric is written T̂h = Th/L

with Th the cumulated link throughput in the network and L the average hop length in the

network. This expression neither takes into account any traffic profile nor the cluster structure

of the network.

Thus the aforementioned metrics do not provide any insight on the effect of the clustering

solutions on the user applications. The goal of this chapter is therefore twofold: i) specify
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a way to benchmark clustering solutions from a system point of view, and ii) in the case of

structured networks, prove the importance of using group membership information to build

clusters. Therefore we define several network cost functions based on additive (e.g., delay)

or concave (e.g., link throughput) metrics incorporating the traffic structure and the inter-

cluster communication cost. Thanks to these functions we show that in the structured networks,

the clustering solutions providing the best QoS to the end-user strongly depend on the group

structure. Additionally, we find that to provide the best QoS to the user, routing should take

the cluster structure into account.

This chapter is organized as follows. In Section 1.2 we first recall some key features of

routing in ad hoc networks, and introduce the concept of network cost functions to measure the

performance of clustering algorithms. We introduce the notations and the network model in

Section 1.3. In Section 1.4 we define the generic network cost function J0 dedicated to additive

metrics, and apply it to structured networks. In Section 1.5 we provide detailed numerical

results showing that in such networks, the clustering solutions providing the best QoS should

build clusters close to the groups. Then in Section 1.6 we propose an improved version of J0,

before deriving in Section 1.7 the cost function T0 dedicated to the link throughput concave

metric. We conclude this chapter in Section 1.8.

1.2 Concept of global network cost function

1.2.1 Routing in ad hoc networks

Within networks, the goal of routing is to allow the end-to-end forwarding of packets from a

source to one or more destinations. To find these routes across the network various procedures

exist. Let us consider the example of hop by hop routing: for each node along the route from

a source to a destination, hop by hop routing finds the next hop to the destination. This next

hop can be found using a shortest path algorithm whose goal is to find a route whose cost

is the lowest. One well known shortest path algorithm is the Dijkstra’s shortest path (DSP)

algorithm [33]. The information used by DSP are the nodes and links of the network. Depending

on the amount and accuracy of information, the quality of the routes found by DSP is high or

low. If only a binary (on/off) information is known about links, then DSP finds shortest routes

in term of number of hops. Conversely, if a weight is associated with each link, a route cost can

be calculated as the sum of link weights along this route. To illustrate why the latter approach

leads to better results, let us take an example. Consider a network with three nodes {N1, N2, N3}
and links {(N1, N2), (N2, N3), (N1, N3)}. Looking for a shortest path from node N1 to node N3,

the direct one-hop route is shortest compared to the route through N2 that is two-hop long.

Now if the cumulated weight of going through link (N1, N3) is larger than the one of going

through links (N1, N2) and (N2, N3), then from a cost perspective, the two-hop route is better

than the direct one. Therefore, knowing the weight of links in addition to their existence allows

to find better routes w.r.t. the chosen QoS criterion. Thus, depending on the QoS requirements

over a network, different routing protocols should be used, each one using a various amount of

input information and thus finding routes with different qualities. An example of protocol whose

routes minimize the number of hops is OLSR [34]. An extension of this protocol is QOLSR [35],

that finds routes with the lowest end-to-end delay.
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1.2.2 Network cost functions to measure clustering algorithm performance

Our goal is to define network cost functions that can be used to assess the performance of the

system from application layer to physical layer, in terms of QoS offered to network users. These

cost functions are defined in order to take into account the costs of communications from all

nodes to all nodes along the end-to-end paths calculated by the routing in the network layer.

As discussed previously, the network paths found by a routing protocol depend on the available

link information, which can be provided by other protocol layers, i.e., by the data link layer and

potentially the physical layer. Thus, depending on the capability of the protocol stack different

cost functions should be used to assess the system performance.

In the following, each cost function are identified by a superscript L or X to determine the

amount of link information that can be used when calculating the routes. The first cost function

defined is J0, leading to JL0 and JX0 . When there is no superscript, this means that what is being

discussed is applicable for both versions of the cost function. The superscript L means that only

the link information (binary or link weight) can be used by the routing protocol. If binary

information is available, then shortest paths minimize the hop count. This basic information

can be acquired by the network layer itself (e.g., using a HELLO protocol such as the one

defined in [34]) or can be provided by the data link layer. Richer link weights information can

be measured by the network layer itself (e.g., in [35] the routing protocol measures link delays).

It can also be provided by the data link layer which uses metrics coming from the physical layer.

These metrics, such as received signal strength or signal interference noise ratio (SINR), are

measured by the radio receiver during the communications. The superscript X (for cross-layer)

means that in addition to link information, the cluster structure is also known, meaning that

when calculating the shortest paths, the intra-cluster or inter-cluster quality of each link is taken

into account. This is important because in clustered networks the efficiencies of communication

over intra-cluster and inter-cluster links are different. This additional information is provided

by the data link layer (in charge of building the clusters).

Several types of metrics can be used to calculate a shortest path. The simplest metrics are

called additive metrics, for which the cost of a route is the sum of its link weights. An example

of this type of metric is the delay. Some other metrics cannot be cumulated. For example the

throughput of a route is not the sum but the lowest of its link throughputs. Throughput is a

concave metric [36]. There are also some multiplicative metrics, such as for example the packet

loss rate. In this chapter we handle in details the case of additive metrics, then propose some

initial results concerning concave metrics. The case of multiplicative metrics is left for future

work.

1.3 Network model

We consider a graph G defined by its set of nodes V and its set of edges E . The number of nodes

of G is N := |V|, where := stands for by definition. The number of edges of G is M := |E|. Two

nodes i and j are neighbors if (i, j) ∈ E . Without loss of generality, the concepts developed

in this chapter first concern connected1 undirected graphs. A generalization to disconnected

graphs is detailed in Section 1.4.6. The set of all partitions p of G is called P. In our model

the parts of a partition are identified to the clusters. The weight of edge (i, j), ∀(i, j) ∈ E is

1In a connected graph there exists a path between any pair of vertices.
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noted wi,j . The weight wi,j is a dimensionless quantity associated with the quality of link (i, j).

For example it can be a number of transmissions required to achieve a target packet error rate

(assuming an ARQ scheme). The set of groups O is defined as {O1, . . . ,OT } with T the number

of groups. Let us note mt the size of group Ot. Each node belongs to only one group, i.e.

∀t1 6= t2, Ot1 ∩ Ot2 = ∅, thus
∑T

t=1mt = N , and ∪Tt=1Ot = V. A partition p of G contains

Nc clusters noted Ck with k ∈ {1, . . . , Nc}. The size, or number of members, of cluster Ck is

nk. Each node belongs to only one cluster, i.e., ∀k 6= `, Ck ∩ C` = ∅, thus
∑Nc

k=1 nk = N , and

∪Nck=1Ck = V. The diameter2 of the induced subgraph of the cluster Ck is noted dk.

1.4 Case of additive metrics

In this section we define the network cost function J0 used to measure and compare the perfor-

mance of clustering solutions in clustered ad hoc networks. More precisely this function measures

the quality of a network partition using end-to-end path calculations with additive metrics (e.g.,

delay), and takes into account the fact that inter-cluster and intra-cluster communications have

different costs. As a byproduct, this function is very useful for evaluating the benefit expected

through the use of operational group information for obtaining the clustering solution.

1.4.1 Definitions

Before analyzing separately the cases of JL0 and JX0 , let us introduce definitions and concepts

common to both functions.

To assess the quality of a partition p of G we define a function J0 which represents the average

cost of communications between all pairs of nodes (i, j) ∈ V2. It is defined as:

J0(p) :=
1

N

∑
(i,j)∈V2

πj|i · J0(p, i, j), (1.1)

where the factor 1/N embodies the fact that all nodes i have equal probability to transmit,

J0(p, i, j) is the transmission cost between node i and node j, and πj|i is the probability that

node i chooses node j as a destination. By convention πi|i = 0, and
∑

j∈V πj|i = 1, ∀i ∈ V.

Finding the best clustering of the network is equivalent to finding the set of best partitions

P ′ defined as:

P ′ := arg min
p∈P

J0(p). (1.2)

1.4.2 Case of JL0

In this section the shortest paths are calculated using the link weights information only.

1.4.2.1 Definitions

Let us now explain how JL0 (p, i, j) is elaborated. Firstly, we assume that the routing process

selects the shortest paths to establish the communications in the network. The shortest path be-

tween node i and node j is defined here as the set SL(i, j) =
(
(i, i1), (i1, i2), · · · , (iK−1, iK), (iK , j)

)
2The diameter of a graph is the length of the longest shortest path between any pair of its vertices.
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for which the cumulated weights along this path, hL(i, j), defined as:

hL(i, j) :=
∑

(i′,j′)∈SL(i,j)

wi′,j′ , (1.3)

is minimum. Note that SL(i, j) is independent of the partition p. Fig. 1.1 provides an example

of shortest path S1,4 between source node 1 and destination node 4.

Figure 1.1: Example of multi-hop shortest path.

In clustered networks, inter-cluster communications can be implemented using a medium

access control (MAC) different from the one used for intra-cluster communications. Within a

cluster a RA node optimizes locally the RRA on behalf of the cluster members. Conversely,

inter-cluster RRA is done in a more distributed way (e.g., among the RAs of neighbor clusters)

and is thus more difficult to optimize. Therefore, we reasonably assume that the costs of intra-

cluster and inter-cluster communications are different. Consequently a path SL(i, j) is split

into the two subsets ŜL(p, i, j) of intra-cluster links and S̃L(p, i, j) of inter-cluster links, leading

respectively to the cumulated weights ĥL(p, i, j) and h̃L(p, i, j):

ĥL(p, i, j) :=
∑

(i′,j′)∈ŜL(p,i,j)

wi′,j′ , (1.4)

h̃L(p, i, j) :=
∑

(i′,j′)∈S̃L(p,i,j)

wi′,j′ . (1.5)

Following (1.3)-(1.4)-(1.5), we have:

hL(i, j) = ĥL(p, i, j) + h̃L(p, i, j).

For example in Fig. 1.2, ĥL(p, 1, 4) = w1,14+w14,3+w5,10+w2,4 and h̃L(p, 1, 14) = w3,5+w10,2,

with p = {{1, 3, 9, 13, 14}, {5, 7, 8, 10, 11, 15}, {2, 4, 6, 12}}.
In order to account for the difference between intra and inter-cluster communications, we

define the cost from node i to node j as the weighted sum of ĥL(p, i, j) and h̃L(p, i, j):

JL0 (p, i, j) := γ̂ · ĥL(p, i, j) + γ̃ · h̃L(p, i, j), (1.6)

where γ̂ > 0 is the cost associated with the intra-cluster communications, and γ̃ ≥ γ̂ the cost

associated with the inter-cluster communications. Note that (1.4)-(1.5)-(1.6) clearly show that

JL0 is applicable to additive metrics.

From (1.1), noting γ := γ̃/γ̂ and summing (1.6) over all pairs of nodes we get:

JL0 (p) =
γ̂

N

∑
(i,j)∈V2

πj|i · (ĥL(p, i, j) + γ · h̃L(p, i, j)). (1.7)
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Figure 1.2: Multi-hop shortest path with cluster boundaries.

One can remark that the factor γ̂/N in (1.7) plays no role in the optimization problem of (1.2).

Because hL(i, j) is independent of the way the network is clustered, it is useful to make it

appear in (1.7) leading to:

JL0 (p) = A+ (γ − 1) ·B(p), (1.8)

with

A :=
γ̂

N

∑
(i,j)∈V2

πj|i · hL(i, j),

B(p) :=
γ̂

N

∑
(i,j)∈V2

πj|i · h̃L(p, i, j).

So far, the expressions are functions of probabilities πj|i which makes the model very general

and applicable to several contexts. Particular values for πj|i are considered in Section 1.4.5 in

order to take into account the hierarchical organization of some ad hoc networks.

1.4.2.2 Theoretical results and additional constraints

Thanks to (??) we can prove the following result.

Result 1.1 Considering JL0 , the solutions of the problem in (1.2) are:

1. If γ = 1, P ′ = P, and ∀p ∈P, JL0 (p) = A.

2. If γ > 1, P ′ = {V}.

The first part of Result 1.1 means that when γ = 1, the way clusters are built is not

important. This case is not interesting in practice since there is always a difference of cost

between intra and inter-cluster communications. When γ > 1, the best and trivial solution

is to build one cluster corresponding to the whole network. This solution is not acceptable

because of the constraints related to the size of the clusters. If the cluster is too large, then

the RRA becomes complex and the goal of seeking simple intra-cluster RRA cannot be fulfilled.

Consequently, we add constraints on the clusters and define Pc the subset of valid partitions as

follows:

Pc = {p ∈P s.t. p satisfies C1, C2, C3}, (1.9)
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with

C1 : Ck is connected ∀k ∈ {1, 2, . . . , Nc},
C2 : nmin ≤ nk ≤ nmax ∀k ∈ {1, 2, . . . , Nc},
C3 : dk ≤ dmax ∀k ∈ {1, 2, . . . , Nc}.

Firstly, C1 ensures that each cluster is a connected subgraph of G, allowing intra-cluster com-

munication between all the cluster members. Then C2 forces the number of cluster members

to be neither too small nor too large, which makes sense from a RRA point of view. Finally

C3 prevents nodes from the same cluster from being too far (in number of hops) from the RA

(in charge of RRA). The values of the parameters nmin, nmax and dmax depend on the RRA

process.

Now, our goal is to find the set of partitions P∗
L solving the following problem:

P∗
L = arg min

p∈Pc
JL0 (p). (1.10)

The two following results detail some properties of P∗
L.

Result 1.2 The partial ordering between JL0 values of different partitions does not depend on

γ.

Proof In (??), A does not depend on the partition whereas B does. Consequently (??) can be

written:

JL0 (γ, p) = A+ (γ − 1)B(p). (1.11)

Let p1 and p2 two different partitions of P such that:

JL0 (γ, p1) < JL0 (γ, p2),

⇔A+ (γ − 1)B(p1) < A+ (γ − 1)B(p2),

⇔B(p1) < B(p2).

The last equation does not involve γ, which proves the result.

Result 1.2 induces the following result:

Result 1.3 P∗
L is independent of γ.

Proof Application of Result 1.2 for optimal partitions.

1.4.3 Case of JX0

In this section we consider that both link weights and cluster structure are available to calculate

the shortest paths. We proceed like in Section 1.4.2 to study the case of JX0 .

1.4.3.1 Definitions

Let us define graph G(p) as the set of nodes V connected by edges in E whose weights are γ̂ ·wi,j
if (i, j) is an intra-cluster link, and γ̃ · wi,j if (i, j) is an inter-cluster link. The shortest path

between nodes i and j in G(p) is denoted by SX(p, i, j), with cost hX(p, i, j). This shortest
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path can be split into its intra-cluster part ŜX(p, i, j) and its inter-cluster part S̃X(p, i, j) with

respective costs ĥX(p, i, j) and h̃X(p, i, j):

hX(p, i, j) := ĥX(p, i, j) + h̃X(p, i, j), (1.12)

with:

ĥX(p, i, j) :=
∑

(i′,j′)∈ŜX(p,i,j)

γ̂ · wi′,j′ (1.13)

h̃X(p, i, j) :=
∑

(i′,j′)∈S̃X(p,i,j)

γ̃ · wi′,j′ . (1.14)

Similarly to what we did for (1.6) we define JX0 (p, i, j) as follows:

JX0 (p, i, j) := hX(p, i, j). (1.15)

Here γ̂ and γ̃ are already included in ĥX(p, i, j) and h̃X(p, i, j) respectively, which justifies that

JX0 (p, i, j) is equal to hX(p, i, j).

From (1.1), and summing (1.15) over all pairs of nodes we get:

JX0 (p) :=
1

N

∑
(i,j)∈V2

πj|i · JX0 (p, i, j). (1.16)

1.4.3.2 Theoretical results

Let us now prove that Result 1.1 applicable to JL0 is also valid for JX0 . First we need the

following two intermediate results.

Result 1.4 ∀p ∈ P with p 6= {V}, when γ > 1 there is at least one pair of nodes (i, j) ∈ V2

such that hX(p, i, j) > hX({V}, i, j).

Proof Because p 6= {V}, partition p has at least two clusters. Let us choose clusters C1 and

C2 and two 1-hop neighbor nodes i and j such that i ∈ C1 and j ∈ C2, and the shortest path

SX({V}, i, j) from i to j is link (i, j): hX({V}, i, j) = γ̂ · wi,j . Consider the shortest path

SX(p, i, j) from i to j in G(p).

Case 1: If SX(p, i, j) = (i, j) then hX(p, i, j) = γ̃ · wi,j and because γ̃ > γ̂, we have

hX(p, i, j) > hX({V}, i, j).
Case 2: If SX(p, i, j) 6= (i, j) then let nodes {i1, i2, . . . , iK−1, iK} ⊂ V, with i1 = i and

iK = j such that SX(p, i, j) = (i1, . . . , iK). ∃α ∈ {i1, . . . , iK − 1} such that nodes iα and iα+1

belong to two different clusters. Because link (iα, iα+1) belongs to a shortest path in G(p), it is

also a shortest path between iα and iα+1, and hX(p, iα, iα+1) = γ̃ ·wiα,iα+1 . Consequently for all

network path S(i′1, i
′
K′) = (i′1, i

′
2, . . . , i

′
K′−1, i

′
K′) from i′1 = iα to i′K′ = iα+1, the cost of S(i′1, i

′
K′)

is written:

γ̂
∑

(u,v)∈Ŝ(i′1,i
′
K′ )

wu,v + γ̃
∑

(u,v)∈S̃(i′1,i
′
K′ )

wu,v ≥ γ̃ · wiα,iα+1 ,
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with Ŝ(i′1, i
′
K′) and S̃(i′1, i

′
K′) the set of intra-cluster and inter-cluster links in path S(i′1, i

′
K′)

respectively. Multiplying by γ̂/γ̃ < 1 we get:

γ̂2/γ̃
∑

(u,v)∈Ŝ(i′1,i
′
K′ )

wu,v + γ̂
∑

(u,v)∈S̃(i′1,i
′
K′ )

wu,v > γ̂ · wiα,iα+1 ,

⇔γ̂

[ ∑
(u,v)∈Ŝ(i′1,i

′
K′ )

wu,v +
∑

(u,v)∈S̃(i′1,i
′
K′ )

wu,v

]
> γ̂ · wiα,iα+1 ,

which proves that link (iα, iα+1) is a shortest path between nodes iα and iα+1 in G, with

hX(p, iα, iα+1) = γ̂ · wiα,iα+1 . Because γ̃ > γ̂, we have hX(p, iα, iα+1) > hX({V}, iα, iα+1).

Result 1.5 ∀p ∈ P with p 6= {V}, when γ > 1 there is no pair of nodes (i, j) ∈ V2 such that

hX(p, i, j) < hX({V}, i, j).

Proof Because γ > 1 the weight of any link in G(p) is greater or equal than its weight in G.

Consequently a shortest path between two nodes i and j in G has a cost lower than or equal to

the one of a shortest path between i and j in G(p).

Result 1.6 Considering JX0 , the solutions of the problem consisting in (1.2) are:

1. If γ = 1, P ′ = P,

2. If γ > 1, P ′ = V.

Proof

1. Suppose γ = 1. Then γ̃ = γ̂. This means that for any pair of nodes (i, j) ∈ V2, SX(p, i, j) =

SX({V}, i, j), ∀p ∈ P, which entails hX(p, i, j) = hX({V}, i, j). Consequently JX0 (p) does

not depend on p and any partition p ∈P is a best partition.

2. Suppose γ > 1. Let us consider the partition {V}. Let us suppose that there is a partition

p 6= {V} of G such that JX0 (p) ≤ JX0 ({V}). Thanks to Result 1.4 there is at least one pair of

nodes (i, j) such that hX(p, i, j) > hX({V}, i, j), meaning JX0 (p, i, j) > JX0 ({V}, i, j). Thanks

to Result 1.5 there is no pair of nodes (i′, j′) such that hX(p, i′, j′) < hX({V}, i′, j′). This

means that JX0 (p, i′, j′) ≥ JX0 ({V}, i′, j′), ∀(i′, j′) ∈ V2. Consequently:

JX0 (p) = JX0 (p, i, j) +
∑

(i′,j′)∈V2

(i′,j′) 6=(i,j)

JX0 (p, i′, j′) > JX0 ({V}).

Like in Section 1.4.2.2, our goal becomes to find the set P∗
X of partitions solving the following

problem:

P∗
X = arg min

p∈Pc
JX0 (p), (1.17)

with Pc defined in (1.9).

Here is now a result illustrating a difference between JX0 and JL0 , proving that Result 1.3

does not apply to JX0 .
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Result 1.7 P∗
X is dependent of γ.

Proof Fig. 1.3 and Fig. 1.4 define the partitions p1 =
{
{1}, {2, 5, 6}, {3, 4, 7, 8}

}
and p2 ={

{1, 6}, {2, 3, 5}, {4, 7, 8}
}

of an 8 node network. The inner and outer colors indicates group

and cluster membership respectively. In this network: i) the nodes {1, 2, 3, 5, 6} and {4, 7, 8}
belong to group 1 and 2 respectively, and ii) wi,j = 1, ∀(i, j) ∈ E . Let nmax = 4, α = 1.0 and

γ̂ = 1. When γ = 2 we obtain p1 ∈ P∗
X and p2 /∈ P∗

X , and when γ = 6 we obtain p1 /∈ P∗
X

and p2 ∈ P∗
X . Because α = 1.0, the value of JX0 only depends on the number of intra-cluster

and inter-cluster links required for intra-group communications. Within p1 and p2 the costs of

intra-group communications are respectively equal to c(p1) = 7γ̃ + 14γ̂ and c(p2) = 6γ̃ + 18γ̂.

Thus c(p1) ≤ c(p2)⇔ γ̃ ≤ 4γ̂. To illustrate this result we have included Table 1.1, which details

the value of JX0 for p1 and p2 with γ ∈ {2, 4, 6}. When γ = 4, JX0 (p1) = JX0 (p2).

Partition γ = 2 γ = 4 γ = 6

p1 2.000 2.875 3.750

p2 2.063 2.875 3.625

Table 1.1: JX0 (p1) and JX0 (p2) for γ ∈ {2, 4, 6}.

Thus, in G(p), a partition optimal for a given γ may become suboptimal for another value

of γ, which concludes the proof.

Figure 1.3: Partition p1. Figure 1.4: Partition p2.

1.4.4 Examples for practical JX0

In this section, we discuss how to use the generic cost function JX0 with practical QoS metrics

through two examples.
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Firstly, JX0 can be interpreted as an end-to-end delay. In that context the link weights

wi,j can be interpreted as the average number of transmissions required on node i to achieve a

successful reception on node j (using an ARQ protocol) and γ can be viewed as the multiplicative

coefficient of the delay induced by the difference of efficiency between inter-cluster and intra-

cluster RRA. The value of JX0 (p, i, j) from (1.15) should be interpreted as the duration needed

for node i to send successfully to node j one unit of traffic. Let us take the example of a TDMA

based MAC in which the intra-cluster delay to send data γ̂ is equal to one 100 ms MAC frame

while the inter-cluster delay γ̃ is twice this value. Assuming a uniform traffic between all nodes,

each destination node j receives an equal portion πj|i = 1/14 from node i. Considering the

shortest path between nodes 1 and 4 of Fig. 1.2 and applying (1.6) with wi,j = 1 ∀(i, j) ∈ E , we

get JX0 (p, 1, 4) = 800 ms. The value of JX0 (p) in (??) is the average duration for a node to send

successfully one unit of traffic to all nodes. Using the same example of Fig. 1.1 and Fig. 1.2 we

get JX0 (p) = 376 ms.

Secondly, JX0 can be used to measure a network resource consumption, which we want to

minimize in order to maximize the throughput forwarded in the network. Using the same amount

of radio resources, the larger the SNR of the link, the larger the amount of information that

can be transmitted. Therefore to transmit the same amount of data, the use of good links leads

to the consumption of less network radio resources. From that perspective the link weights wi,j

can be interpreted as the inverse of the spectral efficiency achievable on link (i, j), related to the

best modulation and coding scheme (MCS) usable on the link. To render wi,j dimensionless, it

must be divided by the spectral efficiency of a reference MCS. Compared to intra-cluster RRA

that can be centralized on RA nodes, inter-cluster RRA is a distributed process. Consequently

the channel state indications (CSI) used by inter-cluster have less accuracy than CSI used by

intra-cluster RRA. Therefore, intra-cluster RRA can use larger efficiency MCS than inter-cluster

RRA, thus justifying γ > 1.

1.4.5 Application of J0 to structured networks

1.4.5.1 Definition

We now consider that operational groups exist and that the traffic is structured according to

these groups. To capture this fact, we consider that the probability that one node communicates

with a node of the same group is equal to α ∈ [0, 1] and thus the probability that one node

communicates with a node in another group is equal to 1 − α. Since a node of group Ot can

communicate to mt − 1 nodes in the same group, the probability to reach one of these nodes

is equal to α/(mt − 1). The number of nodes of the other groups with which this node can

communicate is equal to N −mt with a corresponding probability of (1− α)/(N −mt). Thus,

we have:

πj|i :=


α

mt − 1
if j ∈ Ot,

1− α
N −mt

otherwise,
(1.18)

with (i, j) ∈ V2 and i ∈ Ot.

1.4.5.2 Theoretical result

Result 1.8 The partial ordering between JX0 values of different partitions depends on α.

25



Proof Let us define JX0 (p, i) as:

JX0 (p, i) =
∑
j∈V

πj|i · JX0 (p, i, j). (1.19)

Summing all (1.15) with j ∈ V, replacing πj|i by its value as defined in (1.18) and remem-

bering that i ∈ Ot, we get:

JX0 (p, i) =
α

mt − 1

∑
j∈Ot

(ĥX(p, i, j) + h̃X(p, i, j)) +
1− α
N −mt

∑
j /∈Ot

(ĥX(p, i, j) + h̃X(p, i, j)),

=
α(N −mt)A1(i) + (1− α)(mt − 1)B1(i)

(mt − 1)(N −mt)
, (1.20)

with:

A1(i) :=
∑
j∈Ot

(ĥX(p, i, j) + h̃X(p, i, j)),

B1(i) :=
∑
j /∈Ot

(ĥX(p, i, j) + h̃X(p, i, j)).

Equation (1.20) can be written:

JX0 (p, i) =
1

(mt − 1)(N −mt)
·
(
α
[
(N −mt)A1(i)− (mt − 1)B1(i)

]
+ (mt − 1)B1(i)

)
,

= α · C(i) +D(i),

with

C(i) :=
(N −mt) ·A1(i)− (mt − 1) ·B1(i)

(mt − 1)(N −mt)
,

D(i) :=
(mt − 1) ·B1(i)

(mt − 1)(N −mt)
.

Summing all JX0 (p, i) with i ∈ V allows to write JX0 (p) as follows:

JX0 (p) = α · C +D, (1.21)

with

C :=
∑
i∈V

C(i),

D :=
∑
i∈V

D(i).

In (1.21) both C(i) and D(i) depend on the partition, and JX0 (p) can be written:

JX0 (α, p) = α · C(p) +D(p). (1.22)

Let p1 and p2 two different partitions of P and let us select a specific value α = α1 for which

we have:

JX0 (α1, p1) < JX0 (α1, p2). (1.23)
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We now show that there exist values of α 6= α1 which contradicts the order of (1.23) and thus

prove the theorem. From (1.22) and (1.23) we have:

JX0 (α1, p1) < JX0 (α1, p2),

⇔ α1 · C(p1) +D(p1) < α1 · C(p2) +D(p2),

⇔ α1(C(p1)− C(p2)) < D(p2)−D(p1). (1.24)

If C(p1)− C(p2) > 0 then (1.24) can be written:

α1 < α2 with α2 =
D(p2)−D(p1)

C(p1)− C(p2)
. (1.25)

Thus, we can deduce that for α1 ≥ α2 we have JX0 (α2, p1) ≥ JX0 (α2, p2) which proves the

assertion. If C(p1)− C(p2) < 0, the proof is the same.

1.4.5.3 Examples

In order to better understand JX0 , Fig. 1.5 and Fig. 1.6 show two partitions p1 and p2. In both

figures nodes {7, 8, 9} belong to the same yellow group. In Fig. 1.5 nodes {7, 8, 9} belong to

the same yellow cluster, when in Fig. 1.6 nodes {7, 9} belong to the yellow cluster, and node

8 to the green cluster. Let us consider that the main part of the traffic is exchanged within

groups. In p1 all group members are included in the same clusters, but this is not the case in

p2. Consequently, JX0 (p1) should be lower (thus better) than JX0 (p2).

Figure 1.5: p1: 3 clusters partition. Figure 1.6: p2: 2 clusters partition.

However, due to Result 1.8, for different values of α two different partitions p1 and p2 may

have their order reversed w.r.t. JX0 . Considering the parameters γ̂ = 1.0, γ̃ = 2.0 and wi,j = 1.0

∀(i, j) ∈ E , Fig. 1.7 shows the values of JX0 (p1) and JX0 (p2) for α ∈ {0.5, 0.6, 0.667, 0.7, 0.8, 0.9}.
If α < 0.667 then JX0 (p1) > JX0 (p2), and the partial ordering is inverted if α > 0.667.

In this example when the amount of inter-cluster traffic increases (i.e., α decreases), then the

benefit of building only two clusters exceeds the benefit of gathering all members of the yellow

group in the same cluster.

1.4.5.4 Limitation of JL0 w.r.t. JX0

One may wonder about the difference between JL0 and JX0 w.r.t. the partition quality assessment.

Let us take the example of the network of Fig. 1.8 whose partition is denoted by p, with

wi,j = 1,∀(i, j) ∈ E . Let us consider the shortest paths S1
L(p, 2, 28) = (2, 14, 20, 27, 25, 10, 28) and
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Figure 1.7: JX0 (p) versus α for 2 different partitions p1 and p2.

S2
L(p, 2, 28) = (2, 8, 20, 27, 25, 10, 28) between nodes 2 and 28. The number of inter-cluster links

in S1
L(p, 2, 28) and S2

L(p, 2, 28) are four - (2, 14), (14, 20), (20, 27) and (27, 25) - and two - (20, 27)

and (27, 25) - respectively. Consequently, the value of JL0 (p, 2, 28) depends on whether the

selected shortest path is S1
L(p, 2, 28) or S2

L(p, 2, 28). Conversely, when JX0 (p, 2, 28) is calculated,

the selected shortest path is always SX(p, 2, 28) = S2
L(p, 2, 28).

Figure 1.8: Examples of shortest paths between nodes 2 and 28.

This example shows that two different calculations of JL0 may lead to different values because

i) multiple shortest paths may exist between any pair of nodes, and ii) if more than one such

path exists, because JL0 does not take into account the cluster structure, the shortest paths may

include different numbers of inter-cluster links. Thus, to get reliable results, the cluster structure

must be used when calculating the cost associated with a network partition: JX0 must be used

instead of JL0 .
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To assess the error performed when using JL0 instead of JX0 we have used a k-shortest-path

algorithm from Eppstein [37] to calculate all shortest paths between all pairs of nodes (i, j) ∈ V.

Then for each pair of nodes (i, j) we have calculated all JL0 (p, i, j) and JX0 (p, i, j) values. Fig. 1.9

plots JX0 and the average, lowest and highest possible values of JL0 for the partition of Fig. 1.8,

for γ ∈ {2, 5} and α ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.
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8
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α
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Figure 1.9: JX0 (p) and JL0 (p) versus α.

The first conclusion about this figure is the difference between the lowest and highest values

of JL0 , which increases from about 15% to about 30% when the value of γ is modified from 2 to

5. Another interesting result is about JX0 which is lower than the lowest value of JL0 : about 1%

lower if γ = 2 and about 3% lower if γ = 5. To understand this surprising result, one must note

that JX0 may use paths which have a larger number of hops than JL0 , and still have a lower cost.

1.4.6 Generalization to disconnected networks

In this section the calculation of J0(p) must be modified to take into account two aspects:

• Network nodes may be split into several connected components and,

• Some members from the same groups can be present in different connected components.

Let us call J0(p) the adaptation of J0(p) to disconnected networks. Let us suppose that

the number of connected components in the network is Q, and let us denote by Qν the νth

connected component, with ν ∈ {1, . . . , Q}. Let us denote by pν the partition of Qν , with

p := ∪ν∈{1,...,Q}pν . Let us remark that no clustering scheme can enable a communication between

two different connected components Qν1 and Qν2 . It is thus legitimate to ignore the absence

of such communication and to separate the calculation of J0(p) into a weighted sum of values

J ν
0 (pν), each associated with a connected component:

J ν
0 (pν) :=

1

|Qν |
∑

(i,j)∈Qν
2

πν,j|i ·J0(pν , i, j), (1.26)
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with:

J0(pν , i, j) :=

{
JL0 (pν , i, j) defined by (1.6) to calculate J L

0 (pν),

JX0 (pν , i, j) defined by (1.15) to calculate J X
0 (pν),

and

πν,j|i :=


α

|Oν,k| − 1
if j ∈ Oν,k,

1− α
|Qν | − |Oν,k|

otherwise,

with (i, j) ∈ Qν
2, Oν,k := Ot ∩Qν , and i ∈ Oν,k.

Then we define J0(p) as the average of J ν
0 (p) over the connected component size:

J0(p) :=
1

N

Q∑
ν=1

|Qν | ·J ν
0 (pν). (1.27)

When the network is composed of several connected components, (1.27) must be used instead

of (1.7) or (1.16) to avoid underestimating the cost of the network.

1.5 Numerical analysis

1.5.1 Assessment methodology

A first result we want to show is that the groups have an impact on the quality of the clustering

solution. To do this, we find the set Pu of optimal partitions when the traffic pattern does

not depend on the groups, then we determine if these partitions are still good when the traffic

pattern becomes dependent on the groups. A traffic independent of the groups is equivalent to

πj|i = 1
N−1 , ∀(i, j) ∈ V2, i 6= j, hence:

Pu := arg min
p∈Pc

JX0 (p)

∣∣∣∣∣
πj|i=

1
N−1

,∀(i,j)∈V2,i 6=j

.

To determine if the partitions p ∈Pu are still good when the traffic pattern becomes dependent

on the groups according to (1.18), we calculate the following metric:

δu(α) :=
Ju0 − J∗0
J̄∗0 − J∗0

, (1.28)

with Ju0 the highest value of JX0 for all the partitions in Pu when JX0 is calculated with πj|i
defined as in (1.18), J̄∗0 := maxp∈Pc JX0 (p), and J∗0 := minp∈Pc JX0 (p). Let us call JX0 interval

the interval [J∗0 , J̄
∗
0 ]. The term δu(α) measures the performance loss obtained by not taking into

account the dependence of traffic patterns to groups during cluster building. It takes its values

in [0, 1] when Ju0 goes through the JX0 interval: 0 is associated with the best partitions, and 1

with the worst partitions.

Assuming that taking the group structure into account when building clusters is of interest,

new algorithms have to be designed. In order to show that it is not an easy task (which is the

subject of the subsequent chapters), we propose hereafter a naive approach called one group-one

cluster and denoted by 1G1C. The simplest way to follow would be to force all the members of

a group to belong to the same cluster. However, due to the constraints it is not always possible.

Therefore we propose the following procedure: i) for each group, find the node with the highest
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degree in the subgraph of G induced by the members of this group and build a cluster including

this node and its 1-hop neighbors; ii) for each nodes not yet member of any cluster, attach it

to an existing cluster while making sure that C3 is satisfied, otherwise build a new singleton

cluster when C3 is not satisfied. The obtained partition is denoted by pg. Using the same idea

as (1.28), the performance of the aforementioned naive algorithm is studied through the metric:

δg(α) :=
JX0 (pg)− J∗0
J̄∗0 − J∗0

.

Note that this procedure may lead to clusters with a number of nodes less than nmin, thus not

satisfying C2.

1.5.2 Simulation setup

1.5.2.1 Number of partitions of a graph

Before introducing our network model, let us introduce some complexity aspects when enu-

merating all partitions in Pc. Firstly, the number of possible partitions in Nc clusters of a

graph G with N vertices is equal to the Stirling number of the second kind [25] S(N,Nc) :=
1
Nc!

∑Nc
k=0(−1)Nc−k

(
Nc
k

)
kN . The total number of possible partitions is the N th Bell number

BN :=
∑N

k=0 S(N, k). This number increases very quickly with the graph size N . The first ten

Bell numbers for N = 1 to 10 are 6, 116, 1 928, 27 665, 364 472, 4 547 586, 54 670 463, 639 838 113,

7 338 610 159, 82 857 366 967, which means that an numeration of all partitions P of a graph is

impossible unless the graph consists of very few vertices.

Fortunately only the partitions in Pc are acceptable, which significantly reduces their num-

ber. However, very quickly |Pc| becomes very large, thus to cope with the limited amount of

processing power and time, we have only considered networks with a limited number of nodes

N and edges M .

1.5.2.2 Node deployment model

The networks considered in this chapter are structured networks, whose nodes are organized in

groups. They are generated using the following procedure. Firstly, T nodes are placed randomly

in a d × d square area following a uniform distribution. Each of those nodes is the first node

of each group Ot, ∀k ∈ {1, 2, . . . , T}, called Vk. Then all members of each group Ot are placed

within the disk centered on Vk, using polar coordinates (ρ, θ). The radius ρ is a random variable

following the probability density function (pdf):

fρ(d) =


2

d1+d2
if 0 < d ≤ d1,

2(d2−d)
(d1+d2)(d2−d1) if d1 < d ≤ d2,

0 otherwise.

(1.29)

The angle θ is a random variable following a uniform pdf in [−π,+π). When θ leads to a node

outside of the simulated area, another value is calculated.

Fig. 1.10 and 1.11 provides an example of the pdf (1.29) and cumulative distribution function

(cdf) of ρ when d1 = 4000 and d2 = 8000.
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Figure 1.10: pdf of group member distance from

the first group member.
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Figure 1.11: cdf of group member distance from

the first group member.

1.5.2.3 Network examples and simulation parameters

Random networks were generated using parameters N = 30, d1 = 4000, d2 = 8000, T = 6,

r = 5000 and d = 20000. Fig. 1.12 to Fig. 1.15 display some of these networks, ordered by

increasing number of edges. In these figures the color indicates group membership. In Fig. 1.12,

the yellow group is composed of nodes 3, 9, 15, 21, 27. This group is not a connected component

of the whole network because node 21 is not a neighbor of any other member of the group. The

blue group is composed of nodes 6, 12, 18, 24, 30. It is a 2-hops diameter connected sub-graph of

the whole network. The violet group is composed of nodes 1, 7, 13, 19, 25 is a 3-hops diameter

connected sub-graph of the whole network. In Fig. 1.13, all sub-graphs induced by operational

groups are connected.

Figure 1.12: 30 nodes network with 146 edges. Figure 1.13: 30 nodes network with 182 edges.

Following the discussion in Section 1.5.2.1, and using the network model described in Sec-

tion 1.5.2.2, we implemented an algorithm to enumerate all partitions of a graph subject to
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Figure 1.14: 30 nodes network with 202 edges. Figure 1.15: 30 nodes network with 268 edges.

connectivity, size and diameter constraints. It is described in appendix A. This algorithm was

used with the four networks of Fig. 1.12 to Fig. 1.15, with nmin = 4, nmax = 8 and dmax = 2.

Table 1.2 displays the number of partitions satisfying the constraints, and the number of sec-

onds required to calculate them (using optimized C/C++ software running on a 3.5 GHz core

i5 processor). More than 9 days were required to solve the network of Fig. 1.15.

Fig. Edges Partitions Time (s)

1.12 146 8 584 102

1.13 182 56 228 2 079

1.14 202 10 519 184 28 951

1.15 268 979 970 630 795 113

Table 1.2: Complexity for various networks.

Thus, to limit the amount of time required to enumerate partitions in Pc, in this section the

number of nodes has been set to N = 30 and the number of edges has been limited to 230. In

addition the following parameter values have been used: d1 = 4000, d2 = 8000, T = 6, r = 5000

and d = 20000. Using these parameters, the number of edges of the 100 random networks

used during our simulations lies in [146, 222] with an average value of 183 edges. Their network

diameter lies in [5, 12] and is equal to 7.19 on average. Among the 100 random networks, the

minimum and maximum number of valid partitions are 672 and 49 647 650.

For the sake of simplicity, each wi,j has been set constant and equal to 1, ∀(i, j) ∈ E , and

γ has been set to 2. Finally the constraint parameters are: nmin = 4, nmax = 8 and dmax = 2.

All the curves of Section 1.5.3 have been obtained by averaging over 100 networks.

1.5.3 Results

The cdf of δu(α) are plotted in Fig. 1.16.
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Figure 1.16: cdf of δu(α).

The first information provided by these curves is that the partitions p ∈ Pu that are the

best when the traffic pattern does not depend on the groups, do not remain the best partitions

when the traffic pattern depends on the group: Pu 6= P∗
X . For example when α = 0.2, only

40% of the partitions p ∈Pu are also in P∗
X and this proportion decreases to about 0% when

α = 0.8 or 0.9. An additional result is that the partitions p ∈ Pu are not only no longer the

best, but also become quite bad when the value of α is high enough. For example when α = 0.7,

only 50% of these partitions have a JX0 value in the first 20% of the JX0 interval. Fig. 1.16 shows

that when traffic flows are concentrated within groups, the group membership should be taken

into account during cluster building. This result has been achieved thanks to the introduction

of the benchmark network cost function JX0 .

Fig. 1.17 illustrates the benefit of operational clustering, using the same example of the

TDMA based MAC as in Section 1.4.4. This figure plots, for one particular network, the

histogram of the average delay between nodes of the same group, calculated over all groups.

Thanks to JX0 , for each value of α the best partitions p ∈ P∗
X have been found and the

associated delays have been determined. Depending on α the best partitions are different thus

the intra-group delays are different. Fig. 1.17 shows that when α increases, the average delay

decreases. Additionally, the larger α is, the larger is the number of pairs of nodes in the same

group with a minimum delay of 100 ms. This is a practical example of the benefit provided to

the end-user when the group structure is taken into account.

Another result achieved thanks to JX0 is that the naive clustering strategy consisting in trying

to build one cluster per group is not the best way to build clusters. Out of the 100 networks

clustered using this heuristic, only 56 satisfied the cluster size constraints, the remaining ones

included clusters with only 1 or 2 nodes. Fig. 1.18 plots the cdf of δg(α) for these 56 networks.

This figure shows that the need for a clustering solution more clever than the naive one increases

when α decreases. For example when α = 0.9, about 80% of these partitions have a JX0 value
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Figure 1.17: End-to-end intra-group delay histogram for several values of α.

in the first 10% of the JX0 interval. These 80% are reduced to about 55% when α = 0.7, and

are close to 0% when α < 0.5.
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Figure 1.18: cdf of δg(α).

1.6 Extending JX0 to take cluster size into account

A limit of JX0 is related to the fact that its minimal (i.e. best) value is when the whole network

is partitioned into a single cluster. This is a problem because a key hypothesis when defining JX0
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is γ̃ ≥ γ̂, which is valid only if the cluster size is not too large. To handle this limit, we derive

from JX0 a new network cost function J̄X0 which takes into account the fact that the efficiency

of RRA within a cluster decreases with the number of its members.

Note: in this section we extend JX0 only, knowing that extending JL0 could be done similarly

without any difficulty.

1.6.1 Definition

Let us define graph Ḡ(p) as the set of nodes V connected by edges in E whose costs are γ̂ ·
wi,j · ξ(i, j) if (i, j) is an intra-cluster link, with ξ(i, j) ≥ 1 a factor used to take into account

cluster size, and γ̃ · wi,j if (i, j) is an inter-cluster link. The shortest path between nodes i and

j in Ḡ(p) is denoted by S̄X(p, i, j), with cost h̄X(p, i, j). This shortest path can be split into its

intra-cluster part ˆ̄SX(p, i, j) and its inter-cluster part ˜̄SX(p, i, j) with respective costs ˆ̄hX(p, i, j)

and ˆ̄hX(p, i, j):

ˆ̄hX(p, i, j) :=
∑

(i′,j′)∈ ˆ̄SX(p,i,j)

γ̂ · wi′,j′ · ξ(i, j) (1.30)

˜̄hX(p, i, j) :=
∑

(i′,j′)∈ ˜̄SX(p,i,j)

γ̃ · wi′,j′ . (1.31)

We define J̄X0 (p, i, j) := h̄X(p, i, j), and define J̄X0 (p) like in (1.1):

J̄X0 (p) :=
1

N

∑
(i,j)∈V2

πj|i · J̄X0 (p, i, j). (1.32)

The difference between J̄X0 (p, i, j) and JX0 (p, i, j) lies in the factor ξ(i, j). When γ̂ · wi,j ·
ξ(i, j) > γ̃ · wi,j , the cost of gathering nodes i and j in the same cluster is larger than the

cost of putting them in two different clusters. The function ξ(i, j) models the decrease of RRA

efficiency when the cluster size increases.

To determine the shape of ξ(i, j), the following ideas may be considered:

• Given a slotted MAC, the number of slots per unit of time is fixed,

• The amount of slots needed per cluster member is limited. When a cluster member gets at

least this number then it is considered as satisfied. Otherwise its dissatisfaction increases with

the number of missing slots,

Let us consider two nodes i and j in the same cluster Ck. As an example, the function ξ(i, j)

can be defined as follows:

ξ(i, j) :=

{
1, if nk ≤ nthr
1
λ

[
nk
nthr

+ λ− 1
]

otherwise.
(1.33)

with λ > 0 and nthr a target cluster size. The function ξ(i, j) increases linearly with the cluster

size. Its value is equal to 2 when nk = (λ+ 1) · nthr.

1.6.2 Example

Let us consider a MAC frame including a signaling part and a data communications part, whose

duration is dframe. The number of time slots ndata in the data communication part of the MAC
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frame is fixed. Let us denote by qmin the number of slots per second needed by a cluster member

to satisfy the user QoS. Let us consider a simple channel unaware equal radio resource allocation

scheme in a cluster Ck of size nk. To ensure that the number of slots per second per cluster

member is greater or equal than qmin we have:

ndata
dframe · nk

≥ qmin ⇔ nk ≤
ndata

dframe · qmin
.

Let us suppose that beyond this cluster size, the QoS degrades rapidly because of the throughput

decrease. We now introduce the percentage of throughput degradation δ that can be tolerated

by the application. The highest cluster size nhig can be calculated as follows:

qmin · (1− δ/100) =
ndata

dframe · nhig
⇔ nhig =

ndata
dframe · qmin · (1− δ/100)

(1.34)

To calculate the λ parameter of (1.33), we decide that when the cluster is nhig, then the

intra-cluster communication cost is doubled, i.e. ξ(i, j) = 2. We thus write:

1

λ

[
nhig
nthr

+ λ− 1

]
= 2⇔ λ =

nhig
nthr

− 1. (1.35)

For example let us consider a MAC frame with dframe = 100 ms ndata = 20, and the case

whereby qmin = 10, nthr = 20 and δ = 20%. We use (1.34) to write:

nhig =
ndata

dframe · qmin · (1− δ/100)
=

20

0.1 · 10 · (1− 20/100)
= 25.

Using (1.35) we have λ = 25/20− 1 = 0.25.

1.6.3 Numerical illustration

To assess numerically the difference between JX0 and J̄X0 let us consider the network of Fig. 1.19.

This network has 20 nodes with mt = 4, and T = 5. The number of partitions of this network

is very large and cannot be easily calculated. To decrease this number, we have considered only

partitions including connected clusters whose size is greater or equal than two.

This number of remaining partitions is still quite large (equal to 2 477 973 765), a few days

were required to calculate the values of JX0 and J̄X0 for all these partitions. Fig. 1.20 plots the

minimum values of JX0 and J̄X0 (multiplied by the network size N) versus the maximum cluster

size. The parameters common to JX0 and J̄X0 are γ = 2.0 and α = 0.9. To calculate J̄X0 , the

value of nthr has been set to five and the one of λ to 0.4. When the maximum cluster size is no

greater than five, JX0 and J̄X0 are equal. Beyond this value, J̄X0 > JX0 .

Fig. 1.21 plots only JX0 , whose minimum occurs when the whole network is a single cluster.

The ”wave” shape of the curve when nmax ≥ 8 is explained by the group size value mt = 4:

when the maximum cluster size is a multiple of four, then full groups can be included in the same

cluster and the number of inter-cluster links used for intra-group communication is reduced to

zero, thus minimizing JX0 .

1.7 Case of concave metrics: the throughput example

In this section we follow the methodology used with J0 to define T0 usable with the throughput

metric. We extend JX0 only, knowing that extending JL0 could be done similarly.
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Figure 1.19: Network used to compare JX0 and J̄X0 .
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Figure 1.20: Minimum values of JX0 and J̄X0 vs. maximum cluster size nmax.

1.7.1 Definition

Let us start from (1.15):

JX0 (p, i, j) =
∑

(i′,j′)∈ŜX(p,i,j)

γ̂ · wi′,j′ +
∑

(i′,j′)∈S̃X(p,i,j)

γ̃ · wi′,j′ .

To use throughput instead of additive metric, JX0 (p, i, j) must be modified to take into account

that throughput is a concave metric. This means that the throughput metric associated with

a network path is the minimum throughput value along the links of this path, instead of being
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Figure 1.21: Minimum values of JX0 vs. maximum cluster size, with group size equal to four.

the cumulated value. The graph G′(p) is defined by its vertices V and its set of edges ET (p)

whose weights are η̂ · wi,j and η̃ · wi,j for intra and inter-cluster links respectively, with η̂ and

η̃ < η̂ the throughput efficiencies achieved by intra and inter-cluster RRA, and η = η̃/η̂ (< 1).

Let define as WX(p, i, j) the shortest widest path [38] from node i to node j in G′(p). Let us

split this path WX(p, i, j) into two subsets ŴX(p, i, j) and W̃X(p, i, j), the sets of its intra and

inter-cluster links respectively. The throughput TX0 (p, i, j) that can be achieved between node i

and node j is defined as:

TX0 (p, i, j) := min

(
η̂ · min

(i′,j′)∈ŴX(p,i,j)
wi′,j′ , η̃ · min

(i′,j′)∈W̃X(p,i,j)
wi′,j′

)
(1.36)

:= η̂

[
min

(
min

(i′,j′)∈ŴX(p,i,j)
wi′,j′ , η · min

(i′,j′)∈W̃X(p,i,j)
wi′,j′

)]
(1.37)

Similarly to (1.1), we now introduce the metric TX0 (p):

TX0 (p) :=
1

N

∑
(i,j)∈V2

πj|i · TX0 (p, i, j). (1.38)

Finding the best clustering of the network from TX0 perspective is equivalent to finding the set

of partitions PX
T defined as:

PX
T := arg max

p∈P
TX0 (p) (1.39)

When η < 1 one may wonder about the quality of the single cluster network partition {V}.
Using a similar argument as for Result 1.6 page 23, it is possible to demonstrate that {V} is the

partition leading to the highest TX0 value.

1.7.2 Shortest widest path

Let us recall the difference between the shortest path and the shortest widest path algorithms. In

a graph G, for each link (i, j) ∈ E , let bi,j and di,j the available bandwidth and the propagation
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delay of this link, respectively. If (i, j) /∈ E then bi,j = 0 and di,j = ∞. The length of the

shortest-path S(i, j) = (i, i2, i3, . . . , iK−1, j) from node i to node j is denoted by Di,j and is

defined as the sum of propagation delays along this path. The shortest path algorithm from

Dijkstra calculates all shortest paths from node i to all nodes j 6= i. It is defined in Table 1.3.

1 Set L = {i}, Di,i = 0, and Di,j = di,j ,∀j 6= i.

2 While True:

3 Find set K ⊂ V \ L such that ∀k ∈ K, Di,k = minj /∈LDi,j .

4 If K 6= ∅ then:

5 Choose k ∈ K randomly.

6 Set L = L ∪ {k}.
7 For all j such that dk,j < +∞:

8 Set Di,j = min(Di,j , Di,k + dk,j).

9 End For.

10 Else Exit While loop.

11 End If.

12 End While.

Table 1.3: Dijkstra shortest path algorithm.

Bi,j and Di,j are the width and the length of the chosen shortest-widest path from node i

to node j. By convention, Bi,j = ∞ and Di,i = 0. The algorithm in Table 1.4 [38] allows to

find a widest path from node i to node j, and the associated bandwidth B∗i,j . The widest path

found by this algorithm is not the shortest widest path. To find the shortest widest path from i

to j the Dijkstra algorithm must be used using the set of links E ′ = E \ {(u, v) ∈ E|bu,v < B∗i,j}.
Without this second step the widest path found is not a shortest one and depends on the source,

as illustrated in Fig. 1.22, Fig. 1.23 and Fig. 1.24.

1 Set L = {i}.
2 Set Bi,i =∞, Di,i = 0, Bi,j = bi,j and Di,j = di,j ,∀j 6= i.

3 While True:

4 Find set K ⊂ V \ L such that ∀k ∈ K, Bi,k = maxj /∈LBi,j .

5 If K 6= ∅ then:

6 Find k such that Di,k = minj∈K Di,j .

7 Set L = L ∪ {k}.
7 For all j /∈ L:

9 Set Bi,j = max
(
Bi,j ,min(Bi,k, bk,j)

)
.

10 End For.

11 Else Exit While loop.

12 End If.

13 End While.

Table 1.4: Modified Dijkstra widest path algorithm.
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Figure 1.22: Example of a widest path from

node 4 to node 24.

Figure 1.23: Example of a widest path from

node 24 to node 4.

Figure 1.24: Example of a shortest widest path

between nodes 4 and 24.
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1.8 Conclusions

As first result, this chapter introduces the cost functions JL0 and JX0 , which can be used as a

benchmark to compare different clustering solutions. These functions measure the quality of

a network partition using end-to-end path calculations for additive metrics. They take into

account the fact that inter-cluster and intra-cluster communications have different costs and

are flexible enough to cover both cases when the traffic distribution depends on the groups or

not. During the elaboration of JX0 , it has been shown that routing should take into account the

cluster structure to find good network paths and offer the best QoS to the user traffic.

A second result achieved in this chapter is that making use of group information for clustering

leads to better network performance. This result was illustrated with the practical application

of JX0 to intra-group delays. Thanks to this new cost function it has also been shown that using

a simple naive approach consisting of building one cluster per group does not lead to the best

network performance. This justifies the need for more advanced clustering solutions using group

information.

Finally JX0 was extended in two ways. Firstly, to better take cluster size into account, and

avoid that {V} be the best partition; the resulting function is denoted by J̄X0 . Secondly, to cope

with the throughput concave metric; the resulting function is denoted by TX0 .

The metrics introduced here are used in Chapters 2 and 3 to assess the performance of new

distributed clustering algorithms.
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Chapter 2

Distributed clustering algorithm

with operational groups

The work presented in this chapter has been partially published in [39–41].

2.1 Introduction

Public safety and military networks are organized into a hierarchical structure leading to the

existence of operational groups (e.g., squad, section, etc.). In those networks, nodes exhibit group

mobility behavior. Additionally, the traffic is strongly dependent on the network hierarchical

organization, being mostly concentrated within operational groups. For these two reasons, the

clustering solution should take into account operational group information in order to provide

a better end-to-end QoS and to improve network stability. As demonstrated in Chapter 1 the

trivial solution consisting in building one cluster per group is not acceptable. Thus to cope with

structured networks based on operational groups, specific clustering solutions are required.

Numerous distributed clustering schemes have been proposed in the literature. These al-

gorithmic solutions first select Cluster Head (CH) nodes, and then the other nodes affiliate to

them, leading to the different clusters. A weight is commonly associated with each node and

the nodes with the highest weights in a neighborhood are selected to be the CH nodes. The

weights can be the node identifier, the node degree, the remaining battery power, metrics related

to radio measurements etc., or a combination of them [1, 8, 9]. To get the node weight, other

solutions rely on the knowledge of nodes’ location and speed, obtained thanks to, for instance,

a GPS device [10]. In a second step, when CH nodes have been selected, non-CH nodes affiliate

to CH nodes depending on their weight or any other metric.

Only a few papers consider group information for building the clusters. The authors in

[15] introduce the type-based clustering algorithm (TCA). This clustering scheme associates a

stability factor to each node and selects as CH the nodes that have the highest stability factor in

a radio neighborhood. The stability factor takes group membership (identified thanks to the IP

subnet of each node) into account. A limitation of TCA lies in the fact that two CH nodes cannot

be neighbors. A direct consequence in dense networks is the formation of clusters with a large

number of members. Two distributed clustering algorithms, GDMAC [8] and VOTE [9], are

well-known to handle the size of clusters but they do not take into account the group structure.

We have identified a clear gap in the ad hoc network clustering literature since there is no
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clustering solution suited to structured network that properly take cluster size into account.

To fill this gap we first consider extensions of existing CH-based clustering solutions. We find

that the performance gains achieved thanks to these extensions are inherently limited by the

algorithms from which they are derived. A challenge to overcome when designing CH-based

algorithms is how to calculate the node weights used to elect the CH nodes. In structured

networks, it make sense to assign the weight of a node based on its group. The drawback of

this approach is that comparing the weight of nodes from different groups is very difficult. Also

non-CH nodes may choose their CH based on its weight, which could depend on the current

state of its cluster. For example the CH of a large cluster could have a greater weight than a

CH of a small cluster. Unfortunately, this kind of strategy leads to a lot of instability in the

cluster structure. We thus decided to follow a clean slate approach to design a new distributed

clustering algorithm suited to structured networks, and search for algorithms that do not involve

any CH. This choice allows us to form clusters whose members are peers, and thus avoids the

aforementioned problem of allocating a weight to the nodes. In addition, since the CH can be a

single point of failure within a cluster, our algorithm does not suffer from this problem.

Section 2.2 introduces the network model. Before going into the definition of the new dis-

tributed clustering algorithm, Section 2.3 details several new cluster cost functions and assesses

their capability to be used to find good partitions with respect to the J0 metric, taken as a

reference. Then Section 2.4 explains how, starting from the best cost function identified in Sec-

tion 2.3, we designed our distributed clustering algorithm. The main content of this chapter is

in Section 2.5 where the Distributed Clustering with Operational Groups (DCOG) algorithm is

detailed. Finally, Section 2.6 is devoted to simulation results and analysis.

2.2 Network model

In this chapter the network model of Section 1.3 is extended introducing the following notations.

The cluster group diversity ok is the number of groups with at least one member in cluster Ck.
The index of the group with the highest number of members in cluster Ck is o∗k. The number of

members of group Ot in cluster Ck is mt,k. Let I(Ck) :=
{
t|mt,k 6= 0, t ∈ {1, . . . , T}

}
the set of

the indices of groups with at least one member in cluster Ck.
To simplify notations in this chapter the cost functions JX0 and TX0 from Chapter 1 are

denoted by J0 and T0.

2.3 First step from the global network cost function to a dis-

tributed clustering solution

2.3.1 Definition of simple cost functions

The function J0 (JX0 defined in Section 1.4) requires a global knowledge of the network and

cannot be used during a distributed clustering process. Thus, we now define new cluster cost

functions ci that can be calculated by each cluster based on the knowledge available locally.

They must take into account that:

• Nodes of the same group should belong to the same cluster, and
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• The number of nodes in the clusters should not exceed a maximum value, associated with the

number of nodes best handled by the radio resource allocation feature within a cluster.

Let us introduce the global network cost function Ji written as a sum of the cluster costs

over all the clusters of the network:

Ji :=

Nc∑
k=1

ci(Ck), (2.1)

with ci(Ck) the cost of cluster Ck associated with Ji.

In this section our goal is to identify some good criteria that could be used in a distributed

clustering process. We define several Ji by their corresponding ci, and calculate their value for

each partition of G. We retain as best partitions the ones that minimize Ji.

The first cost function is:

c1(Ck) := ok.

Minimizing function J1 leads to minimizing the cluster group diversity across all clusters, mean-

ing that the clusters are more or less equal to the groups.

The second and third functions are c2 and c3, which take into account group information in

a different way:

c2(Ck) := −
mo∗k,k

mo∗k

,

c3(Ck) := (mo∗k
−mo∗k,k

)2.

The idea of these two cost functions is to find in each cluster the group o∗k with the highest

number of members mo∗k,k
, and to compare it to the total number of members in this group mo∗k

.

Having these numbers close to each other is another way of having clusters more or less equal

to the groups.

In addition to using group related metrics, the last two functions c4 and c5 introduce a new

variable that is important from a radio resource allocation point of view: the size of the clusters.

They are defined as follows:

c4(Ck) := (nmax − nk + 1) · ok,
c5(Ck) := (nmax − nk + 1) · (mo∗k

−mo∗k,k
+ 1).

The +1 in c4 and c5 corresponds to the fact that if the size of the cluster is maximum, we still

want to take group information into account.

2.3.2 Performance assessment

Let us define P∗
i , ∀i ∈ {0, 1, 2, 3, 4, 5}, as the set of the optimal partitions for Ji:

P∗
i := arg min

p∈Pc
Ji(p).

A function Ji, i 6= 0, could be considered as good as J0 if it yields the same best partitions:

P∗
i = P∗

0 . However this never happens because none of the Ji is as good as J0. Therefore, our
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first criterion to assess if a function Ji is good or not is whether it can be used to identify some

of the best partitions w.r.t. J0, i.e., if P∗
i ∩P∗

0 6= ∅.
To evaluate such capability, we have simulated 100 networks using the setup described in

Section 1.5.2. Each cell of Table 2.1 contains the number of networks nα,i for which P∗
i ∩P∗

0 6= ∅.
The last two lines of the table are the sums of nα,i over several values of α for a given i. In

this table the cells are colored in order to help differentiating good Ji from bad Ji, for a given

α value (which is the probability that one node communicates with a node of the same group,

see Section 1.4.5). Let i∗α = arg maxi∈{1,2,3,4,5} nα,i and ī∗α = arg mini∈{1,2,3,4,5} nα,i. The green

color identifies Ji∗α , i.e., the Ji function that succeeds in finding at least one best partition in the

largest number of networks. Likewise the red color identifies Jī∗α . Let nα = (nα,i∗α + nα,̄i∗α)/2. If

nα ≤ nα,i < nα,i∗α then the cell is colored in blue, and if nα,̄i∗α < nα,i < nα, then it is colored in

orange.

α J1 J2 J3 J4 J5

0.2 1 0 4 8 4

0.3 3 0 8 15 8

0.4 5 0 13 21 14

0.5 11 2 28 26 22

0.6 15 4 32 25 25

0.7 31 17 41 23 25

0.8 63 34 56 30 31

0.9 86 55 61 25 28∑α=0.9
α=0.2 215 112 243 173 157∑α=0.6
α=0.2 35 6 85 95 73

Table 2.1: Number of networks with P∗
i ∩P∗

0 6= ∅ (number of trials = 100).

A first remark is that all Ji achieve larger values of nα,i when α increases. This is expected

because an increasing α values means that group membership has a larger impact on the user

traffic load, thus taking into account groups should help in finding better partitions. The

penultimate line can be used to establish a partial ordering between all Ji considering all values

of α: J3 > J1 > J4 > J5 > J2. The function J3 is the best only for α values from 0.5 to 0.7,

and offers consistently good performance for all values of α. The function J2 is consistently

the worst. The case of the second best function J1 is very interesting: when groups have a low

impact on J0 values its performance is mediocre, but improves with increasing group impact,

finally becoming the best. The same kind of argument, reversed, can be made also for J4 and

J5: their performance are good for low α values, but degrade as α value increases (J4 even

becoming the worst when α ≥ 0.8). Summing the numbers over α ∈ {0.2, 0.3, 0.4, 0.5, 0.6} leads

to a different partial ordering between all Ji, as shown in the last line: J4 > J3 > J5 > J1 > J2.

This result hints that the Ji should be selected depending on the importance of the groups on

traffic.

The fact that the proposed cost functions succeed in finding some best partitions w.r.t. J0

is a good result. However, we now prove that this criterion is not enough. Let us for example

consider a cluster cost function ci0 leading to a network cost function Ji0 such that any partition is

a best partition: P∗
i0

= Pc. In that case, for any random network we have P∗
i0
∩P∗

0 = P∗
0 6= ∅.
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In Table 2.1 such a function would lead to a value nα,i = 100 and would be identified as the

best. Let us define P̄∗
i , ∀i ∈ {0, 1, 2, 3, 4, 5}, as the set of the worst partitions for Ji:

P̄∗
i := arg max

p∈Pc
Ji(p).

We have P∗
i0
∩ P̄∗

0 = P̄∗
0 , meaning that Ji0 also identifies as best partitions the partitions that

are the worst from the point of view of J0. We thus need another criterion to assess the quality

of a cluster cost function ci.

We now define this second criterion, following a methodology similar to the one of Sec-

tion 1.5.1. Let us write pij , with j ∈ {1, 2, . . . , |P∗
i |}, the members of P∗

i , and define J∗0,i as the

highest J0 value of the partitions in P∗
i (the worst according to J0):

J∗0,i := max
p∈P∗i

J0(p).

Let us write p̄ij , with j ∈ {1, 2, . . . , |P̄∗
i |}, the members of P̄∗

i , and define J̄∗0,i as the lowest J0

value of the partitions in P̄∗
i (the best according to J0):

J̄∗0,i := min
p∈P̄∗i

J0(p).

Let us take the example of Fig 2.1, where P∗
i = {pi1, pi2, pi3, pi4, pi5} with J∗0,i = J0(pi3), and

P̄∗
i = {p̄i1, p̄i2, p̄i3, p̄i4} with J̄∗i0 = J0(p̄i2).
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Figure 2.1: Metrics used to assess Ji: example to illustrate J∗0,0, J∗0,i, J̄
∗
0,i and J̄∗0,0.

To measure how good is a function Ji at finding partitions with good J0 values, we consider

the quantity J∗0,i−J∗0,0. We also use J̄∗0,i−J∗0,0 to measure if Ji is capable to find partitions with

bad J0 values. Because these values depend on the network trial, J∗0,i− J∗0,0 and J̄∗0,i− J∗0,0 must

be normalized. We now introduce the values δ∗i and δ̄∗i normalized in [0, 1]:
δ∗i :=

J∗0,i − J∗0,0
J̄∗0,0 − J∗0,0

,

δ̄∗i :=
J̄∗0,i − J∗0,0
J̄∗0,0 − J∗0,0

.

(2.2)

In order for Ji to be a good substitute to J0, δ∗i must be as close to 0 as possible. If the value

of δ̄∗i is close to 1, it means that Ji can also find very bad J0 partitions.
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The cumulated distribution functions of δ∗i are plotted in Fig. 2.2. For example when α = 0.2,

the probability that δ∗4 is less than 0.3 is 0.6, i.e., 60% of partitions considered as best by J4

have a corresponding J0 value which is in the first 30% of the J0 values interval.

These figures show that when α increases from 0.2 to 0.6, the partial ordering between the

Ji remains constant: J5 > J4 > J3 > J1 > J2. This result is different from the one of Table 2.1.

This means that J4 is the best if the capability of finding best partitions w.r.t. J0 is the most

important, but that J5 is the best in probability: it is likely that any partition found as best

using J5 will have a lower value than a partition found as best using J4.

The function J5 remains the best for all values of α no greater than 0.8. It is only when

α = 0.9 that J1 becomes the best and J5 the second best. Also, J3 identified as best Ji

in Table 2.1 is never the best in Fig. 2.2. This confirms the importance of choosing a good

criterion to select the Ji. In view of its capacity to deliver greater details than our first criterion,

we consider our second criterion as the most relevant.

The frequency diagrams of δ̄∗i − δ∗i have been drawn in Fig. 2.3 and Fig. 2.4 for J5, identified

as the globally best Ji (except for α = 0.9). The x values on the x-axis, indicate values of δ̄∗i −δ∗i
in the [x−0.2, x] interval. When strictly positive these values quantify, the larger the better, the

fact that Ji finds as its best partitions (p∗i ∈P∗
i ), partitions that have better J0 values than the

partitions that Ji finds as its worst partitions (p̄∗i ∈ P̄∗
i ). Negative values are associated with

the inverse undesired behavior. The y value indicates the number of networks. For example in

the frequency diagram associated with α = 0.2 of Fig. 2.3, the y value of the bar at x = 0.2 is

34. This means that for 34 of the 100 random networks, all partitions identified as the best by

J5 have better J0 values, by a factor in [0, 0.2], than all partitions identified as the worst by J5.

Fig. 2.3 and Fig. 2.4 show the capability of J5 to discriminate between good and bad par-

titions w.r.t. J0. It is lower with low value of α and improves when α increases. As soon as

α ≥ 0.5, it is always the case.

The results obtained so far allow to determine that if group membership is essential w.r.t.

the traffic load (i.e. high values of α), J1 is the best function. However, J5 is always good ∀α,

indicating that cluster size is also important. This makes sense because the number of inter-

cluster communications also depend on the number of clusters, i.e., on cluster size. Thus, in the

following we use the cost function c5 to design a distributed clustering algorithm.

2.4 Towards a distributed clustering solution

This section replicates in chronological order the steps that led to the definition of the cost

function used in the distributed clustering scheme proposed in this chapter, as well as the way

to handle it. Accordingly with the analysis performed in Section 2.3, we chose c5 as initial cost

function. Concerning the algorithm describing how the clusters are modified, we initialize it

with each node being a singleton cluster. Let us now detail some of the steps that led to the

definition of the distributed clustering solution of Section 2.5.

2.4.1 First intermediate solution

The principle of the first algorithm was to split time in rounds, and to divide each round in

two steps: the decision making and its application. We found in Section 2.3 that the global

cost function J5 allowed to select good partitions. Consequently, to perform the first step of the
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Figure 2.2: cdf of δ∗i vs. α.

algorithm we first chose the cluster cost function c5 derived from J5:

c5(Ck) := (nmax − nk + 1) · (mo∗k
−mo∗k,k

+ 1).
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Figure 2.3: δ̄∗5 − δ∗5 frequency diagrams for α ∈ {0.2, 0.3, 0.4, 0.5}.
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Figure 2.4: δ̄∗5 − δ∗5 frequency diagrams for α ∈ {0.6, 0.7, 0.8, 0.9}.

2.4.1.1 Step 1: decision making

During step 1 in each cluster Ck each node i checks if it is valuable to move from its current

cluster to each of its neighboring cluster C`. To check this, the loss induced by node i leaving
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its cluster is calculated:

loss(i, Ck) := c(Ck \ {i})− c(Ck). (2.3)

Then the gain induced by the arrival of node i in C` is calculated:

gain1(i, Ck, C`) := c(C` ∪ {i})− c(Ck). (2.4)

with c the chosen cluster cost function, i.e. c5. We decided that a node could leave its cluster

Ck to join another cluster C` if:

gain1(i, Ck, C`) > −loss(i, Ck). (2.5)

If more than one neighbor cluster C` exist, and that, at the same time satisfy (2.5) and maximize

the gain1(i, Ck, C`), then one is randomly chosen among them and node i is selected to join C`.
Otherwise node i does not leave its cluster Ck.

In addition to this condition, to allow a node to join a neighbor cluster, the connectivity,

size and diameter constraints must also be satisfied.

2.4.1.2 Step 2: decision application

At the end of step 1, it has been decided that some nodes should leave their current cluster to

join a neighboring one. We call this an inter-cluster nodes swap, or more shortly a swap. During

step 2, the selected swap is performed.

2.4.1.3 Behavior of first intermediate solution

Several problems were identified with this solution:

• When multiple groups have the same number of members in a cluster Ck, if this number is also

the highest among all groups in Ck, then o∗k has not a unique value. If in addition the groups do

not have the same size (multiple values for mo∗k,k
), then the value of c5(Ck) is implementation

dependent.

• Notwithstanding this problem, when multiple groups have at least one member in a cluster,

only the one with the highest number of members in the cluster is taken into account by J5.

The problem is similar for all Ji from Section 2.3.

2.4.2 Second intermediate solution

To solve both problems identified in the previous solution, we modified the cost function in order

to take into account all groups with at least one member in the cluster.

2.4.2.1 Modification of the cost function

We defined the new following cost function:

c
′
5(Ck) :=

∑
t∈I(Ck)

[
1−

mt,k

mmin

]
+ 1|I(Ck)|≤Ω

[
Ω− |I(Ck)|

]
, (2.6)

with mmin := arg mint∈{1,...,Ng}mt the size of the smallest group, and Ω a constant.
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In the first term, mmin has been introduced to favor the formation of clusters including the

groups that have the biggest size. The rationale to justify the second term is that the cluster

size being limited, only a limited number of groups (≤ Ω) should be represented in any cluster.

Otherwise a penalty is applied to the cost of the considered cluster .

2.4.2.2 Behavior of second intermediate solution

The loss induced by a node i leaving a cluster Ck is the same as the gain induced by the arrival

of node i in any cluster C`. Consequently, the algorithm remains in its initial state.

2.4.3 Third intermediate solution

2.4.3.1 Modification of the cost function

To solve the aforementioned problem, we modified c
′
5. We replaced the linear function 1 −

mt,k/mmin used in (2.6) by function f defined as:

f(mt,k) :=
mt,k(mt,k + 1)

mmin(mmin + 1)
. (2.7)

Thanks to (2.7) a gain equal to n+ 1 is achieved when in a cluster the number of members of a

group increases from n to n+ 1. Let us notice that the following property holds:

f(mt,k + 1)− f(mt,k) < f(mt,k + 2)− f(mt,k + 1).

Thanks to this property, it is always better from a cost perspective to add members of a group

to a cluster already including the highest number of members of this group.

We thus defined the following cost function:

c
′′
5(Ck) :=

∑
t∈I(Ck)

[
1−

mt,k(mt,k + 1)

mmin(mmin + 1)

]
+ 1|I(Ck)|≤Ω

[
Ω− |I(Ck)|

]
. (2.8)

In Chapter 3, we introduce a class of functions which includes (2.7) as a specific case.

2.4.3.2 Modification of the decision making step

Because c(Ck) appears in both gain1(i, Ck, C`) and loss(i, Ck), a node in group Ot may leave its

cluster Ck to join cluster C`, even if there are more members of Ot in Ck than in C`. To fix this

issue, we defined the new gain gain2(i, C`) induced by the arrival of node i in cluster C`:

gain2(i, C`) := c(C` ∪ {i})− c(C`). (2.9)

Also, when using the algorithm of Section 2.4.1.1, the loss induced by a node leaving its

singleton cluster is equal to the gain induced by this node joining a cluster not yet including any

node of its group. To allow a cluster to include members of several groups the loss associated

with the vanishing of a singleton cluster was set to zero.

2.4.3.3 Behavior of third intermediate solution

Some clustering now happens: provided that the constraints allow it, the nodes of the same

groups join together into the same cluster, forming one cluster per group. In addition to this,

we would like that if the maximum cluster size allows it, more than one group can be included

in a single cluster.
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2.4.4 Fourth intermediate solution

2.4.4.1 Modification of the cost function

We found out that in (2.8) the indicator function was unnecessary and thus we removed it.

We also modified the cost function to make it normalized in [0, 1]. The next cost function was

defined as:

c
′′′
5 (Ck) := 1− 1

nmax

∑
t∈I(Ck)

mt,k ·
mt,k(mt,k + 1)

mt(mt + 1)
. (2.10)

In this equation, multiplying the fraction [mt,k(mt,k + 1)]/[mt(mt + 1)] by mt,k favors the

completion of the biggest groups.

2.4.4.2 Modification of the decision making step

Instead of allowing single nodes to be swapped between clusters, we now allow sets of nodes

to change cluster together. More precisely, within a cluster all members of the same group

may leave their current cluster to join a neighboring cluster. This modification allows to gather

members from multiple groups in the same cluster. Also, to allow a set of nodes to move to

a neighboring cluster, the connectivity, size and diameter constraints must be satisfied in both

the source and the destination cluster.

2.4.4.3 Behavior of fourth intermediate solution

This solution seemed to succeed in building adequate clusters for a variety of networks. Yet a

last improvement to simplify the decision making step could be done.

2.4.5 Final solution

In Section 2.4.3, the decision making step was modified to set to zero the loss associated with

the vanishing of a singleton cluster. This policy had also to be applied when a non-singleton

cluster vanishes because all its members from the same group move to another cluster.

Instead of handling these cases in a specific way, the cost function of (2.10) could be modified

in order to favor the formation of big clusters. The new function became:

c6(Ck) := 1−
[

nk(nk + 1)

nmax(nmax + 1)
· ε+

1

nmax

∑
t∈I(Ck)

mt,k ·
mt,k(mt,k + 1)

mt(mt + 1)
· (1− ε)

]
, (2.11)

with ε chosen in order to either favor (ε close to 0) the formation of clusters including complete

groups, or to only favor (ε close to 1) large clusters.

In Chapter 3 we detail the properties that must be fulfilled by cluster cost functions usable

to perform distributed clustering, (2.11) being only a specific example.

2.4.6 Simulations

Since the final cost function c6 has been defined in (2.11), we now assess its performance using

the same methodology as described in Section 2.3. We set nmax = 8, α = 0 and ε = 0 (in

order to only take into account group membership). Simulations have been performed for 100

networks, and for each network the best partition w.r.t. J6 has been found and compared to
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the partitions with the lowest and highest J0 values. Fig. 2.5 details the simulation results,

including the ones for the functions J1, J2, J3, J4 and J5 from Section 2.3.
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Figure 2.5: cdf of δ∗i for α = 0.9.

The partitions obtained thanks to J6 are nearly as good as the one obtained thanks to

J1, which is the best for α = 0.9. This achievement foretells good results for our distributed

algorithm using c6. Now that the methodology that we used to define our distributed clustering

algorithm has been detailed, we can introduce the algorithm itself.

2.5 Distributed Clustering with Operational Group

In this section we start by introducing the principles of DCOG, starting from a generic cluster

cost function c. Then, we detail the DCOG algorithm based on the results of Section 2.4, i.e.,

a way to compare node swaps between clusters, and a cluster cost function requiring only local

cluster information. Finally we explain how DCOG is adapted to node mobility.

2.5.1 Principles of DCOG

The DCOG algorithm is a distributed clustering algorithm that is run continuously by all net-

work nodes in order to build clusters satisfying the two following properties: any cluster should

both i) include nodes of the same operational groups (as much as possible), and ii) include the

largest number of nodes, while satisfying the following constraints: it must be connected, its

size must be less or equal to nmax, and its diameter must be less or equal to dmax. Note that

for (i), all the nodes of a group may not be able to be gathered into one single cluster due to

the constraints.

Conversely to most of the clustering algorithms that can be found in the literature, DCOG

algorithm does not need to resort to the notion of CH node. Instead, DCOG manages a trading

process between the clusters, each cluster evaluating periodically the opportunity to give away
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some of its nodes to a neighbor cluster. Once an opportunity is found, the swap is implemented

until the next opportunity.

In order to evaluate if a swap of nodes is possible between two clusters, we introduce two

different metric functions: a cluster one (noted c) that gives a score depending on the nodes

inside the cluster, and a gain one (noted g) that is a function of c for both clusters involved

(details are given in the subsequent sections). The decision to let the swap to happen is based

upon the enforcement of the two following conditions: i) g > 0, and ii) the constraints are met.

2.5.2 Functions related to DCOG

In this section we denote by C the set of all possible clusters.

The cluster cost function used in DCOG is an application that associates a real value in [0, 1]

to a cluster Ck, defined as:

Definition 2.1 The DCOG cluster cost function c is defined as:

c : C 7→ [0, 1]

Ck 7→ c(Ck),

such that c(∅) = 1, and c(Ck) = 0 when Ck fulfills the targeted properties.

Function c is used to define the gain g, and specific implementation is given in Section 2.5.5.

As described previously, DCOG uses a function g to evaluate the benefits of swapping a set

of nodes {ui} from one cluster Ck to a cluster C`, with k 6= `. A gain function is defined as:

Definition 2.2 The DCOG cluster gain function g is defined, ∀k,∀`, with k 6= ` as:

g : V × C × C 7→ R
({ui}, Ck, C`) 7→ g({ui}, Ck, C`)

with g({ui}, Ck, C`) :=
[
c(C`)− c(C` ∪ {ui})

]
−
[
c(Ck \ {ui})− c(Ck)

]
.

The gain g({ui}, Ck, C`) results from the difference of: i) the gain associated with the arrival

of nodes {ui} in C` previously introduced in Section 2.4.3.2 and equal to c(C`) − c(C` ∪ {ui}),
and ii) the loss associated with the departure of nodes {ui} from Ck and already defined in

Section 2.4.1.1, equal to c(Ck \ {ui})− c(Ck).
To make sure that any inter-cluster nodes swap decided by DCOG is beneficial, we impose

the following property:

Property 2.1 With DCOG, an inter-cluster nodes swap is allowed only if the associated gain

is strictly positive.

The action of the DCOG clustering algorithm is to only allow swaps that induce a strictly

positive gain. To understand the consequence of this property of DCOG, we now introduce the

concept of network cost function as the sum of the costs of all clusters in the network. The

evolution of the network cost during DCOG execution is instrumental to prove its convergence

to a stable partition.

Let us denote by Ck(t) and p(t) the cluster Ck and partition p at time t, respectively. Omitting

the subscript i, let us consider the cost function c associated to the global cost function J defined

in (2.1).
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Result 2.1 If between time tn and tn+1, the only swap that happened is the departure of nodes

{ui} from cluster Ck towards cluster C`, then the following equality holds:

J(p(tn+1)) = J(p(tn))− g({ui}, Ck(tn), C`(tn)). (2.12)

Proof Before nodes {ui} move from cluster Ck to cluster C` we have: J(p(tn)) = c(Ck(tn)) +

c(C`(tn)) +
∑

j 6=k,j 6=` c(Cj(tn)). At time tn+1 we have:

J(p(tn+1)) =c(Ck(tn+1)) + c(C`(tn+1)) +
∑

j 6=k,j 6=`
c(Cj(tn+1))

=c(Ck(tn) \ {ui}) + c(C`(tn) ∪ {ui}) +
∑

j 6=k,j 6=`
c(Cj(tn))

=c(Ck(tn) \ {ui}) + c(C`(tn) ∪ {ui}) + J(p(tn))− c(Ck(tn))− c(C`(tn))

=J(p(tn))−
{

[c(C`(tn))− c(C`(tn) ∪ {ui})]− [c(Ck(tn) \ {ui})− c(Ck(tn))]
}

=J(p(tn))− g({ui}, Ck(tn), C`(tn)).

Result 2.2 If between time tn and tn+1, the only swap that happened is the departure of nodes

{ui} from cluster Ck towards cluster C`, then the following inequality holds:

J(p(tn+1)) < J(p(tn)).

Proof Immediate consequence of Property 2.1 and Result 2.1.

2.5.3 Detailed DCOG description

The DCOG algorithm which builds the clusters is described in Table 2.2.

It is split in two steps after which existing clusters satisfy the connectivity, size, and diameter

constraints. The first one (lines 1-22) lets each cluster determine if some of its members should

leave the cluster and join another neighboring one. During step 2 (lines 22-35), nodes are

swapped between clusters as determined in previous step. Step 1 involves nodes of a single

cluster, and step 2 involves nodes from a cluster and some of its neighboring clusters. In

addition, the clustering algorithm is performed independently by all clusters. This means that

the decisions made during step 1 by some nodes {ui} of a cluster Ck to join a cluster C` may

no longer make sense because for example step 2 of cluster C` has been executed before step 2

of cluster Ck, and C` has been modified. Consequently, in step 2, before modifying clusters it

is verified if the decided swaps still make sense. These two steps are repeated until there is no

more any possible cluster modification.

During step 1, lines 3-4 ensure that a cluster Ck will still satisfy connectivity and diameter

constraints after some nodes {ui} have joined a neighboring cluster. Lines 6-8 check that if

nodes {ui} were to join cluster C`, then size, connectivity, and diameter constraints would still

be satisfied. Lines 9-16 are used to find the set of neighboring clusters for which the gain achieved

when nodes {ui} leave cluster Ck is maximal. Lines 17-21 check if there are some nodes {ui}
that could join a neighboring cluster. If this is the case then one neighboring cluster is selected

randomly among the neighboring clusters inducing the maximum gain.
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Step 1

1 Set M = ∅, L = ∅ and g = 0

2 For each set of nodes {ui} members of the same group in

Ck do:

3 If Ck \ {ui} is not connected, go to line 2. End If.

4 If d(Ck \ {ui}) > dmax, go to line 2. End If.

5 For each cluster C` neighbor of cluster Ck do:

6 If |C` ∪ {ui}| > nmax, go to line 5. End If.

7 If C` ∪ {ui} is disconnected, go to line 5. End If.

8 If d(C` ∪ {ui}) > dmax, go to line 5. End If.

9 Calculate g({ui}, Ck, C`) thanks to (2.2).

10 If g({ui}, Ck, C`) > g then:

11 Set g = g({ui}, Ck, C`).
12 Set L = {C`}.
13 Else if g({ui}, Ck, C`) = g then:

14 Set L = L ∪ C`.
15 End If.

16 End For.

17 If g = 0 then nodes {ui} remain in cluster Ck.
18 Else then

19 Choose randomly C` ∈ L.

20 Set M = M ∪ ({ui}, C`, g).

21 End If.

22 End For.

Step 2

23 For each ({ui}, C`, g) ∈M considered in decreasing g val-

ues

24 If Ck \ {ui} is not connected, go to line 23. End If.

25 If C` = ∅, go to line 23. End If.

26 If |C` ∪ {ui}| > nmax, go to line 23. End If.

27 If d(C` ∪ {ui}) > dmax, go to line 23. End If.

28 Calculate g({ui}, Ck, C`) thanks to (2.2).

29 If g({ui}, Ck, C`) ≤ 0, go to line 23. End If.

30 If C` is available then:

31 Set C` = C` ∪ {ui}.
32 Set Ck = Ck \ {ui}.
33 Exit For loop.

34 End If.

35 End For.

Table 2.2: Dynamic clustering algorithm applied to cluster Ck.

During step 2, only at most one set of nodes {ui} may leave cluster Ck, preferably the one

inducing the highest gain. Lines 24-29 check that a swap decided in step 1 is still authorized.
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The first condition is that the cluster source of the leaving nodes must remain connected. Also

the size and diameter constraints must still be satisfied if the leaving nodes are included in

the destination cluster. Finally the gain induced by the swap must still be positive. Line 30

checks that the destination cluster C` is ready to accept new nodes, i.e., it is not currently

running the clustering algorithm (i.e., running step 1, or step 2 with another cluster). If all

those conditions are satisfied, then the source and destination clusters are modified accordingly

and line 33 ensures that only one swap will be performed with cluster Ck as source. Otherwise,

clusters Ck and C` are left unchanged.

Note: convenient initial conditions are when all nodes form their own singleton clusters.

Fig. 2.6.a illustrates a swap search by DCOG within a 16 node network organized into four

clusters, in which all nodes are in range. The group of each node is identified by its shape.

Clusters boundaries are indicated by solid lines. During the execution of DCOG, the cluster C1

evaluates the swap gain induced by the two nodes 1 and 2 from the circle group joining each of

the neighboring clusters. Among these three possible swaps, it is the one inducing the maximal

strictly positive gain which is selected, i.e., the one where the two nodes join C2. The cluster

structure resulting from this swap is depicted in Fig. 2.6.b.
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Figure 2.6: (a) Potential swaps and associated gains during DCOG operation in cluster C1 for

its members {1, 2} from the circle group. (b) Swap execution: formation of a cluster with five

members from the circle group.

2.5.4 DCOG convergence

Result 2.3 For a fixed topology, the DCOG algorithm defined in Table 2.2 converges in a finite

number of iterations to a stable clustering structure, i.e., when there is no more any possible

swap with strictly positive gain.

Proof Any swap selected in step 1 and executed in step 2 implies a decreasing of the network

cost function J(p(t)) thanks to Result 2.2. Consequently DCOG cannot choose a partition that

has already been selected, which prevents loops. Furthermore since there is a finite number of

partitions, the algorithm converges to a stable partition after a finite number of iterations.
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2.5.5 DCOG cluster cost function

A cost is associated with each cluster. The goal of the clustering algorithm is to build clusters

whose costs are minimum. The work of Section 2.3 has allowed to identify that both the number

of groups with at least one member in a cluster, and the cluster size, should be used to build

good clusters. Therefore, a cost function associated with a cluster must fulfill the following goals

(also used in Chapter 3):

Goal 1 (G1) Build clusters whose size is maximal, i.e., equal to nmax.

Goal 2 (G2) Build clusters including the highest number of members from the same group.

The work of Section 2.4 has identified (2.11) as an example of cost function achieving these

two goals. This cost function can be written:

c(Ck) := 1−
[
fnmax(nk) · ε+

1− ε
nmax

∑
t∈I(Ck)

mt,k · fmt(mt,k)

]
, (2.13)

with ε ∈ [0, 1] selected to favor either G1 or G2, and function fn(m) defined as:

fn(m) :=
1

n(n+ 1)
·m(m+ 1). (2.14)

In Chapter 3 we generalize the expression of (2.14) and prove how ε should be set to favor G2

over G1. Here we can only state that to favor G2 over G1, a small value of ε must be selected.

Note that if the size nk of cluster Ck is equal to nmax, and cluster Ck is composed of full

groups only (i.e., ∀t ∈ I(Ck), mt,k = mt), then c(Ck) = 0.

2.5.6 Adaptation to mobility

Because of node mobility, some clusters may no longer satisfy the connectivity or diameter

constraint. In this case, the procedure detailed in Table 2.3 splits those clusters in sets gathering

members of the same groups. In Table 2.3, lines 4-7 find connected components and lines 9-15

find subcomponents satisfying the diameter constraint. Finally, lines 16-18 create new clusters

as required. Note that line 13 makes sure that if a cluster connectivity or diameter check fails

in line 1, it will be split in sets of nodes from the same groups. Consequently, after execution of

this procedure, all clusters in the network satisfy the connectivity and diameter constraints.

Referring to line 11, a way to enforce diameter constraint when dmax = 2 is to split collection

of nodes {uji} thanks to the following heuristic: i) gather the node with the highest degree and

all its neighbors, and ii) build connected components with remaining nodes. Note that this

heuristic does reach its goal only if the algorithm of Table 2.3 is invoked often enough w.r.t. the

node mobility.

2.6 Numerical results

2.6.1 Performance metrics

To assess DCOG performance, the following metrics have been selected:

• The time needed to reach a stable clustered network, measured in number of time units.
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1 If Ck is not connected or d(Ck) > dmax then:

2 Let M = ∅.
3 For each set of nodes {ui} members of the same group in

Ck do:

4 Let C = {{ui}}.
5 If {ui} is not connected then:

6 Split {ui} into its m connected components

{{u1
i }, . . . , {umi }}.

7 Set C = {{u1
i }, . . . , {umi }}.

8 End If.

9 For each set of nodes {uji} in C do:

10 If d({uji}) > dmax then:

11 Split {uji} into its m′ subcomponents

{{v1
i }, . . . , {vm

′
i }} each one satisfying the diameter

constraint.

12 Set M = M ∪ {{v1
i }, . . . , {vm

′
i }}.

13 Else set M = M ∪ {uji}.
14 End If.

15 End For.

16 For each set of nodes {vi} in M do:

17 Create a new cluster with {vi}.
18 End For.

19 End If.

Table 2.3: Adaptation to node mobility for cluster Ck.

• The cluster size. The target cluster size is nmax.

• The cluster group diversity (CGD), i.e., the average number of groups per cluster with at

least one member within the cluster. Ideally all members of a group should be in the same

cluster and this number should not be larger than the cluster size divided by the group size.

• The group cluster diversity (GCD), i.e., the average number of clusters per group including

at least one member of the group. This metric should have a low value, meaning that the

members of a group tend to be in the same cluster.

• The application level performance measured using JX0 as defined in Section 1.4.3. Here its

values are comparable to the average end-to-end delays from all nodes to all nodes. This

means that the lower the JX0 value, the better. Two salient features of this metric are that i)

it uses two different costs for inter-cluster (γ̃) and intra-cluster (γ̂) communications; and ii) it

can be used to concentrate traffic within groups thanks to its α parameter. The JX0 parameter

values are: γ̂ = 1, γ̃ = 2 and α = 0.9. This means that the inter-cluster communication cost is

twice the one of intra-cluster communication, and that 90% of the traffic is exchanged between

members of the same groups.

• The application level performance measured using TX0 as defined in Section 1.7. Its values

are comparable to average bandwidth on the widest path from all nodes to all nodes. Thus

the larger the TX0 value, the better. The TX0 parameters are: η̂ = 1, η̃ = 0.5 and α = 0.9.
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Except in Section 2.6.7.2, all simulation results provided in this section are average values

over 100 different random networks.

2.6.2 Reference clustering algorithms

We have selected as reference the two distributed clustering protocols GDMAC [8] and VOTE [9]

because they allow to adapt the number of clusters to the network density. We have also defined

extensions of these protocols in order to take into account the group structure of the network.

2.6.2.1 GDMAC

The goal of the distributed clustering protocol GDMAC is to build stable clusters in presence

of node mobility. In this protocol CH nodes are elected first, and then non-CH nodes affiliate

to a neighbor CH, leading to the clusters. To do that, a weight (depending on the context) is

associated with each node. Within a radio neighborhood, nodes with the highest weights are

chosen as CH nodes. To increase stability in presence of mobility GDMAC introduces the K

parameter, whose value is equal to the number of CH nodes that are allowed to be neighbors of

a (K + 1)th CH node. A non-CH node affiliates to the CH node within its neighborhood whose

weight is the highest. In order to obtain stable clusters, a non-CH node remains affiliated to its

current CH unless there is a CH node in its neighborhood whose weight exceeds the one of the

current CH node by at least a positive lower-bound denoted by H. The GDMAC algorithm is

defined in Table 2.4. Note that after execution of lines 1-17, some nodes may have decided to

join the cluster for a node which itself has made the same kind of decision. Consequently the

former nodes will believe to be in a cluster that does not exist in reality. This is handled by

these nodes the next time the perform the GDMAC algorithm.

In the GDMAC paper [8], the weight is allocated randomly. In this work, we prefer to use

the node identifier as node weight, like in [1]. We refer to this approach as GDMAC-std. To

extend GDMAC so as to take group membership into account, we propose to calculate the node

weights in a different way, and also to modify the way non-CH nodes affiliate to their CH. This

leads to two new versions of the GDMAC, denoted by GDMAC-new1 and GDMAC-new2.

GDMAC-new1: the weight used is the stability factor defined in [15]. In that original paper

the stability factor has been introduced for clustering structured networks but is associated with

a very simple algorithm. Here we thus propose to associate this stability factor with GDMAC.

The stability factor of a node is a linear combination of the average relative speed with its

neighbors, the average distance with its neighbors, the average number of neighbors, and its

remaining energy. The three mentioned averages are weighted averages. In order to take into

account the group structure, lower weights in the average are used for neighbors that are mem-

bers of the same group as the one of the current node. The TCA protocol from [15] can be seen

as a particular case of GDMAC-new1 by setting the GDMAC parameter K to zero. We call it

TCA-std.

GDMAC-new2: it is an extension of GDMAC-new1 where we modify the non-CH node affil-

iation strategy. Indeed, a non-CH node affiliates, if possible, to a CH node that is also member

of its group instead of choosing it with respect to its weight.

According to the proposed modifications, GDMAC-new1 and GDMAC-new2 are expected

to be better suited to the context of structured networks.
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1 If local node is CH then:

2 Find list of neighbor CH with larger weight than node i.

3 If the number of such neighbors is strictly greater than K

then:

4 Local node chooses one of the K neighbor CH with the

highest weights as its new CH.

5 Else local node remains CH.

6 End If.

7 Else:

8 If local node CH is no longer a neighbor or is no longer a

CH then:

9 Find the list of local node’s neighbor CH.

10 Else:

11 Find the list of local node’s neighbor CH whose weight

exceeds by at least H the weight of local node CH.

12 End If.

13 If this list is not empty then:

14 Local node chooses randomly as CH among the K+1 ones

with the highest weight.

15 Else:

16 If current CH is no longer a neighbor CH then:

17 Local node becomes CH.

18 End If.

19 If current CH is still a neighbor CH then:

20 Local node keeps its current CH as CH.

21 End If.

22 End If.

23 End If.

Table 2.4: GDMAC algorithm.

2.6.2.2 VOTE

Similarly to GDMAC, VOTE [9] selects some CH nodes based on their weight, and then non-

CH nodes affiliate to a neighbor CH node. In VOTE, the weight of each node is called its vote

and is a linear combination of the normalized degree and the battery remaining time. The main

difference between GDMAC and VOTE does not lay in the weight definition but in the way each

CH node manages its cluster size: VOTE limits the cluster size to nmax and GDMAC does not

handle it. When the number of nodes affiliated to a CH node is equal to nmax−1, non-CH nodes

refrain to affiliate to this CH. Nevertheless, in the case of simultaneous affiliations a cluster may

include more than nmax members. Then, the concerned CH randomly rejects as many members

as required to satisfy the cluster size constraint. The VOTE algorithm is defined in Table 2.5.

In order to take into account the group structure we propose here to apply the algorithm

VOTE (denoted by VOTE-new) by using the stability factor as the weight. Initial VOTE defined

in [9] is hereafter denoted as VOTE-std.
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1 If local node is CH then:

2 Find list of neighbor CH with larger weight than node i,

whose cluster size is lesser than the maximum size.

3 If this list is non empty then:

4 Local node chooses as its CH its neighbor CH with the

highest weight.

5 Else local node remains CH.

6 End If.

7 Else:

8 If local node CH is no longer a neighbor, or is no longer a

CH, or local node has been excluded from the cluster of its

previous CH then:

9 Find the list of local node’s neighbor CH whose cluster

size is lesser than the maximum size.

10 Else:

11 Find the list of local node’s neighbor CH whose weight is

strictly greater than the one of local node CH, and whose

cluster size is lesser than the maximum size.

12 End If.

13 If this list is not empty then:

14 Local node chooses as its CH its neighbor CH with the

highest weight.

15 Else:

16 If current CH is no longer a neighbor CH then:

17 Local node becomes CH.

18 End If.

19 If current CH is still a neighbor CH then:

20 Local node keeps its current CH as CH.

21 End If.

22 End If.

23 End If.

Table 2.5: VOTE cluster-head selection algorithm.

Note: like for GDMAC-new2, we defined VOTE-new2 which was intended to improve VOTE-

new such as a non CH node affiliates preferentially to a CH that is also member of its group.

However, the convergence of VOTE-new2 was not ensured because of bad interactions between

this affiliation scheme and the cluster size maintenance process. Thus we dismissed VOTE-new2.

2.6.3 Simulation setup

In this section we describe the general simulation setup.
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2.6.3.1 Network setup

The simulated network has N nodes. The group size is constant: ∀t,mt = 10. The communica-

tion range of a node is dref = 250 distance units. The nodes are deployed in a square area whose

side is 1500 distance units long, following a modified RPGM model [42], different from the one

in Section 1.5.2.2 because it does not handle mobility. At the beginning of the simulation a

randomly located virtual center At(0) is associated with each group t, and all group t members

are deployed randomly in a disk of radius dref centered at At(0). In mobile networks, time

is split in intervals of fixed duration Λ seconds. At time k · Λ (i.e., the beginning of interval

number k ∈ N), the virtual center At(k+ 1) of group t is randomly located, and the coordinates

of group t members at time (k+ 1) ·Λ are randomly chosen in the disk of radius dref centered at

At(k+ 1). Then during time interval [k ·Λ, (k+ 1) ·Λ], each node i follows a uniform rectilinear

motion with a speed limited to a maximum vmax between its coordinates at time k ·Λ and time

(k + 1) · Λ. Note: when new coordinates are selected for a virtual center At(k), if the distance

between At(k) is smaller than dref from the deployment area boundary, then a new location is

drawn to make sure that no group member is placed outside of the deployment area.

Fig. 2.7 depicts an example of random network with N = 100 nodes, such that nodes in the

same group share the same color.

Figure 2.7: Example of random structured network with N = 100 nodes.

2.6.3.2 Clustering schemes setup

The clustering algorithms parameters common to all simulations are now detailed. We consider

H = 10 for GDMAC-std, and H = 30 for GDMAC-new1 and GDMAC-new2. Due to the

difficulty to set its value, the values of parameter K are selected in Section 2.6.3.3. The stability

factor of a node is calculated using weighted linear combination of the average relative speed and

distance between this node and its neighbors (with equal weights 0.5), averaged on five samples.
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In these average values, group membership is taken into account by allocating a weight (denoted

by λ in [15]) equal to 0.5 to nodes in the same group as the local node, and equal to 1 to other

nodes. For both VOTE and DCOG, nmax = 20. Finally, the value of DCOG utility function

(2.13) ε parameter is set to a value small enough to make sure that whatever the cluster size,

increasing the number of members of a group in a cluster always takes precedence over increasing

its size.

Fig. 2.8 shows an example of the network from Fig. 2.7 clustered with DCOG. In this figure

the nodes in the same cluster share the same outer circle color.

Figure 2.8: Example of DCOG action on a random structured network with N = 100 nodes.

2.6.3.3 GDMAC K parameter values

Whereas DCOG and VOTE have a maximum cluster size parameter, GDMAC does not and

leads to clusters with large size differences: in the same geographical area very small clusters

coexist with very large clusters. Therefore to ensure a meaningful comparison with VOTE and

DCOG, K is set to reduce cluster size variability. For each GDMAC extension and each network

size, we have determined through simulations the best value of K as indicated in Table 2.6. The

selected value is the lowest one leading to an average highest cluster size no greater than nmax.

GDMAC-std succeeds in filling this criterion only for 100 and 200 nodes. Consequently static

networks GDMAC-std simulation results are not provided in Section 2.6.6.

2.6.4 Asynchronous and synchronous modeling for DCOG

To simulate DCOG we defined two models: i) a fully distributed model with no synchronization

between the clusters, and ii) a simpler distributed synchronous model. Concerning metrics

unrelated to time, we show that both models lead to the same performance. This allows us to

perform subsequent simulations using the synchronous model.
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Nodes 100 200 300 400 500

GDMAC-std 2 5 - - -

GDMAC-new1 2 3 5 7 9

GDMAC-new2 1 2 4 6 8

Nodes 600 700 800 900 1000

GDMAC-new1 11 13 17 20 22

GDMAC-new2 11 13 17 19 23

Table 2.6: Values of K parameter.

2.6.4.1 Distributed asynchronous model

Let us first define our fully distributed asynchronous model. In this model a cluster can be in

one of the following six states:

• Deciding : when step 1 of DCOG is being performed (see Table 2.2) and a decision is made

to select of set of nodes that will leave the cluster to join a neighboring one. The duration of

this state is δd.

• Leaving : when step 2 of DCOG is being performed and the set of nodes selected in Deciding

state potentially leave their cluster to join the chosen neighboring one. The duration of this

state is δl.

• Checking : when the cluster checks if connectivity, diameter and size constraints are still

satisfied. The duration of this state is δc.

• Adapting : when, because of node mobility the constraints are no longer satisfied and adapta-

tion to mobility must be performed . The duration of this state is δa.

• Waiting : when the cluster is idle, ready to accept new nodes. The duration of this state is

δw, exponentially distributed with parameter λ.

• Joining : when some nodes are joining the cluster. The duration of this state is δl.

The asynchronous DCOG state machine is described in Fig. 2.9. In this figure, lines illustrate

the state transitions, and the text associated with each transition details the duration required

for this transition. In this model, all the clusters are always supposed to know the internal

information about their neighbor clusters.

To better understand this state diagram, the Fig. 2.10 to 2.12 detail the different state

transitions using time diagrams. The Fig. 2.10 details the transition from Deciding to Waiting

state.

The Fig. 2.11 details the two cases when a cluster Ck leaves the Deciding state and some of its

nodes want to join a neighboring cluster C`. Firstly ( 1© in Fig. 2.11), if cluster C` state is Waiting

when cluster Ck enters the Leaving state, then cluster C` state becomes Joining and the selected

nodes leave Ck and join C`. Note that in that case, both clusters Ck and C` remain in their

respective state Leaving and Joining during the same duration δl. Secondly ( 2© in Fig. 2.11),

if cluster C` state is not Waiting, then cluster Ck state becomes Leaving but the selected nodes

remain in Ck.
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Figure 2.9: Asynchronous DCOG state machine.
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Figure 2.10: Asynchronous DCOG: transition from Deciding to Waiting state.
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Figure 2.11: Asynchronous DCOG: cases when a cluster leaves Deciding state and some of its

nodes want to join a neighboring cluster.

Fig. 2.12 details what happens each time a cluster leaves the Waiting state to check if the

constraints are still satisfied. In the positive case ( 1© in Fig. 2.12), then the cluster state becomes

Deciding, otherwise ( 2© in Fig. 2.12), Adapting.
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Figure 2.12: Asynchronous DCOG: cases when the cluster constraints are checked.

This asynchronous model is used to verify the convergence of DCOG through simulation

in a fully distributed setting. This model requires several parameters (δd, δl, δc, δa and λ).

Consequently, as soon as DCOG convergence has been verified then we use a simpler and faster

(from the point of view of simulation time) synchronous model to measure its performance.

2.6.4.2 Distributed synchronous model

In the synchronous model, time is split in rounds. At the beginning of a round, all clusters are

supposed to know the internal information about their neighbor clusters. During a round all

clusters perform the following actions:

• Apply sequentially to all clusters the algorithm of Table 2.3 to adapt to mobility.

• Apply sequentially step 1 of Table 2.2 to all clusters not modified in this round due to mobility.

• Apply sequentially step 2 of Table 2.2 to all clusters not modified in this round due to mobility.

2.6.5 Asynchronous DCOG simulation results in static networks

Simulations of asynchronous DCOG have been performed with N = 100 static nodes. Due to

the lack of mobility, when a node enters the Checking state, the constraints are always satisfied,

leading to the Deciding state.

Firstly, the values of asynchronous DCOG parameters δd, δl and δa have been set to 2 time

units, and δc to 1 time unit. Table 2.7 provides the results of the simulation of 100 random

networks for each value of the λ parameter selected in {0.5, 1, 2, 5, 10, 20, 30, 40, 50}. The last

line whose cell with λ value equal to ”sync” provides the results when DCOG is simulated using

its synchronous model.

The main result from Table 2.7 is that all metrics are nearly independent of the value of

λ. Moreover, the values from asynchronous and synchronous models are similar. The largest

difference concerns the cluster size which is always smaller than 3.5%. Concerning the application

layer metrics JX0 and TX0 , they are within 0.3% of the values obtained with the synchronous

model.

With the asynchronous model, the clusters are considered stable when at least 100 time units

have elapsed since at least one cluster entered the Leaving state. The time required to converge
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Cluster size

λ avg std dev max CGD GCD JX0 TX0
0.5 11.42 4.00 18.73 1.27 1.12 1.61 5.49

1 11.34 4.12 18.92 1.26 1.12 1.61 5.50

2 11.27 4.14 18.84 1.25 1.12 1.61 5.48

5 11.28 4.12 18.88 1.25 1.11 1.61 5.49

10 11.34 4.18 19.04 1.26 1.12 1.61 5.50

20 11.38 4.16 19.04 1.26 1.12 1.61 5.51

30 11.37 4.13 18.81 1.26 1.12 1.61 5.50

40 11.32 4.12 18.97 1.26 1.12 1.61 5.49

50 11.35 4.15 18.85 1.28 1.13 1.61 5.49

sync 11.04 4.12 18.87 1.24 1.12 1.61 5.49

Table 2.7: Asynchronous DCOG simulation results, with δd = δl = δa = 2 and δc = 1.

to a stable cluster structure is plotted in Fig. 2.13. For example, in this figure, when λ = 0.5 the

average convergence time is 300.84 time units, meaning that at event time greater or equal than

400.84, no cluster had entered state Leaving for 100 time units. With the synchronous model,

the convergence time is in rounds, the clusters are considered stable when no modification has

been performed during two consecutive rounds.

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50

C
o

n
v

e
rg

e
n

ce
 d

u
ra

ti
o

n
 (

ti
m

e
 u

n
it

s)

lambda�

Figure 2.13: Asynchronous DCOG convergence time vs. λ, with δd = δl = δa = 2 and δc = 1.

The slope of the curve in Fig. 2.13 can be explained as follows:

• When λ < 2, the Waiting state duration is short. Therefore, when some nodes from a cluster

Ck want to join a cluster C`, it is usually in a state different from Waiting, thus canceling the

inter-cluster swap. This explains why the convergence duration decreases when λ increases.

• Conversely, when λ ≥ 2, the clusters are usually in the Waiting state, thus allowing inter-
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cluster swaps. As λ value increases, the time in the Waiting state also increases and clusters

need more time to enter the Deciding state to build the clusters, thus increasing the time

required to reach stable clusters.

To assess the influence of the simulation parameters, simulations have been performed with all

parameters values multiplied by 3: δd = δl = δa = 6, δc = 3 and λ ∈ {1.5, 3, 6, 15, 30, 60, 90, 120, 150}.
Simulation results are provided in Table 2.8. Again, all metrics are nearly independent of the

value of λ. The maximum difference with the value achieved using synchronous model is 3.4%

for average cluster size, 3.3% for CGD and 4.5% for GCD. The differences for application level

metrics JX0 and TX0 are less than 0.5%.

Cluster size

λ avg std dev max CGD GCD JX0 TX0
1.5 11.42 4.00 18.73 1.27 1.12 1.61 5.49

3 11.34 4.12 18.92 1.26 1.12 1.61 5.50

6 11.27 4.14 18.84 1.25 1.12 1.61 5.48

15 11.28 4.12 18.88 1.25 1.11 1.61 5.49

30 11.34 4.20 19.04 1.26 1.12 1.61 5.50

60 11.34 4.17 19.01 1.27 1.13 1.61 5.50

90 11.31 4.13 18.79 1.29 1.14 1.61 5.49

120 11.18 4.14 18.80 1.28 1.15 1.61 5.47

150 11.10 4.13 18.70 1.28 1.17 1.62 5.47

sync 11.04 4.12 18.87 1.24 1.12 1.61 5.49

Table 2.8: Asynchronous DCOG simulation results, with δd = δl = δa = 6 and δc = 3.
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Figure 2.14: Asynchronous DCOG convergence time vs. λ, with δd = δl = δa = 6 and δc = 3.

Convergence time is plotted in Fig. 2.14. Comparing Fig. 2.14 and Fig. 2.13 reveals that
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both curves have similar shape, which was expected. It can be noted that there is an optimal

value of λ for which the convergence time is the shortest. This optimal value could be used to

design a radio access scheme ensuring the fastest convergence of the clustering algorithm.

The proof of DCOG convergence is independent of the considered model (asynchronous or

synchronous). Additionally, the results of this section show that there are only small differences

between the results of asynchronous DCOG and synchronous DCOG simulations. Consequently

in the following, in order to speed them up, the simulations are performed using the synchronous

DCOG model described Section 2.6.4.2.

Let us now describe the synchronous model used to simulate the reference clustering algo-

rithms of Section 2.6.2. Initially all nodes are CH and nodes learn about their neighbors. Then

every round, the following actions are performed: i) update each node state (CH or non-CH,

selected CH) using the appropriate algorithm, and ii) for each node update the knowledge of

its neighbors’ state.

2.6.6 Performance in static networks

This section is devoted to the analysis of the static networks simulation results.

2.6.6.1 Node average degree

Simulations have been performed for an increasing number of nodes. The size of the deployment

area is constant, therefore the average node degree increases with N . The Fig. 2.15 shows the

node average degree as well as the 5th and 95th percentiles when N increases from 100 to 1000.

The average number of 1-hop neighbors increases linearly from a moderate density of about 19

to a high density of about 145.
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Figure 2.15: Average degree and 5th-95th percentiles in static networks vs. N .

It is interesting to note that when N increases, the ratio of 5th-95th interval width to

average degree decreases, as shown in Table 2.9. This means that when N increases, two different
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N 100 200 300 400 500 600 700 800 900 1000

Ratio 0.52 0.33 0.29 0.26 0.25 0.23 0.21 0.18 0.19 0.17

Diameter 7.51 7.25 7.23 7.23 7.20 7.22 7.25 7.26 7.25 7.26

Table 2.9: Ratio of 5th-95th interval width to average node degree and network diameter vs. N .

random networks become more and more similar. This table also shows that the average network

diameter is nearly independent of the network size.

2.6.6.2 Convergence

The number of rounds needed to reach a stable cluster structure depending on the number of

nodes in the network is illustrated in Fig. 2.16.
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Figure 2.16: Convergence duration in static networks vs. the number of nodes.

The three algorithms GDMAC-new1, GDMAC-new2 and DCOG converge much faster than

VOTE-std and VOTE-new. The two VOTE-based algorithms need an increasing amount of

time when the number of nodes increases. This happens because when too many nodes are

members of a cluster, the CH rejects as many nodes (chosen randomly) as required to reduce

this number to the limit nmax. Those nodes then simultaneously join neighboring clusters,

which usually cause these clusters to exceed their maximum size, causing additional nodes being

excluded from these clusters (the highest duration before convergence required by VOTE-std in

a 100 node network is 222 rounds).

Fig. 2.17 zooms on GDMAC-new1, GDMAC-new2 and DCOG. GDMAC-new1 needs about

3 rounds to converge, when GDMAC-new2 needs 4 or 5 rounds. The additional time needed

by GDMAC-new2 is due to its affiliation procedure slightly more complex than the one of

GDMAC-new. Compared to VOTE-std and VOTE-new the GDMAC variants do not manage

the cluster size and do not suffer from the problem associated with the exclusion of nodes from
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Figure 2.17: Convergence duration (DCOG, GDMAC-new1 and GDMAC-new2) in static net-

works with 100 to 1000 nodes.

too large clusters. The time needed by DCOG to converge is slightly larger than for the GDMAC

variants, and increases with the number of nodes from about 5 to 8 rounds. This is justified by

the greater complexity of DCOG, which is mitigated by its capacity to implement node cluster

swaps involving multiple nodes.

2.6.6.3 Cluster size

Fig. 2.18 plots the average number of members in a cluster with respect to the number of nodes

N in the network.

Because TCA-std only allows one CH node in a neighborhood, the cluster size is expected to

increase with the number of nodes. This is exactly what can be seen in Fig. 2.18. This behavior

is undesired because in clusters whose maximum size is controlled, it is not possible to ensure

efficient radio resource allocation. Consequently, even if TCA-std is the only reference [15] from

the state of the art taking into account group membership1, we no longer consider it in the

remainder of our work. Thanks to the appropriate choice of GDMAC K parameter, GDMAC

and VOTE-based algorithms as well as DCOG yield clusters whose maximum size is almost the

same. However, their average cluster size are substantially different.

Both GDMAC-new1 and GDMAC-new2 limit the number of neighbor CH to K+1, therefore

their average cluster sizes are similar. However, their average clusters size are quasi-independent

of the network size, and are much smaller than nmax. This means that these protocols create

too many clusters. This is the drawback of using the parameter K to limit the cluster size,

which has not been introduced by the authors of GDMAC for that purpose. A more detailed

analysis shows that GDMAC-new2 builds more balanced clusters than GDMAC-new1. This is

due to their different affiliation procedure. With GDMAC-new1, non-CH nodes tend to affiliate

1We did not succeed in implementing [16].
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to their neighbor CH with the highest weight leading to large clusters. Conversely, only a few

nodes affiliate to the CH with lower weights, leading to small clusters. GDMAC-new2 ensures

that non-CH nodes affiliate to a neighbor CH of the same group, if any. Thanks to this rule,

if only one CH of a given group exists in a radio neighborhood, this CH has at least as many

cluster members as the number of its neighbors belonging to its group.
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Figure 2.18: Average cluster size in static networks vs. the number of nodes.

VOTE-std and VOTE-new determine the number of CH dynamically, and build clusters

whose size is limited by nmax. This leads to clusters of similar size, increasing with the number of

nodes in the network. Nevertheless the number of small clusters is still large. Even if VOTE-std

and VOTE-new build clusters with larger average size than GDMAC-new1 and GDMAC-new2,

the cluster size variability is still large.

Finally concerning DCOG, the cluster size starts at 11.2 for 100 nodes, and increases with

the number of nodes in the network to reach 16.7 for 1000 nodes. A more detailed analysis shows

that DCOG builds clusters whose size are usually around 10 or around 20. Also, the number of

maximum size clusters increases with the number of nodes. To understand this behavior, the

CGD and GCD must be analyzed, which is done in the next section of this document.

2.6.6.4 Cluster group and group cluster diversities

Following the definitions in Section 2.6.1, the GCD and CGD have been evaluated and plotted

vs. the number of nodes in Fig. 2.19 and Fig. 2.20 respectively.

First let us analyze the results for the three algorithms GDMAC-new1, VOTE-std and

VOTE-new which lead to the highest (i.e. worst) values. None of these algorithms take the

group membership into account to choose the CH they affiliate to, leading to a large numbers

of groups per cluster. As expected, the values also increase with the number of nodes in the

network.

• GDMAC-new1: the CGD increases from to 2 to 5 and the GCD increases from 4 to nearly

74



8.5. It is interesting to note that the larger the number of nodes, the closest the CGD is to

the cluster size itself. This means that on average, each cluster includes only one member of

each operational group. Also, when the number of nodes increases, the number of clusters

also increases which raises the probability that the members of each group are split among

different clusters. This is confirmed by larger GCD values.

• VOTE-std and VOTE-new: a similar analysis as the one performed for GDMAC-new1 can

be done. The difference is that they both build larger clusters. Consequently they lead to

a larger average CGD value, but a smaller GCD one. This is confirmed by Fig. 2.19 and

Fig. 2.20.
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Figure 2.19: Cluster group diversity in static networks vs. the number of nodes.

Let us now study the GDMAC-new2 and DCOG metrics, which are clearly better.

• Thanks to its affiliation procedure GDMAC-new2 succeeds in attaining lower values for both

metrics: the CGD increases from to 1.5 to only 2.5, and the GCD increases from 2.5 to nearly

4.5. These results must be put in perspective with the fact that GDMAC-new2 builds small

clusters, as GDMAC-new1.

• DCOG achieves the lowest CGD, which lies between 1 and 2. This means that the clusters

built by DCOG usually contain members from only one or two operational groups. This is

confirmed by GCD which is always close to 1, meaning that DCOG succeeds in collecting

nearly all the members of one or more groups in the same cluster. This conclusion is true

independently of the number of nodes. In addition to its cluster size management feature,

this property is one of the main strengths of DCOG. Let us now interpret in a different way

the reason why the DCOG cluster size metric increases with the number of nodes. When N

increases, the average node degree becomes larger, thus the probability that two entire groups

are included in a single cluster increases, which logically raises the average cluster size.
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Figure 2.20: Group cluster diversity in static networks vs. the number of nodes.

2.6.6.5 Additional insights on DCOG performance

Different group sizemt have been simulated, keeping constant the maximal cluster size nmax = 20

and leading to different mt/nmax ratios. To ensure that all groups are complete, the number of

nodes in the network has been slightly adjusted, leading to the (N,mt,mt/nmax) 3-tuples listed

in Table 2.10.

N 105 100 104 102

mt 15 10 8 6

mt/nmax 1.3 2 2.5 3.3

Table 2.10: N , mt values for various mt/nmax ratios.

The distribution of cluster size for all ratios mt/nmax is plotted in Fig. 2.21. When the ratio

is 1.3, 81% of the clusters formed by DCOG are as large as a group, and 16% are smaller. When

the ratio is equal to 2 or 2.5 then DCOG mainly builds cluster whose size is either equal to the

group size or equal to twice the group size. This behavior is justified by G2, which focuses on

forming clusters with the highest possible number of members from the same groups. For the

same reason, when the ratio is equal to 3.3, DCOG mainly creates cluster whose size is once,

twice or thrice the group size. When the ratio is greater than two, the probability to build

clusters including a whole group is larger than building clusters including two (or three) entire

groups. To understand this, one should remember that the nodes are deployed randomly in

groups, and that there is no guarantee that the members of different groups can be gathered in

a cluster satisfying the connectivity, size and diameter constraints. We explain in the same way

the fact that DCOG also sometimes builds clusters whose size is not a multiple of the group

size.
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Figure 2.21: Cluster size distribution vs. mt/nmax ratio.

2.6.6.6 Application level performance: average end-to-end delay

The values of JX0 as defined in Section 1.4.3 are plotted in Fig. 2.22 for GDMAC-new1, GDMAC-

new2, VOTE-std and VOTE-new. A box plot is drawn to detail the statistical results associated

with DCOG. In this box plot the lowest bar is the lowest value, the second lowest is the 5th

percentile, then the box boundaries provide the first quartile, median and third quartile. The

second highest bar is the 95th percentile, and the highest bar is the highest value. The average

value is identified by a disk.

Firstly, except for VOTE-std and VOTE-new which have similar JX0 values, the difference

between the different clustering solutions are significant. To understand why, let us recall that

the metric JX0 is related to the average end-to-end delay from all nodes to all nodes. To calculate

JX0 we have set the link weight wi,j using the following expression from page 52 of [43]:

wi,j := cmax + [1−Υ(i, j)]−1 + cmax/[Υ(i, j)cmax − 1],

with cmax = 4 the maximum number of transmissions considering that a type I hybrid ARQ

is used, and Υ(i, j) the packet error rate on link (i, j), which depends on Γ(i, j) the signal

noise ratio (SNR) on the link. In our simulations a link (i, j) exists only if Γ(i, j) > 0 dB, for

which Υ(i, j) = 0.13. The consequence is that wi,j ∈ [1, 1.15], meaning that the delay is never

significantly greater than 1. In fact it is slightly greater than 1 only for a small number of links

which tend to be avoided during the shortest path calculations performed to get the JX0 value.

Therefore the end-to-end delay strongly depends on the number of inter-cluster links, thus on

the clustering solution.

Secondly, the DCOG JX0 values are significantly lower than the ones of the other clustering

schemes. Let us define /J a comparison operator between two clustering schemes clu1 and clu2

such as clu1 /J clu2 if the JX0 value achieved by clu1 is greater than the one of clu2. Comparing
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Figure 2.22: JX0 values in static networks vs. the number of nodes.

the five clustering solutions we have:

GDMAC-new1 /J VOTE-std /J VOTE-new /J GDMAC-new2 /J DCOG.

DCOG achieves a gain in [29%, 36%] vs. GDMAC-new1, [23%, 34%] vs. VOTE-std, [18%, 33%]

vs. VOTE-new, and [17%, 28%] vs. GDMAC-new2. JX0 decreases when the amount of inter-

cluster traffic decreases, which is the case also when the CGD and GCD decrease. This is the

reason why DCOG, whose CGD and GCD are the lowest, achieves the best performance here.

The same justification holds to justify why GDMAC-new2 is the second best. It is interesting

to note that the two VOTE variants, that manage the cluster size, have lower JX0 performance

than GDMAC-new2. This allows to conclude that it is more important to gather in the same

clusters the members of the same operational groups than to handle cluster size. But both are

important, and this justifies the good performance of DCOG.

To better estimate the quality of DCOG, let us remark that no partition p leads to a highest

JX0 value than the partition consisting in as many singleton clusters as nodes in the network.

In this case any link is an inter-cluster link, and its contribution to JX0 is maximum (cf. Sec-

tion 1.4.3). Similarly, even if the cluster V is likely to violate the constraints, a convenient lower

bound for JX0 is associated to the network partition {V}. During our simulations we calculated

both bounds and found that whatever the number of nodes in the network, JX0 (p) ∈ [1.4, 2.8],

∀p ∈ Pc. The JX0 values achieved thanks to DCOG are close to 1.6, and are thus not far

from the theoretical lower bound equal to 1.4 (knowing that the lowest JX0 value achieved by a

partition satisfying the constraints is somewhere in the interval [1.4, 1.6]).

Finally, the box plot in Fig. 2.22 shows that the distribution of JX0 becomes more and more

narrow as the number of nodes increases from 100 to 600-700 and then remains stable. This is

explained thanks to the result of Section 2.6.6.1, showing that the network diameter remains

quasi-unchanged when the N increases, leading to similar route lengths in the network, and thus

similar JX0 values independently of the number of nodes.
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2.6.6.7 Application level performance: average end-to-end bandwidth

In a similar way as for the values of JX0 , the values of TX0 defined in Section 1.7 are plotted in

Fig. 2.23.

A first remark is that, even if DCOG achieves the best result, the performance of all solu-

tions are much closer than when measured with JX0 . To calculate TX0 , related to the average

throughput from all nodes to all nodes, we have set the link weight wi,j equal to the link capacity,

defined as follows:

wi,j := log2[1 + Γ(i, j)].

Contrarily to the link delay used with JX0 , the link capacity may vary a lot depending on the

SNR. For example if Γ(i, j) = 0 dB then the capacity is equal to 1.0, but if Γ(i, j) = 10 dB

(which is not a large value) then the capacity is increased to 3.3. Nevertheless, the main difference

between TX0 and JX0 is the use of a min() operation instead of a sum to calculate TX0 (p, i, j).

Due to this min() operation, the contribution of the source-destination pair (i, j) to TX0 is given

by the link with the lowest bandwidth. A single bad link between source i and destination j

hurts TX0 performance a lot more than JX0 performance. Because DCOG takes into account

the group membership and not the link quality, it is expected that its advantage over the other

algorithms from a TX0 perspective would be smaller than from a JX0 perspective.
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Figure 2.23: TX0 values in static networks vs. the number of nodes.

Let us define /T a comparison operator between two clustering schemes clu1 and clu2 such

as clu1 /T clu2 if the TX0 value achieved by clu1 is lower than the one of clu2. A second remark

is that the partial ordering between the clustering algorithms is modified w.r.t. the one of the

JX0 metric:

GDMAC-new1 /T GDMAC-new2 /T VOTE-std /T VOTE-new /T DCOG.

DCOG still achieves the best performance but GDMAC-new2 is now the second worst solution

instead of being the second best. Concerning capacity, it is more important to build bigger
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clusters which reduces the number of inter-cluster links than collecting together in the same

cluster members of the same groups. This is better achieved by the VOTE variants than by the

GDMAC variants. Because DCOG takes into account both cluster size and group membership,

it succeeds in reducing the most the number of inter-cluster links, thus achieving the best

performance w.r.t. the TX0 metric.

2.6.7 Performance in dynamic networks

2.6.7.1 Simulation setup

In this section each simulation concerns networks with T = 10 and mt = 10. The node mo-

bility model is the aforementioned RPGM group mobility model [42], modified such as to

make sure that no node ever moves with a speed greater than a maximum vmax. To as-

sess performance in mobility, simulations have been run for varying maximum node speed

vmax ∈ {1, 3, 5, 7.5, 10, 12.5, 15, 20}.
A simulation is split in two phases: the transient phase and the steady phase. When there

is no mobility, the steady phase begins when nothing change any more, i.e., concerning our

simulations in Section 2.6.6, after the cluster structure has become stable. In presence of node

mobility, the focus is on the performance during the steady state, and the metrics measured

during the transient phase (also called warmup period) must be ignored. The results of Sec-

tion 2.6.6.2 show that when N = 100, the clustering algorithms converge in less than 10 rounds.

Therefore we set the duration of the warmup period to 10 rounds.

Let us now justify our choice for the simulation duration. A metric that can be used to

assess the amount of mobility is the average link duration. Because of the group mobility

model, intra-group links duration is larger than the global average link duration. The numbers

in Table 2.11 and Table 2.12 detail the average link durations and the average durations of

intra-group links, versus the maximum node speed and the simulation duration. These numbers

are plotted in Fig. 2.24. A first analysis of these numbers reveals that when the maximum

Max. speed → 1 3 5 7.5 10 12.5 15 20

Sim. duration ↓
200 158 102 73.8 55.5 45.6 39.5 35.5 30.3

400 242 127 85.2 61.6 49.9 42.7 38.2 32.1

600 290 138 90.0 64.0 52.2 44.3 39.7 33.1

800 322 145 92.4 65.9 53.6 45.4 40.6 33.7

1000 344 150 93.8 67.4 54.5 46.1 41.0 34.0

1200 359 155 95.2 68.7 - - - -

1400 370 158 96.1 69.8 - - - -

Table 2.11: Average link durations.

speed is low, the intra-group link duration strongly depends on the simulation duration. This

is illustrated in Fig. 2.24.a by the different plateaus occurring when the maximum speed is 1

and 3. On the other hand, the average link duration dependence on simulation duration is

weaker, as shown in Fig. 2.24.b. An important property of the simulation is that its results

should not be dependent on its duration. The above analysis shows that this is not doable in a
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Max. speed → 1 3 5 7.5 10 12.5 15 20

Sim. duration ↓
200 198 194 175 137 108 91.8 82.6 73.6

400 396 382 305 189 133 109 96.8 85.7

600 594 566 401 213 146 119 105 92.0

800 792 746 472 230 156 125 110 95.7

1000 990 922 525 245 162 129 113 98.0

1200 1190 1090 565 252 - - - -

1400 1390 1260 597 261 - - - -

Table 2.12: Average intra-group link durations.
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Figure 2.24: Link durations for various simulation durations increasing from 200 to 1400 time

units. (a) Intra-group links. (b) Intra-group and inter-group links.

reasonable time for intra-group links when the maximum speed is very low. Table 2.13 provides

the increase of link durations when the simulation duration is increased by 200. These numbers

are in percentage. For example the number 53.0 in the line associated with simulation duration

400 and maximum speed 1 m/s is calculated by dividing the number 242 which is the link

duration when simulation duration is 400 (in Table 2.11) by the number 158 which is the link

duration when the simulation duration is 200 (same table). Thus 53.0 means that increasing

from 200 to 400 the simulation duration leads to a 53% increase in link duration. In this table,

the cells have been filled in green as soon as this percentage increase is lower than 10%. This

condition is satisfied for all considered maximum speed if the simulation duration is greater or

equal than 1000. Consequently, we choose to set the simulation duration to 1000 rounds.

2.6.7.2 Single simulation results

In mobility conditions, the average node degree is similar to the one during the simulations in

static networks, i.e. equal to 20 as in Fig. 2.15. Nevertheless, the instantaneous node degree is

different from its average value. To illustrate the instantaneous behavior of the simulation, we

plot several relevant metrics vs. time in Fig. 2.25 to Fig. 2.29. These figures are the result of

the simulation of a scenario with N = 100 and vmax = 10.0.
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Max. speed → 1 3 5 7.5 10 12.5 15 20

Sim. duration ↓
400 53.0 24.6 15.4 11.1 9.46 8.09 7.52 6.01

600 19.9 8.89 5.65 3.88 4.54 3.83 4.02 3.21

800 10.8 5.30 2.73 2.92 2.84 2.45 2.18 1.62

1000 6.82 3.68 1.50 2.37 1.52 1.46 1.01 1.10

1200 4.42 3.10 1.43 1.87 - - - -

1400 3.08 2.09 0.97 1.63 - - - -

Table 2.13: Average link durations difference.
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Figure 2.25: Average node degree vs. time.

0 200 400 600 800 1000
Time

NONE

SWAP

SPLIT

SWAP^2

SPLIT^2

SWAP+SPLIT

SWAP^3

C
lu

st
e
ri

n
g
 e

v
e
n
ts

Figure 2.26: Clustering events vs. time.

As depicted in Fig. 2.25, the average node degree does not remain constant, showing large

topological modifications along time.

Fig. 2.26 shows how many and when clustering events happened during the simulation.

These events may be i) a swap between two clusters, or ii) a cluster split. A cluster that is split

is destroyed and leads to a number of new clusters. Fig. 2.26 shows that during a simulation

multiple such events may happen simultaneously: either no event (line NONE), one swap or

one split (lines SWAP and SPLIT respectively), two swaps (line SWAPˆ2), two splits (line

SPLITˆ2), one swap and one split (line SWAP+SPLIT) or even three swaps (line SWAPˆ3).

Fig. 2.27 and Fig. 2.28 depict average cluster size, CGD and GCD. The GCD is equal to 1

during 99.0% of the simulation, meaning that the groups are nearly always included in a single

cluster. Consequently, during 99.0% of the simulation the cluster size curve is the enlarged

version of the CGD curve by a factor of the group size, 10.

Finally Fig. 2.29 and Fig. 2.30 provide application level performance with JX0 and TX0 met-

rics. As expected (see Section 2.6.6.6 and Section 2.6.6.7) the former is less volatile than the

latter. No correlation seems to exist between any of these curves and the ones of Fig. 2.25,

Fig. 2.27, or Fig. 2.28.

2.6.7.3 Simulation statistical results

To assess the stability of the cluster structure built by the different clustering solutions, usually

metrics such as average cluster duration, or average cluster head life time, etc. are used. These
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Figure 2.27: Average cluster size vs. time.
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Figure 2.29: JX0 values vs. time.
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Figure 2.30: TX0 values vs. time.

metrics cannot be used to perform a fair comparison between DCOG and the reference clustering

algorithms because DCOG defines a cluster through its members and does not have any CH.

From the point of view of DCOG, when one or more nodes leave a cluster to join a neighboring on,

then both source and destination clusters are modified. Consequently, in this section we define

as stability metric the ratio of the number of simulation rounds when no cluster was modified

to the simulation time. Values of this ratio close to 1 indicate stable clusters, conversely, values

close to zero indicate unstable clusters.

The plot of this metric in Fig. 2.31 shows that VOTE-std, VOTE-new and GDMAC-std are

highly unstable, having less than 50% stability as soon as the node maximum speed exceeds 3

distance units per simulation round. Thanks to their small average cluster size and their use

of group information GDMAC-new1 and GDMAC-new2 succeeds in keeping a stability greater

than 50% up to a 5 distance units per simulation round. Finally, DCOG achieves by far the

best stability, ensuring more than 60% stability even when the node maximum speed is as high

as 20 distance units per simulation round. A first rationale for this good performance is the

quick convergence property of DCOG, as shown in Section 2.6.6.2. This is achieved also thanks

to a GCD whose values are always very close to 1, indicating that all members of a group are

usually in the same cluster. Combined with the fact that nodes follow a group mobility pattern,

a DCOG cluster is very stable.
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Figure 2.31: Mobile networks stability depending on maximum speed.

2.7 Conclusions

In this chapter we detailed our methodology to design the novel distributed clustering algorithm

DCOG suited to structured ad hoc networks such as public safety or military networks.

Firstly, thanks to an exhaustive partition enumeration we found a cluster cost function suit-

able to identify good partitions, and thus good clusters. Secondly, we explained how from a

centralized algorithm, we modified this cluster cost function and elaborated a decision making

process, which led us to the distributed clustering algorithm that we called DCOG. The key

feature of DCOG is its capability to build size limited clusters including entire groups, with-

out resorting to CH nodes. Thirdly, we formalized our algorithm, and proved its theoretical

convergence.

Our simulations in static and mobile conditions showed that thanks to DCOG, it is now

possible to operate large scale dense networks based on groups and ensure good performance

with respect to end-to-end delay and network stability. The comparison with existing solutions

showed that our solution outperforms the ones from the literature. Another interesting feature

of DCOG is its small number of parameters compared to other solutions, such as GDMAC,

which makes it easier to use.

In Chapter 3, DCOG is revisited within the coalitional game theory framework. This enables

us to characterize its final state after convergence, to suggest more general cost functions and

gain insights on the design parameters. Moreover, this framework allows us to find a new

algorithm for unstructured ad hoc networks that outperforms the conventional ones.

84



Chapter 3

Distributed clustering and

coalitional game theory

Part of the work presented in this chapter is under preparation for future publication [44].

3.1 Introduction

Coalition game theory is the branch of game theory used to study the behavior of players when

they cooperate among themselves [17]. Coalitional games involve a set of players who want to

cooperate by forming coalitions in order to improve their positions in the game. In such games

the coalitions are formed based on their value, which quantifies their worth in the game. Within

a coalition the players receive a benefit thanks to their membership, which directly depends on

the coalition value. When the value of a coalition can be divided between its members using

any division rule, the game is said to be with transferable utility (TU). Otherwise the game is

said to be with non transferable utility (NTU).

Numerous coalition formation algorithms have been proposed to solve many different prob-

lems. However some commonalities can be found. A first set of solutions involves the notion of

switch operation in which a player leaves its current coalition and joins another one. Another

family of proposals is based on the notion of coalition merge and split. In both cases, the benefit

achieved thanks to the chosen algorithm must be positive to really improve the situation of the

involved players. Usually the proposed algorithms own stability properties, such as for example

Nash-stability [45], that guarantee the stability of the partition resulting from its execution.

Let us consider [20], where roadside units (RSU) form coalitions to diversify the classes of

data they transmit to the vehicles within a VANET, in order to increase their revenue. In this

paper the game is with TU, and the value of a coalition is shared between its members such

that any player obtains a benefit no less than its benefit when acting non-cooperatively. In

this paper, similarly to what is chosen in numerous other papers, the initial partition of the

network is formed by singletons. The algorithm is synchronous: during each coalition formation

iteration, the players are invoked sequentially. In the first phase each player i firsts looks for

potential switch operations, i.e., leaving its current coalition Ck and joining another one C`, such

that C` ∪ {i} �i Ck, with �i a preference relation between coalitions. In the second phase, for

each player i, if one switch operation has been found in phase 1, then player i leaves its current

coalition Ck to join C`. The algorithm is repeated until a Nash-stable partition is achieved, which
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is proved to always happen thanks to the fact that a graph has a finite number of partitions,

and that the same partition is never visited twice by a player.

In [19] the players are small cell base stations (SBS) that cooperate to share their radio

resources (OFDMA subchannels), in order to deal with the downlink co-tier interference suffered

by the small cell user devices from neighboring SBSs. The SBSs form overlapping coalitions, and

dedicate part of their frequency resources to each coalition they belong to. The benefit received

by a coalition member is equal to the fraction of frequency resource that this members gets

from its coalition multiplied by the coalition value, which is its achieved sum-rate. The game

is with TU. The authors define the preference relations .C and .I to compare two coalitional

structures w.r.t. the SBS benefits and the coalition values. Given the current coalition structure,

thanks to these relations and for each subchannel, each SBS decides if this subchannel should

be allocated to another coalition: first if possible an existing one using the preference relation

.C , and otherwise a new one using the preference relation .I . When a subchannel is moved from

one coalition to another, an history set is maintained in order to prevent this subchannel to be

moved back later in the same coalition. This process is repeated until convergence to a stable

coalition structure.

The authors in [18] detail an algorithm suited to cognitive networks with primary and sec-

ondary users (SU). Thanks to their algorithm, SUs form disjoint coalitions in order to perform

collaborative sensing while maximizing utility in terms of detection probability and accounting

for a false alarm cost. Here the game is with NTU, the benefit of each member of the coali-

tion being equal to the coalition value. The algorithm is synchronous: during each coalition

formation stage, coalitions are invoked sequentially to perform first merge then split operations.

In the merge phase, the coalition with the highest value merges with a nearby coalition, then

the merged coalition merges again, etc., until there is no more any benefit to merge the result-

ing coalitions. During this phase, a coalition Ck may merge with a nearby coalition C` only if

{Ck ∪ C`} . {Ck, C`}, with . a comparison relation between collections of coalitions governed by

the Pareto order. Following the merge process, the coalitions are subject to split operations. A

coalition {Ck, C`} may split into the two coalitions Ck and C` only if {Ck, C`} . {Ck ∪ C`}. With

this relation, coalitions merge (split) only if at least one SU is able to strictly improve its benefit

through this merge (split) without decreasing the benefits of other SU. The proposed algorithm

is proved to converge to a Dhp-stable partition, i.e., no player in this coalition are interested in

leaving it through any merge-and-split operation to form other partitions.

Device-to-device (D2D) communications are the subject of [23] which proposes a distributed

resource management scheme to jointly solve the problem of resource sharing mode selection

and spectrum sharing. Here sharing mode can be i) cellular mode, ii) dedicated D2D mode and

iii) hybrid mode where D2D reuse the resources of some cellular links. Players are either single

cellular users involved in communication with the eNB, or pairs of cellular users involved in D2D

communications. The game is with NTU, the benefit of a player being its achieved rate. The

proposed algorithm is based on a succession of merge-and-split operations, using a preference

relation . governed by the Pareto order to compare collection of coalitions.

The authors of [22] propose a distributed algorithm to achieve cooperative communications

in ad hoc networks (with multiple sources and one destination, similarly to a WSN) in order

to increase the achievable rate. Within a coalition the communications are performed over two

phases: the broadcasting and the cooperation phases. During each slot of the broadcasting phase,
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one coalition member performs broadcast transmission, while the other coalition members are

listening. Then during the cooperation phase, all coalition members transmit a linearly coded

signal of all signals received during the previous broadcasting phase, and the destination performs

multiuser detection to extract the per node signal. The benefit of each coalition member is equal

to its achievable rate, and the value of a coalition is the sum of its members benefits. The game

is thus with NTU.

These examples prove that, when some benefit can be achieved thanks to cooperation, coali-

tional game theory can be used advantageously to solve numerous problems arising in the wireless

communication field. In light of this, it seems natural to apply coalitional game theory to clus-

ter building in wireless ad hoc networks. Within this chapter we thus reinterpret the DCOG

algorithm from Chapter 2 in the context of this theory. This allows us to design a generic

clustering algorithm which is i) applicable to any type of wireless mobile ad hoc network, and

is ii) parameterized according to some utility functions and heuristics. Our analysis leads us to

a specific family of utility functions and to several heuristics suitable for structured networks,

and also allows us to deal with the case of unstructured networks.

Within this chapter, Section 3.2 introduces a generic clustering algorithm for mobile ad

hoc networks based on coalitional game theory. It is generic in the sense that it is agnostic of

the network structure. This generic algorithm is then adapted to structured and unstructured

networks in Section 3.3 and Section 3.4 respectively. Finally Section 3.5 is devoted to simulation

results and analysis.

3.2 Generic clustering algorithm based on coalition formation

theory

In this section we begin by introducing the coalition formation framework that is used to derive

the algorithm. We then detail the algorithm that is split into two specific procedures and prove

its convergence.

3.2.1 Useful definitions related to coalition formation game theory

The coalition formation games in this chapter involve a set of players N , also denoted by V
in the graph theory context of the two previous chapters. Let us now recall some definitions

from the coalition game theory [17] that are instrumental in the derivation of our clustering

algorithm, starting with the notions of coalition and coalition structure.

Definition 3.1 A coalition structure (or coalition partition) is defined as the set p := {C1, . . . , CNc}
where Ck ⊆ N are disjoint coalitions verifying ∪Nck=1Ck = N .

Within a coalition structure we associate three different quantities to each coalition Ck:

• The utility u(Ck) ≥ 0 quantifies the worth of the coalition, with u(∅) = 0. The expression of

the utility is a design parameter that depends on the goal of the coalitional game.

• The cost c(Ck) quantifies the cost of cooperation. In this thesis, we use the cost to account

for the constraints imposed to the coalitions. As a consequence, we put: c(Ck) = 0 if all

constraints are satisfied and c(Ck) = +∞ otherwise.

87



• The value v(Ck) is defined as the difference between the utility achieved thanks to the coop-

eration and the cost of cooperation: v(Ck) = u(Ck)− c(Ck). Note that v(Ck) = u(Ck) when the

constraints are satisfied, v(Ck) = −∞ otherwise.

The utility and the cost of a coalition depend on the type of network (unstructured or structured).

Examples of utility functions are detailed in Sections 3.3 and 3.4. In this thesis we consider

coalition formation games in characteristic form, i.e., when the value of a coalition only depends

on its members [17].

A transfer of nodes from one coalition to another is called a switch operation:

Definition 3.2 A switch operation σk,`(P) is defined as the transfer of players P from Ck ∈ p
to C` ∈ p ∪ {∅}, σk,`(P) : Ck 7→ Ck \ P, and C` 7→ C` ∪ P.

Note 1: if C` = ∅, then σk,`(P) leads to the formation of a new coalition P, thus increasing by

one the number of coalitions. In that case, the switch operation is noted σk,∅(P).

Note 2: if P = Ck, then σk,`(P) leads to the merge of Ck with C`, thus decreasing by one the

number of coalitions.

To determine if a switch operation improves the coalition structure, we now define the switch

operation gain.

Definition 3.3 The switch operation gain g(σk,`(P)) associated with σk,`(P) is defined as:

g(σk,`(P)) := rP(C` ∪ P)− rP(Ck), (3.1)

with rP(Ck) defined as:

rP(Ck) := v(Ck)− v(Ck \ P). (3.2)

The rP(Ck) quantity can be interpreted as the added value of having players P in coalition Ck.
Let us now define the preference relation used by the players to compare two switch operations.

Definition 3.4 The preference relation � is defined as a complete and transitive binary relation

between two switch operations σk,`(Pi) and σk′,`′(Pj) such that:

σk,`(Pi) � σk′,`′(Pj)⇔ g(σk,`(Pi)) > g(σk′,`′(Pj)). (3.3)

Similarly, we also define � as: σk,`(Pi) � σk′,`′(Pj)⇔ g(σk,`(Pi)) ≥ g(σk′,`′(Pj)).

Using our notations, the Nash-stability [45] of a partition can be defined as:

Definition 3.5 A partition p = {C1 . . . , CNc} is Nash-stable if ∀Ck ∈ p, for any node i ∈ Ck,
g(σk,`({i}) ≤ 0 for all C` ∈ p ∪ {∅}.

When the partition p is Nash-stable, it means that there exists no single node switch operation

with a strictly positive gain.

3.2.2 Generic coalition formation algorithm for clustering

In this section we propose a generic, distributed and asynchronous coalition formation algorithm

to cluster the network. To do that, we consider the coalition game theory formation framework,

identifying coalitions as clusters, and players as nodes. In the sequel, we preferably use the
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cluster/node terminology. We note nk the size (or number of members) of cluster Ck, and d(Ck)
the diameter of its induced subgraph.

Implementation of ad hoc networks includes protocols that enable nodes to discover their

neighbors and to exchange information between them. These protocols are either specific to

the communication system providers or taken from standards such as the IEEE 802.15.4 one,

designed for wireless personal area networks. In our work, we assume to use the capabilities

provided by such protocols to share information between nodes such as cluster membership,

link qualities, etc. This allows to disseminate useful information inside clusters and between

neighbor clusters to implement the clustering algorithm.

The proposed algorithm is based upon comparisons of switch operation gains. It is distributed

since the decision to perform a switch operation is done at the node level. Moreover, the decision-

making time points are assumed not to be coordinated between nodes and thus the algorithm is

asynchronous. However, when a node is evaluating the possibility to perform a switch operation,

it may consider other nodes of its current cluster. To account for the asynchronism of the

decision-making instants, nodes that are involved in a switch operation are set in a busy status.

Nodes that are not in the busy status are said available. Before implementing a switch operation,

availability of the nodes involved are checked. Switch operations are done between neighbor

clusters; two clusters are neighbors if at least one node in one cluster is a neighbor of at least

one node in the other cluster. In order to ensure that communications in between cluster

members are possible, we seek clusters for which their subgraph is connected. This constraint

if taken into account through the cost c. Notice that other constraints may be added, like the

maximal cluster size (see Section 3.2.4).

When the network is static, we can prove that the algorithm converges to a stable solution

where all constraints are satisfied. When nodes are mobile, the network topology changes over

time. As a consequence, cluster fulfilling the constraints at one time may not satisfy them

after some time. Thus, the algorithm needs to cope with this situation and to react to find a

new cluster formation that respects the constraints. Our generic clustering algorithm can then

be summarized as follows. As soon as a node starts a decision-making process, it first checks

if the constraints of its current cluster are satisfied. If the constraints are fulfilled, it applies

the procedure P1 to operate the best switch operation, described in Section 3.2.2.1. If not, it

applies another procedure P2, described in Section 3.2.2.2. Each procedure includes a selection

of candidate nodes for switch operations, which is done according to common sense rules referred

to as heuristics and noted H1 for P1 and H2 for P2.

3.2.2.1 Procedure when constraints are fulfilled (P1)

When a node i starts a decision-making procedure and detects that its cluster does satisfy the

constraints, it triggers the procedure P1 in order to search for a strictly positive gain switch

operation and implement it. The principle of this procedure run at each node i (summarized in

Table 3.1) splits into the three following successive steps:

1. Selection of candidate switch operations (lines 1-9). We first build the potential can-

didate sets of nodes denoted by {P1,i(a)}A1
a=1 according to H1. We assume that the heuristic

H1 returns at least one element, the node i itself, hence A1 ≥ 1. For each potential candidate

set, the switch operation gain is evaluated against all the neighbor clusters. We keep as

candidates the switch operations with strictly positive gain.
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2. Selection of one best switch operation (line 11). If the set of candidate switch oper-

ations is not empty, a best switch operation is selected among those with the largest switch

operation gain. Otherwise, the procedure is terminated.

3. Implementation of the switch operation (lines 12-14). Firstly, we check if the identified

switch operation can be performed, i.e., if all the nodes involved (actually Ck ∪ C`∗) are

available. Then, if the condition is met, the selected switch operation is performed, otherwise

it is dropped.

// Selection of candidate switch operations

1 Set M = ∅.
2 Apply heuristic H1 to node i to get {P1,i(a)}A1

a=1, with P1,i(a) ∈ Ck
and A1 ≥ 1.

3 For each a ∈ {1, . . . A1} do:

4 For each C` neighbor of Ck do:

5 If g(σk,`(P1,i(a))) > 0 then:

6 Set M = M ∪ σk,`(P1,i(a)).

7 End If.

8 End For.

9 End For.

10 If M 6= ∅ then:

// Selection of one best switch operation

11 Find (a∗, `∗) such that σk,`∗(P1,i(a
∗)) � σk,`(P1,i(a)),

∀σk,`(P1,i(a)) ∈M .

// Implementation of the switch operation

12 If the nodes involved in σk,`∗(P1,i(a
∗)) are all available then:

13 The nodes in P1,i(a
∗) join C`∗ .

14 End If.

15 End If.

Table 3.1: Procedure P1 at node i ∈ Ck of the generic clustering algorithm when constraints are

satisfied.

3.2.2.2 Procedure when constraints are not fulfilled (P2)

When a node i starts a decision-making procedure and detects that its cluster does not satisfy

the constraints, it triggers a procedure to change the cluster topology looking for a new partition

matching the constraints. The procedure chooses among three different actions: i) do nothing,

ii) some members of the cluster (including node i) join another cluster, or iii) some members

of the cluster (including node i) form a new cluster. Action (i) happens when no candidate

switch operation is identified. The principle of this procedure run at each node i (summarized

in Table 3.2) splits into the three following successive steps:

1. Selection of candidate switch operations (lines 1-10). We first build the potential

candidate sets of nodes denoted by {P2,i(a)}A2
a=1 according to H2. When the potential can-
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didate set is not empty, we evaluate the value rP in (3.2) of the merge of all the potential

candidate sets against all the neighbor clusters and keep those with strictly positive gains.

2. Selection of one best switch operation (line 11). The best switch operation selection

is one among those with the largest rP value.

3. Implementation of the switch operation (lines 12-16). Firstly, we check if the identified

switch operation can be performed, i.e., if all the nodes involved (actually P2,i(a
∗) ∪ C`∗) are

available. If this condition is met, then the selected switch operation is performed, otherwise

nodes available in P2,i(a) form a new cluster.

// Selection of potential candidate switch operations

1 Apply heuristic H2 to node i to get {P2,i(a)}A2
a=1, with P2,i(a) ∈ Ck

and A2 ≥ 0.

// Selection of candidate switch operations

2 If A2 > 0 then:

3 For each a ∈ {1, . . . A2} do:

4 Set M = {σk,∅(P2,i(a))}.
5 For each C` neighbor of Ck do:

6 If rP2,i(a)(C` ∪ P2,i(a)) > 0 then:

11 Set M = M ∪ σk,`(P2,i(a)).

8 End If.

9 End For.

10 End For.

// Selection of one of the best switch operation

11 Find (a∗, `∗) such that rP2,i(a∗)(C`∗ ∪ P2,i(a
∗)) ≥ rP2,i(a)(C` ∪

P2,i(a)), ∀σk,`(P2,i(a)) ∈M .

// Implementation of the switch operation

12 If the nodes involved in σk,`∗(P2,i(a
∗)) are all available then:

13 Nodes P2,i(a
∗) join C`∗ .

14 Else:

15 The nodes in P2,i(a
∗) that are available form a new cluster.

16 End If.

17 End If.

Table 3.2: Procedure P2 at node i ∈ Ck of the generic clustering algorithm when constraints are

not satisfied.

Although P2 is organized in the same lines as in P1, its differs along the following features:

• Conversely to H1, H2 may return an empty set for the potential candidate since moving

node i (and some of its neighbors) may not improve the fulfillment of the constraints.

• Switch operations are selected using the value of rP in (3.2) instead of the switch operation

gain g in (3.1). The reason is the following: when at least one constraint in Ck is not

fulfilled, then v(Ck) = −∞ and rP(Ck) is undefined. As a consequence, the switch operation

gain cannot be used. However if there is one C` such that C` and C` ∪ P satisfy the
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constraints, rP(C` ∪ P) still exists. Remembering that rP(C` ∪ P) quantifies the gain

associated with the arrival of P in C`, it seems thus relevant to use this quantity instead

of g.

• When the nodes are not available to implement the selected switch operation, P2 creates

a new cluster instead of dropping the switch. The rationale to do that is because dropping

the switch would not resolve any of the constraints infringement, whereas creating a new

cluster reduces the number of nodes that belong to a cluster not fulfilling the constraints.

• Conversely to P1, the cluster Ck may not satisfy the constraints after performing P2, for

instance because no switch operation is performed. The constraint infringement resolution

may occur later by the other nodes of the cluster, when running P2.

The important design parameters of this algorithm are: i) the heuristics H1 and H2 to select

the candidate sets of nodes P1,i(a) and P2,i(a), and ii) the utility function u and the associated

cost function c used to calculate switch operation gains (either for g or rP). Various heuristics,

cluster utilities and costs can be chosen depending on the type of network. Several examples

are given in Section 3.3 dedicated to structured networks and in Section 3.4 to unstructured

networks.

3.2.3 Convergence properties

When the network topology is fixed and the algorithm is initialized by clusters fulfilling the

constraints (the simplest being to set each node as a singleton cluster), then the following result

holds:

Result 3.1 For a fixed network topology and starting from any initial partition p0 of N for

which the clusters satisfy the constraints, the cluster formation algorithm maps to a sequence

of switch operations which converges in a finite number of iterations to a final partition pf .

Proof See Appendix B.1.

Since the candidate set of nodes returned by H1 includes the node i itself, we directly get:

Result 3.2 The final partition pf achieved in Result 3.1 is Nash-stable.

3.2.4 On the cluster constraints and utility function

As mentioned in the introduction, we impose some constraints to the clusters in order to ease the

RRA process. In addition to the connectivity constraint, we also impose a maximum number of

nodes per cluster noted nmax and a maximum cluster diameter noted dmax. These constraints

are noted by:

• ρ1(Ck): the induced subgraph of Ck is connected (already mentioned in § 3 of Section 3.2.2),

• ρ2(Ck): nk ≤ nmax,

• ρ3(Ck): d(Ck) ≤ dmax,
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and the cost within a cluster Ck is defined as:

c(Ck) := ι(ρ1(Ck)) + ι(ρ2(Ck)) + ι(ρ3(Ck)), (3.4)

with ι(condition(Ck)) := 0 if condition(Ck) is satisfied, +∞ otherwise.

For the same reasons, we want to built clusters that include as many members as possible

(limited by the size constraint nmax). This is the goal G1 already defined in Section 2.5.5:

Goal 1 (G1) Build clusters whose size is maximal, i.e., equal to nmax.

To achieve G1, the utility function should always allow the merge of two clusters, as long as

the constraints are satisfied. Let us call this property Condition 3.1, that can be expressed as:

Condition 3.1 The cluster utility function must verify g(σk,`(Ck)) > 0, ∀(Ck, C`) ∈ p2, k 6= `,

as long as Ck ∪ C` satisfies the constraints.

In addition, Condition 3.1 ensures that the algorithm can be initialized with all the nodes as

singleton clusters without being blocked in this configuration, which is not guaranteed for any

utility function.

3.3 Clustering algorithm for structured mobile ad hoc networks

In this section we specify the generic clustering algorithm to the structured network case by

designing dedicated utility function and heuristics. Hereafter, we need the following additional

notation: let mt,k be the number of members of group Ot in cluster Ck.

3.3.1 Utility function

As discussed in the Introduction of this document, in structured networks, the members of the

same group exchange the main part of their traffic within their group, and intra-cluster links

benefit from a RRA which is more efficient than the one associated with the inter-cluster links.

Therefore, as much as possible, we want to collect the members of the same group into a single

cluster. This is the goal G2 already defined in Section 2.5.5:

Goal 2 (G2) Build clusters including the highest number of members from the same group.

As already seen in Section 3.2.4, we also want to achieve G1. We now show that we can

define for each of the two goals a specific utility function adapted to the goal. Therefore, we

suggest to define a utility function for structured networks as a linear combination of these two

utility functions:

ust(Ck) := u1(Ck) · ε+ u2(Ck) · (1− ε), ε ∈ (0, 1), (3.5)

where

• u1 is a utility function adapted to G1 and which thus only depends on the cluster size:

u1(Ck) := f1(nk), (3.6)
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• u2 is a utility function adapted to G2 and which thus only depends on the number of

nodes per group in the cluster:

u2(Ck) :=
∑

t∈I(Ck)

f2,t(mt,k), (3.7)

with I(Ck) defined in Section 2.2.

We now want to determine relevant functions for f1 and f2,t. Regarding f1, we use the

following result.

Result 3.3 Let two different clusters Ck and C` satisfying the constraints, and a set of nodes

P ⊂ Ck such that

i) |C` ∪ P| > |Ck| and

ii) C` ∪ P and Ck \ P satisfy the constraints.

If f1 is strictly convex then u1 defined by (3.6) verifies g(σk,`(P)) > 0.

Proof See Appendix B.2.

As a corollary, f1 also verifies Condition 3.1 (apply Result 3.3 with P = Ck). Consequently, we

propose to select a strictly convex function f1 to achieve G1. Note that this result also holds for

unstructured networks since it depends only on the cluster size. As the simplest strictly convex

function is the second-order monomial, we propose to use

f1(nk) :=
n2
k

n2
max

, (3.8)

where n2
max normalizes u1 in [0, 1].

Regarding f2,t, we use the following result.

Result 3.4 Let two different clusters Ck and C` satisfying the constraints such that

i) P is a subset of Ot ∩ Ck,

ii) mt,` + |P| > mt,k, and

iii) C` ∪ P and Ck \ P satisfy the constraints.

If f2,t is strictly convex then u2 defined by (3.7) verifies g(σk,`(P)) > 0.

Proof See Appendix B.3.

Consequently, the strict convexity of f2,t ensures that a switch operation leading to a larger

number of members of the same group in the receiving cluster than in the departing cluster has

a strictly positive gain. It thus contributes to achieving G2.

The same way as for f1, we select the simplest second-order monomial function for f2,t:

f2,t(mt,k) :=
m2
t,k

T ·m2
t

, (3.9)

where T ·m2
t normalizes u2 in [0, 1].

The utility function previously defined holds the following property.
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Result 3.5 The utility function defined as (3.5) with (3.6)-(3.9) satisfies condition 3.1.

Proof See Appendix B.4.

Notice that, using (3.5) with (3.6)-(3.9) allows to model the problem of cluster building as a

non-transferable utility coalitional game in which the benefit of each cluster member is equal to

the utility of the cluster.

We now discuss the design of ε to control the trade off between G1 and G2. Let us first state

the following result.

Result 3.6 Let three different clusters satisfying the constraints Ck, C` and Cq, each of them

having some nodes belonging to the group Ot. Let Uq ⊂ Cq that contains some nodes only of

group Ot with nU := |Uq| ≤ mt,q. We assume that Ck ∪ Uq and C` ∪ Uq satisfy the constraints.

Assuming that ∀t, |Ot| ≤ nmax and using the utility function (3.5) with (3.6)-(3.9), the following

properties hold:

i) If mt,k = mt,` and |Ck| > |C`|, then g(σq,k(Uq)) > g(σq,`(Uq)), ∀ε.

ii) If mt,k = mt,` and |Ck| = |C`|, then g(σq,k(Uq)) = g(σq,`(Uq)), ∀ε.

iii) If mt,k > mt,`, and ∀|Ck|,∀|C`|, then g(σq,k(Uq)) > g(σq,`(Uq)) as soon as:

ε < ε∗ :=
1

1 + T
.

Proof See Appendix B.5.

Firstly, when the number of nodes belonging to group Ot in cluster Ck and C` are equal,

Result 3.6 tells that, whatever the value of ε: i) the algorithm selects the switch of Uq towards

the cluster with the largest number of nodes, thus fulfilling G1, ii) if cluster Ck and C` have the

same number of nodes, both switch operations are even. Secondly, when the number of nodes

belonging to group Ot in cluster Ck and C` are different, let say mt,k > mt,`, then, for any ε < ε∗,

the algorithm always selects the switch of Uq ⊂ Ot towards the cluster which has the largest

number of nodes of group Ot, i.e., Ck, regardless of the size of the clusters, and more specifically

even if |Ck| < |C`|. In that condition, it thus always fulfills G2 over G1.

3.3.2 Heuristics for node selection

We assume that node i running the algorithm in cluster Ck belongs to group Ot. For structured

networks, the heuristic should select the set that gathers the maximum number of members of

group Ot, including node i. We also want this set to fulfill the constraints. Let us denote this set

by L. Thus, in order to build L, we first identify i∗ the node among the neighbors of i in group

Ot that has the highest degree. Then, we select the set of nodes including i∗ that has the largest

cardinality and which respects the constraints. Note that when the diameter constraint is equal

to two, L is obtained by considering all the neighbors of i∗ (which includes i by construction).

This approach is used for the following heuristics used in procedures P1 and P2.

3.3.2.1 In procedure P1

In order to assess the effect of the choice of the heuristic, we propose three heuristics Hsth
1 , with

h ∈ {1, 2, 3} that return the sets {P1,i(a)}A1
a=1. They are defined as:
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• Hst1
1 : A1 = 2 with P1,i(1) = {i} and P1,i(2) = L.

• Hst2
1 : A1 = 1, P1,i(1) = L. Note that this heuristic does not satisfy the condition for Nash

stability.

• Hst3
1 : A1 = 1 and P1,i(1) = {i}.

We expect that the most complex, Hst1
1 , leads to the best results.

3.3.2.2 In procedure P2

We note the heuristic Hst
2 that returns the set {P2,i(a)}A2

a=1. It is defined as: A2 = 1 and

P2,i(1) = L.

3.4 Clustering algorithm for unstructured mobile ad hoc net-

works

In this section we specify the generic clustering algorithm to the unstructured network case by

designing dedicated utility function and heuristics.

3.4.1 Utility function

In unstructured networks, we target clusters offering good throughput for intra-cluster commu-

nications. This can be obtained by gathering nodes with high link capacities between each other.

We refer this goal as G3:

Goal 3 (G3) Build clusters with high link capacities.

Let us define κ(i, j) := log2(1 + Γ(i, j)) the capacity of link (i, j), with Γ(i, j) the SNR at node

j when node i transmits. Γ(i, j) can be either the instantaneous SNR in Gaussian channels, or

the average SNR in random channels. In order to achieve G3, we propose to define the utility

function as the sum capacity of all the intra-cluster links:

uun(Ck) :=
∑
i∈Ck

∑
j∈Ck|(i,j)∈E

κ(i, j). (3.10)

This utility function also achieves G1 since it holds the following result:

Result 3.7 The utility function defined in (3.10) satisfies Condition 3.1.

Proof See Appendix B.6.

Notice that using (3.10), the clustering problem can be modeled as a non-transferable utility

coalitional game in which the value of a coalition cannot be divided in any manner among the

members of the coalition.

3.4.2 Heuristics for node selection

3.4.2.1 H1 in procedure P1

We noteHun
1 the corresponding heuristic that returns the set {P1,i(a)}A1

a=1. Since in unstructured

networks there is not any particular reason to select any other node than itself, i.e., {i}, Hun
1 is

defined as follows: set A1 = 1 with P1,i(1) = {i}.
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3.4.2.2 H2 in procedure P2

We note Hun
2 the corresponding heuristic that returns the set {P2,i(a)}A2

a=1. Here, at least one

constraint in the selected cluster is not satisfied, e.g., connectivity or diameter. We identify three

different situations for node {i}: i) it has a lot of neighbors and it could be valuable that it forms

a new cluster with its neighbors, ii) it has very few neighbors in the cluster meaning that it is

presumably very likely to be involved in the constraints violation. It would be then beneficial

that it leaves the cluster, iii) it is not in case (i) or (ii) and we change nothing. Considering the

extreme situations for (i) (the most connected) and (ii) (the least connected), we propose the

following heuristic:

• If node i has the highest degree within its induced cluster subgraph, then set A2 = 1 with

P2,i(1) defined as all cluster members that are in the bdmax/2c-hop neighborhood of i. When

the diameter constraint is equal to two, P2,i(1) includes node i and all its 1-hop neighbors

within the cluster, i.e., P2,i(1) = {i} ∪ {j ∈ Ck|(i, j) ∈ E}.

• If node i has the lowest degree within its induced cluster subgraph, then set A2 = 1 with

P2,i(1) = {i}.

• In the other cases, node i chooses to remain in the cluster and to wait for the action of other

cluster members, and A2 = 0.

Notice that there are as many choices for the heuristics as one can imagine. The heuristics

proposed here can thus be changed. However, the heuristic selection may take into account the

computation complexity.

3.5 Numerical results

In this section we simulate numerically our proposed algorithms (COG and CLQ) and analyze

them deeply. In case of structured ad hoc networks, COG is compared to the naive algorithm

1G1C defined in Section 1.5.1, whose goal is to force all members of a group to be in the same

cluster as soon as the constraints can be satisfied. If not, simple mechanisms are carried out

to satisfy the constraints. In case of unstructured ad hoc networks, CLQ is compared to three

standard clustering algorithms entitled LCC [7], VOTE [9], and SECA [13]. Static and mobile

configurations are tested.

3.5.1 Simulation setup

The nodes are deployed randomly in a 1.5 km x 1.5 km square area. The node deployment and

mobility models are explained in Sections 3.5.2 and 3.5.3 for the structured and the unstructured

networks, respectively. No radio communication is possible between two nodes i and j separated

by a distance di,j greater than the radio range dref = 250 m. The SNR associated with the

link (i, j) is given by Γ(i, j) := −40 log(di,j/dref). The diameter constraint on the cluster is

dmax = 2. All the results are obtained through averaging over 100 different random networks.

The simulation duration is fixed to 5000 s.
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3.5.1.1 Distributed asynchronism model

We specify here the way distributed and asynchronous decision-making is handled in the sim-

ulation. Remember that a node i ∈ Ck can be either in a Waiting or Busy (i.e., not available)

state. According to these states, the simulation behaves as the following:

• Waiting state: node i is not involved in current operations done by the clustering algorithm.

However, it is learning information needed to run the clustering algorithm. It stays in this

state during δw s which is randomly chosen according to an exponential distribution with

parameter λ. It may leave this state in the two following cases:

1. After δw s, it checks its cluster constraints. Then two cases may occur:

(a) If the constraints are satisfied, then it applies the procedure P1 of the clustering

algorithm described in Table 3.1. If it decides to move to another cluster, it then

switches to the sate Busy to account for the time needed to operate this change.

(b) If the constraints are not satisfied, then it applies the procedure P2 of the clustering

algorithm described in Table 3.2. If it decides to perform a change in the cluster

it then switches to the state Busy to account for the time needed to operate this

change.

2. When the node i becomes involved in a cluster modification decided by another node j.

• Busy state: it means that the node is involved in a cluster modification initiated by itself or an

other node. The duration of this state is deterministic and set equal to δb s in order to account

for the time spent to exchange information between nodes inside the cluster. Notice that if

nodes involved in this cluster modification are in the Busy state (because already involved in

other cluster modifications simultaneously), then this cluster modification is canceled and the

node i goes back to the Waiting state.

The above description can be modeled as a state machine as depicted in Fig. 3.1. Notice that we

assume that the time required for running the procedures P1 and P2 is zero. Unless otherwise

stated, λ = 5 and and δb = 0.5.

Yes

Busy

��

Waiting

��

Cluster 

change decision?

No

Involved in a cluster modification

Figure 3.1: State machine model for asynchronous clustering algorithm.

3.5.2 Case of structured ad hoc networks

In this section we present the simulation results associated with COG. We set the group size

mt = 10. We denote by COG n the algorithm when the cluster size constraint is nmax = n.
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Unless specified otherwise, the heuristic used in Table 3.1 is Hst11 . The maximum number of

groups T is equal to 100, when N = 1000. Consequently, using Result 3.6, we set ε = 10−5 <

ε∗ = 1/(1 + T ) ' 9.910−3 in (3.5), to favor G2 over G1.

In structured networks, the nodes are deployed randomly like described in Section 2.6.3.1.

To better visualize the type of networks we consider here, Table 3.3 details the average node

degrees vs. N . The network density ranges from low/medium (in 100 node networks) to high

(in 1000 node networks) values.

N 100 200 300 400 600 800 1000

Degree 19.9 33.58 47.51 61.58 89.72 117.8 145.7

Table 3.3: Average node degree vs. N in structured networks.

3.5.2.1 Static networks

First let us study the case when nodes are static. In this section we thus assess the performance

of procedure P1 in Table 3.1.

3.5.2.1.1 Cluster-based vs. node-based clustering algorithm execution

The two algorithms DCOG from Chapter 2 and COG are very close in their definition. A

noticeable difference lies in the entity running the algorithm. In the case of DCOG the decision

making is done at cluster level, when COG is executed by each individual node. It is thus

legitimate to wonder about the performance difference between them. To make both algorithms

comparable we modified the DCOG simulation to use the cost function 1 − ust(Ck) instead of

(2.13), and ran 100 simulations of static random networks with N = 100 nodes and nmax = 20.

Fig. 3.2.a plots the values of the network cost function JX0 defined in Chapter 1 and achieved by

both algorithms, with parameters α = 4, γ̂ = 1 and γ̃ = 2. In Fig. 3.2.b we plot the differences

between these values. Both cluster-based and node-based approaches lead to very close results,

the difference being in [−3.9%, 4.2%].
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Figure 3.2: Cluster-based DCOG and node-based COG 20 algorithms in 100 structured networks

with N = 100. (a) JX0 values. (b) JX0 value differences.
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3.5.2.1.2 Technical metrics: group cluster diversity, cluster size, singletons and

cluster group diversity.

In our random networks, the induced subgraphs of the groups do not always satisfy the topology

constraints, thus forcing these groups to be split between multiple clusters, and thus leading to

GCD (defined in Section 2.6.1) values greater than 1, as shown in Fig. 3.3. For all clustering

algorithms, the GCD is only slightly greater than 1, meaning that each group is usually included

in a single cluster and confirming that COG achieves G2.
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Figure 3.3: Group cluster diversity vs. N in static structured networks.

Fig. 3.4 shows the average cluster size. The curves for 1G1C and COG 10 are nearly the

same, and they both build clusters smaller in average than the group size. This is due to

topology constraints which sometimes prevent that all members of the same groups be inserted

in the same cluster. Additionally COG 10 builds slightly larger clusters than 1G1C. During the

distributed process of COG, several switch operations are required to aggregate the members

of a group in a single cluster. Depending on the order in which the different nodes perform

their switch operations, the constraints may prevent the formation of clusters with full groups

and lead to a larger number of clusters, i.e., a smaller average cluster size. To grasp the details

of what happens let us consider the example of an 8 node network composed of two equal size

groups O1 := {1, 2, 3, 4} and O2 := {5, 6, 7, 8}, with a maximum cluster size equal to 4. In this

example, unless specified otherwise, the cluster constraints are always satisfied. At time t0 the

partition p(t0) of this network is: p(t0) :=
{
{1, 2, 3}, {4}, {5, 6, 7}, {8}

}
. Let us suppose that i)

at time t1 > t0 node 4 is the first to execute COG 4 after time t0 and that ii) node 4 cannot join

the other members of O1 because of the cluster diameter constraint. Then node 4 joins nodes

{5, 6, 7}, members of O2, leading to the partition p(t1) :=
{
{1, 2, 3}, {4, 5, 6, 7}, {8}

}
. If node 8

at t2 > t1 is the first to execute COG 4 after time t1, it will not join the other members of O2

because they already belong to a maximum size cluster. Thus node 8 will join nodes {1, 2, 3}
and the final partition will be p(t2) :=

{
{1, 2, 3, 8}, {4, 5, 6, 7}

}
. In p(t2) the average cluster size

is 4. Conversely, during the centralized process of 1G1C, as long as the constraints are satisfied
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all members of the same group are always inserted in the same cluster. In the same example,

1G1C builds the partition p :=
{
{1, 2, 3}, {4}, {5, 6, 7, 8}

}
, because node 4 cannot be in the same

cluster as {1, 2, 3} due to the cluster diameter constraint. In p the average cluster size is equal

to 2.67, smaller than the one in p(t2).
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Figure 3.4: Cluster size vs. N in static structured networks.

Increasing the maximum cluster size to 15 does not allow to include two whole groups in a

cluster. Therefore, due to our choice of ε which favors G2 over G1, we expect COG 15 to build

clusters whose average size are similar to the ones achieved by COG 10. This is the case, even

if COG 15 builds clusters whose size exceeds the one of COG 10 by a number in [0.5, 1.0]. This

is justified by the capacity of COG 15 to ”catch” the singleton clusters, i.e., merge them with

clusters that already include one full group. To illustrate this capability, let us come back to the

previous example, at time t1: p(t1) :=
{
{1, 2, 3}, {4, 5, 6, 7}, {8}

}
. Let us consider what happens

with COG 4 and COG 6 at time t2 if {1, 2, 3, 8} does not satisfy the constraints:

• COG 4: Node 8 remains alone and the final partition is pCOG4 :=
{
{1, 2, 3}, {4}, {5, 6, 7, 8}

}
,

with average cluster size 2.67 and 1 singleton.

• COG 6: Node 8 joins nodes {4, 5, 6, 7} and the final partition is pCOG6 :=
{
{1, 2, 3}, {4, 5, 6, 7, 8}

}
,

with average cluster size 4 and no singleton.

When the number of nodes N increases, the network topology becomes denser, and the

probability that COG builds clusters with two full groups becomes larger, thus achieving G1

and G2. This is the reason why the average cluster size curves for COG 20 and COG 25 are

increasing functions of N . The same explanations as for COG 10 and COG 15 justifies why

COG 25 builds cluster whose average size is greater than the one of COG 20.

The average number of singletons is plotted in Fig. 3.5.a. The centralized simple heuristic

1G1C builds the highest number of singletons. More importantly, these curves confirm the

argument made about the cluster size metric: COG 15 and COG 25 minimize this number.

Thus, to reduce the number of singletons the value of nmax should be set such as to be slightly

greater than a multiple of the group size.
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Figure 3.5: Static structured networks. (a) Number of singletons vs. N . (b) CGD vs. N .

The cluster group diversity (CGD) is the average per cluster number of groups with at least

one member within the cluster. It appears that the curves of CGD in Fig. 3.5.b look similar to

the ones showing the average cluster size in Fig. 3.4. Within a cluster, the cluster size divided

by the group size and multiplied by the GCD is equal to the CGD. We know that the GCD is

close to 1 and that the group size is equal to 10. Thus Fig. 3.5.b may be seen as reduction of

Fig. 3.4 by a factor of 10.

3.5.2.1.3 Application level performance

Fig. 3.6 shows the application level performance measured with JX0 for COG 10, COG 15, COG

20 and COG 25 with heuristic Hst11 (like for all simulation results in this section).
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Figure 3.6: JX0 vs. N in static structured networks.

Whatever the maximum cluster size, COG achieves JX0 values close to the ones of 1G1C.

The justification of the slightly lower performance of COG 10 and COG 15 is the same as

discussed in Section 3.5.2.1.2: it is due to the COG distributed execution dynamic. When the
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cluster can include two entire groups, then the JX0 values associated with COG are smaller,

and thus better. This small gain, in [0.014, 0.025], results from i) a reduction of inter-cluster

traffic between members of different groups now in the same cluster, and ii) the reduction of

the number of inter-cluster links used by communications between members of different groups

residing in different clusters. To investigate further the reduction in number of inter-cluster

links, let pA
π the number of paths with π inter-cluster links in the partition formed by algorithm

A. Let us define rA
π := 1 − pA

π /p
1G1C
π , the decrease in the number of paths with π inter-cluster

links achieved by algorithm A w.r.t. 1G1C. Fig. 3.7 plots the values of rA
π achieved with the

algorithms COG 10, COG 15, COG 20 and COG 25, within N = 300 node networks. This figure

confirms our expectations. When two groups can be included in a single cluster (A is COG 20

or COG 25), then i) the number of paths with more than two inter-cluster links is decreased

(by more than 30%), and logically ii) the number of paths with zero or one such link increases

(by 1700% and 1800%, i.e., a multiplicative factor pA
0 /p

1G1C
0 close to 20).
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Figure 3.7: Reduction in the number of inter-cluster links for inter group communications vs.

1G1C in static structured networks (N = 300).

In Fig. 3.8 we plot the values of JX0 for COG 25 with heuristics Hst11 , Hst21 and Hst31 , along

with the ones for 1G1C. The best results are achieved thanks to Hst11 . It makes sense given that

the output of Hst11 includes the ones of Hst21 and Hst31 . It is interesting to note that Hst31 and

1G1C curves are nearly the same. An analysis of the clusters formed with Hst31 reveals that they

are composed of only one group, like 1G1C, COG 10 and COG 15 with Hst11 . Thus using Hst31

does not allow to achieve G1. To compare Hst11 and Hst21 , let us now analyze the complexity of

COG.

3.5.2.1.4 Complexity

The computational complexity of COG is related to the number of operations in the double-loop

of lines 3-9 and 4-8 in Table 3.1, i.e., the number of σk,`(P1,i(a)) gain calculations. The most

complex operation when calculating a switch operation gain is to check if the diameter constraint

is satisfied, which may require as many breadth first searches1 (BFS) as cluster members. When

running the BFS algorithm on a graph, for each vertex there is one operation per neighbor of

this vertex. We denote each such operation by ”BFS operation”. Fig. 3.9 shows the number of

1Breadth first search is a simple graph theory algorithm.
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BFS operations for the COG 10, COG 15, COG 20 and COG 25 with heuristic Hst11 (like for all

simulation results in this section), and for COG 25 with Hst21 and Hst31 .
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Figure 3.9: Number of breadth first search operations vs. N in static structured networks.

As expected, the number of BFS operations consistently increases with N , and with nmax.

It is more fruitful to compare the complexity of the three heuristics used with COG 25. The

one inducing the highest processing load is logically Hst11 . Remembering that in Fig. 3.8, the

performance of Hst11 is the best, we confirm that achieving the best performance induces the

largest complexity. Additionally, Fig. 3.8 and Fig. 3.9 show thatHst21 leads to less BFS operations

than Hst11 , at the price of a decreased JX0 performance. This illustrates the trade off between

complexity and performance in the selection of the heuristics.
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3.5.2.2 Mobile networks

We now consider networks with moving nodes. In this section, we thus assess the performance

of both procedure P1 in Table 3.1 and P2 in Table 3.2.

In mobile networks, the duration of the simulation warmup phase must be chosen carefully.

We measure the variations of the node average degree, plotted in Fig. 3.10. In view of this figure

we set the duration of the warmup period to 500 s.
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Figure 3.10: Average node degree vs. time for structured networks with N = 100, and for

various vmax values.

In Fig. 3.11, we plot the cluster life time versus the maximum speed of nodes for different

values of nmax. When nmax if smaller than twice the group size, the clusters are composed of

a single group and so are very stable: the clusters formed at the beginning of the simulation

are nearly never modified. This is an expected consequence of our node deployment scheme

which ensures that within a group, the nodes are almost always at two radio hops. When nmax

is at least equal to twice the group size, then some clusters include two groups. During the

simulation, the groups move independently, leading to two kinds of cluster modifications: i)

switch operations resulting from procedure P1, and ii) mobility adaptations performed during

procedure P2 to enforce the cluster constraints. When the node speed increases, this number of

modifications also increases, thus reducing the cluster life time.

Fig. 3.12 shows the number of cluster modifications, i.e., the switch operations (the ’COG

xx SO’ curves) and the mobility adaptations (the ’COG xx MA’ curves). This figure confirms

that the clusters formed by COG 10 and COG 15 are nearly never modified (this is not visible in

Fig. 3.12 because of the difference of scale between the number of cluster modifications for COG

10 and COG 15 w.r.t. to COG 20 and COG 25). Let us now analyze the behavior of COG 20

and COG 25. During the permanent phase of our simulations, a switch operation happens when

two clusters, each composed of one group, merge into a two-group cluster. Subsequently, because

the groups move independently, a mobility adaptation occurs and usually the two-group cluster

splits back into the two previous one-group clusters. When this happens the total number of
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Figure 3.11: Cluster life time vs. maximum node speed in mobile structured networks.

clusters is increased by one, allowing a later switch operation to merge one-group clusters. In

some cases a third cluster, composed of one group, is in the vicinity, and one group from the two-

group cluster joins the third cluster. When this happens, the number of clusters is unchanged

and no switch operation to merge one-group clusters happens, only a mobility adaptation to

split them. This last situation happens more frequently when vmax increases, which explains

why the number of mobility adaptations is slightly larger than the one of switch operations.
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3.5.2.3 Conclusions on structured networks

Thanks to our simulations we verified that when the topology allows it, COG always form

clusters composed of entire groups, thus achieving G2 and leading to excellent intra-group com-

munication performance. When COG is configured to form clusters composed of only one single

group, we showed that i) in static networks it leads to nearly the same clusters as the central-

ized heuristic 1G1C, and that ii) in presence of node mobility, COG clusters are stable. When

multiple groups are allowed then COG also achieves G1, improving inter-group communication

performance, at the price of an increased complexity and of less stability in presence of mobility.

We also established that the transition from the DCOG algorithm, run at cluster level,

to COG, run at node level, did not decrease the performance. We also assessed the effect

of various heuristics for node selection, which allowed us to highlight the trade off existing

between complexity and performance. These results are important milestones in the path to an

implementation of a clustering protocol suited to structured networks.

As a conclusion, allowing clusters to include more than one group improves inter-group

communications, at the expense of cluster stability. This should be done only when the network

mobility is expected to be low. Conversely, if mobility is high then the maximum cluster size

should be set to a value slightly larger than the group size. This guarantees cluster stability and

reduces the number of singleton clusters.

3.5.3 Case of unstructured ad hoc networks

In this section, we consider the algorithm CLQ, and compare it to the following existing algo-

rithms: the old but very well-known LCC [7], VOTE which forces the cluster size to be less

than a target threshold [9], and the recent SECA which takes the link quality into account [13].

Unless otherwise stated, nmax = 20. The design parameters for SECA (defined in [13]) are

wcd = 0.2, wM = 0.4, wSL = 0.4 and qd = 0.1. Also, SECA considers a radio link (i, j) ∈ E as

being strong if di,j < dref/2.

The nodes are deployed randomly following a uniform distribution. When there is node mo-

bility, the coordinates of any node i are updated once per second, following a uniform rectilinear

motion with a speed limited to vmax. Each node moves between waypoints, whose coordinates

are updated once every MP = 20 s. To better visualize the type of networks we consider in

this section, Table 3.4 details the average node degrees vs. N . When compared to Table 3.3,

Table 3.4 shows that the difference between average degrees in structured and unstructured net-

works is about 5. This gap is justified by the group model used for structured networks, which

N 100 200 300 400 600 800 1000

Degree 13.70 27.94 42.12 56.29 84.47 112.4 140.4

Table 3.4: Average node degree vs. N in unstructured networks.

places all members of the same group in a disk whose radius is twice the radio range dref , and

thus increases the average node degree.
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3.5.3.1 Static networks

First let us study the case when nodes are static. For illustration purpose, Fig. 3.13 depicts the

result achieved by the different clustering algorithms for a 600 node network. In this figure the

cluster membership is indicated by the color and shape of the nodes.

Figure 3.13: Example of 600 node network clustered with CLQ, LCC, VOTE and SECA (from

left to right, top to bottom).

3.5.3.1.1 Duration required for CLQ convergence to a stable cluster structure

In Fig. 3.14.a, we plot the duration required to stabilize the cluster structure. The proposed

coalition formation algorithm requires more time than the reference algorithms. This larger

convergence duration is mainly due to the duration of the Busy state. Indeed, for LCC, VOTE,

and SECA, this duration has been assumed to be zero since the clustering protocol can be easily

done thanks to messages directly exchanged between the concerned cluster member and its

already-chosen CH. With CLQ there is no CH, which requires the nodes to perform peer-to-peer

message exchanges, leading to longer delays. This delays are modeled by the δb long Busy state.
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Fig. 3.14.b plots the numbers of switch operations that are i) performed in line 13 of Table 3.1,

or ii) canceled because in line 12 some nodes involved in σk,`∗(P1,i(a
∗)) are not available. For

case (i), this number increases linearly with N , whereas for case (ii) it has a quadratic shape,

as highlighted by the dotted black curve. This last result can be interpreted in the following

manner: when the node density increases, the probability of collision, i.e., that some nodes

involved in the switch operation are not available, also increases. It is a well known property

of the MAC based on random access which we have taken into account with our Waiting-Busy

model.
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Figure 3.14: Static unstructured networks. (a) Time required to reach a stable cluster structure

vs. N . (b) Number of performed and canceled switch operations vs. N .

In order to assess the influence of the parameter δb on CLQ, we plot Fig. 3.15 which shows

the time required by CLQ to reach stable clusters and the number of performed and canceled

switch operations in N = 100 networks with varying δb. Fig. 3.15.a shows the that duration
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Figure 3.15: Static unstructured networks with N = 100. (a) Time required by CLQ to reach a

stable cluster structure vs. δb. (b) Number of performed and canceled switch operations vs. δb.

needed by CLQ to reach stable clusters increases in a linear manner w.r.t. δb. Fig. 3.15.b shows

that the number of performed switch operations remains more or less constant, independently

of δb. The number of canceled switch operations increases abruptly, indicating that the number

of collisions modeled by our model increases with δb. When designing the MAC, if we succeed in
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decreasing δb (by optimizing the protocol), we will be able to obtain almost the same convergence

duration as the existing algorithms plotted in Fig. 3.14.a.

3.5.3.1.2 Cluster size

In Fig. 3.16.a, we plot the cluster size vs. N . It is a non-decreasing function of the number

of nodes in the networks. More precisely, the cluster size is limited to nmax = 20 for CLQ and

VOTE, and increases linearly for LCC and SECA (that do not control the cluster size). The

proportion of singleton clusters is shown in Fig. 3.16.b. The proposed CLQ builds the lowest

number of singletons, which is of great interest since singleton clusters are inefficient for network

performance. Table 3.5 details the proportion of nmax size cluster vs. N for the two algorithms

VOTE and CLQ. CLQ builds the highest number of maximum size clusters, thus achieving G1

better than VOTE.
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Figure 3.16: Static unstructured networks. (a) Cluster size vs. N . (b) Proportion of singleton

clusters vs. N .

Nodes 100 200 300 400 600 800 1000

VOTE 8.71% 22.18% 33.93% 44.01% 56.65% 65.10% 70.87%

CLQ 4.15% 26.70% 46.00% 57.91% 71.68% 78.82% 81.87%

Table 3.5: Proportion of nmax size clusters vs. N in unstructured networks.

In Fig. 3.17, we show the distribution of the cluster size with N = 300. In this figure, the

notation ’>’ on the x axis means that the cluster size is strictly greater than 20. CLQ builds the

smallest number of singletons and the largest number of clusters with nmax members. Moreover

CLQ always satisfies the cluster size constraints (nmax = 20) whereas LCC and SECA lead to

very large clusters. For example when N = 1000, the average size of the clusters formed by

LCC is 47, with a lot of 200 node clusters. These clusters are not manageable anymore and

contradict the objective of clustering.

3.5.3.1.3 Intra-cluster link capacities
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Figure 3.17: p(|Ck|) vs. |Ck| in static unstructured networks (N = 300).

In Fig. 3.18, we plot the intra-cluster link capacity vs. N . We observe that CLQ always

ensures the highest link capacity thus attaining G3.
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Figure 3.18: Intra-cluster link capacity vs. N in static unstructured networks.

While it does not take link capacities into account, LCC is the second best algorithm. The

rationale of this unexpected result resides in the details on the metric calculation. The intra-

cluster link capacity for a given number of nodes is the average of 100 such metrics, one per
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random network. When calculating the metric for one network, it is first calculated per cluster

and then it is averaged. During this last averaging, all clusters are considered equally, meaning

that small and large clusters contribute at the same height, when the latter ones usually have

links with a much lower capacity than the former. When the size of the clusters is widely

spread, such as for LCC, the metric thus overestimates the real intra-cluster link capacity. The

only algorithm from the state of the art designed to take link quality into account, SECA,

achieves a slightly worse performance than LCC and thus fails to achieve good intra-cluster

link capacity. Finally, VOTE is concerned only by the cluster size, leading to clusters whose

members are spread on a large area. Two implications follow from this: firstly the intra-cluster

link capacities are low, and secondly, there is a lot of cluster overlap.

3.5.3.2 Mobile networks

Let us now consider mobile networks. To determine the duration of the warmup phase we

followed the same method as for structured networks. Fig. 3.19 and Fig. 3.20 plot the node

average degree vs. time for vmax ∈ {0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4}. In Fig. 3.20.b all curves remain

within a small interval (whose width depends on vmax). Consequently ∀vmax, we set the duration

of the warmup phase to 500 s, except for vmax = 0.25 for which we selected 1000 s.
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Figure 3.19: Average node degree vs. time for unstructured networks with N = 100, and for

various vmax values.

We expected that small clusters would be more stable than large ones. Consequently we

simulated CLQ and VOTE for two maximum cluster size: nmax ∈ {10, 20}. We denote by CLQ

n and VOTE n when the cluster size constraint is nmax = n. The cluster life time vs. maximum

node speed vmax is plotted in Fig. 3.21.

These curves first confirm that building smaller clusters improve their stability. The cluster

life time associated with CLQ 10 is on average twice the one induced by CLQ 20 (this gain

decreases with the node speed). VOTE also benefits from a smaller cluster size: when nmax = 10,

then the cluster life time is on average 40% greater than if nmax = 20. Additionally, regardless

112



13.5

14

14.5

15

15.5

16

16.5

0 100 200 300 400 500

A
v

e
ra

g
e

 n
o

d
e

 d
e

g
re

e

Simulation time

0.25 0.5 0.75 1.0 1.5 2.0 3.0 4.0

(a)

13.5

14

14.5

15

15.5

16

16.5

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
v

e
ra

g
e

 n
o

d
e

 d
e

g
re

e

Simulation time

0.25 0.5 0.75 1.0 1.5 2.0 3.0 4.0

(b)

Figure 3.20: (a) Average degree during simulation transient state. (b) Average degree during

simulation steady state.
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Figure 3.21: Cluster life time vs. maximum node speed in mobile structured networks.

of vmax, the most stable clusters are obtained thanks to CLQ. The algorithms LCC and SECA

achieve similar performance, and VOTE 10 and VOTE 20 are the worst performers.

To better understand the hierarchy between the different CH-based algorithms, let us analyze

the three major reasons that lead to a cluster modification: i) when a non-CH node becomes

CH, ii) when a CH loses its CH state, and iii) when a non-CH node affiliates to a new CH.

Fig. 3.22.a displays the number of times a node loses its CH state. This number is nearly the

same (the difference is < 0.6%) as the number of ’Becoming CH’ events (because on average

when a node loses its CH role, then another node becomes CH). Fig. 3.22.b plots the number

of times when a non-CH node affiliates to a new CH.

LCC leads to the lowest number of cluster modification events thanks to the two following

properties: i) the CH nodes are selected using a criterion that depends on the topology only

marginally (a node becomes CH if its identifier is the lowest in its neighborhood), and ii) a CH
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Figure 3.22: (a) Number of ’Losing CH’ events vs. vmax. (b) Number of ’Changing CH’ events

vs. vmax.

node remains CH unless another CH becomes neighbor, in which case one of the two neighboring

CH loses this state. In contrast, VOTE builds its clusters using a criterion strongly dependent

of the topology: a node becomes CH if its degree is the highest one in its neighborhood. Thus

a node easily gains or loses the CH state depending on the local changing topology, which also

leads to a lot of non-CH nodes changing clusters. The last algorithm SECA, selects as CH the

nodes with highest quality value defined as a combination of node degree, node mobility and

link quality. As shown in Fig. 3.22.a, this criterion is even less stable than node degree only.

However, SECA implements a mechanism to let a non-CH node become a CH only when its

quality value exceeds, by a sufficient margin, the quality value of its current CH. This mechanism

is a very effective stabilizing factor, as shown in Fig. 3.22.b, and justifies the better performance

of SECA w.r.t. VOTE.

Coming back to CLQ, Fig. 3.23 plots the ratio of the mobility adaptations decided by pro-

cedures P2 to the number of switch operations decided by procedures P1, showing that the

former number is small when compared to the latter. This result is a consequence of the utility

function (3.10). For example, on the one hand, when a node i ∈ Ck is moving away from the

other members Ck, the quality of its links with its neighbors in Ck is reduced. On the other

hand, if this node is also approaching from another cluster C`, then the quality of its links with

the C` members is improved. Consequently, it is likely that before node i leads to a breach in

the constraints in Ck, procedure P1 finds a switch operations with strictly positive gain leading

to the departure of node i from Ck to join C`. This is a positive property considering that the

heuristic for node selection used by procedure P1 in unstructured networks leads to gentler

cluster modifications than the one used by procedure P2.

Therefore, the proposed algorithm which has been designed for building compact clusters

(i.e., clusters whose links have a high capacity, thus involving nodes close to each other) that

are robust to mobility, achieves the best performance.

3.5.3.3 Conclusions on unstructured networks

We compared the proposed algorithm CLQ with the three clustering schemes LCC, VOTE and

SECA from the literature.
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Figure 3.23: Ratio of mobility adaptations to cluster modifications vs. maximum node speed in

mobile unstructured networks.

In static configurations our simulations verified that when the topology is dense enough,

CLQ builds clusters whose size is at the same time no greater and the closest to nmax, thus

achieving G1. Another result concerns the number of singleton clusters, which is minimized by

CLQ. Our algorithm also maximizes the intra-cluster link capacities, thus attaining G3.

In mobile networks, the good properties of CLQ leads to the most stable clusters. An

additional interesting feature of this algorithm lies in its anticipation of the cluster constraints

violations, which allows smooth transitions in cluster memberships.

3.6 Conclusions

In this chapter, DCOG was revisited within the coalitional game theory framework, which

enabled us to introduce a generic clustering algorithm for mobile ad hoc networks. Using this

fully distributed algorithm a node can decide to perform switch operations to leave its current

cluster and join a neighboring one, alone or in the company of some other members from its

cluster. This decision is made in order to strictly increase the social welfare of the network, thus

guaranteeing convergence to a Nash-stable partition.

This algorithm is agnostic of the network structure and is configurable through the choice of

a proper utility function and of two heuristics for node selection. We proved its Nash-stability

and defined the main condition to be satisfied by any utility function in order to build clusters

whose size is maximal.

We then adapted this algorithm to structured networks, suggesting a family of utility func-
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tions and several heuristics for node selection suitable for this type of network. In addition to

building clusters whose size is maximal, this algorithm, called COG, also aims at gathering all

members of the same group in a single cluster. We showed thanks to numerous simulations that

COG outperforms a centralized heuristic building one cluster per group. We assessed the effect

of various heuristics for node selection, and highlighted the trade off existing between complexity

and performance.

We also applied our generic algorithm to unstructured networks, called CLQ, with the aim

of building maximum size compact clusters. We verified that CLQ outperforms other clustering

solutions from the literature in both static and mobile conditions.
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General Conclusions and

Perspectives

Conclusions

The work carried out in this thesis took place in the context of ad hoc networks, which are self-

organizing networks used in various contexts such as public safety or military networks. The

organizational strategy studied in this thesis is called node clustering, and consists in forming

sets of nodes, denoted by clusters, in order to introduce hierarchy in the network, and thus

improve its scalability. The main objective was to design and analyze clustering algorithms

tailored to unstructured networks, for which the state of the art is plentiful, but still presents

some defects, and to structured networks, which are very few covered by the literature. Due

to the lack of metrics to assess the performance of clustering solutions at the application level,

part of the thesis was devoted to the proposal and analysis of global cost functions, that we then

used to compare our clustering algorithms with various schemes from the literature.

In Chapter 1, we defined several cost functions which can be used as a benchmark to com-

pare different clustering solutions. These functions measure the quality of a network partition

using end-to-end path calculations with additive metrics such as end-to-end delay. They take

into account the fact that inter-cluster and intra-cluster communications have different costs,

and are flexible enough to cover both cases when the traffic distribution depends on the groups

or not. We used the new cost functions to show that the routing should take into account the

cluster structure to find good network paths and offer the best QoS to the user traffic. Thanks

to a rigorous numerical evaluation, we also verified that in structured networks, the cluster must

be formed based on the group membership, and that advanced clustering solutions using group

information were required. Finally, we extended our cost functions to the throughput concave

metric.

In Chapter 2, we detailed our methodology to design the novel distributed clustering algo-

rithm DCOG suited to structured ad hoc networks, whose key characteristics are its capability

to build size limited clusters including full groups, without resorting to CH nodes. We also es-

tablished the theoretical convergence of this new clustering algorithm. We performed numerous

simulations in small and large networks, with low and high densities, and in static and mobile

conditions. The comparisons with existing solutions showed that our solution outperforms the

ones from the literature, especially with respect to the global cost functions defined in Chapter 1.
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In Chapter 3, DCOG was revisited within the coalitional game theory framework, which en-

abled us to introduce a generic clustering algorithm for mobile ad hoc networks. This algorithm

is agnostic of the network structure, and is configurable through the choice of a proper utility

function and of two heuristics for node selection. We proved its Nash-stability, and defined the

main condition to be satisfied by any utility function in order to build clusters whose size is

maximal. We then adapted this algorithm to structured networks, suggesting a family of utility

functions and several heuristics for node selection suitable for this type of network. In addition

to building clusters whose size is maximal, this algorithm, called COG, aims at gathering all

members of the same group in a single cluster. We showed thanks to numerous simulations that

COG outperforms a centralized heuristic building one cluster per group, and highlighted the

trade off existing between complexity and performance. We also applied our generic algorithm

to unstructured networks, called CLQ, with the aim of building maximum size compact clusters.

We verified its better performance with respect to other solutions from the literature.

Perspectives

The part of this thesis devoted to the performance measurement of clustering solutions has

raised up several issues that would deserve to be addressed in future research.

To begin with, the proposed network cost functions adapted to additive metrics neglect the

costs associated to multi-user radio access. This simplification is only valid if the available

bandwidth is large with respect to the one required to forward the traffic flows, which is true

only for a limited amount of applications. Introducing a MAC resource sharing model in these

network cost functions would improve their relevance and applicability.

Concerning the metric based on link capacity, we know that real systems cannot offer a

continuous capacity but use a discrete set of modulation and coding schemes. Coping with this

limitation of real communication systems could be interesting.

In Chapter 3, we defined separate algorithms suitable for structured and unstructured net-

works, each one pursuing its own goals. An algorithm suited to hybrid structured/unstructured

networks could bring significant added value.

In this thesis, the MAC and physical layers underlying the clustering algorithms are modeled

with a simple Waiting/Busy automaton. Implementing a more realistic model, or a real protocol

on top of an existing radio access scheme, would also be very interesting.

Finally, we tried to cast all the existing CH based clustering algorithms in the framework of

our generic clustering algorithm. We did no succeed in this attempt but we gained some insights

in the process and are convinced that the framework of coalitional game theory is large enough

to achieve this goal.
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Appendix A

Brute force graph partitioning

In this section we describe an algorithm to find all partitions of a graph G. First the procedure

RIP() is described which finds all the integer partitions of a number N , then procedure FPWIP()

to find all the partitions of a graph knowing an integer partition of its number of vertices.

To find all the partitions of a graph G, the procedure RIP() must be modified in order to

invoke the procedure FPWIP() each time a new integer partition of |G| is found.

A.1 Integer partitioning

Knowing two integers N and K, the problem is to partition N into the sum of K strictly positive

integers (nk)
k=K−1
k=0 such that:

1.
∑K−1

k=0 nk = N , and

2. All permutations of (nk) are considered equivalent.

Table A.1 describes a recursive algorithm that can solve the integer partition problem.

1 RIP(i,(nk))

2 nK−1 = nK−1 − 1

3 if nK−2 < nK−1 then:

4 repeat for j = i and j = i− 1, j > 0

5 if (nj−1 < nj) and (nj−1 < nK−1 − 1) then:

6 (mk) = (nk)

7 mj−1 = nj−1 + 1

8 RIP(j,(mk))

Table A.1: Recursive Integer Partitioning (RIP) algorithm.

The input parameters of the recursive procedure RIP are: (1) a possible (nk), and (2) the

index i of the nk to be increased.

Let (n0) = {nk|nk = 1, ∀k ∈ {0, 1, . . . ,K − 2} and nK−1 = N − K + 1}. Initially the

procedure is called with (n0) as first possible (nk) and K − 1 as initial index. The algorithm

builds a tree rooted in (n0). Each time it is called, the procedure checks if it is possible to find

a new (nk) solution by reducing by one the value of nK−1 and adding 1 either to ni−1 or ni−2.
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In the former case the same tree branch is continued, and in the latter case a new sub-tree (as

well as a new branch, the trunk of the new sub-tree) with current solution as root is started.

Example: looking for the number of ways to partition N = 8 into the sum of K = 4 positive

integer values. (n0) is defined as [1 1 1 6]. As detailed in Table A.2, the solutions are: [1 1 1

5], [1 1 2 4], [1 1 3 3], [1 2 2 3] and [2 2 2 2]. Along a branch, the solutions are always updated

through the addition of 1 to the corresponding index.

RIP(3, [1 1 1 6])

(2) n3 = 5 ⇒[1 1 1 5] ⇒ branch 0

(4) j = 3

(5-8) Possible to +1 to index 2 of [1 1 1 5]

⇒ RIP(3, [1 1 2 5])

Recursion depth 1 (index = 3):

(2) n3 = 4 ⇒ [1 1 2 4]

(4) j = 3

(5-8) Possible to +1 to index 2 of [1 1 2 4]

⇒ RIP(3, [1 1 3 4])

Recursion depth 2 (index = 3):

(2) n3 = 3 ⇒ [1 1 3 3]

(4) j = 3

(5) Not possible to +1 index 2 of [1 1 3 3]

(4) j = 2

(5) Not possible to +1 index 1 of [1 1 3 3]

(4) j = 2

(5-8) Possible to +1 to index 1 of [1 1 2 4]

⇒ RIP(2, [1 2 2 4])

Recursion depth 2 (index = 2):

(2) n3 = 3 ⇒ [1 2 2 3] ⇒ branch 1

(4) j = 2

(5) Not possible to +1 index 1 of [1 2 2 3]

(4) j = 1

(5-8) Possible to +1 to index 0 of [1 2 2 3]

Recursion depth 3 (index = 2):

(2) n3 = 2 ⇒ [2 2 2 2] ⇒ branch 2

(4) j = 1

(5) Not possible to +1 index 0 of [2 2 2 2]

(4) j = 2

(5) Not possible to +1 index 1 of [1 1 1 5]

Table A.2: Using RIP to partition 8 into the sum of 4 positive integer values.
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A.2 Partitions of a graph

Table A.3 details the recursive procedure FPWIP (Find Partition With Integer Partition) to

find all the partitions of a graph G knowing one integer partition of the number N of vertices in

G. FPWIP() builds the partitions making sure that all parts satisfy the connectivity, diameter

and size constraints. It works on lists of vertices sorted by increasing identifiers order. The

parameters of FPWIP() are:

• partition: the partition being built, initialized to empty.

• part : the partition part being built, initialized to empty.

• pIndex : the index of the part being built, initialized to 0.

• numV : the number of vertices missing in the current part, initialized to the current part target

size.

• freeVertices: list of vertices not yet included in the current partition partialPartition, initial-

ized to all vertices.

• vIndex : among the vertices freeVertices, some may have been dismissed by previous calls to

FPWIP(), when the constraints where checked. The vIndex thus points to the first vertex

in this list that has not yet been assessed by the procedure and that is currently the first

candidate to be included in the current part being built.

• IP : integer partition of the number of vertices (constant).

• LV : list of vertices of graph G to be partitioned (constant).

The len() function associates the number of vertices in a list of vertices of G. The diam()

function returns the diameter of a graph. The graph() function associates the sub-graph of G
induced by a set of vertices of G. The distance(G, L, V ) function returns the maximum distance

calculated within a graph G between any vertex in a list of vertices L and a single vertex V .

The updateFreeVertices(L1, L2, min) function builds a new list with the vertices of list L2 that

are not in list L1 and whose identifier is strictly greater that a minimum.

Line (2) makes sure that the number of vertices missing in the partition part being built

is not greater than the remaining candidate vertices. If not the current partition cannot be

completed and the last vertex included must be replaced by another one (line (3)).

Line (4) checks if the current part is currently complete. In that case line (5) checks that

the current part satisfies the connectivity and diameter constraints. If not the current partition

cannot be completed and the last vertex included must be replaced by another one (line (6)).

At line (7), the current part is added to the partition. After line (8) a new part is going to be

built, thus the index of the part being built is increased by one. Line (9) checks if the partition

is completed. If this is not the case then lines (10-13) handle the two cases when the new part

to build and the one just built have the same size or not. Line (14) determines the size of the

new part to build and line (15) recursively calls FPWIP().

If the test at line (4) determined that the current part is still partial then line (17) iteratively

tries to extend it with the next candidate vertex (whose index is incremented at line (18)). If

the distance between any vertex in the part being built and the candidate vertex is greater than

the distance constraint, then ignore this candidate vertex. Otherwise, line (21) iteratively calls

FPWIP() considering as new current part the current part extended with the candidate vertex.
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1 FPWIP(partition, part, pIndex, numV, freeVertices, vIndex, IP, LV):

2 if
[
numV >

[
len(freeVertices) - vIndex

] ]
then:

3 return

4 else if (numV = 0) then:

5 if
[ [

graph(part) is not connected
]

or
[

diam(graph(part)) > dmax
] ]

then:

6 return

7 partition = partition + part

8 pIndex = pIndex + 1

9 if
[

pIndex < len(IP)
]

then:

10 if (IP[pIndex-1] = IP[pIndex]):

11 freeVertices = updateFreeVertices(part, freeVertices, part[0])

12 else:

13 freeVertices = updateFreeVertices(partition, LV, 0)

14 numV = IP[pIndex]

15 FPWIP(partition, [], pIndex, numV, freeVertices, 0, IP, LV)

16 else:

17 for each vertex in freeVertices list starting at index vIndex:

18 vIndex = vIndex + 1

19 if
[

distance(graph(LV), part, vertex) ≤ dmax
]
:

20 extendedPart = part + vertex

21 FPWIP(partition, extendedPart, pIndex, numV - 1,

freeVertices, vIndex, IP, LV)

Table A.3: Algorithm to find partitions of a graph.

A.2.1 Trace of the algorithm

Table A.4 displays a partial trace of FPWIP(), called using the following parameters: FP-

WIP(partition=[], part=[3], pIndex=0, numV=1, freeVertices=[1,2,3,4,5,6,7,8], vIndex=3), with

IP = [2,2,3], LV = [1,2,3,4,5,6,7,8] and the graph the one of Fig. A.1. This trace details how the

partial partition [3 4] [5 8] is found by FPWIP(), starting with vertex 3.

Note: in this example, FPWIP() determines that part [1 2 6 7] does not satisfy the maximum

diameter constraint and that partial partition [3 4] [5 8] is not valid. The first valid partition

found by this call of FPWIP() is [3 4] [6 7] [1 2 5 8].

1

2

5

3

6

4

7

8

Figure A.1: Example of graph to be partitioned.
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FPWIP(partition=[], part=[3], pIndex=0, numV=1,

freeVertices=[1,2,3,4,5,6,7,8], vIndex=3)

(17-18) vertex = 4, vIndex = 4

(19) distance(LV, [3], 4) OK

(21) FPWIP(partition=[], part=[3,4], pIndex=0, numV=0,

freeVertices=[1,2,3,4,5,6,7,8], vIndex=4)

(5) [3,4] connected and diam([3,4]) OK

(7) partition = [3,4]

(8) pIndex = 1

(10) IP[0] = IP[1] : yes

(11) freeVertices = [5,6,7,8]

(14) numV = 2

(15) FPWIP(partition=[3,4], part=[], pIndex=1, numV=2,

freeVertices=[5,6,7,8], vIndex=0)

(17-18) vertex = 5, vIndex = 1

(19) distance(LV, [], 5) OK

(21) FPWIP(partition=[3,4], part=[5], pIndex=1,

numV=1, freeVertices=[5,6,7,8], vIndex=1)

freeVertices=[5,6,7,8], vIndex=0)

(17-18) vertex = 6, vIndex = 2

(19) distance(LV, [5], 6) OK

(21) FPWIP(partition=[3,4], part=[5,6], pIndex=1,

numV=0, freeVertices=[5,6,7,8], vIndex=2)

(5) [5,6] disconnected

(17-18) vertex = 7, vIndex = 3

(19) distance(LV, [5], 7) OK

(21) FPWIP(partition=[3,4], part=[5,7], pIndex=1,

numV=0, freeVertices=[5,6,7,8], vIndex=3)

(5) [5,7] disconnected

(17-18) vertex = 8, vIndex = 4

(19) distance(LV, [5], 8) OK

(21) FPWIP(partition=[3,4], part=[5,8], pIndex=1,

numV=0, freeVertices=[5,6,7,8], vIndex=4)

(5) [5,8] connected and diam([5,8]) OK

(7) partition = [3,4,5,8]

(8) pIndex = 2

(10) IP[1] = IP[2] : NO

(13) freeVertices = [1,2,6,7]

(14) numV = 4

(15) FPWIP(partition=[3,4,5,8], part=[],

pIndex=2, numV=4, freeVertices=[1,2,6,7]

vIndex=0)

. . .

Table A.4: Partial trace of FPWIP() to partition the graph of Fig. A.1.
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Appendix B

Proofs of Chapter 3

B.1 Proof of Result 3.1

Firstly, since the clusters of the initial partition fulfill the constraints, P1 is operated at the

first decision-making time of the algorithm. After P1 execution, the resulting clusters satisfy

the constraints by construction. Thus, by recurrence, the algorithm will always run P1. Let us

now define the social welfare Ψ of a partition p = {C1, . . . , CNc} as Ψ(p) :=
∑Nc

k=1 v(Ck). Let us

consider the nth decision-making occurrence of P1. For the sake of clarity we omit the index n

for all functions and variables except for pn and Ψn := Ψ(pn). Before the nth switch operation

the cluster structure of the network is pn−1 = {C1, . . . , CNc}. Let σk,`(P) be the nth selected

switch operation. We get Ψn = Ψn−1 + g(σk,`(P)). Since we consider switch operations with

only strictly positive gain, we have Ψn > Ψn−1. After any switch operation the social welfare

strictly increases, meaning that the same partition can never be visited twice. Furthermore,

since there is a finite number of partitions, the algorithm converges to a final partition pf after

a finite number of iterations.

B.2 Proof of Result 3.3

Let us note x := nk, y := n` and z := |P|. Because n` + |P| > nk, we have x < y + z. The

function f1 is a strictly convex function of the cluster size, thus we apply the chordal slope

lemma with x− z < x < y + z:

f1(x)− f1(x− z)
x− (x− z)

<
f1(y + z)− f1(x− z)

y + z − (x− z)
<
f1(y + z)− f1(x)

y + z − x
.

Because x < y + z, we have x − z < y and we apply again the chordal slope lemma with

x− z < y < y + z:

f1(y)− f1(x− z)
y − (x− z)

<
f1(y + z)− f1(x− z)

y + z − (x− z)
<
f1(y + z)− f1(y)

y + z − y
.

Consequently, we have:

f1(x)− f1(x− z)
z

<
f1(y + z)− u(y)

z
⇒ f1(x)− f1(x− z) < f1(y + z)− f1(y),

⇒ u1(Ck)− u1(Ck \ P) < u1(C` ∪ P)− u1(C`). (B.1)

Because we assume that all the constraints are satisfied v = u1. Then applying (3.2) to (B.1)

we get: rP(Ck) < rP(C` ∪ P), which from (3.1) concludes the proof.
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B.3 Proof of Result 3.4

If f2,t is strictly convex then noting x := mt,k, y := mt,` and z := |P|, we can do as in proof of

Result 3.3 to get:

f2,t(mt,k)− f2,t(mt,k − |P|) < f2,t(mt,` + |P|)− f2,t(mt,`). (B.2)

Let us define A and B such that:

A :=
∑

t′∈I(Ck)
t′ 6=t

f2,t′(mt′,k), and B :=
∑

t′∈I(C`)
t′ 6=t

f2,t′(mt′,`).

Eq. (B.2) can be modified as follows:

(B.2)⇔
[
A+ f2,t(mt,k)

]
−
[
A+ f2,t(mt,k − |P|)

]
<
[
B + f2,t(mt,` + |P|)

]
−
[
B + f2,t(mt,`)

]
⇔u2(Ck)− u2(Ck \ P) < u2(C` ∪ P)− u2(C`). (B.3)

Because we assume that all the constraints are satisfied, v = u2. Applying (3.2) to (B.3) we get:

rP(Ck) < rP(C` ∪ P), which from (3.1) concludes the proof.

B.4 Proof of Result 3.5

Let us consider two clusters Ck and C` such that Ck∪C` satisfies the constraints. Let us calculate

the gain g(σk,`(Ck)) associated with the merge of Ck with C`. We have:

g(σk,`(Ck)) =
2ε · n` · nk
n2
max

+ (1− ε) ·A(Ck, C`),

with

A(Ck, C`) :=
∑

t∈I(Ck∪C`)

f2,t(mt,k +mt,`)−
∑

t∈I(C`)

f2,t(mt,`)−
∑

t∈I(Ck)

f2,t(mt,k).

Let us define J := I(Ck) ∩ I(C`). When J = ∅ then A(Ck, C`) = 0 and g(σk,`(Ck)) > 0.

When J 6= ∅ then we have:

A(Ck, C`) =
∑
t∈J

f2,t(mt,k +mt,`) +
∑

t∈I(Ck\J )

f2,t(mt,k) +
∑

t∈I(C`\J )

f2,t(mt,`),

−
[∑
t∈J

f2,t(mt,`) +
∑

t∈I(C`\J )

f2,t(mt,`)
]
−
[∑
t∈J

f2,t(mt,k) +
∑

t∈I(Ck\J )

f2,t(mt,k)
]
.

Thus A(Ck, C`) can be written as a sum: A(Ck, C`) =
∑

t∈J F (t), with F (t) := f2,t(mt,k +mt,`)−
f2,t(mt,k)− f2,t(mt,`). For all t ∈ J :

F (t) =
2 ·mt,` ·mt,k

T ·mt
2

> 0.

Since A(Ck, C`) is a sum of terms that are strictly greater than zero, then A(Ck, C`) > 0, and

g(σk,`(Ck)) > 0.
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B.5 Proof of Result 3.6

We study the sign of ∆ := g(σq,k(Uq))− g(σq,`(Uq)) as a function of ε. From (3.1), we have

∆ = rUq(Ck ∪ Uq)− rUq(C` ∪ Uq).

Since the constraints are fulfilled, v = u, then using (3.2) we get:

rUq(Cx ∪ Uq) = u(Cx ∪ Uq)− u(Uq),

where x stands for k or `.

From utility (3.5), and (3.6)-(3.9), we obtain:

u(Cx) =
n2
x

n2
max

ε+
(1− ε)
T ·m2

t

(K +m2
t,x),

where K is a constant that depends on the groups different from Ot. Likewise, we get:

u(Cx ∪ Uq) =
(nx + nU )2

n2
max

ε+
(1− ε)
T ·m2

t

[
K + (mt,x + nU )2

]
.

After simplification, we obtain:

rUq(Cx ∪ Uq) =
nU (2nx + nU )

n2
max

ε+
(1− ε)nU
T ·m2

t

(2mt,x + nU ),

which leads to:

∆ = D1 · ε+D2(1− ε),

with

D1 :=
2nU (nk − n`)

n2
max

,

D2 :=
2nU
T ·m2

t

(mt,k −mt,`).

The study of the sign of ∆ leads to the following three cases:

Case 1: mt,k = mt,` and nk > n`. Then D2 = 0 and D1 > 0. Consequently ∆ > 0 whatever

the value of ε.

Case 2: mt,k = mt,` and nk = n`. Then ∆ = 0 whatever the value of ε.

Case 3: mt,k 6= mt,`. We assume without loss of generality that mt,k > mt,` and thus

D2 > 0. If nk ≥ n`, D1 > 0 and ∆ > 0 regardless of the value of ε. If nk < n`, then D1 < 0.

We can write ∆ = (D1 − D2)ε + D2 which is a linear function of ε with negative slope. Thus

∆ > 0 ⇔ ε < ε0 := D2
D2−D1

. We now search the parameters nk, n`,mt,mt,k,mt,`, nU , leading to

the smallest value of ε0 denoted by ε∗. When D2 is fixed, we have to minimize D1, which is

obtained by setting nk = 0, n` = nmax, leading to ε0 = D2
D2+2nU/nmax

. Minimizing ε0 is then

equivalent to minimizing D2, which is obtained by setting mt,k = 1, mt,` = 0 and mt = nmax,

leading to ε∗ = 1
1+T .
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B.6 Proof of Result 3.7

Let clusters Ck and C`, such that Ck∪C` satisfies the constraints. Let us first calculate the utility

of Ck ∪ C`. From (3.10), we have:

uun(Ck ∪ C`) =
∑
i∈Ck

∑
j∈Ck∪C`|(i,j)∈E

κ(i, j) +
∑
i∈C`

∑
j∈Ck∪C`|(i,j)∈E

κ(i, j),

=
∑
i∈Ck

[ ∑
j∈Ck|(i,j)∈E

κ(i, j) +
∑

j∈C`|(i,j)∈E

κ(i, j)

]
+
∑
i∈C`

[ ∑
j∈Ck|(i,j)∈E

κ(i, j) +
∑

j∈C`|(i,j)∈E

κ(i, j)

]
,

= uun(Ck) + uun(C`) + 2 ·
∑
i∈Ck

∑
j∈C`|(i,j)∈E

κ(i, j).

Using (3.1) and (3.2) the gain g(σk,`(Ck)) associated with the merge of Ck with C` is thus written:

g(σk,`(Ck)) = 2 ·
∑
i∈Ck

∑
j∈C`|(i,j)∈E

κ(i, j).

Since κ(i, j) > 0, we deduce that g(σk,`(Ck)) > 0 which concludes the proof.
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