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1

General Introduction

The work presented in this Ph.D. thesis has been produced thanks to the collaboration
between the “Communications et Electronique” (COMELEC) department of the Inti-
tut Mines-Télécom / Télécom ParisTech (Paris, France) and the “Systèmes Numériques
Embarqués” (SNE/SPM) division of Thales Communications & Security (Gennevilliers,
France), within the framework of “Convention Industrielle de Formation par la REcherche”
(CIFRE). The thesis started in January 2010.

Problem statement

Ad hoc networks have become an important research field in the wireless digital commu-
nications area for the last years. Indeed, unlike cellular communication systems, ad hoc
networks do not need any infrastructure and are thus a highly flexible solution for fast
and short-lived communications deployment for many situations, from operational mili-
tary deployments or other critical scenarios to future smart networks. Different strategies
can be envisaged to communicate efficiently in a Mobile Ad Hoc Network (MANET).
The approach that is retained in this thesis is to divide the network into several clus-
ters, and to organize orthogonal communication schemes to separate the pairs of users
inside a cluster. Though suboptimal from an information theoretic point of view, this
solution can be easily implemented. Typically, Orthogonal Frequency Division Multiple
Access (OFDMA), which combines the so-called Orthogonal Frequency Division Mul-
tiplex (OFDM) technique to combat inter-symbol interference due to multipath spread,
and Frequency Division Multiple Access (FDMA) to separate the users, has been widely
considered since it is a promising solution for future wireless standards.

The problem of resource sharing in orthogonal schemes has been largely addressed in
the literature. However, the lack of structure in MANETs makes the resource management
difficult compared to cellular systems. This can be mitigated thanks to the clustered orga-
nization that provides a centralized coordination of the pairwise communications. Fur-
thermore, it is difficult to provide reliable channel state information at the fusion center of
the MANET due to the feedback latency. The recent success of Hybrid ARQ (HARQ) tech-
niques in 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) makes
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these retransmission techniques attractive for enforcing the link performance. Moreover,
the main objective of this thesis is to perform the resource allocation of HARQ-based
OFDMA clustered MANETs using only long-term statistics. Furthermore, in order to
cope with industry constraints, we have considered practical coding schemes instead of
infinitely long codewords coming from information theory. More precisely, the purpose
is to design and analyze algorithms that optimize the assignment of power, bandwidth,
modulation order, and code rate, of the HARQ mechanism at the top of our multiuser
communication scheme.

The beginning of the thesis is dedicated to the study of HARQ performance extending
the work initiated in the Ph.D. dissertation of [Le Duc, 2009] taking into account more
realistic assumptions. In particular, the latency in MANETs can lead to delayed and
corrupted feedback for HARQ. Therefore, an in-depth study of cross-layer HARQ
mechanisms with imperfect feedback has been conducted in this thesis. In addition,
we have also studied the gain in performance brought by the use of the Early-Drop (ED)
along with the cross-layer HARQ schemes.

Outline and contributions

This Section depicts the thesis outline and gives some insights on the main contributions.
The thesis is organized into six Chapters: the three first are related to the study of HARQ
performance, whereas the three last focus on the application of HARQ to resource alloca-
tion problems.

In Chapter 1, we give the fundamental notions for the study of HARQ that will be
useful until the rest of the thesis. This Chapter is divided into three parts. Firstly, we
describe the HARQ mechanisms and briefly review the state of the art. Next, we de-
fine the metrics used to measure HARQ performance for each of the three major ways
to implement retransmission mechanisms. Finally, the application of HARQ in modern
packet-oriented systems and the associated cross-layer approaches, as well as the existing
analytic performance, are presented.

A slight improvement of an existing HARQ cross-layer scheme, called ED, is stud-
ied in Chapter 2. After a precise description of this technique that is well adapted to
fragmented packets, we show its effect on the HARQ performance. New closed-form
expressions are developed for the HARQ efficiency, which is the only performance metric
affected by ED. Numerical examples reveal that the major gain of the ED is reached when
the number of fragments of the IP packet is close to the maximum number of allowed
transmissions.
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Chapter 3 is devoted to the analysis of cross-layer HARQ schemes with imperfect
feedback. We propose a model for two kinds of feedback impairments: errors in the ac-
knowledgment messages, and delayed feedback. New analytic expressions are derived
for the main performance metrics of two HARQ schemes, and numerical results show
that imperfect feedback has a great impact on the performance of the cross-layer HARQ
scheme, whereas it has no influence on the error rate of the noncross-layer one. It is thus
of great interest to design cross-layer schemes that still have a gain but are also robust
to imperfect feedback, and we propose the definition of a new cross-layer scheme that
generalizes the existing one. The analysis of its performance is conducted within a uni-
fied framework and we show, using numerical examples, that there is a trade-off between
robustness against imperfect feedback and cross-layer gain that can be adjusted by the
initial credit distribution of our proposed solution.

Chapter 4 introduces the second part of the thesis, which is dedicated to the resource
allocation of HARQ schemes in the paradigm of ad hoc networks. We discuss the design
choices and the main assumptions concerning the clustered MANET, which impose to
work with channel statistics only. Then, we define the main optimization problem for
total cluster power minimization under some Quality of Service (QoS) constraints, which
is the mathematical formulation of the Type-I HARQ-based OFDMA clustered MANET
resource allocation with statistical Channel State Information (CSI) only. The main origi-
nality of this optimization problem is to rely on HARQ measurable performance metrics
(such as Packet Error Rate (PER), delay, efficiency, ...) instead of channel capacity. After
reviewing the related state of the art, we specify two different implementations of the
Physical (PHY) layer in order to take into account several practical constraints: finite-
length Gaussian codes and existing modulations and Forward Error Correction (FEC)
codes. Four optimization problems are derived from these assumptions and are treated
in the two remaining Chapters.

The case of finite-length Gaussian codes is done in Chapter 5, which gives the best
performance that one can expect from the proposed clustered OFDMA network using
Type-I HARQ. The Chapter is organized into four parts. We firstly compute the distribu-
tion of the mutual information of the Rayleigh channel with finite size Gaussian inputs.
Then, the error probability of Gaussian codes with finite length over the Rayleigh channel
is obtained in closed-form as a byproduct. Based on this new result, we are able to find
the optimal resource allocation under minimum rate constraint using an original algo-
rithm from the literature. Finally, the performance of this algorithm are studied through
numerical simulations. The framework developed in this Chapter can serve as a basis for
Type-I HARQ based OFDMA resource allocation when powerful FEC coding is used.

Finally, in Chapter 6 we develop another framework that is better suited to non-
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capacity achieving coding schemes. The Chapter is divided into four parts. We firstly
describe the model used for a practical set of Modulation and Coding Scheme (MCS)s.
Then, the three remaining optimization problems are solved successively within each
part. We begin with the power minimization under rate constraints in the second part,
for which optimal solutions are provided when the MCS is fixed, and the optimal MCS
selection is addressed next. In the third part, error rate constraints are considered in
addition to rate constraints, and optimal as well as practical solutions are proposed.
Finally, delay constrained are added to the rate constraints in the fourth part, where
optimal solutions are partially characterized and suboptimal but efficient algorithms are
discussed.

Publications
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Chapter 1

An overview of Hybrid ARQ
techniques

1.1 Introduction

The recent success of the 3GPP LTE standard [Sesia et al., 2009] has exposed HARQ
techniques as promising solutions to improve future high data rates mobile systems. It has
been adopted from the beginning of 2G evolution General Packet Radio Service (GPRS)
and Enhanced Data Rates for GSM Evolution (EDGE), has been part of the corner stones of
the High Speed Packet Access (HSPA) modes in 3G Universal Mobile Telecommunications
System (UMTS) cellular standards, and it is still included in the most recent towards-4G
standards, like IEEE 802.16m (WiMAX) or LTE.

This first Chapter gives the fundamentals for the study of HARQ that will be done
in the rest of the thesis. Although a complete overview of all the contributions made
for HARQ is out of the scope, the materials introduced in this Chapter are necessary to
understand the work that will be presented throughout this thesis.

The Chapter is organized as follows. In Section 1.2, a state of the art of HARQ is given
from the retransmission techniques first ideas, to the latest technologies. Section 1.3
details the three major ways to implement retransmission mechanisms, and presents an
important discussion on the metrics used to measure HARQ performance in terms of
rates. Finally, the application of HARQ in modern packet-oriented systems, and the
associated cross-layer approaches, are introduced in Section 1.4.

1.2 From Automatic Repeat reQuest (ARQ) to Hybrid ARQ

1.2.1 ARQ

Automatic Repeat reQuest (ARQ) ideas go back to 1940s with the invention of Van Duuren
[Van Duuren, 1943] (as reported in [Schwartz, 1963]), and is based upon a feedback
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mechanism that informs the transmitter whether a transmitted packet is correctly received
or not. An ACKnowledgment (ACK) or a Negative ACKnowledgment (NACK) is sent
back to the transmitter accordingly.

More precisely, ARQ is implemented using an error detection code (usually Cyclic
Redundancy Check (CRC)) and retransmits the current data packet upon error detection
at the receiver, as depicted in Fig. 1.1. The transmitter of pure ARQ systems encodes the
data with the CRC, and then transmits the resulting packet onto the noisy channel. The
receiver checks whether the received packet has been corrupted by the channel or not,
and feeds back to the transmitter ACK or NACK accordingly. If a NACK occurs, the
receiver discards the received packet. In that case, the transmitter receives NACK and
retransmits the same packet. Otherwise, the receiver releases the decoded packet and the
protocol starts again with the next data packet.

CHANNELTX RX

NACK

ACK

ACK

MAC #1Data #1

Data #2 MAC #1

Data #1

Data #2MAC #1

MAC #1

MAC #1

MAC #2

Figure 1.1: A general ARQ scheme.

By construction, ARQ makes the transmission link error-free but at the expense of
some extra delay. A trade-off between packet error probability and packet transmission
delay can be obtained with the so-called truncated version of ARQ [Adachi et al., 1989],
which allows each packet to be transmitted at most L times. The parameter L is called the
transmission credit (also known as persistence). ARQ can be implemented at any layer to
improve its reliability, and has been used for instance at Medium Access Control (MAC)
layer and in the Transmission Control Protocol (TCP) stack of Transport layer, where ARQ
is implemented to ensure the reliability of the delivered packets that can be dropped by
the routers.

1.2.2 Hybrid ARQ

The main issue with pure ARQ is that the transmitted packets are constituted by the infor-
mation bits, i.e. there is no protection against the channel errors during the transmission.
Since the reliability offered by ARQ relies on repetition of the information data, it is very
efficient in good channel conditions, i.e. when not retransmitting to often. Alternatively,
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using FEC coding enables to recover the packet in more and more difficult channel con-
ditions by decreasing the coding rate; however, when the channel is good the overhead
due to FEC rate penalizes the transmission efficiency.

Several solutions have been proposed to overcome this issue by using FEC techniques
along with the packet repetition mechanism, which gave birth to HARQ. A good his-
torical review of the key papers concerning (H)ARQ is given in [Lin and Costello, 1983].
HARQ is classified into two types depending on the error correcting capability within
each transmission of ARQ, according to [Schmitt, 2002]. An equivalent classification is
to determine whether there is memory at the receiver side, for packet recombination
purposes.

1.2.2.1 Type-I HARQ

Type-I HARQ describes an ARQ mechanism for which the data packet, after CRC en-
coding, is encoded by a FEC code of given rate R0. At the receiver side, the received
packet is still discarded if NACK occurs. Hence, Type-I defines HARQ schemes with
constant error correction capability along the retransmissions. Equivalently, it also de-
scribes HARQ schemes for which there is no memory processing at the receiver. The
main interest of Type-I HARQ is to use the correction capability of the FEC in order to
recover the information bits in more noisy conditions, and to decrease the retransmission
probability of the underlying ARQ. However, when the channel is good the coding rate
R0 decreases the amount of received information bits inside each accepted packet.

1.2.2.2 Type-II HARQ

Type-II HARQ gives a satisfying solution to the drawback of Type-I schemes by intro-
ducing memory and processing at the receiver. The main difference between Type-II
and Type-I schemes is that Type-II performs combining of the multiple packets received
within each ARQ transmission, which allows to increase the correction capability of the
code (hence more powerful coding gains). Type-II HARQ thus automatically adapts the
code rate to the current channel conditions. In practice, the discovery of code combining
[Chase, 1985] (better known as Chase Combining) and of rate-compatible codes [Hage-
nauer, 1988; Kim et al., 2006] enables substantial gains in received information bits per
accepted packet.

Chase Combining (CC) Type-II HARQ with CC, or CC-HARQ for short, is a scheme
where the same encoded packet is retransmitted if requested. At the transmitter, the
same operations are done as for Type-I HARQ, i.e. encoding of the data with a code of
fixed rate R0. However, if a NACK occurs, the packet is kept at the receiver. Then, the
transmitter retransmits the same encoded packet, which is combined at the receiver to the
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previous packets in memory, using the so-called CC scheme1. The coding gain brought
by CC comes from the increasing correction capability at each retransmission: at the k-th
transmission, CC yields a virtual coding rate Rk = R0/k.

Incremental Redundancy (IR) Type-II HARQ with IR, or IR-HARQ for short, is a
scheme where the redundancy is sent piecewise upon error detection. IR-HARQ is the
most versatile scheme, and gives the best compromise between ARQ and FEC by finding
the coding rate that is adapted to channel conditions.

At the transmitter, after CRC encoding of the data, the packet is encoded by a mother
code of rate R0 and, usually following a puncturing scheme, is split into a sequence of
t0 increments. The transmitter transmits sequentially the first increment up to the t0-th
increment upon error detection. If the data still cannot be decoded after the transmission
of the t0-th increment, the first increment of the sequence is transmitted again and so on.

At the receiver side, the first increment of the sequence is simply decoded and the
HARQ process checks if the data can be recovered without error or not. If an ACK occurs,
the transmitter restarts the HARQ process with the next data packet. Otherwise, the
next increment in the sequence is transmitted over the channel. Its received version is
combined to the previously received packets of the sequence, the aggregation of packets
is decoded, ACK/NACK is sent back, and so on until the reception of the t0-th increment,
resulting in the decoding of the mother code of rate R0. If the data is still detected in
error and the transmission limit is not reached, the receiver can choose between several
strategies as depicted in [Le Duc, 2009, Sec. 1.3.2] and the process starts again. The
increasing correction capability given by IR is the result of the decreasing code rate
obtained after combination of the increments at the receiver.

1.3 The retransmission protocols

ARQ systems can be derived in several protocols, according to how the data packets
are scheduled in relation to the feedback. According to [Lin and Costello, 1983] there
exists three basic ARQ protocols: the Stop and Wait (SW), the Go-Back-N (GBN) and the
Selective Repeat (SR). Although these three protocols achieve the same level of reliability,
their performance in terms of the amount of out-coming data related to incoming data
can be very different. In this Section, we will review the internal mechanism of the three
protocols as well as their performance. The performance of ARQ schemes are often given
in terms of throughput [Lin and Costello, 1983; Wicker, 1995]. We first define and make
clear what will be called throughput in the sequel.

1Basically, code combining corresponds to the maximal ratio combining of the Log Likelihood Ratio (LLR)
entering into the soft channel decoder.
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1.3.1 Throughput, efficiency, and their byproducts

The throughput efficiency has been defined in [Lin and Costello, 1983] as “the ratio of the
average number of information bits successfully accepted by the receiver per unit of time
to the total number of bits that could be transmitted per unit of time”. This definition
is reduced to “throughput” in the rest of the book, and the throughput definition has
often been misleading in the literature. In what follows, several measure definitions
are reviewed and their interrelation is studied. We hope that it may help to construct a
comprehensive study of (H)ARQ.

1.3.1.1 Efficiency

The efficiency, denoted by η, has been defined in the thesis work of [Le Duc, 2009]2 as
the long-term ratio between the number of received information bits and the number of
transmitted bits:

η := lim
b→∞

1
b

N(b)∑
k=1

Ik, (1.1)

where {N(b), b ∈ N} is a discrete-time stochastic process that counts the number of suc-
cessful packet decoding up to bit transmission b, and Ik is the number of information
bits received whenever a packet is decoded with success. Efficiency has no dimension,
η ∈ [0, 1] and is interpreted as the long-term average number of bits received per trans-
mitted bit. Using renewal theory [Ross, 2007, Chap. 7], it was found in [Le Martret et al.,
2012] that:

η =
E [I]
E [B]

, (1.2)

where I is the random number of received information bits per successful packet, and B
is the random number of transmitted bits between two successive packets success.

1.3.1.2 Throughput

The throughput τ is the information bitrate measured in bit/s at the system output. The
Round-Trip Time (RTT), defined as the time spent between the transmission of a packet
and the reception of its corresponding acknowledgment at the transmitter side, plays a
big role in the throughput evaluation. For slotted systems with equal length packets, we
denote by T ≥ 0 the average number of transmissions that could occur during the RTT.
Different protocols lead to different RTT values and thus to different throughput measures
for the same efficiency. The throughput is proportional to the efficiency multiplied by the
raw bitrate m Ds obtained from the number m of bits in a constellation symbol and the
symbol rate Ds (in symb/s), hence:

τ =
m η

1 + T
Ds (bit/s). (1.3)

2http://pastel.archives-ouvertes.fr/docs/00/55/93/22/PDF/TheseAudeLeDucCouleurs_

TitreFrancais.pdf

http://pastel.archives-ouvertes.fr/docs/00/55/93/22/PDF/TheseAudeLeDucCouleurs_TitreFrancais.pdf
http://pastel.archives-ouvertes.fr/docs/00/55/93/22/PDF/TheseAudeLeDucCouleurs_TitreFrancais.pdf
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When the signals are transmitted through a bandwidth W, we can link the throughput to
W by introducing an equivalent spectral efficiency ρ:

ρ =
τ
W

(bit/s/Hz). (1.4)

1.3.1.3 Throughput efficiency

The throughput efficiency, which captures the absorption of bits by the system, is the
throughput normalized by the maximum bitrate at which the system can transmit m Ds.
Thus, the throughput efficiency τeff is:

τeff :=
τ

m Ds
=

η

1 + T
. (1.5)

The throughput efficiency has no dimension and τeff ∈ [0, 1].

1.3.1.4 Goodput

Coming from the queuing theory community (see [Doshi and Heffes, 1986] or [Berger,
1991]), the goodput originally measured the quantity of error-free data in the throughput
of the queue. Nowadays, goodput captures the idea of useful bits received at the system
output within each symbol transmission [Devillers et al., 2008]. The goodput η̃ is thus
proportional to the efficiency:

η̃ := mη (bit/symb). (1.6)

Notice that the so-called "throughput" computed in [Caire and Tuninetti, 2001] announced
in bit/s/Hz, was in fact expressed in bit/symb along their paper, was actually the goodput.
The goodput is proportional to the spectral efficiency given in Eq. (1.4) by a factor (1 + T).
When using SW with instantaneous RTT or SR, then T = 0 and the goodput is equal to
the spectral efficiency.

1.3.2 Selective Repeat protocol

The SR continuously sends packets over the channel, even during the RTT, as shown in
Fig. 1.2 where T ≥ 0 is the fixed RTT duration. In an ideal context, i.e. with unlimited
buffer size, packets are continuously sent and decoded during the RTT and only erroneous
packets are requested at the transmitter. However, SR has the most complex receiver, since
if packets must be delivered in their incoming order, the receiver must bufferize all the
decoded packets that are waiting for a previous one which was in error. For a Type-I
HARQ, the throughput efficiency of SR is computed in [Lin and Costello, 1983]:

τSR
eff = R(1 − p0), (1.7)

where p0 is the packet error probability over the channel, and R is the coding rate.
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Figure 1.2: The SR protocol.

1.3.3 Go-Back-N protocol

The GBN allows to relax the receiver complexity, at the expense of throughput efficiency.
Basically, if a retransmission is requested for a packet, the next N decoded packets are
dropped from the receiver memory and the transmitter retransmits them too. Usually
N = 1 + T, where T ≥ 0 is the fixed RTT duration, as depicted in Fig. 1.3. Hence, the
throughput efficiency is [Lin and Costello, 1983]:

τGBN
eff =

τSR
eff

1 + (N − 1)p0
. (1.8)

Here, we observe a throughput efficiency reduction of (1 + (N − 1)p0). For N = 1, the
throughput efficiency equals that of SR.

1 1 1

1 1 1

2 3 4 5

2 3 4 5

2 3 4 5 2 3 54 6 7 8 9 10

2 3 4 5 2 3 4 5 6 7 8 9 10

TX

RX

T

Figure 1.3: The GBN protocol.

1.3.4 Stop and Wait protocol

As the simplest of the three, SW is the worst one too, and is outlined in Fig. 1.4. It consists
in keeping the transmitter idle during the RTT of fixed duration T ≥ 0. Its throughput
efficiency is equal to [Lin and Costello, 1983]:

τSW
eff =

τSR
eff

1 + T
. (1.9)



14 1. An overview of Hybrid ARQ techniques

When the RTT is assumed to be zero (T = 0), then SW, GBN, and SR become equivalent.
Otherwise, the SR is the most efficient in terms of throughput efficiency, as it is illustrated
by Fig 1.5.

1 1 1

1 1 1

2

2
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T

Figure 1.4: The SW protocol.
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Figure 1.5: The throughput efficiency for SR, GBN and SW (ARQ, R = 1) versus p0.

1.4 Cross-layer HARQ techniques for packet-oriented systems

1.4.1 Layer model

Highly inspired from [Le Duc, 2009], the model considered in this thesis encompasses
the three first layers of the seven-layer Open Systems Interconnection (OSI) model, i.e. the
PHY layer, the MAC layer and the Network (NET) layer. The PHY layer defines the
means of transmitting raw bits through a physical propagation medium (the channel),
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by describing the shape of the electrical signal, the modulation format, etc. The MAC
layer focuses on transferring logical data packets between two nodes in the network,
by error checking, and on controlling access to the medium, by carrying out the radio
resource management for multiple users. Finally, the NET layer is responsible for packet
forwarding in the network, by determining a route from the source node to the destination
node, and uses other existing nodes as relays for that. Without loss of generality, the NET
protocol will be assumed to be the Internet Protocol (IP) in the rest of the thesis. In
the following, let us describe the retransmission process when HARQ is conventionally
applied in a layered system, as depicted in Fig. 1.6. At MAC layer, the incoming IP packets
of length LIP are assumed to be split into N fragments, of length LMAC = LIP/N.

Next, each fragment is transmitted following a given HARQ scheme. At the transmit-
ter side, a fragment is first transformed into MAC packet(s) according to the considered
HARQ scheme. After adding the MAC overhead, a fragment is possibly encoded by
a FEC code and a sequence of t0 MAC packets is generated. The transmitter transmits
sequentially the first MAC packet up to the t0-th MAC packet upon error detection. If
the fragment still cannot be decoded after the transmission of the t0-th MAC packet, the
first MAC packet of the sequence is transmitted again and so on. At PHY layer, the MAC
packet ready for transmission is inserted into a frame, modulated according to a given
constellation, and sent through the wireless channel.

At the receiver side, the PHY layer demodulates the received signal and pushes
forward the resulting MAC packet to the MAC layer. The first MAC packet of the sequence
is simply decoded and the HARQ process checks if the fragment can be recovered without
errors (using CRC control) or not. The receiver sends back to the transmitter ACK
or NACK accordingly. The ACK/NACK is transmitted through the feedback channel,
which is assumed ideal in this Chapter. If ACK is received, the transmitter restarts the
HARQ process with the next fragment. Otherwise, the next MAC packet in the sequence
is transmitted over the channel. Its received version may: either be combined to the
previously received packets of the sequence before decoding the aggregation of packets
(Type-II); or independently decoded (Type-I). Then ACK/NACK is sent back, and so on
until the reception of the t0-th MAC packet. If the fragment is still detected in error
and the transmission limit L is not reached, the receiver memory is flushed and the
process starts again. If the last authorized transmission fails, the fragment is dropped and
the retransmission process is started again with the next fragment. Finally, once the N
fragments have been correctly received, the receiver concatenates them into an IP packet
that is released to the NET layer. If at least one fragment is missing, the resulting IP packet
is dropped by the reassembly process and is not delivered to the NET layer.
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1.4.2 Definition of the HARQ performance metrics

Various performance metrics were identified in [Le Duc, 2009] and [Le Martret et al., 2012]
in order to give a complete view of the system performance:

• the PER,

• the delay,

• the efficiency.

Although the conventional HARQ design was mainly done at MAC layer in the past (as
seen in Section 1.2), the new packet-oriented systems of 4G standards run the IP. It is
thus of great interest to study the performance at the NET layer, as proposed in [Rossi
and Zorzi, 2003] and [Le Martret et al., 2012], in order to enlarge the vision of practical
systems performance. For a notational convenience, a subscript ’IP’ (resp. ’MAC’) will
stand for the metrics defined at NET (resp. MAC) level.

1.4.2.1 Packet Error Rate

The PER, denoted by P, is the probability that an information packet is not transmitted
with success within the HARQ process. According to the previous notation, PMAC is the
PER of the fragments, whereas if the IP packets are of interest we will use PIP instead.
Therefore:

PMAC := Pr
{
fragment not successfully received

}
, (1.10)

PIP := Pr
{
IP packet not successfully received

}
. (1.11)

1.4.2.2 Delay

The delay will be denoted d, and is defined as the average number of MAC packets that
have been transmitted, knowing that the information packet is received without errors.
Using the previous notations, one can thus obtain:

dMAC := E
[
# of MAC packets sent | fragment received without errors

]
, (1.12)

dIP := E
[
# of MAC packets sent | IP packet received without errors

]
. (1.13)

As remarked in [Le Duc, 2009], this delay definition is not proportional to the inverse of
the efficiency.
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1.4.2.3 Efficiency

The efficiency has already been discussed in Section 1.3.1. Using the proposed notations,
we rewrite:

ηMAC =
E

[
# of information bits received per successful fragment

]
E

[
# of bits transmitted between two successive error-free fragments

] , (1.14)

ηIP =
E

[
# of information bits received per successful IP packet

]
E

[
# of bits transmitted between two successive error-free IP packets

] . (1.15)

1.4.3 Cross-layer HARQ techniques

As said previously, since the communication systems tend to be built upon the packet-
oriented IP, it is important to design HARQ schemes that improve the performance at
NET layer. In particular, it can be achieved by following the cross-layer ideas, resulting
in schemes such as the MAC-IP retransmission management developed in [Choi et al.,
2005]. The conventional retransmission schemes described before are usually applied at
MAC layer where HARQ manages the fragments one after the other independently, as
shown in Fig. 1.6. With this approach, if the L-th MAC packet transmission fails, the
corresponding fragment is dropped and so the corresponding IP packet too.

It can be interesting to take into account for the fact that the fragments come from
a same IP packet, as depicted in Fig. 1.7. The PER can be improved at IP level as
proposed in [Choi et al., 2005] by granting the total transmission credit C = NL to the set
of fragments belonging to the same IP packet. This credit is decremented by 1 at each
MAC packet transmission. So if a fragment does not use the C transmissions, then the
remaining credit can be used by the next ones, and the IP packet is only dropped if all
the corresponding fragments are not received correctly in at most C transmissions. In
the sequel we will refer to the conventional strategy (transmission credit per fragment)
as Fragment-Based Strategy (FBS) and to the cross-layer strategy of [Choi et al., 2005] as
IP-Based Strategy (IBS).

1.4.4 Brief state of the art on HARQ performance expressions

HARQ schemes have been widely studied in the literature with usually two objectives:
i) the theoretical performance derivation of existing HARQ schemes, and ii) the design
of good HARQ schemes. This Section gives a short, non exhaustive review of the main
contributions to HARQ. For a good overview of first (H)ARQ principles, one can consult
[Lin and Costello, 1983] and [Wicker, 1995].

It is of interest to analyze the performance of existing HARQ schemes through closed-
form expressions. Hagenauer pioneered the performance study of IR-HARQ as an ap-
plication of his Rate-Compatible Punctured Convolutional (RCPC) codes presented in
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[Hagenauer, 1988], whereas [Kallel, 1990] was probably the first to analyze the perfor-
mance of CC-HARQ, though this scheme was already mentioned by [Chase, 1985] as an
application of his code combining. CC-HARQ has been analyzed for interleaved fading
channels in [Chen and Fan, 2005], while IR-HARQ was the main purpose of [Levorato and
Zorzi, 2008] and [Andriyanova and Soljanin, 2012]. Later, [Cheng, 2006] tried to answer
to the interesting question: what scheme, of CC-HARQ or IR-HARQ, is the best one? It
results that the answer depends on the link quality as well as the initial code rate R0.

Interestingly, the systematic analysis of ARQ came after that Type-II HARQ schemes
were already under investigation: the framework given by [Zorzi and Rao, 1996] for
the analysis of ARQ has revealed to be very fruitful for future investigations. Their
work served as the basis for [Caire and Tuninetti, 2001], which presented the ultimate
performance of the main HARQ schemes. More recently, these ideas were reused in
[Le Martret et al., 2012] to establish the performance of general HARQ schemes at upper
layers.

For the rest of the thesis, the following definitions will be useful:

• Let pn(k), n ≥ 1, k ≥ n, be the probability of receiving n fragments without errors
in exactly k MAC packets transmissions. We recall that the probabilities pn(k) are
provided in [Le Duc, 2009].

• Let p j, j ≥ 1, be the probability that the ( j + 1)-th MAC packet coming from a given
fragment is not decoded, knowing that the j previous MAC packets of the same
fragment were not decoded as well. As a particular case, let p0 be the probability
that a MAC packet is not decoded with success.

• Let q(k), k ≥ 1, be the probability of receiving a fragment with errors after k MAC
packet transmissions, hence:

q(k) =

k−1∏
j=0

p j. (1.16)

The expressions that will be presented next were found in [Le Duc, 2009]. For each
metric, general expressions that are valid for any HARQ type will be presented first, next
simplified expressions that hold true for Type-I will be given. A superscript ’F’ (resp. ’I’)
will stand for the metrics expressed for the FBS (resp. IBS).

1.4.4.1 HARQ with conventional FBS

Packet Error Rate: At MAC level, the error probability of a given fragment is known as:

PMAC = 1 −
L∑
`=1

p1(`), (1.17)

and leads to the error probability at IP level:

PF
IP = 1 − (1 − PMAC)N. (1.18)
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For Type-I HARQ, p1(`) = (1 − p0)p`−1
0 for ` ≥ 1, and thus:

PMAC = pL
0 , (1.19)

PF
IP = 1 − (1 − pL

0)N. (1.20)

Delay: The delay at MAC level is:

dMAC =
1

1 − PMAC

L∑
`=1

` p1(`), (1.21)

whereas at IP level it is simply related to dMAC, thanks to the independence of the fragments:

dF
IP = NdMAC. (1.22)

For Type-I HARQ the delay becomes a simple function of p0:

dMAC = L +
1

1 − p0
−

L
1 − pL

0

. (1.23)

Efficiency: A general expression for the efficiency, valid for any retransmission scheme,
was given in [Le Duc, 2009]. At any layer l and for any strategy s, the most general
efficiency is:

ηs
l =

Ll (1 − Ps
l )

Ps
l ďs

l + (1 − Ps
l ) d̂s

l

, (1.24)

where ďl (resp. d̂l) is the average number of bits sent knowing that the layer l current
packet reception fails (resp. layer l packet has been received without errors). In particular,
this expression holds true when the MAC packets are of unequal length. However, due
to the high complexity of the ď formula that presents no interest for our dissertation, we
report here only the case of equally long MAC packets. At MAC level, neglecting the
MAC overhead (CRC length relative to the packet length), the efficiency was expressed
as:

ηMAC =
R(1 − PMAC)

L PMAC + (1 − PMAC)dMAC
=

R
∑L
`=1 p1(`)

L
(
1 −

∑L
`=1 p1(`)

)
+

∑L
`=1 ` p1(`)

, (1.25)

where R is the coding rate. As for the delay case, the efficiency can be expressed in simple
terms at IP level:

ηF
IP = ηMAC(1 − PMAC)N−1. (1.26)

The efficiency when considering Type-I schemes dramatically simplifies into:

ηMAC = R (1 − p0). (1.27)

1.4.4.2 HARQ with cross-layer IBS

For the cross-layer IBS, all the metrics are only defined at IP level.
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Packet Error Rate: The PER is expressed as a function of the probability pN(`), which is
itself a combinatorial function of the elementary probability p1:

PI
IP = 1 −

C∑
`=N

pN(`) = 1 −
C∑
`=N

∑
k∈K`,N

N∏
n=1

p1(kn), (1.28)

whereKm,n =
{
k ∈Nn

∗ |
∑n

j=1 k j = m
}

is a combinatorial set of cardinal Card
(
Km,n

)
=

(m−1
n−1

)
.

For Type-I HARQ, we have pN(`) =
( `−1
N−1

)
(1 − p0)Np`−N

0 , hence:

PI
IP = 1 − (1 − p0)N

C∑
`=N

(
` − 1
N − 1

)
p`−N

0 . (1.29)

It can be shown that this expression can be simplified to:

PI
IP = I(p0; C −N + 1,N), (1.30)

with I(x; a, b) the normalized incomplete Beta function [Abramowitz and Stegun, 1972,
Eq. (8.392)]. The proof is reported in Appendix A.4.

Delay: The delay has the same shape in this case than the delay for FBS. It was found
that:

dI
IP =

1
1 − PI

IP

C∑
`=N

` pN(`), (1.31)

which turns, for Type-I HARQ (see Appendix A.5), into:

dI
IP =

N
1 − p0

−
(1 − p0)N−1pκ0

α(p0)
, (1.32)

where κ := C−N+1 and α(x) := B(κ,N)I(1−x; N, κ), with B(a, b) the so-called Beta function
[Abramowitz and Stegun, 1972, Eq. (8.390)].

Efficiency: Finally, the efficiency of IBS is given by:

ηI
IP =

RN(1 − PI
IP)

C PI
IP + (1 − PI

IP)dI
IP

=
RN

∑C
`=N pN(`)

C
(
1 −

∑C
`=N pN(`)

)
+

∑C
`=N ` pN(`)

(1.33)

and for Type-I schemes by (from Appendices A.4 and A.5 and direct algebraic computa-
tions):

ηI
IP =

RN(1 − p0)α(p0)
(1 − p0) C B(p0;κ,N) + Nα(p0) − (1 − p0)Npκ0

, (1.34)

where B(x; a, b) is the incomplete Beta function [Abramowitz and Stegun, 1972, Eq. (8.391)].
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1.5 Conclusion

In this Chapter, we have presented the fundamentals about HARQ that will be useful
throughout the thesis. Without being exhaustive, the state of the art presented in this
Chapter covers a large amount of the retransmission techniques from the basic concepts
of ARQ to most advanced cross-layer HARQ techniques.

This work will be extended in the next two Chapters along the following lines: in
Chapter 2 we will study the "early drop" version of IBS which can slightly improve the
HARQ efficiency, and in Chapter 3 we will analyze the effects of imperfect feedback by
deriving new expressions for the performance metrics.
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Chapter 2

An Early-Drop version of cross-layer
Hybrid ARQ

2.1 Introduction

New 4G communications standards use an all-IP oriented infrastructure to manage the
NET layer. It is thus of interest i) to analyze HARQ at NET level, i.e. , when the IP packet
is the figure of merit, and ii) to design HARQ schemes to improve the performance at
NET level. A cross-layer ARQ scheme has been designed between the MAC and the NET
layers in [Choi et al., 2005]. This scheme, that we reviewed in Chapter 1, improves the
PER at NET level and has been extensively studied in a unified framework that extends
to HARQ in [Le Duc, 2009].

An improvement of this cross-layer scheme, called ED, has been depicted in [Choi
et al., 2005] for ARQ. The basic idea is to stop the IP packet transmission as soon as
the number of remaining fragments is larger than the remaining number of transmission
attempts. This technique was investigated for ARQ only, and we propose in this Chapter
to derive closed-form expressions for the efficiency of the ED based HARQ, for any HARQ
type.

The Chapter is organized as follows. The ED is defined in Section 2.2, and next
the new expressions of efficiency are computed in Section 2.3. Section 2.4 details some
particular cases. The relevance of this technique is finally discussed in Section 2.5 where
some numerical results are given.

2.2 Description of the Early-Drop mechanism

The ED technique, applied to an HARQ scheme using IBS, allows the transmission of a
given IP packet to be stopped as soon as it is detected that there is not enough credit left
in order to transmit the remaining fragments, as depicted in Fig. 2.1. To be more precise,
the transmitter discards the IP packet at the j-th fragment if the remaining transmission
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credit is less than (N − j). Let ik ∈ N∗ be the number of transmissions used by the k-th
fragment, and let i ∈Nn

∗ be a vector with elements ik that represents a combination of the
transmissions done for n fragments. This yields the following definition:

Definition 2.1 (Early-Drop). A global credit C is granted to an IP packet of N fragments. Let us
define by mi( j) :=

∑ j
k=1 ik the number of MAC packets transmissions that occurred up to fragment

#j ∈ {1, . . . ,N} for the combination i. Then, the IP packet dropped if:

mi( j) ≥ C −N + j + 1. (2.1)

NACK NACKMAC #1

IP packet

Fragment #2 Fragment #3 Fragment #4Fragment #1

MAC #1

ACK

NACK

NACK

NACK

Early−Drop

C C− k

C

MAC #(C− k−2)MAC #k <C

MAC #(C− k−1)

MAC #(C− k)

Figure 2.1: The Early-Drop mechanism on an example.

Since the ED approach only modifies the retransmission processing when the IP packet
is not correctly received, the PER and the delay1 are identical to those given in Chapter 1.
On the other hand, the efficiency must be changed.

2.3 Efficiency new closed-form expression

2.3.1 General expression

The most general expression of the efficiency given in Chapter 1 becomes, for IBS:

ηI
IP =

LIP (1 − PI
IP)

PI
IP ďI

IP + (1 − PI
IP) d̂I

IP

, (2.2)

where:
1We recall, that the delay is defined as the average number of packet transmissions when an IP packet is

successfully received.
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• d̂I
IP is the average number of bits sent knowing that IP packet has been correctly

received. Thus, the expression of d̂I
IP given in [Le Duc, 2009] remains valid for the

ED approach.

• ďI
IP is the average number of bits sent given that the current IP packet reception fails.

The expression of ďI
IP given in [Le Duc, 2009] is modified by the ED approach since

the transmission credit is not managed in the same way with or without ED when
the IP packet fails.

Therefore the main goal is now to find a new expression of ďI
IP when ED is used, and let

us denote it by ďED
IP .

2.3.2 Computation of ďED
IP

For that purpose, all the combinations of fragments leading to a failure of the IP packet
must be enumerated. The set of these combinations defines the event D that can be
decomposed as follows:

D =

N⋃
n=1

D(n), (2.3)

where the events D(n) are defined below:

• D(1) = {Fragment #1 consumes C −N + 2 credits},

• D(n) = {Fragment #1 OK and Fragment #2 OK and . . . and less than (N − n) credits
left during fragment #n transmission} for n ∈ {2, . . . ,N − 1},

• D(N) = {Fragment #1 OK and . . . and Fragment #(N − 1) OK and Fragment #N KO
with the remaining credit}.

In all the Chapter, we assume2 that all the MAC packets have the same length LMAC. This
assumption fits well the CC-HARQ schemes. Considering IR-HARQ, if the mother code
has a rate R0 = 1/t0 and the punctured code rates are equal to {1/t}t=1,...,t0 , then the equal
MAC packet length assumption is satisfied. Now, the probabilities of the events D(n) are
detailed:

• n = 1: whenever it is received or not, the fragment #1 consumes at least (C −N + 2)
trials which leads to:

Pr {D(1)} = q(C −N + 1), (2.4)

and the number of bits sent during this event is equal to d(1) = (C −N + 2)LMAC.

• n ∈ {2, . . . ,N − 1}: assume that the fragment #k (with k ≤ n − 1) is successfully
received and has used ik transmissions. Then, the consumed transmission credit is

2The most general case with unequal packet length was done in our paper [C1].
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equal to mi(k) =
∑k

j=1 i j for k ∈ {1, . . . ,n − 1}. The IP packet will not be received if
the fragment #n consumes at least (C −mi(n − 1) − (N − n) + 1) credits, whenever it
is received or not. Such an event is denoted by Di(n), and the number of bits sent
during this event is denoted by di(n). Therefore, we have:

Pr {D(n)} =
∑
i∈Tn

Pr {Di(n)} , (2.5)

where Tn = {i ∈Nn−1
∗ |mi(n − 1) =

∑n−1
k=1 ik < C −N + n}, and

Pr {Di(n)} = q(C −mi(n − 1) −N + n)
n−1∏
k=1

p1(ik). (2.6)

One can easily check that:

Tn =

C−N+n−1⋃
s=n−1

Ks,n, (2.7)

whereKs,n is the subset of Tn such that
∑n−1

k=1 ik = s. As a consequence:

∑
i∈Tn

di(n)Pr {Di(n)} =
C−N+n−1∑

s=n−1

∑
i∈Ks,n

di(n)Pr {Di(n)} . (2.8)

Furthermore, when i ∈ Ks,n, the number of bits sent during the event Di(n) is equal
to:

di(n) = sLMAC + (C − s − (N − n) + 1)LMAC = (C −N + n + 1)LMAC, (2.9)

and thus, putting Eq. (2.6) into Eq. (2.8) and using Eq. (2.9):∑
i∈Tn

di(n)Pr {Di(n)} = LMAC(C −N + n + 1)
C−N+n−1∑

s=n−1

∑
i∈Ks,n

q(C − s −N + n)
n−1∏
k=1

p1(ik)

= LMAC(C −N + n + 1)
C−N+n−1∑

s=n−1

q(C − s −N + n) pn−1(s). (2.10)

• n = N: similar derivations lead to

Pr {D(N)} =
∑
i∈TN

Pr {Di(N)} , (2.11)

where Di(N) is defined as in Eq. (2.6) for n = N. However, the number of transmitted
bits during the event Di(N) is di(N) = C LMAC.

Finally, the term ďED
IP is the sum of the number of bits di(n) weighted by the probability

of the event {Di(n)| IP packet dropped }, knowing that the IP packet has not been correctly
received:

ďED
IP = d(1)Pr

{
D(1)| IP packet dropped

}
+

N∑
n=2

∑
i∈Tn

di(n)Pr
{
Di(n)| IP packet dropped

}
.

(2.12)
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Using the Bayes’ rule leads to:

ďED
IP = d(1)

Pr {D(1)}
Pr

{
IP packet dropped

} +

N∑
n=2

∑
i∈Tn

di(n)
Pr {Di(n)}

Pr
{

IP packet dropped
}

=
1

PI
IP

d(1)Pr {D(1)} +
N∑

n=2

∑
i∈Tn

di(n)Pr {Di(n)}

 . (2.13)

Finally, we find:

ďED
IP =

LMAC

PI
IP

(
(C −N + 2)q(C −N + 1)

+

N−1∑
n=2

(C −N + n + 1)
C−N+n−1∑

s=n−1

q(C − s −N + n) pn−1(s) + C
C−1∑

s=N−1

q(C − s) pN−1(s)
)
. (2.14)

2.3.3 Main result

Based on the previous computation, we are able to obtain the following result:

Proposition 2.1.

ηED
IP ≥ η

I
IP. (2.15)

Proof. In non-ED context, a more precise description than Di(n) is needed since we must
know how the MAC packets #n′ (with n′ > n)) are handled. The event Di(n) can be
decomposed as follows: Di(n) = ∪i′Di,i′(n) where Di,i′(n) represents a single way of
handling the remaining (N − n − 1) MAC packets, given that the n first MAC packets are
handled as in Di(n). Fig. 2.2 depicts this decomposition on an example.

Then, we replace in Eq. (2.12): ∑
i∈Tn

di(n)Pr {Di(n)} , (2.16)

with: ∑
i∈Tn

∑
i′

di,i′(n)Pr
{
Di,i′(n)

}
, (2.17)

where di,i′(n) is the cost in packets of the event Di,i′(n). Since, when using ED, the
transmission stops as soon as Di(n) occurs, we have:

di,i′(n) ≥ ded
i (n), (2.18)

which implies that ďI
IP ≥ ďed

IP and concludes the proof. �
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Figure 2.2: ED scenario with N = 4 and C = 5. Red paths refer to ED, black paths to
non-ED, and blue paths appear in both ED and non-ED cases.

2.4 Particular case: Type-I HARQ

For Type-I HARQ, the MAC packets are all identical and are processed independently at
the receiver side. Therefore, using Eq. (2.14) and reordering it like Eq. (2.13), one finds:

ďED
IP = LMAC(C −N + 1) +

LMAC

PI
IP

 N∑
n=1

n Pr {D(n)} − Pr {D(N)}

 . (2.19)

Due to the simple relation between the MAC packet and the fragment, it is possible
to exhibit simple closed-form expression for the terms Pr {D(n)}. The MAC packets
are identical and handled independently in this context, and we remind that the error
probability of any MAC packet is p0. Thus, we recall from Chapter 1 that:

p1(k) = (1 − p0) pk−1
0 , (2.20)

q(k) = pk
0. (2.21)

Furthermore, let us recall from Chapter 1 that:

PI
IP = I(p0; C −N + 1,N), (2.22)

where I(x; a, b) := B(x; a, b)/B(a, b) is the regularized Beta function, B(x; a, b) is the incom-
plete Beta function and B(a, b) = B(1; a, b).
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Now, let us compute Pr {D(n)}:

Pr {D(n)}
(a)
=

∑
i∈Tn

q(C −mi(n − 1) −N + n)
n−1∏
k=1

p1(ik)

(b)
=

∑
i∈Tn

pC−mi(n−1)−N+n
0

n−1∏
k=1

(1 − p0) pik−1
0

(c)
=

∑
i∈Tn

pC−mi(n−1)−N+n
0 (1 − p0)n−1pmi(n−1)−n+1

0

(d)
= Card(Tn) (1 − p0)n−1pC−N+1

0 , (2.23)

where (a) is obtained using Eqs. (2.5)-(2.6), (b) comes from Eqs. (2.20)-(2.21), (c) by using∑n−1
k=1 ik = mi(n − 1), and (d) after factorization of the terms into the sum that are indepen-

dent of i. By convention, Card(T1) = 1. Using Appendix A.1, it can be easily checked
that:

Card(Tn) =

C−N+n−1∑
s=n−1

(
s − 1
n − 2

)
=

(
C −N + n − 1

n − 1

)
. (2.24)

Therefore it remains to calculate:

N∑
n=1

n Pr {D(n)} =
N∑

n=1

n
(
C −N + n − 1

n − 1

)
(1 − p0)n−1pC−N+1

0 . (2.25)

In Appendix B, it is shown that:

N∑
n=1

n Pr {D(n)} =
p0 + κ(1 − p0)

p0
I(p0;κ,N) −

pκ−1
0 (1 − p0)N

B(κ,N)
, (2.26)

with κ = C −N + 1. Finally:

ďED
IP =

p0 + K
p0

−
pK−1

0 (1 − p0)N

B(p0; K,N)
−

(
C − 1
N − 1

)
(1 − p0)N−1pK

0

 LMAC. (2.27)

Notice that the ED brings a lot of complexity in the derivation compared to the non-ED
case for which ďI

IP = C LMAC [Le Duc, 2009].

2.5 Numerical results

2.5.1 Simulation settings

For the sake of clarity, we present numerical results for two different HARQ schemes
only:

• a pure ARQ, with MAC packets of 124 bits, including 16 bits for CRC,



32 2. An Early-Drop version of cross-layer Hybrid ARQ

• and a CC-HARQ with packets of 124 bits of data including CRC-16 that are encoded
by a 1/2-rate convolutional code, with generators (23, 35)8.

The bits are modulated over a Quadrature Phase Shift Keying (QPSK) constellation, and
then are transmitted through an Additive White Gaussian Noise (AWGN) channel.

The figures are presented versus the Signal to Noise Ratio (SNR). We define the SNR
as the ratio Es/N0, where Es is the average energy per coded symbol, and N0 is the bilateral
energy spectral density of the noise, i.e. the noise variance is N0/2 per real dimension.

2.5.2 Exact analytic expressions versus simulations

To begin with, let us compare the analytic expression of efficiency with ED with the
simulated one. The efficiency expression given in Eq. (2.14) as well as extensive Monte-
Carlo simulations are displayed in Fig. 2.3. For the ARQ scheme with N = 8 and C = 16 as
well as for the CC-HARQ scheme with N = 10 and C = 20, we observe a nice agreement
between our expressions and the estimated points. This validates the general expression
for the efficiency of any HARQ type using IBS in conjunction with ED.
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Figure 2.3: ARQ (N = 8, C = 16) and CC-HARQ (N = 10, C = 20).

2.5.3 Discussion on the relevance of Early-Drop

In Fig. 2.4 (resp. Fig. 2.5), the IP level efficiency of ARQ (Fig. 2.4a and 2.5a) and of CC-
HARQ (Fig. 2.4b and 2.5b) is plotted for N = 8 and C = 16 (resp. N = 10 and C = 20).
At first glance, we remark the little gain in efficiency, especially CC-HARQ for which
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the gain is not visible at this scale. Thus, the ED does not provide a priori a significant
gain but just an incremental one. Fig. 2.6 shows that for a fixed N, the gain in efficiency
brought by ED depends on the total credit C value: basically, the less is C, the better is the
efficiency gain.
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Figure 2.4: IP level Efficiency with/without Early-Drop (N = 8 and C = 16).
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Figure 2.5: IP level efficiency with/without Early-Drop (N = 10 and C = 20).

More precisely, the terms PI
IP ďED

IP and PI
IP ďI

IP, which are the average number of MAC
packets that are unsuccessfully transmitted with and without ED, respectively, are plotted
in Fig. 2.7a (resp. Fig. 2.8a) for ARQ (resp. CC-HARQ). The IP fragmentation is fixed to
N = 12. These terms appear in the denominator of the efficiency, thus it must be kept low
in order to have a good efficiency. The main difference between PI

IP ďED
IP and PI

IP ďI
IP occurs

at low and medium SNR, but as soon as the SNR is large enough, the ED improvement
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Figure 2.6: IP level Efficiency of ARQ with/without Early-Drop (N = 12).

vanishes since PI
IP ďED

IP and PI
IP ďI

IP tend towards the same value.

However, notice that the gain is more important at low SNR (in fact, ED saves (C−N+2)
transmissions in this area). But, as it can be seen from Fig. 2.7b and 2.8b, the PER in this
area is equal to 1, and then the efficiency is almost equal to zero. Hence, the attractive
feature of ED which is to suppress useless MAC packets transmissions, occurs in an SNR
range where the system is inoperable.
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Figure 2.8: CC-HARQ (N = 12).

Finally, in Fig. 2.9 we inspect the relative efficiency gain defined as:

G :=
ηED

IP − η
I
IP

ηI
IP

. (2.28)

Fig. 2.9a plots the gain G (in %) when N = 12 is fixed and C varies. In particular, we see
that the ED gains are more important when C decreases towards N. Similarly, Fig. 2.9b
shows the gain G (in %) when C = 20 is fixed and N varies, and we see again that G
increases for increasing values of N towards C. We conclude from these figures that ED
has more impact on the efficiency when N and C are getting close together. But in the
same time, this leads to lower efficiency values, as shown in Fig. 2.6. Therefore, though
the gain may be quite small, it remains of interest given the free-cost implementation of
ED.

2.6 Conclusion

In this Chapter, we have presented an ED based version of the cross-layer HARQ with
IBS. The mechanism of the ED technique has been clearly exposed, and it comes from
its definition ED modifies only the HARQ efficiency metric. Then, we have developed
the expression of efficiency that is valid for any HARQ type using ED with equal MAC
packet length, and derived some closed-form expressions for the Type-I HARQ case.

The numerical analysis has revealed that the efficiency is only slightly improved when
ED is used. The improvement has been measured through the gain G, and we concluded
that ED was more helpful when the fragmentation N and the total credit C are close.

Finally, part of this work has been published in [C1].
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Chapter 3

Hybrid ARQ with imperfect
feedback

3.1 Introduction

In wireless systems, the feedback message of HARQ systems can be either distorted, lost
or delayed due feedback channel conditions or link scheduling congestion. The work
presented in this Chapter was developed for the SW HARQ, and thus is appropriate for
the context of a wireless ad hoc network using a Time Division Duplex (TDD) mecha-
nism. For instance in systems relying on Ultra Wide Band (UWB) that is a well adapted
waveform for military ad hoc networks, the transmitter cannot send packet and listen the
acknowledgment channel simultaneously due to its half-duplex nature, thus avoiding the
use of the GBN or SR protocols. Furthermore, since we focus on a data-link/network cross-
layer paradigm, the effects of errors and delay in the feedback on HARQ performance are
measured at IP level.

The Chapter is organized as follows. The literature relative to HARQ with imperfect
feedback is reviewed in Section 3.2, and the system model is described in Section 3.3.
Section 3.4 depicts a new cross-layer credit retransmission management adapted to the
imperfect feedback context, Section 3.5 is devoted to the mathematical developments
whereas some particular cases are studied in Section 3.6. Finally, Section 3.7 gives some
insightful design guidelines relying on numerical illustrations.

3.2 State of the art

HARQ has already been investigated through numerous works. In Chapter 1, we have
presented the principal contributions in the literature relative to the study of HARQ. All
these works were done under the assumption of ideal feedback but, in wireless systems,
this feedback message can be degraded due to errors and return delays.

Only a small amount of works have analytically studied the impact of non-ideal
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feedback on HARQ. Notice that all these existing works focused on the performance at
MAC level only, and have studied either noisy feedback or delayed feedback, but never
the both jointly.

3.2.1 Unreliable ACK/NACK

When the RTT is assumed to be zero but the feedback is unreliable, then SW, GBN, and
SR are equivalent, and therefore only the SW protocol was studied.

If the number of packet retransmissions L is infinite, the delay and efficiency of a
Type-I HARQ are given in [El bahri et al., 2005] and [Wicker, 1995]. This is the most
known delay expression with imperfect feedback:

dMAC =
1

1 − p0
+

pfb

1 − pfb
, (3.1)

where pfb is the feedback error probability.

Secondly, if L is finite, an analytic expression of the efficiency can be found in [Wu and
Jindal, 2009] for a Type-I HARQ:

ηMAC = R(1 − p0)
1 − pfb

1 − pfbp0
, (3.2)

and of the delay in [Malkamäki and Leib, 2000] for a Type-II HARQ with CC:

dMAC = 1 +

L−1∑
`=1

q(`) +

L−1∑
`=1

(
p`fb − q(`)pL−`

fb

)
, (3.3)

where q(`) is the packet failure probability after ` transmissions (defined in Chapter 1).

Finally, the throughput of the GBN HARQ with unreliable ACK/NACK has been
studied in [Ausavapattanakun and Nosratinia, 2007a] using Markov processes.

3.2.2 Non-zero RTT

It was seen in Chapter 1 that a non-zero RTT leads to a reduction of the ARQ effi-
ciency/throughput. To overcome this fixed/deterministic RTT, the GBN or the SR proto-
cols are of interest.

When the RTT is assumed to be non-zero but fixed and known at the transmitter side,
the SR protocol was analyzed only by [Badia, 2009] (delay) and by [Ausavapattanakun
and Nosratinia, 2007b] (throughput). These works were done through a Markov analysis,
but this framework is not very convenient to derive closed-form expressions, even for the
most simple SW ARQ.
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3.3 Imperfect feedback model

3.3.1 Typical feedback errors

In wireless systems, the feedback communications can be subject to errors and return
delays. Three main impairments on the feedback channel can be identified:

i) errors in the acknowledgment message value due to the wireless nature of the
feedback channel,

ii) acknowledgment messages that are not received instantaneously due to the RTT
inherent to all the ARQ systems,

iii) acknowledgment messages that are lost either because of the feedback channel
conditions or dropped in the queues of the feedback link.

In its fundamental description, HARQ is built upon a one-bit feedback. However, in
practical systems more bits are sent since the communication slot is not allocated to
transmit only a single bit, hence the feedback frames generally contain more bits than
the ACK/NACK message, like channel state information, the packet identifier, etc. We
assume that the feedback information integrity can be controlled at the transmitter side,
by an error detection code for instance, in order to differentiate erroneous from error-free
feedback frames.

3.3.1.1 ACK/NACK errors

Assuming that the error detection code is sufficiently powerful to neglect misdetection, the
ACK or NACK can be considered as error-free when no error detection occurs. Conversely,
if an error is detected, we assume that a NACK is received. This is in accordance with
the assumption of neglecting the NACK-to-ACK errors that is widely adopted in the
literature, as found in [Malkamäki and Leib, 2000], [Badia, 2009] or [Ausavapattanakun
and Nosratinia, 2007b]. Thus, we get:

Pr {ACK→ NACK} = pe (3.4a)

Pr {NACK→ ACK} = 0. (3.4b)

3.3.1.2 Feedback delay

It is already known that RTT causes delay in the feedback. Moreover if congestion
problems (coming from receiver queues, scheduler, routing, etc) occur in the reverse
channel, then the transmitted feedback may arrive randomly or may be dropped in the
data link queues. We introduce a time-out τ0 > 0 in order to design the waiting time and
to overcome deadlock issues due to lost or dropped feedback messages. If the RTT is
larger than the time-out, then the feedback message will be considered to be lost and will
be interpreted as a NACK by the transmitter.
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3.3.1.3 An example of ARQ transmission with imperfect feedback

Fig. 3.1 depicts an example of ARQ rounds when the feedback is subject to the imper-
fections described previously. During the first ARQ round (k = 1), the data packet #1

NACK

k=1 k=2 k=3

wait wait

ACK

k=4

wait

ACK

wait#1

NACK

#1

#1 #1 #1

#1 #1#1

#2

NACK NACK

corrupted

RX

TX

ACK

T < τ0T ≥ τ0T < τ0T < τ0

Figure 3.1: ARQ scheme with imperfect feedback.

is received with errors, then the receiver sends a NACK that is received correctly by the
transmitter. Therefore, the packet #1 is retransmitted in a second round (k = 2) and this
time is received without errors. The receiver sends ACK, which is received within the
waiting window in a time T < τ0, but was corrupted by the feedback channel and de-
tected with errors by the transmitter. This leads to the third ARQ round (k = 3) where the
packet is retransmitted, but discarded by the receiver because it has already been received
during the second round. Then, the receiver sends ACK again, but it will never arrive at
the transmitter which waited until τ0. Finally, the packet will be correctly acknowledged
in the fourth round and the ARQ goes to packet #2.

3.3.2 Mathematical model

3.3.2.1 RTT model

Due to the random nature of the considered feedback, the RTT is naturally modeled as
a random variable T0 + T, where T0 is the MAC packet duration and T is a continuous
random variable defined by its probability density dFT. When the feedback is not received
at the transmitter side, i.e. , T + T0 ≥ τ0, we have:

pc := Pr {T ≥ τ0 − T0} = 1 − FT(τ0 − T0). (3.5)

3.3.2.2 Feedback channel

Consequently, the general model adopted in this paper for the unreliable feedback channel
is the cascade of a Binary Erasure Channel (BEC) and of a Z channel with ternary input, as
shown in Fig. 3.2. The channels have individual transition matrices Σ and Z, respectively,
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given by:

Σ =

1 − pc pc 0
0 pc 1 − pc

 (3.6)

Z =

1 1 pe

0 0 1 − pe

T

(3.7)

1− pcNACK

ACK

p
c

pc

1− pc

T0+T < τ0

T0+T ≥ τ0

T0+T < τ0

1

1− pe

1

NACK

ACK

p e

Figure 3.2: Feedback channel modeled as a BEC-Z channel.

3.3.2.3 Equivalent feedback channel

The equivalent transition matrix for the feedback channel is obtained by multiplying Σ

and Z [Silverman, 1955], and is given by:

F =

 1 0
pfb 1 − pfb

 , (3.8)

where the probability pfb is equal to:

pfb = pc + (1 − pc)pe. (3.9)

Therefore, the feedback channel is equivalent to a Z channel with crossover probability
pfb as depicted in Fig. 3.3.

1

1− p f b

p f
b

ACK ACK

NACKNACK

Figure 3.3: Equivalent Z channel for feedback.
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The transmitter receives NACK with an average transmission time depending on the
initial feedback information (ACK or NACK). We define the average NACK receiving
time given that an ACK has been sent:

τr,a := E [T0 + T|NACK Rx, ACK Tx] , (3.10)

the average NACK receiving time given that a NACK has been sent:

τr,n := E [T0 + T|NACK Rx, NACK Tx] , (3.11)

and the average waiting time for ACK:

τa := E [T0 + T|ACK Rx, ACK Tx] . (3.12)

These time averages can be computed as follows:

Proposition 3.1.

τa = T0 + E [T|T < (τ0 − T0)] , (3.13)

τr,n = pcτ0 + (1 − pc)τa, (3.14)

τr,a =
pcτ0 + pe(1 − pc)τa

pfb
. (3.15)

Proof. Let us define TO := {T0 + T ≥ τ0} as the time-out event. Then:

τa = E
[
T0 + T|ACK Rx, ACK Tx,TO

]
Pr

{
TO|ACK Rx, ACK Tx

}
= E [T0 + T|T0 + T < τ0] Pr

{
TO|ACK Rx, ACK Tx

}
, (3.16)

where Pr
{
TO|ACK Rx, ACK Tx

}
= 1 (using Bayesian rule) and E [T0 + T|T0 + T < τ0] =

T0 + E [T|T < (τ0 − T0)].

Next, τr,a can be decomposed as follows:

τr,a = E
[
T0 + T|NACK Rx, ACK Tx,TO

]
Pr

{
TO|NACK Rx, ACK Tx

}
+ E [T0 + T|NACK Rx, ACK Tx, TO] Pr {TO | NACK Rx, ACK Tx} . (3.17)

Using Bayesian rule again, we find Pr {TO | NACK Rx, ACK Tx} = pc/pfb. Furthermore:

E [T0 + T|NACK Rx, ACK Tx, TO] = τ0, (3.18)

E
[
T0 + T|NACK Rx, ACK Tx,TO

]
= E [T0 + T|T0 + T < τ0] = τa. (3.19)

Putting these three equations into Eq. (3.17) boils down to the τr,a expression. τr,n is
obtained similarly. �
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3.4 A general cross-layer HARQ scheme using report of credit

3.4.1 Description of the proposed scheme

From the IP point of view, it is interesting to share the transmission credit among the
fragments belonging to a same IP packet, as proposed by [Choi et al., 2005]. But, for
some reasons that will become clear soon, it is of importance to also bound the number of
transmissions per fragment. To combine these two dual approaches, we suggest to keep a
maximum transmission credit per fragment, while allowing the unused credit of a given
fragment to be carried forward to the next fragment.

More precisely, let L(0)
n be the initial maximum transmission credit of fragment n, and

let Ln be the maximum transmission credit for the n-th fragment of a given IP packet.
The proposed approach, called Report Credit Strategy (RCS), consists in applying the
following rule:

Ln ← L(0)
n + (Ln−1 − kn−1), ∀n > 1, (3.20)

where kn ≤ Ln denotes the number of transmissions consumed by fragment n. Let us
denote by L(0) = (L(0)

n )n∈{1,...,N} the sequence of initial credits, and C =
∑N

n=1 L(0)
n the total

initial transmission credit. An instance of this new scheme is displayed in Fig. 3.4.
Observe that the HARQ process of a fragment continues until ACK is received, or its own
credit is consumed. Then, the HARQ continues with the next fragment.

Frag #1

Frag #1

Frag #1

Frag #3

Frag #3

Frag #1

Frag #2

Frag #3

ACK

NACK

NACK

ACK

ACK

NACK

Frag #2

Frag #3

Frag #3

Frag #3

L1 = 1

Report 0 credit

Report 1 credit

L(0)
1 = 2

L2 = 2+0

L3 = 2+1

L3 = 2

L3 = 1

Figure 3.4: RCS scheme example (N = 3 and L(0) = [2, 2, 2]).
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3.4.2 IBS seen as a particular case

The new RCS is a generalization of the previous cross-layer HARQ scheme with IBS
introduced by [Choi et al., 2005]. Considering Eq. (3.20), if one sets L(0)

1 = C and L(0)
n = 0

for n = 2 to N, the IBS is obtained as a byproduct. Indeed, if the total credit C is given
to the first fragment, the next fragment will not receive the remaining credit until the
first fragment transmission is successful, or C is consumed, and so on. This is exactly the
scheme depicted in [Choi et al., 2005].

3.4.3 An example of RCS and IBS with imperfect feedback

In this Section we illustrate on an example the drawbacks of IBS when the feedback is
imperfect, and in the same time the robustness brought by RCS. In the center of Fig. 3.5
we display channel instances: the left blocks represent the transmission channel and the
blocks in the right the feedback channel. A green block means that the transmission
succeeds whereas a red block means that transmission fails.
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Figure 3.5: ARQ example with IBS (left, C = 9) and RCS (right, L(0) = [3, 3, 3]) for N = 3
fragments.

On the left side, an ARQ process is run for N = 3 fragments and uses IBS with a
total of C = 9 credits. The first fragment is received in two rounds, whereas the second
fragment needs four rounds before being decoded without errors (i.e. , ACK is sent).
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Observe that the corrupted NACK messages have no influence on the process. But, when
the second fragment is finally decoded, the ACK is corrupted by the feedback channel,
which leads to the retransmission of this fragment. The bad feedback conditions cause
another two retransmissions of fragment #2. Finally, when the transmitter receives ACK
for this fragment, there remains only one transmission (C = 1). Unfortunately, the third
fragment is not decoded at the first time, and thus the IP fails since there is no more credit
(C = 0).

On the right, the same example is run using RCS with the credit distribution L(0) =

[3, 3, 3]. There are two key observations:

• Since the fragment #1 is received correctly in two rounds, the remaining credit is
carried forward to fragment #2, which owns L2 = L(0)

2 + 1 = 4 now. This additional
credit helps the second fragment to be received, since three attempts would not be
sufficient and would have led to the IP failure.

• Furthermore, since the number of transmissions for fragment #2 is bounded, the
ARQ switches to fragment #3 as soon as the credit of fragment #2 is exhausted,
regardless of the ACK presence at the transmitter. Therefore, the last fragment can
be received without errors, which leads to the success of the IP packet transmission.

3.5 HARQ performance analysis with imperfect feedback

In this Section, we derive analytic expressions for the HARQ figures of merit, i.e. the
PER, the delay and the efficiency. This is done for the three IP level strategies described
previously: the performance of RCS are first derived, then IBS is found as a particular
instance of RCS, finally FBS is computed as a particular case of the IBS analysis.

3.5.1 IP level analysis of RCS

Given the credit distribution L(0), we will denote:

• by αn(i) the average time cost for receiving n fragments, in i MAC packet transmis-
sions,

• and by βn(i) the probability of decoding n fragments in i transmissions.

By definition of RCS, the retransmission scheme continues with the next fragment when-
ever the ACK is received for the current fragment or the transmission credit of the current
fragment is consumed. Therefore, the IP packet can be received without errors even if
some ACKs were not received after the good decoding of a fragment. Obviously, it will
impact the delay and the efficiency.



46 3. Hybrid ARQ with imperfect feedback

3.5.1.1 Packet Error Rate

The packet error rate depends on the quality of the feedback channel. Indeed, the
maximum number of transmissions of the n-th fragment is driven by the number of
transmissions done by the (n − 1) previous fragments. An IP packet is correctly decoded
if, and only if, the N fragments are correctly received in i transmissions with i ∈ {N, . . . ,C},
leading to:

PR
IP = 1 −

C∑
i=N

βN(i). (3.21)

3.5.1.2 Delay

Applying Bayes’ rule, the average delay (in time units) is obtained as:

dR
IP =

1
1 − PR

IP

C∑
i=N

αN(i). (3.22)

3.5.1.3 Efficiency

From the most general expression given in Eq. (1.24) of Chapter 1, the efficiency is:

ηR
IP =

T0RN(1 − PR
IP)

ďR
IP PR

IP + (1 − PR
IP)dR

IP

, (3.23)

where ďR
IP is the average delay when IP packet failed, and R is the coding rate.

3.5.1.4 Time averages

All the metrics are thus entirely determined by the knowledge of αn(i), βn(i), and ďR
IP that

are given in the following Propositions (the derivations can be found in Appendices C.1
to C.3):

Proposition 3.2. ∀n ≥ 1, i ≥ n,

αn(i) =

n∑
k=0

∑
(s,t)∈EB

i−k,n

(
∑
`

s`)τr,n + kτa + (
∑
`

t`)τr,a

 (1 − pfb)k
n∏
`=1

p1(1 + s`)p
t`
fb, (3.24)

where

E
B
p,n =

(s, t) ∈Nn
×Nn

|

n∑
`=1

(s` + t`) = p and ∀`,
∑̀
m=1

(1 + sm + tm) ≤
∑̀
m=1

L(0)
m

 . (3.25)

Proposition 3.3. ∀n ≥ 1, i ≥ n, we have:

βn(i) =
∑

x∈χi,n

n∏
j=1

x j∑
k j=1

p1(k j)p
x j−k j

fb (1 − pfb)δ{A j}, (3.26)
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where

χk,n =

x ∈Nn
∗ |

n∑
`=1

x` = k and ∀`,
∑̀
m=1

xm ≤
∑̀
m=1

L(0)
m

 , (3.27)

A j = {
∑ j

m=1 xm <
∑ j

m=1 L(0)
m }, and δ{.} is the Kronecker symbol.

Proposition 3.4. The term ďR
IP is computed as follows:

ďR
IP =

1
PR

IP

C∑
i=L1+(N−1)

N−1∑
n=0

θn(i), (3.28)

where θn(i) is the average time cost for receiving n correct fragments, and (N − n) erroneous
fragments, in i transmissions, and where:

θn(i) =
∑

(s,t)∈EB
i−n,n

(
∑
`

s`)τr,n + nτa +
∑
`

t`)τr,a

 (1 − pfb)nδ{KO}

N∏
`=1

(
p1(1 + s`)p

t`
fbδ{B`} + q(1 + s` + t`)δ{Γ`}

)
, (3.29)

where the events B` =
{∑`

m=1(1 + sm + tm) ≤
∑`

m=1 L(0)
m

}
, Γ` =

{∑`
m=1(1 + sm + tm) =

∑`
m=1 L(0)

m

}
,

and KO = {∃` ∈ {1, . . . ,N} |Γ`}, and q(k) = 1−
∑k

i=1 p1(i) is the failure probability of one fragment
after k transmissions.

3.5.2 IP level analysis of IBS

In the following, the delay and PER of IBS are derived from the previous Propositions.
However, it is more convenient to write a new proof for the efficiency.

Given the total credit p, we will denote:

• by αn,p(i) the average time cost for receiving n fragments and the corresponding n
ACK messages at the transmitter side, in 1 ≤ i ≤ p MAC packet transmissions,

• and by βn(i) the probability of decoding n fragments in i transmissions and receiving
n ACK messages (at the transmitter side).

3.5.2.1 Packet Error Rate

In the IBS case, since the HARQ process continues for a given fragment until ACK is
received or the total credit C is consumed, an IP packet is successful if N ACK messages
are received at the transmitter side. If the total credit is consumed when an IP is received
with success, it means that the last fragment is received correctly before the credit is
exhausted, but the ACK is not guaranteed to arrive at the transmitter within the remaining
transmissions. Therefore, the PER is obtained as:

PI
IP = 1 −

C∑
i=N

βN(i)
(1 − pfb)δ{i=C}

, (3.30)
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since for i = C the transmitter just needs to receive (N − 1) ACK messages.

3.5.2.2 Delay

The delay is found as a byproduct:

dI
IP =

1
1 − PI

IP

C∑
i=N

αN,C(i). (3.31)

3.5.2.3 Efficiency

As for the efficiency, we find:

ηI
IP =

T0RN(1 − PI
IP)

ďI
IP PI

IP + (1 − PI
IP)dI

IP

, (3.32)

where ďI
IP is the average delay when the IP packet failed.

3.5.2.4 Time averages

The new expressions of αn,p(i), βn(i), and ďI
IP for IBS are given in the following Propositions

(the derivations can be found in Appendices C.4 to C.6):

Proposition 3.5. ∀n ≥ 1, p ≥ n, p ≥ i ≥ n,

αn,p(i) = (1 − pfb)n−δ{i=p}
i∑

k=n

(
iτr,a − n(τr,n − τa) + pfbδ

{
i = p

}
(τr,a − τa) − k(τr,a − τr,n)

)
×

(
i − k + n − 1

n − 1

)
pn(k)pfb

i−k. (3.33)

Proposition 3.6. ∀n ≥ 1, i ≥ n, we have:

βn(i) =

i∑
k=n

(
i − k + n − 1

n − 1

)
pn(k)pfb

i−k(1 − pfb)n. (3.34)

Proposition 3.7. The term ďI
IP is computed as follows:

ďI
IP =

1
PI

IP

 N∑
n=1

θn(C) +

N−1∑
n=1

γn(C)

 , (3.35)

where θn(C) is the average time cost for receiving (n − 1) fragments and the corresponding ACK
messages, and n-th fragment is not decoded, in C transmissions. γn(C) is the average time cost for
receiving (n − 1) fragments and the corresponding ACK messages, and n-th fragment is decoded,
in C transmissions, and where:

θn(C) = (1 − pfb)n−1
C−1∑
`=n−1

C−∑̀
m=1

(
(n − 1)τa + (C − ` −m)τr,a + (` + m − n + 1)τr,n

)
×

(
C − ` −m + n − 2

n − 2

)
pn−1(`)pfb

C−`−mq(m), ∀n ≥ 2, (3.36)
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and

γn(C) = (1−pfb)n−1
C−1∑
`=n−1

C−∑̀
m=1

(
(n−1)τa +pfbτr,a + (C−`−m)τr,a + (`+m−n)τr,n + (1−pfb)τa

)
×

(
C − ` −m + n − 1

n − 1

)
pn−1(`)pfb

C−`−mp1(m), ∀n ≥ 1. (3.37)

q(k) = 1 −
∑k

i=1 p1(i) is the failure probability of one fragment after k transmissions, and we have
θ1(C) = C τr,n q(C).

3.5.3 IP level analysis of FBS

3.5.3.1 Packet Error Rate

The correct decoding of a given fragment at the receiver side is not affected by the fact
that the ACK is changed into NACK by the feedback link. Since the fragments are
processed independently in the FBS, if N fragments are correct at the receiver side, then
the corresponding IP packet can be delivered error-free. As a consequence, PF

IP is not
modified by imperfect feedback, as already mentioned in [Malkamäki and Leib, 2000] for
the MAC level.

3.5.3.2 Delay

The fragments sent after the reception of a corrupted ACK lead to a delay increase
at MAC and IP levels since, for instance, the transmitter will send useless redundant
fragments whereas it should have sent new data fragments if the ACK were correctly
received. Notice that the average number of MAC packets sent when the fragment is not
correctly received is identical to the case of perfect channel feedback. Therefore, under
the assumption of i.i.d. fragments, we obtain the average delay (in time units):

dF
IP = NdMAC, (3.38)

where dMAC can be written as follows:

dMAC =
1

1 − PMAC

L∑
i=1

α1,L(i). (3.39)

Only α1,L(i) must be evaluated in closed-form. It can be obtained by putting n = 1 and
p = L in Prop. 3.5 and by replacing PI

IP with PMAC. This leads to:

dMAC =
1

1 − PMAC

L∑
i=1

i∑
k=1

(
iτr,a − (τr,n − τa) + pfbδ{i = L} (τr,a − τa) − k(τr,a − τr,n)

)
× p1(k)pfb

i−k(1 − pfb)δ{i<L}. (3.40)
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3.5.3.3 Efficiency

Useless retransmissions due to an error in the feedback affect the efficiency as well, which
is found as:

ηF
IP =

T0R(1 − PMAC)N

τr,nL PMAC + (1 − PMAC)dMAC
, (3.41)

where ďMAC is the average delay when a fragment fails, dMAC is the average delay at MAC
level (i.e. when one fragment is handled), and R is the coding rate.

3.6 Some particular cases

3.6.1 IBS performance at large SNR

It has been seen that the PER was insensitive to errors in the feedback in the FBS case,
and then it vanishes at large SNR. However, we show in this Section that unlike the
conventional HARQ management, the IBS can be dramatically bad in the presence of
feedback errors.

At large SNR, p1(k) vanishes for all k except for k = 1 where it is equal to 1 (indeed,
when the channel is extremely good, each packet is correctly decoded in one shot). Thus,
we have that pn(k) vanishes too, for all k > n and pn(n) = 1. When inserting into Eq. (3.34):

lim
SNR�1

βn(i) =

(
i − 1
n − 1

)
pfb

i−n(1 − pfb)n. (3.42)

Now, taking the large SNR limit into Eq. (3.30) leads to:

lim
SNR�1

PI
IP = 1 −

C∑
i=N

(
i − 2

N − 2

)
pfb

i−N(1 − pfb)N−1 = 1 −
(

1 − pfb

pfb

)N−1 C−1∑
i=N−1

(
i − 1
n − 1

)
pfb

i. (3.43)

Using known results on binomial series (see Appendix A), it drops down to:

lim
SNR�1

PI
IP = I(pfb; C −N + 1,N − 1), (3.44)

where I(x; a, b) is the so-called regularized beta function. Since the function I(x; a, b)
vanishes when x = 0 or when a or b becomes infinite, for finite transmission credit C and
non-zero error probability pfb on the feedback channel, the PER limit is strictly positive.
This means that the PER does not vanish at large SNR in the IBS case, contrary to the FBS
case.

3.6.2 Instantaneous noisy feedback (T = 0)

This is a common assumption made in the related literature ([Malkamäki and Leib, 2000],
[El bahri et al., 2005], [Wu and Jindal, 2009]). In that case pc = 0 (so, pfb = pe) and
τr,n = τr,a = τa = T0 (from Eqs. (3.9)-(3.15) respectively). Without loss of generality, we
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assume that T0 = 1 which means that the average delay corresponds to a number of
packets, so the metrics become:

dI
IP =

1
1 − PI

IP

C∑
i=N

i
βN(i)

(1 − pfb)δ{i=C}
and ηI

IP =
RN(1 − PI

IP)
C PI

IP + (1 − PI
IP)dI

IP

, (3.45)

dF
IP =

N
1 − PMAC

L∑
i=1

i
β1(i)

(1 − pfb)δ{i=L}
and ηF

IP =
R(1 − PMAC)N

L PMAC + (1 − PMAC)dMAC
. (3.46)

By setting pfb = 0 in the previous equations (i.e. , by considering perfect feedback), all the
closed-form expressions given in Chap. 1 can be retrieved.

3.6.3 Type-I HARQ

To be related with the works involving imperfect feedback, we focus on FBS at MAC level
(N = 1). In the case of Type-I HARQ, we have p1(i) = (1 − p0)pi−1

0 , and then the delay
expression of Eq. (3.40) is simplified into:

dMAC =
1 − p0

(1 − PMAC)(pfb − p0)

(
L(pL

fb − pL
0) + (1 − pfb)

(
pfb fL(pfb) − p0 fL(p0)

))
, (3.47)

with fn(x) :=
∑n−1

k=1 kxk−1.
Furthermore, when L→∞, we find that:

lim
L→∞

dMAC =
1

1 − p0
+

pfb

1 − pfb
, (3.48)

which is in perfect agreement with that given in [Wicker, 1995],[El bahri et al., 2005] and
[Wu and Jindal, 2009].

3.7 Numerical results

3.7.1 Simulations setup

We will present the performance of an ARQ and of CC-HARQ, both with FBS, IBS and
RCS. Each MAC packet has 128 information bits (including CRC-16), and is encoded with
a 1/2-rate convolutional code with generators (23, 35)8 in the CC-HARQ scheme. Next,
these bits are sent over a QPSK constellation, and the symbols are transmitted through
an AWGN channel.

The random RTT that occurs on the imperfect feedback link is built as follows: T is
exponentially distributed with parameter λ > 0, where 1/λ is the expected arrival time.
In that case, dFT(t) = λe−λtdt and E [T|T < (τ0 − T0)] = 1

Pr{T<(τ0−T0)}

∫ τ0−T0

0 t dFT(t). After
simple algebraic manipulations, we get:

pc = e−λ(τ0−T0) (3.49)

E [T|T < (τ0 − T0)] =
1
λ
−

(τ0 − T0)pc

1 − pc
. (3.50)
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In the sequel, the two causes of imperfect feedback will be studied separately:

(i) On the one hand, we can reasonably assume that the feedback is transmitted over
the same channel than the messages, then one can expect that the error probability
pe depends on the SNR. In this case, we set pc = 0 and so pfb = pe = f (SNR), with f
some function.

(ii) On the other hand, the time-out events due to random RTT have a constant error
probability pc, and we set for this case pfb = pc (pe = 0).

3.7.2 Monte-Carlo simulations

In Fig. 3.6, we check the accuracy of the analytical expressions of the efficiency and of the
delay with imperfect feedback. The figures are presented for ARQ and CC-HARQ, for
IP packets fragmented in N = 3, and for both FBS with L = 3 and IBS with C = 9. The
efficiency expression computed in Fig. 3.6a, for perfect RTT (i.e. T = 0) and pe = 10−1, is
of perfect agreement with the Monte-Carlo simulations. This is also checked in Fig. 3.6b
where the delay, computed for a complete imperfect feedback with λ = 1/2 and pe = 10−1,
fits the Monte-Carlo points.
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Figure 3.6: Simulations compared with IP level performance of ARQ/CC-HARQ (N = 3,
L = 3, C = 9).

Finally, the PER of ARQ for several configurations (N, c) of RCS is plotted versus p0 in
Fig. 3.7.

3.7.3 Discussion on the feedback: effect of pe

In this Section, we investigate the feedback impairment on a CC-HARQ scheme. As-
suming that the feedback is transmitted over the same channel than the data, then we
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Figure 3.7: Simulations compared with IP level PER versus p0 for ARQ with RCS.

model the feedback error as Gaussian noise, with probability pe = f (SNR), where f is
some decreasing function of the SNR that depends on the scheme used for the feedback
transmission. In what follows, the feedback is constructed in three different ways:

(a) One bit feedback, i.e. a single ACK/NACK bit is sent through the noisy channel, and
f corresponds to the bit error probability (assuming a detection method is available).

(b) Uncoded feedback frames of 32 bits, including 16 bits for CRC, 1 bit for ACK/ACK,
and the remaining 15 bits can be used to transmit the channel state, or the packet
number, etc.

(c) Coded feedback frames: 32 bits long frames built as described above, then encoded
using the 1/2-rate convolutional code (23, 35)8.

The PER is plotted in Fig. 3.8 for N = 6, L = 3 and C = 18. First of all, the PER of FBS is
insensitive to imperfect feedback, as expected. However, the IBS can be highly degraded
according to the feedback scheme: even for one bit feedback (a), the PER is significantly
increased, but stays lower than the PER of FBS unlike scheme (b). Nevertheless, it is seen
that coding (c) recovers the performance, but we notice a slight degradation that remains
at low SNR (< 0 dB).

The PER behavior has several consequences on the delay and efficiency performance,
as shown in Figs. 3.9 and 3.10. The delay when using the feedback scheme (a) or (c),
plotted in Fig. 3.9a for FBS with L = 3 and in Fig. 3.9b for IBS with C = 18, stays close
to the ideal case for the two retransmission strategies. The SNR shift on the IBS delay
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Figure 3.8: Effect of different feedback strategies on IP level PER of CC-HARQ with
FBS/IBS (N = 6, L = 3, C = 18, pc = 0).

observed for the feedback scheme (b) is easily explained by the PER figure. However, we
notice that the delay of FBS is greatly increased too when uncoded feedback frames are
sent.
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Figure 3.9: Effect of different feedback strategies on IP level delay of CC-HARQ (N = 6,
pc = 0).
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This explains the efficiency of FBS displayed in Fig. 3.10a. Since the delay of FBS is
shifted for large SNR values (i.e. > 0 dB), this error relative to the ideal case is predominant
in the efficiency, which is shifted too. Observe that coding the feedback helps to completely
recover the performance in this case. But the PER becomes more predominant in the
efficiency at low SNR, hence the ideal and non ideal feedback figures coincide. The
delay figure explains also the behaviour of the efficiency of IBS at large SNR. However,
Fig. 3.10b shows that the IBS is dramatically degraded also at low SNR due to the poor
PER performance of the feedback scheme (b). Notice that even coding cannot retrieve all
the efficiency since there is still a shift at low SNR.
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Figure 3.10: Effect of different feedback strategies on IP level efficiency of CC-HARQ
(N = 6, pc = 0).

3.7.4 Discussion on the time-out value: effect of RTT

In this Section, the effect of feedback impairment (ii) is studied on an ARQ and a CC-
HARQ schemes. That is, in all this Section pe = 0 and the RTT parameter is set to λ = 1/3.
In Fig. 3.11 we plot the PER of FBS/IBS for N = 6, L = 3 and C = 18. Since the PER of FBS is
insensitive to any feedback imperfection, it is displayed for the ideal case as a benchmark.
There are three observations. First of all, for the two schemes (ARQ and CC-HARQ) the
IBS performance present an error floor, i.e. the PER values become constant (to 10−3 in our
case) beyond some SNR value. This drawback is due to the random RTT that causes a
constant feedback error probability pc (see Section 3.6.1). Secondly, the CC-HARQ with
IBS is more degraded than the ARQ scheme. Indeed, Fig. 3.11a shows that before the
error floor apparition the PER of IBS is still better than the FBS one, unlike CC-HARQ for
which FBS is always better than IBS, as seen in Fig. 3.11b. Finally, these figures confirm the
intuition that increasing the time-out value enhance the PER performance (in particular,
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the error floor appears later and is lower).
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Figure 3.11: Effect of different time-out values on IP level PER of ARQ/CC-HARQ (N = 6,
L = 3, C = 18, pe = 0, λ = 1/3).

The impact on the delay of the time-out value choice is discussed in Fig. 3.12, where
the ideal feedback cases are displayed as benchmarks. In Fig. 3.12a we plot the delay
of ARQ and have two remarks. Firstly, for any time-out value the delay of FBS remains
lower than the delay of IBS and converges towards the same value at large SNR, as in the
ideal case. Secondly, according to the intuition, the delay at low SNR is larger for higher
time-out values, but is lower for increasing time-out values at large SNR because of the
PER error floors. The delay of CC-HARQ is plotted in Fig. 3.12b. The same remarks hold
except for the IBS case at low SNR, where it is shown that it is systematically better than
the FBS one, unlike in the ideal case.

The efficiency performance are discussed in Fig. 3.13, where the ideal feedback cases
are again displayed as benchmarks. In Fig. 3.13a we plot the efficiency of ARQ, where
we observe that the IBS suffers from the delay shift for large SNR values as described
above. The efficiency of CC-HARQ is plotted in Fig. 3.13b and we see that although the
delay of IBS is better than that of FBS at low SNR, the efficiency of IBS is always lower.
Nevertheless, increasing the time-out value enhances the efficiency performance of the
IBS, whereas the efficiency is degraded in the FBS case.

3.7.5 PER performance of RCS versus FBS and IBS

The previous analysis of FBS/IBS under several imperfect feedback conditions has re-
vealed many weaknesses of the IBS, compared to the FBS. The performance loss in the
PER of the IBS have been identified. Therefore it is of interest to find a retransmission
management strategy that still enhance the PER of FBS, while not dramatically affecting
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Figure 3.12: Effect of different time-out values on IP level delay of ARQ/CC-HARQ (N = 6,
L = 3, C = 18, pe = 0, λ = 1/3).

5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

IP
 l
e

v
e

l 
E

ff
ic

ie
n

c
y

 

 

FBS (ideal)

FBS (τ
0
=3)

FBS (τ
0
=4)

FBS (τ
0
=5)

IBS (ideal)

IBS (τ
0
=3)

IBS (τ
0
=4)

IBS (τ
0
=5)

(a) ARQ

−4 −3 −2 −1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

SNR (dB)

IP
 l
e

v
e

l 
E

ff
ic

ie
n

c
y

 

 

FBS (ideal)

FBS (τ
0
=3)

FBS (τ
0
=4)

FBS (τ
0
=5)

IBS (ideal)

IBS (τ
0
=3)

IBS (τ
0
=4)

IBS (τ
0
=5)

(b) CC-HARQ

Figure 3.13: Effect of different time-out values on IP level efficiency of ARQ/CC-HARQ
(N = 6, L = 3, C = 18, pe = 0, λ = 1/3).



58 3. Hybrid ARQ with imperfect feedback

the IBS. This has been achieved with the use of the RCS in Section 3.4, and this Section
presents a numerical evaluation of the PER performance of RCS compared to FBS/IBS.

In Fig. 3.14, the PER of RCS is plotted when the feedback has a random RTT with
λ = 1/3 and pe = 0. The fragmentation is N = 6 and the credit distribution of RCS is
arbitrarily fixed to L(0) = [3, 3, 3, 3, 3, 3]. The performance of FBS/IBS are displayed for
benchmarking. The PER of an ARQ scheme is plotted in Fig. 3.14a, and of a CC-HARQ
in Fig. 3.14b. In both cases, the RCS still brings a gain in PER relative to the FBS, but is
far more robust to the imperfect feedback than the IBS.
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Figure 3.14: Effect of the different cross-layer strategies (FBS/IBS/RCS) on IP level PER of
ARQ/CC-HARQ with non-zero RTT (N = 6, L = 3, C = 18, L(0) = [3, 3, 3, 3, 3, 3], pe = 0,
λ = 1/3).

In Fig. 3.15, we discuss on the impact of different credit distributions on the PER of
RCS, for N = 6. Again, the FBS and IBS are displayed for benchmarking. For the ARQ
scheme, Fig. 3.15a, we see that the uniform credit distribution (L(0) = [3, 3, 3, 3, 3, 3]) has
a little gain over the FBS. Furthermore, the credit distribution L(0) = [5, 5, 5, 2, 1, 0] is
more powerful and gets closer to the IBS, that is actually the best credit distribution in
the perfect feedback case. In contrast, the distribution L(0) = [2, 2, 5, 5, 2, 2] is even worse
than the FBS. These remarks still hold for the CC-HARQ, as seen in Fig. 3.15b, where the
distribution L(0) = [5, 5, 5, 2, 1, 0] achieves the IBS performance. We conclude that the PER
decreases as the distribution gives more credits to the firsts fragments in the IP packet.

However, such distributions are also less robust to imperfect feedback, as shown
in Fig. 3.16, where the PER of an ARQ scheme is plotted versus p0 for N = 4, L = 2,
C = 8. Imperfect feedback is simulated using a fixed probability pfb = 10−1. The figures
confirm the previous conclusion, i.e. the distribution L(0) = [3, 2, 2, 1] is better than FBS
and the uniform distribution L(0) = [2, 2, 2, 2] in the ideal feedback case. But for imperfect
feedback, while the uniform distribution is robust and remains very close to the ideal
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Figure 3.15: Effect of different initial distributions L(0) on IP level PER of ARQ/CC-HARQ
with RCS (N = 6, L = 3, C = 18, pe = 0, pc = 0).

case, the distribution L(0) = [3, 2, 2, 1] degrades the performance and becomes even worse
than FBS at low p0.

10
−4

10
−3

10
−2

10
−1

10
0

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p
0

IP
 l
e

v
e

l 
P

E
R

 

 

FBS

IBS ideal

RCS ( L
(0)

=[2,2,2,2]) ideal

IBS p
fb

=10
−1

RCS ( L
(0)

=[2,2,2,2]) p
fb

=10
−1

RCS ( L
(0)

=[3,2,2,1]) ideal

RCS ( L
(0)

=[3,2,2,1]) p
fb

=10
−1

Figure 3.16: Effect of different initial distributions L(0) IP level PER of ARQ versus p0 with
RCS and imperfect feedback (N = 4, L = 2, C = 8, pfb = 10−1).
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3.8 Conclusion

This Chapter has been devoted to the analysis of cross-layer HARQ schemes with imper-
fect feedback. We have proposed a model for two kinds of feedback impairments: errors
in the acknowledgment messages, and delayed feedback. We have derived new analytic
expressions at IP level for the PER, the delay and the efficiency of any HARQ scheme.

A numerical analysis has shown that such imperfect feedback conditions may have
more or less impact on the HARQ performance according to the chosen cross-layer re-
transmission management (i.e. , FBS or IBS). While the PER is not modified by any
feedback imperfection in the FBS case, the PER of IBS is dramatically degraded, and thus
the impact on the two other metrics (delay and efficiency) is significant in this case. If
feedback is transmitted into packets, the best FBS performance are achieved by using
coding inside the feedback and by setting a time-out value that is close to the average
arrival time 1/λ. In contrast, the time-out value must be chosen larger in the IBS case,
and even coding cannot retrieve the ideal performance.

Therefore, it is of great interest to design cross-layer schemes that still have a gain
but are more robust to imperfect feedback than the IBS. This issue has been successfully
addressed with the definition of the RCS scheme, for which the analysis has been con-
ducted within a unified framework. The choice of the initial credit distribution offers a
soft transition from the robustness of FBS against imperfect feedback, to the cross-layer
gain brought by IBS.

Finally, the HARQ performance were studied for the SW protocol only. Since LTE
implements a parallel SW version of the HARQ, it could be interesting to extend the
cross-layer concepts of RCS to parallel SW. This extension is straightforward for FBS
since the ARQ contexts that are placed in parallel are independent. More precisely, the
credit distribution within each context is independent of the other contexts, which is not
true for cross-layer strategies.

We have patented the RCS scheme in [P1]. Part of the materials presented during this
Chapter were published in [C2], [C3], [C6] and [C7].
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Chapter 4

Resource allocation problems in
mobile ad hoc networks

4.1 Introduction

Unlike cellular systems, which are organized around base stations deployed by the op-
erator, ad hoc networks are relaxed from any fixed infrastructure. Ad hoc networks are
thus a highly flexible solution for fast, short-lived communications deployment for many
applications, from military ground or other critical scenarios to any future smart network.
However, the lack of structure makes the resource management difficult compared to cel-
lular systems, and ad hoc networks suffer from several practical limitations. This Chapter
moves towards the second part of the thesis, which is devoted to the resource allocation
issue in the paradigm of ad hoc networks. We draw an overview of the ad hoc network
context, and the notions tackled here will be used throughout the rest of the thesis.

The Chapter is organized as follows. The context of the study is given in Section 4.2,
where we describe the system to which the materials contained within these three last
Chapters can be applied, and define the needs and objectives. Section 4.3 presents the
main characteristics of the system and formulates the assumptions that are made until
the end of the thesis. The associated mathematical model and notations are given in
Section 4.4, and will be common to Chapters 5 and 6. Finally, the state of the art is done
in Section 4.5 and Section 4.6 formulates the optimization problem.

4.2 Working context

In the rest of the thesis, we investigate a MANET that may be deployed either in a civilian
context, or on a military scene. In order to simplify the network management, a cluster-
based structure is advocated where a Cluster Head (CH) is elected among the nodes, as
illustrated in Fig. 4.1.

The nodes in a clustered MANET are managed by the CH, which collects the trans-
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Figure 4.1: Clustered mobile ad hoc network.

mitters’ requests and performs a centralized resource allocation accordingly. However,
unlike the Base Station which centralizes all the communications in an uplink-downlink
fashion in cellular wireless networks, the CH does not relay the information between a
pair of users. Instead, in order to avoid the concentration of all the traffic at the CH, peer
to peer links are built after each resource allocation stage, and thus pairwise communi-
cations are done between the communicating nodes. The transmissions follow a Time
Division Multiple Access (TDMA) scheme with specific slots reserved for signaling and
data, as done in the specific Thales devices.

The main goal of resource allocation is to organize the available physical resource
among the transmitting users. In our case, depicted in Fig. 4.2, the objective is to select
the power level and the bandwidth sharing for a communication in order to minimize
the total transmit power subject to some long-term QoS constraints.

Total transmit power minimization enables the minimization of the nodes’ consump-
tion, as well as the reduction of the frequency spatial footprint of the network, while
maintaining the link fidelity. Moreover, power minimization is of great interest to in-
crease the network lifetime, to mitigate the inter-cluster interference and, from a military
point of view, to provide low detection capability.

4.3 Clustered mobile ad hoc networks: assumptions

The designer of a communication system may face several issues, that we identified into
two classes of concerns:
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Figure 4.2: How to assign the resource inside the cluster?

(i) How to cope with the interference that is inherent to wireless networks?

(ii) Can we use some CSI to improve the communication performance?

In this Section, we point out what assumptions can be made on the system described in
Section 4.2 to address these two questions.

4.3.1 Interference management

Since the communications are wireless, it is obvious that the pairs of users that commu-
nicate will interfere with each other. Clustering the network as done in Fig. 4.1 leads to
two levels of interference:

(i) interference between the clusters (inter-cluster),

(ii) interference between the users inside a same cluster (intra-cluster).

In what follows we show how we can deal with.

Inter-cluster interference: The clusters composing the overall network are spread over
the entire available system bandwidth. Therefore, two users from two distinct clusters
that communicate over the same resource will interfere, in spite of any separation or
interference treatment inside inside the cluster.

We first neglect the inter-cluster interference in the developments made in Chap. 5
and 6. Taking inter-cluster interference into account, these results can be extended to
joint cluster resource allocation following the ideas developed in [Ksairi et al., 2010a] and
[Ksairi et al., 2010b].

Intra-cluster interference: The approach that is retained in this thesis is to organize
orthogonal communication schemes to separate the pairs inside a cluster. Though subop-
timal from an information theoretic point of view [Tse and Viswanath, 2005], this solution
can be easily implemented. Typically, OFDMA, which combines the so-called OFDM
technique to combat inter-symbol interference due to multipath spread, and FDMA to
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separate the users, has been widely considered since it is a promising solution for future
wireless standards. We point out that OFDMA is considered in the rest of the thesis.
Actually, any other orthogonal scheme like Single Carrier FDMA could be envisaged.

Moreover, perfect synchronization of the underlying OFDM will be assumed, so that
the subcarriers are perfectly orthogonal with no frequency shift, as well as perfectly
designed cyclic prefix in order to absorb the multipath spread. Therefore, the pairs of
communicating users are perfectly separated using OFDMA inside a given cluster.

4.3.2 Channel state information

The channel information is generally difficult to obtain: old 2G networks did not report
perfect CSI from the mobile to the base station and so did not performed power control
based on perfect CSI. Even the 3G (UMTS) could not have perfect channel knowledge
due to the frequency spread of Code Division Multiple Access (CDMA). In spite of
the wireless mobile environment, some cellular networks (LTE) where designed so that
the channel impulse response may be quickly provided at the transmitter since the Base
Station (resource allocator) is always either the transmitter or the receiver. For instance, in
downlink TDD mode, the CSI is available at the Base Station without additional cost due
to channel reciprocity, and so even if the channel is fast varying (less than a few hundreds
Hertz Doppler frequency). The case of Frequency Division Duplex (FDD) is even simpler
since the CSI is available on the uplink with less latency.

In peer-to-peer communications based ad hoc networks as described in Fig. 4.1, report-
ing the CSI at the resource allocator is much more difficult and often irrelevant. Indeed,
at least two reasons prevent us to consider instantaneous CSI at the resource allocator:

(i) CSI reporting increases the overhead due to the signaling. Thus the amount of CSI
demand for each pairwise link is huge and may flood the network.

(ii) A link between each receiver and the resource allocator must be created for reporting
the CSI in an ad hoc network. Non-negligible part of time may be spent to establish
this communication, which leads to feedback delays that may be larger than the
channel coherence time, leading to outdated CSI.

Exploiting outdated feedback at the resource allocator leads to imperfect CSI knowl-
edge. Some works proved that even imperfect CSI can provide benefit (see [Goldenbaum
et al., 2011] or [Szczecinski et al., 2011]). Therefore a lot of works have optimized resource
allocation under the assumptions of either full CSI (see [Tse and Viswanath, 2005] and
references therein) or imperfect/partial CSI ([Wang and Lau, 2008], [Lau et al., 2008], [Rui
and Lau, 2008], [Brah et al., 2008] and [Ho et al., 2009]). Nevertheless, all these methods
assume that the CSI imperfection is small enough, i.e. , the channel is only slightly dif-
ferent between two CSI reports, and so is highly correlated between the reporting phase
and the resource allocation phase. In the case of MANETs, the previous work cannot be



4.4. Mathematical model 65

applied since the delay between the CSI measurements and the time it is available at the
resource allocator is too large.

Thus, the resource allocation presented in the thesis relies on the long-term average
channel conditions instead of instantaneous channel fading. Basically, we assume that
the channel statistics vary slow enough, i.e. remain constant within few TDMA frames.
Nevertheless, dealing with statistical CSI requires some restrictions.

Diversity handling: Since the short-term fluctuations of the channel are not known,
the resource allocator cannot determine the allocated power for each subcarrier, nor each
subcarrier allocated to which user. Therefore, the so-called multiuser diversity [Tse and
Viswanath, 2005] cannot be achieved.

The system is based on OFDM, thus time and frequency diversities can be exploited to
counteract the lack of CSI. Since both time/frequency diversity and multiuser diversity are
not necessarily cumulative [Tse and Viswanath, 2005], not considering multiuser diversity
does not prevent the designed system to work efficiently. To achieve single-user diversity,
we resort to:

(i) Frequency Hopping (FH) for handling single-user diversity. Moreover, FH provides
an interesting way to counteract eavesdroppers from a military point of view.

(ii) HARQ for enforcing the link performance, since it is a powerful mechanism to cope
with the unknown fast channel variations efficiently.

4.4 Mathematical model

This Section introduces the basic notations that will be used throughout the rest of the
document. We present the mathematical channel model derived from the assumptions
of Section 4.3, and we define the parameters of interest for the optimization. In all
the document, the superscript T stands for the transposition operator, the (multivariate)
complex-valued circular Gaussian distribution with mean a and covariance matrix Σ is
denoted CN(a,Σ), and f−1 is the inverse of any function f with respect to composition.

4.4.1 Channel model

4.4.1.1 OFDM signal

The channel corresponds to the link between the transmitting user k and any receiving
node in the network, including the CH. Let hk(i) = [hk(i, 0), . . . , hk(i,M − 1)]T denote
the channel impulse response of link k associated with OFDM symbol i, where M is the
number of taps. Let us denote by Hk(i) = [Hk(i, 0), . . . ,Hk(i,Nc − 1)]T the Fourier Transform
of hk(i), where Nc is the number of OFDM subcarriers. Assuming well-designed OFDM
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cyclic prefix and FH pattern, the received signal at OFDM symbol i and subcarrier n for
user k is:

Yk(i,n) = Hk(i,n)Xk(i,n) + Zk(i,n), (4.1)

where Xk(i,n) is the transmitted symbol by user k at subcarrier n of OFDM symbol i, and
the additive noise Zk(i,n) ∼ CN(0,N0W/Nc) where N0 is the noise power spectral density
and W is the total bandwidth. It is assumed that each channel is an independent Gaussian
random process with possibly different variances ς2

k,m for each tap, i.e. , hk(i) ∼ CN(0,Σk)
with Σk := diagM×M(ς2

k,m). Hence, direct calculation shows that the diagonal elements
Hk(i,n) of the Fourier Transform matrix Hk(i) are identically distributed1:

Hk(i,n) ∼ CN(0, ς2
k), (4.2)

with ς2
k := Tr(Σk). Thus, the subcarriers of a single link are identically distributed.

4.4.1.2 Channel state information

Let gk(i,n) := |Hk(i,n)|2/N0 be the instantaneous Gain to Noise Ratio (GNR) of link k at
subcarrier n and OFDM symbol i. It is exponentially distributed, with a mean Gk :=
E

[
gk(i,n)

]
independent of n, given by:

Gk =
ς2

k

N0
. (4.3)

We assume that the CH only knows the terms Gk, i.e. , the average GNR instead of the
instantaneous one, for all the active links. Since Gk depends on k, the users are obviously
treated differently, and we assume that the behavior of Gk is driven by the so-called
path-loss. Let Dk be the distance between user k and its corresponding receiver. Then:

Gk =
`(Dk)

N0
, (4.4)

where `(.) is some function dependent on the path-loss model.

Remark on the pairwise links:

The multiuser scheme of the MANET described in Fig. 4.1 is implemented with pairwise
communications through the network. At this step, and regardless of the scheduling:

• For one-to-many communications the only difference by still using OFDM is in the
received OFDM signal expression:

Yk(i,n) = Hk(i,n)X(i,n) + Zk(i,n),
1Notice that the elements of Hk(i) are not necessarily independent. Actually, only M elements are in-

dependent, the others are obtained by linear combination. However, (Hk(i))i≥0 is an independent random
process (since the channel realization is assumed to be different from one OFDM symbol to an other one),
i.e. Hk(i) is independent of Hk( j) for i , j.
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where X(i,n) is the symbol broadcasted to link k at time i over subcarrier n. Thus,
the results extension is straightforward. However, one could envisage a more
sophisticated use of this downlink (broadcast channel), and in that case the results
do not hold anymore.

• For many-to-one communications there is no difference when using OFDM, since
the user receives simultaneously (and interference-free) the messages Xk from links
k on the assigned subcarriers. Once again, a deeper use of this uplink (multiple
access channel) will strongly modify our results.

4.4.2 Power and bandwidth parameters

Let us denote by K the number of links that are active in the considered cluster. Since Gk

does not depend on subcarrier n, the resource allocation algorithm will not distinguish
between subcarriers for a given users pair k, i.e. , the CH cannot attribute which subcarriers
for user k, but only how many. Let nk be the number of subcarriers assigned to the pair
of users k, so the bandwidth proportion occupied by this link is:

γk :=
nk

Nc
, (4.5)

and corresponds to the bandwidth parameter to be optimized. By definition, the in-
equality

∑K
k=1 γk ≤ 1 must hold.

Due to the independence of Gk with respect to the subcarrier n, it is natural for the
transmitter k to use the same average power Pk = E

[
|Xk(i,n)|2

]
on each subcarrier. Let:

Ek := Pk/(W/Nc) (4.6)

be the energy consumed to send one symbol on each subcarrier, and

σ2
k := N0W/Nc (4.7)

be the corresponding noise variance. The energy Ek corresponds to the power parameter
to be optimized. Then, on each subcarrier user k undergoes an average SNR given by:

SNRk =
ς2

kPk

σ2
k

= EkGk. (4.8)

The definition of these parameters is summarized in Fig. 4.3.

4.4.3 Resource allocation optimization issue

In order to mitigate the power radiated by a single cluster or to minimize battery drain,
one can minimize:

PT =

K∑
k=1

nkPk. (4.9)
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Figure 4.3: Resource assignment to user k.

When the total bandwidth W is fixed the total power of the cluster becomes, using
Eqs. (4.5)-(4.6):

PT = W
K∑

k=1

γkEk. (4.10)

Hence, it is equivalent to minimize the total energy QT := PT/W for sending an OFDM
symbol, i.e. to minimize the objective function:

QT =

K∑
k=1

γkEk. (4.11)

From Eq. (4.5)γk are rational numbers, however for tractability purposes we takeγk ∈ [0, 1]
to make the problem continuous.

Finally, in the sequel the users on link k may request some minimal QoS, which will
be denoted by the vector QoS(0)

k
. Let us define the bivariate vector function QoSk(., .) that

represents a set of QoS constraints: this function will be explicited in the rest of the thesis
according to the users’ needs, and can be either the rate, or the PER, or the delay, or any
combination of them. The optimization problem is formalized in Problem 4.1:

Problem 4.1. Let us denote γ = [γ1, · · · , γK]T and E = [E1, · · · ,EK]T. The optimization problem
boils down to:

min
(γ,E)

K∑
k=1

γkEk, (4.12a)

s.t.
K∑

k=1

γk ≤ 1, (4.12b)

γk ≥ 0, Ek ≥ 0, ∀k, (4.12c)

QoSk(γk,Ek) ≥ QoS(0)
k
, ∀k. (4.12d)
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4.5 State of the art

The MCS used in current systems are not often optimal, i.e. , capacity achieving. This
last practical limitation is not specific to MANETs, and this thesis aims to take up this
challenge too. In the following, we review some existing results that fall within, or close
to, the context of OFDMA resource allocation with statistical CSI. We have identified
three types of results in the literature related to our context:

(i) information-theoretic tools based allocations when the link is capacity achieving (in
Shannon’s sense) and when statistical CSI is available. Hence, the metric related to
the rate is the so-called ergodic capacity ([Gault et al., 2007]). Other metrics (such as
delay and PER) have been taken into account since the delay is theoretically infinite
due to the infinite-length of Gaussian random codes and since the PER is arbitrarily
small. The works done in this context have been reviewed in Section 4.5.1.

(ii) information-theoretic tools based allocations when the link is capacity achieving but
with finite inputs and when full CSI at the transmitter is available ([Lozano et al.,
2006]). We have straightforwardly extended this work to the case of statistical CSI
in Section 4.5.2.

(iii) allocations for links built upon practical modulations and codes, that can be either
derived from information theory tools using gaps ([Wong et al., 1999]), or derived
from new metrics ([Devillers et al., 2008] and [Wu and Jindal, 2011]). In both cases,
the CSI is perfectly known at the transmitter. These works have been summarized
in Section 4.5.3.

4.5.1 Information-theoretic tools based allocation with continuous modula-
tion schemes

It is well known that the capacity of ergodic channels with Rayleigh fading is attained
for Gaussian input signals ([Tse and Viswanath, 2005]). In the major part of the literature
relative to (OFDM) resource allocation the MCS is assumed to be ideal, i.e. to consist
in infinitely long Gaussian entries, and thus capacity achieving. In that case, the bit
loading relies on the Shannon formula, which gives the number of bits that can be reliably
transmitted at every channel use. Therefore, the optimization procedures are based on
the celebrated E

[
log(1 + SNR)

]
function, which exhibits some attractive mathematical

features like concavity.

The minimization of an OFDMA cell power, neglecting inter-cell interference, assum-
ing only statistical CSI (Gk)k∈{1,...,K} at the Base Station and assuming QoS only related
to rate constraint, was investigated in [Gault et al., 2007] through solving the following
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optimization problem:

min
(γ,E)

K∑
k=1

γkEk, (4.13a)

s.t.
K∑

k=1

γk ≤ 1, (4.13b)

γk ≥ 0, Ek ≥ 0, ∀k, (4.13c)

Ck(γk,Ek) ≥ ρ(0)
k /W, ∀k, (4.13d)

where the users require minimal rates ρ(0)
k driven by the ergodic capacity Ck of their link:

Ck = γkE

[
log

(
1 +
|Hk(i,n)|2Ek

N0

)]
. (4.14)

Due to the convexity of the optimization problem, the optimal allocation policy was found
and was given as:

E∗k =
1

Gk
f−1(Gkλ

∗), (4.15)

γ∗k =
ρ(0)

k /W

F(Gkλ∗)
, (4.16)

where f is the real-valued function given by:

f (x) =
x2e1/xE1 (1/x)

x − e1/xE1 (1/x)
− x (4.17)

with E1 (x) :=
∫ +∞

1 (e−xt/t) dt the exponential integral2, and F(x) := E
[
log(1 + f−1(x) Xe)

]
with Xe an exponentially distributed random variable with parameter 1. The optimal
Lagrange multiplier λ∗ is a non-negative scalar that satisfies:

K∑
k=1

ρ(0)
k /W

F(Gkλ∗)
= 1. (4.18)

4.5.2 Information theoretic tools based allocation with finite-size modulation
schemes

The constellation sizes are, in practice, constrained to be integer, and the information
theoretic measure must be adapted. Non-Gaussian entries is the first practical limitation
that can be studied in resource allocation and, surprisingly, rare works focused on this
aspect.

Only [Lozano et al., 2006] gave a complete theory of arbitrary modulation inputs
used for power allocation in parallel Gaussian channels, which can be directly applied to

2Actually, the exponential integral E1 (.) is defined in [Abramowitz and Stegun, 1972] as E1 (z) :=∫ +∞

z
(e−t/t) dt for | arg z| < π, and coincide for n = 1 with En(z) =

∫ +∞

1
(e−zt/tn) dt, for<z > 0.
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OFDMA resource allocation with Quadrature Amplitude Modulation (QAM) signals for
instance. The authors investigated sum-capacity maximization with full CSI at the Base
Station, but their work can easily be applied to total power minimization with statistical
CSI through the following optimization problem:

min
(γ,E)

K∑
k=1

γkEk, (4.19a)

s.t.
K∑

k=1

γk ≤ 1, (4.19b)

γk ≥ 0, Ek ≥ 0, ∀k, (4.19c)

Ck(γk,Ek) ≥ ρ(0)
k , ∀k, (4.19d)

where the users require minimal rates ρ(0)
k driven by

Ck = γkIk(Pk), (4.20)

with Ik(x) the ergodic mutual information of link k with QAM entries.
In [Weidong et al., 2007], the mutual information of link k with QAM entries of order

Mk is given for one channel realization. The ergodic mutual information is just the
average of the closed-form expressions provided in [Weidong et al., 2007] over all the
channel realizations. Therefore, we have

Ck = γkE

log
(
1 +
|Hk(i,n)|2Ek

N0

)
−

1
2

log

1 +

(
|Hk(i,n)|2Ek

N0Mk

)2 . (4.21)

In Appendix D.1, it is proven that optimization problem related to Eqs. (4.19) is convex.
Then the optimal policy is given below and is proven in Appendix D.2:

E∗k =
1

Gk
f−1
k (Gkλ

∗), (4.22)

γ∗k =
ρ(0)

k /W

Fk(Gkλ∗)
, (4.23)

where f−1
k is the inverse with respect to composition of the real-valued function fk given

by:

fk(x) = x2 e1/xE1 (1/x) − C(Mk/x)
MkS(Mk/x) − e1/xE1 (1/x)

− x, (4.24)

with C(x) := −ci (x) cos(x)− si (x) sin(x) and S(x) := ci (x) sin(x)− si (x) cos(x), si (.) and ci (.)
are the sine and cosine integrals [Gradshteyn and Ryzhik, 1980], respectively. The function
Fk(x) := E

[
log(1 + f−1

k (x) Xe) − (1/2) log(1 + ( f−1
k (x))2 X2

e/M2
k)
]

with Xe an exponentially
distributed random variable with parameter 1. Again, the optimal λ∗ is chosen such that:

K∑
k=1

ρ(0)
k /W

Fk(Gkλ∗)
= 1. (4.25)

Notice that Eq. (4.21) admits actually a closed-form solution given in Appendix D.3.
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4.5.3 Allocation with practical modulation and coding schemes

The previous paragraph has presented some works that have taken into account for
the practical limitation of the constellation size. Nevertheless, these works still assume
infinitely long codes, which is far more limiting when considering some delay issues.
Moreover such coding schemes are capacity achieving so the bits are conveyed reliably at
rate log(1+SNR), i.e. the error probability at this rate is made arbitrarily small. Since most
practical applications are constrained to non-capacity achieving codes satisfying some
QoS like Bit Error Rate (BER) or PER, this Section presents some works that investigated
resource allocation regarding the demanded QoS level, but with full CSI knowledge.

The basic idea is to introduce metrics that are able to measure the transmission rate
that can be reached at some fixed BER/PER. To the best of the author knowledge, this was
initiated in [Wong et al., 1999], where the problem was formulated and solved for full CSI
Hk(i,n) available at the Base Station:

P
∗

T = min
mk,n∈M

K∑
k=1

Nc∑
n=1

N0

|Hk(i,n)|2
fk(mk,n), (4.26a)

s.t. mk,n = ρ(0)
k /W, ∀k, (4.26b)

mk,n = 0 ∀k , k′ such that mk′,n , 0, ∀n, (4.26c)

where the function fk(.) gives the power needed to transmit mk,n bits at some required
BER, and mk,n are constrained to take values from a discrete ensembleM that represents
the modulation states.

This approach can be generalized by resorting to the so-called SNR gap [Starr et al.,
1999]. When using constant energy per symbol Es at the transmitter, the BER on any
subcarrier n of link k can be expressed from the symbol error expression:

BERk = 4Q


√

3
2
|Hk(i,n)|2

2mk,n − 1
Es

N0

 , (4.27)

so when fixing some target BER to BERtarget
k we can extract:

2mk,n − 1 =
|Hk(i,n)|2Es/N0

2
3

(
Q−1

(
BERtarget

k
4

))2 . (4.28)

We define the positive constant:

Γk :=
2
3

Q−1

BERtarget
k

4




2

(4.29)

as the SNR gap from Shannon capacity for which the number of bits mk,n that can be
conveyed over the subcarrier n of link k at BERtarget

k is:

mk,n =

⌊
log

(
1 +
|Hk(i,n)|2Es/N0

Γk

)⌋
. (4.30)
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This formalism can be used in conjunction with the waterfilling algorithm to maximize
the bit rate under BER constraint (see [Starr et al., 1999] and [Devillers et al., 2008]).
However, taking gaps from the capacity is possible only when CSI is available, because
Γk is computed from expressions that hold true on the AWGN channel, i.e. the gap is
evaluated knowing the channel coefficient. Therefore in our case where the CSI is not
available at the CH, but only statistics are known, adapting such techniques to the ergodic
capacity is impossible and the work of [Gault et al., 2007] presented in Section 4.5.1 cannot
be extended to practical MCS in this way.

When working with finite-length coding schemes, which do not achieve the ergodic
capacity anymore [Tse and Viswanath, 2005], the channel does not support the rates given
by the Shannon formula for arbitrarily low error probabilities. Instead, in order to cope
with the inevitable packet errors, (H)ARQ can be used on top of the FEC to improve the
link reliability. In that case, it has been recently recognized in [Wu and Jindal, 2011] or
[Devillers et al., 2008] that the so-called HARQ goodput was the meaningful metric to
drive the useful bitrate at MAC level since it captures the non-null packet error probability
as well. Therefore, our goal is to perform resource allocation with statistical CSI where
the goodput dictates the rate requirement of the links.

4.6 Optimization problem

In this Section we detail the QoS constraints function QoSk of Problem 4.1 for two cases:

(i) finite-length Gaussian codes,

(ii) practical MCS composed of existing FEC codes and QAM modulations.

Then we derive several optimization problems that will be solved in the next Chapters.

In both cases it will be assumed that each user must be served with a minimum
average rate ρk, thus there are strictly positive constants ρ(0)

k such that ρk ≥ ρ
(0)
k for all

k. In order to cope with the remaining packet errors and fast channel variations, Type-I
HARQ is used. We remind from Chapter 1 that the user (error-free) bitrate ρk (in bit/s) is
proportional to the goodput η̃k:

ρk = η̃kWk, (4.31)

where Wk := γkW is the portion of bandwidth occupied by link k. Thus, in order to remain
bandwidth independent, each user requires a minimal goodput η̃k ≥ η

(0)
k given by:

η̃k(γk,Ek) = γkrkηk(GkEk), (4.32)

where rk is the information rate (in bits) conveyed over link k every channel use, and
ηk : SNR 7→ ηk(SNR) is the efficiency of link k (as defined in Chapter 1).
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4.6.1 Finite-length Gaussian codes

In this case the Type-I HARQ efficiency is:

ηk(SNR) = 1 − P(n)
e (SNR, rk), (4.33)

with P(n)
e (SNR, rk) the packet error probability of the Gaussian code of length n and rate rk.

For the sake of clarity, it can be assumed without loss of generality that the users have the
same code length n. Thus, taking QoSk = η̃k and using Eqs. (4.32)-(4.33) in Problem 4.1
boils down to the new optimization problem:

Problem 4.2.

min
(γ,E)

K∑
k=1

γkEk, (4.34a)

s.t. γkrk

(
1 − P(n)

e (GkEk, rk)
)
≥ η(0)

k , ∀k, (4.34b)
K∑

k=1

γk ≤ 1, (4.34c)

γk ≥ 0, Ek ≥ 0, ∀k. (4.34d)

Problem 4.2 will be solved in Chapter 5 for a given rk.

4.6.2 Practical MCS

In this case the Type-I HARQ efficiency is:

ηk(SNR) = Rk (1 − Pk(SNR)), (4.35)

with Pk(SNR) the PER of the FEC code of given rate Rk. The QAM order Mk is given, and
we have rk = mk with mk = log2(Mk) the number of bits conveyed by the constellation.
Obviously, Mk and Rk have to be chosen during the resource allocation and this choice will
be discussed in details in Chapter 6. Thus, taking QoSk = η̃k and using Eqs. (4.32)-(4.35)
in Problem 4.1 boils down to the new optimization problem:

Problem 4.3.

min
(γ,E)

K∑
k=1

γkEk, (4.36a)

s.t. γkmkRk

(
1 − Pk(GkEk)

)
≥ η(0)

k , ∀k, (4.36b)

K∑
k=1

γk ≤ 1, (4.36c)

γk ≥ 0, Ek ≥ 0, ∀k. (4.36d)
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Although its mathematical expression depends on the PHY level PER value, the
goodput is not enough for completely characterizing a link performance. Indeed, as
stated in [Ho et al., 2009], the MAC level PER has also to be kept below a certain threshold
PMAC,(0)

k . Therefore, taking QoSk = [η̃k PMAC
k ]T in Problem 4.1 leads to:

Problem 4.4.

min
(γ,E)

K∑
k=1

γkEk, (4.37a)

s.t. γkmkRk

(
1 − Pk(GkEk)

)
≥ η(0)

k , ∀k, (4.37b)

PMAC
k (γk,Ek) ≤ PMAC,(0)

k , ∀k, (4.37c)
K∑

k=1

γk ≤ 1, (4.37d)

γk ≥ 0, Ek ≥ 0, ∀k. (4.37e)

Finally, although constraining the packet errors at MAC level enables to roughly
control the transmission delay (also constrained by the maximum transmission credit L),
it is better to consider the HARQ delay dMAC

k at MAC level as the delay constraint. Taking
QoSk = [η̃k dMAC

k ]T in Problem 4.1 leads to the fourth and last problem:

Problem 4.5.

min
(γ,E)

K∑
k=1

γkEk, (4.38a)

s.t. γkmkRk

(
1 − Pk(GkEk)

)
≥ η(0)

k , ∀k, (4.38b)

dMAC
k (γk,Ek) ≤ d(0)

k , ∀k, (4.38c)
K∑

k=1

γk ≤ 1, (4.38d)

γk ≥ 0, Ek ≥ 0, ∀k. (4.38e)

4.7 Conclusion

In this Chapter, we have described the ad hoc context within which the work presented in
this thesis can be applied. The rationale to the design choice of the considered MANET has
been reviewed, and the different assumptions concerning this system have been carefully
discussed, and have led to the channel model that will be considered in the subsequent
Chapters.

The main objective is the minimization of total cluster power while fulfilling some QoS
constraints. Related techniques from the state of the art have been reviewed, some of them
have been selected as a work basis, the others have been rejected after discussion. Finally,
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the mathematical formulation of the minimization problem has been done, and will be
treated for two different realizations of the PHY layer in the two following Chapters:

• in Chapter 5 we solve the case of finite-length Gaussian codes formalized in Prob-
lem 4.2,

• in Chapter 6 we solve Problems 4.3, 4.4 and 4.5 taking into account for realistic MCS.
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Chapter 5

Resource allocation for HARQ with
finite length codes

5.1 Introduction

The previous Chapter has introduced the background where the designed communica-
tion schemes developed in the thesis can take place. In this Chapter, we evaluate the
best performance that one could expect from a Type-I HARQ-based clustered OFDMA
MANET using statistical CSI since it is assumed that Gaussian codes with a finite block
length are used. The Shannon capacity, defined as the largest rate at which one can
transmit error-free, is achieved for random coding by letting the block length growing to
infinity [Tse and Viswanath, 2005]. When the block length is constrained to a fixed value,
for delay purposes for instance, the Shannon capacity is an unreachable limit. Therefore,
designing the system based on the ultimate performance available with finite size codes
is of great interest.

This Chapter is organized into four parts. In Section 5.2, we review the most contribut-
ing techniques for the study of finite length coding, and the framework of information
spectrum is chosen as a work basis. Then, in Section 5.3, the error probability of Gaussian
codes with finite length is computed in closed-form over the Rayleigh channel. Based on
this new result, the optimal power and bandwidth allocation of the users is performed in
Section 5.4. Finally, some numerical results are given in Section 5.5.

5.2 Maximum rate codes with finite block length: previous works

This Section reviews the principal attempts of characterizing the error probability of
maximal rate coding schemes of finite block length: the Gallager random coding bound,
the more recent theory of channel dispersion, and finally the mutual information rate,
which is the most promising analysis technique from our objective point of view.



78 5. Resource allocation for HARQ with finite length codes

5.2.1 Random coding bound

The error probability of random codes of rate R and length n has an exponential decay, as
shown by the Gallager’s random coding bound [Gallager, 1968]:

P(n)
e ≤ 2−nEr(R), (5.1)

where Er(R) is the so-called Gallager’s exponent that is positive for R < C (where C is
the channel capacity defined in [Shannon, 1948]). Unfortunately, the Gallager’s exponent
does not admit simple closed-form expressions. As a consequence, the resource allocation
optimization problem would be intractable.

5.2.2 Channel dispersion

An alternative approach that avoids the use of random exponents to characterize the
ultimate coding performance when the code length is finite has been studied in [Polyan-
skiy et al., 2010]. It is proved that the maximal rate R of such codes, to sustain a given
probability of error P(n)

e , is related to the channel capacity C as:

R = C −

√
V
n

Q−1(P(n)
e ) + O

(
log n

n

)
, (5.2)

where Q−1 is the inverse with respect to composition of the Gaussian tail given by
Q(x) := (1/

√
2π)

∫
∞

x e−t2/2dt. The gap
√

V/n Q−1(P(n)
e ) from channel capacity depends

on the channel dispersion V defined in [Polyanskiy et al., 2010] as:

V = lim
P(n)

e →0
lim sup

n→∞
n

(C − R)2

2 log(1/P(n)
e )
. (5.3)

Thus, a good approximation to the error probability of a rate R code with block length n
is given by:

P(n)
e ≈ Q

( √
n(C − R)
√

V

)
. (5.4)

For the AWGN channel with real-valued Gaussian inputs, characterized by the SNR, the
previous approximation holds with [Polyanskiy et al., 2010, Th. 54]:

C =
1
2

log(1 + SNR) (5.5)

V =
SNR

2
2 + SNR

(1 + SNR)2 log2 e. (5.6)

The authors found the very simple expression Eq. (5.6) after tedious derivations from
Eq. (5.3). Since we are interested in the Rayleigh fading channel, averaging the previous
derivations from the definition of V seems difficult. Instead we will rely on another
approach, more tractable.
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5.2.3 Mutual information spectrum

The concept of outage probability is usually dedicated to the study of the block fading
channel [Tse and Viswanath, 2005], and more generally of non-ergodic channels. Yet,
in [Laneman, 2006], the author argues that even in AWGN channels (and so, in ergodic
channels) the mutual information between finite size inputs X and finite size outputs Y is
still a random variable, and thus has studied the distribution of the mutual information
rate defined as:

i(X; Y) :=
1
n

log
fX,Y(X,Y)

fX(X) fY(Y)
. (5.7)

where X is a codeword of length n symbols and rate R nats per symbol. An outage occurs
whenever the coding rate R exceeds the mutual information rate of the transmitted
codeword, defining the so-called mutual information spectrum [Han, 2003]:

Po := Pr {i(X,Y) ≤ R} . (5.8)

Since the chance for a codeword to be recoverable is driven by its outage events, these
statistics have been proposed in [Buckingham and Valenti, 2008] to represent the error
probability of finite length coding schemes over the AWGN channels. Taking codewords
from a (n,R) Gaussian codebook, it was found:

P(n)
e ≈ Q

 √n (log(1 + SNR) − R)√
2 SNR/(1 + SNR)

 . (5.9)

Noticing that C = log(1 + SNR) is the capacity of the AWGN channel with complex
Gaussian inputs, the similarity between Eq. (5.4) and Eq. (5.9) is interesting and thus
the quantity 2 SNR/(1 + SNR) can be interpreted as a channel dispersion when finite
and complex Gaussian codewords are used. Likewise, in the sequel we choose the
information spectrum to be the ultimate error probability of finite length codes over the
Rayleigh channel.

5.3 The error probability of finite length Gaussian codes over the
Rayleigh channel

The distribution of the mutual information rate in a (static) fading channel has been
succinctly described in [Laneman, 2006]. However, for our ultimate goal is to use this
framework to perform resource allocation over the Rayleigh channel, it is crucial to have
an exploitable expression of the mutual information rate of the ergodic Rayleigh fading
channel, which is obtained in closed-form in this Section.
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5.3.1 Channel model

In this Section we recall the Rayleigh channel model. Denoting by Y ∈ Cn the channel
output:

Y = HX + N, (5.10)

where X and N are random vectors of length n with i.i.d. elements Xk and Nk, respectively.
Xk is uniformly distributed over CN(0,Es), whereas Nk ∼ CN(0,N0), and H is a n × n
diagonal matrix with i.i.d. elements Hk ∼ CN(0, σ2

h).
Moreover, the channel gains |Hk| are Rayleigh distributed, such that a random SNR

can be defined as:

SNRk =
|Hk|

2Es

N0
, (5.11)

and is exponentially distributed with parameter 1/SNR, where SNR = σ2
hEs/N0 is the

average SNR.

5.3.2 The distribution of the mutual information rate

Since the channel model Eq. (5.10) is discrete and memoryless, we can rewrite Eq. (5.7) as
the average of mutual information of n scalar inputs:

i(X; Y) =
1
n

n∑
k=1

i(Xk; Yk). (5.12)

For the Rayleigh channel defined in Eq. (5.10), one needs only to compute the mutual
information i(Xk; Yk) between two scalar inputs Xk and Yk thanks to the i.d. property.
Conditioning on the channel fading Hk in Eq. (5.10), the random variables Yk|(Xk,Hk) ∼
CN(HkXk,N0) and Yk|Hk ∼ CN(0, |Hk|

2Es + N0) are Gaussian. Thus, for a given fading
realization Hk = hk, the mutual information between Xk and Yk is given by:

iHk=hk(Xk; Yk) = log
(
1 + |hk|

2 Es

N0

)
+

|Yk|
2

|hk|
2Es + N0

−
|Yk − hkXk|

2

N0
. (5.13)

For finite n, and letting Hk to vary, the mutual information rate i(X,Y) is a random variable
that we denote by Zn:

Zn :=
1
n

n∑
k=1

log
(
1 + |Hk|

2 Es

N0

)
+

1
n

n∑
k=1

(
|Yk|

2

|Hk|
2Es + N0

−
|Nk|

2

N0

)
. (5.14)

It was shown in [Laneman, 2006] that the term (|Yk|
2/(|Hk|

2Es + N0)− |Nk|
2/N0) was equiv-

alent to a product of two independent random variables, hence:

Zn =
1
n

n∑
k=1

log
(
1 + |Hk|

2 Es

N0

)
+

1
n

n∑
k=1

√
|Hk|

2Es/N0

1 + |Hk|
2Es/N0

Wk, (5.15)
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where Wk are i.i.d. Laplace random variables with mean zero and parameter 1, i.e.
Wk ∼ L(0, 1) so that E [Wk] = 0 and Var (Wk) = 2, and Wk is independent of Hk. Hence,
we have that Zn = (1/n)

∑n
k=1 ik with (ik)k∈{1...,n} an i.i.d. random process given by:

ik = log
(
1 + |Hk|

2 Es

N0

)
+

√
|Hk|

2Es/N0

1 + |Hk|
2Es/N0

Wk. (5.16)

For the sake of simplicity, we resort to a Gaussian approximation of Zn for the Rayleigh
channel, which was shown to be accurate in [Buckingham and Valenti, 2008] for the
AWGN channel. Thus, as the sum of n i.i.d. random variables, Zn is approximated with
a Gaussian random variableN(mn, σ2

n), where:

mn := E [Zn] , (5.17a)

σ2
n := Var (Zn) . (5.17b)

The mean mn is easily obtained, since Zn is the sum of i.i.d. random variables:

mn =
1
n

n∑
k=1

E
[
log

(
1 + |Hk|

2 Es

N0

)]
+

1
n

n∑
k=1

E


√
|Hk|

2Es/N0

1 + |Hk|
2Es/N0

Wk


=

1
n

n∑
k=1

E
[
log(1 + SNRk)

]
+

1
n

n∑
k=1

E


√
|Hk|

2Es/N0

1 + |Hk|
2Es/N0

E [Wk]

= E
[
log(1 + SNRk)

]
(5.18)

since E [Wk] = 0. Finally, it is well known that this expectation leads to:

mn = e1/SNRE1(1/SNR), (5.19)

where E1(x) :=
∫
∞

1 e−xu/udu =
∫
∞

x e−t/tdt is known as the exponential integral [Abramowitz
and Stegun, 1972]. Notice that C = E

[
log(1 + SNRk)

]
is the ergodic capacity of the

Rayleigh channel. The variance can be computed from the conditional variance formula
[Ross, 2007]:

σ2
n :=

1
n2

n∑
k=1

(E [Var (ik|Hk)] + Var (E [ik|Hk]))

=
1
n2

n∑
k=1

(
E

[
SNRk

1 + SNRk
Var (Wk)

]
+ Var

(
log(1 + SNRk)

))
=

1
n

(
E

[
2 SNRk

1 + SNRk

]
+ Var

(
log(1 + SNRk)

))
. (5.20)

Thus, σ2
n = (1/n)(ς2+κ2), where ς2 := 2E [SNRk/(1 + SNRk)] and κ2 := Var

(
log(1 + SNRk)

)
.

The following identity holds for the variance:
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Proposition 5.1.

σ2
n =

1
n

(
2 −

2

SNR
e1/SNRE1(1/SNR) − e2/SNRE2

1(1/SNR) +

∫
∞

0
log2(1 + SNR t)e−tdt

)
.

(5.21)

Proof. By direct computation from Eq. (5.20) one finds:

ς2 = 2E
[

SNRk

1 + SNRk

]
= 2

∫
∞

0

u
1 + u

1

SNR
e−u/SNRdu

=
2

SNR

(
−e1/SNRE1(1/SNR) + SNR

)
, (5.22)

after using [Gradshteyn and Ryzhik, 1980, Eq. (3.353.5)]. Now:

κ2 = E
[
log2(1 + SNRk)

]
−

(
E

[
log(1 + SNRk)

])2

=

∫
∞

0
log2(1 + SNR t)e−tdt −m2

n, (5.23)

where in the first term the integration variable u has been changed into SNR t, and the
second term is easily computed using Eq. (5.19). �

The variance is more difficult to compute than the mean, since the integrals that are
involved are difficult to obtain in closed-form. Nevertheless, the following Proposition
gives some insights on the variance, using approximations.

Proposition 5.2. Tight closed-form approximations of κ2:
(Low SNR regime) For SNR << 1,

κ2
≈ log2(1 + SNR) − e2/SNRE2

1(1/SNR). (5.24)

(Large SNR regime) For SNR >> 1,

κ2
≈
π2

6

(
CteEuler − log(SNR)

)2
− e2/SNRE2

1(1/SNR), (5.25)

where CteEuler = lims→∞
(∑s

k=1 1/k − log s
)

is the Euler-Mascheroni constant.

Proof. From Prop. 5.1 we have:

κ2 =

∫
∞

0
log2(1 + SNR t)e−tdt − e2/SNRE2

1(1/SNR), (5.26)

so the approximation work is focused on the first term of RHS.
For SNR << 1 (i.e. low average SNR), first order Taylor series expansion gives log(1 +

SNR t) ≈ SNR t, so that the function f (t) = log2(1 + SNR t) ≈ (SNR t)2 is convex. This
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convexity property is used in conjunction with Jensen’s inequality, in order to facilitate
the integration. Therefore this leads to:∫

∞

0
log2(1 + SNR t)e−tdt & log2

(∫
∞

0
(1 + SNR t)e−tdt

)
= log2

(
1 + SNR

∫
∞

0
te−tdt

)
= log2

(
1 + SNR

)
, (5.27)

leading to the first approximation, valid in the low SNR regime. Numerical evaluations
will confirm later that this approximation remains close to the true integral value.

Now for SNR >> 1 (i.e. large average SNR), log(1 + SNR t) ≈ log(SNR t) and from
Eq. (5.26) we write:∫

∞

0
log2(1 + SNR t)e−tdt ≈

∫
∞

0
log2(SNR t)e−tdt

(a)
=

1

SNR

∫
∞

0
log2(u)e−u/SNRdu

(b)
=

1

SNR
× SNR

(
π2

6

(
CteEuler + log(1/SNR)

)2
)
, (5.28)

where (a) is obtained after changing SNR t into u, and the resulting integral is known
from [Gradshteyn and Ryzhik, 1980, Eq. (4.335.1),] giving (b). The final result comes after
straightforward simplifications. �

The bounds obtained from Prop. 5.2 are displayed in Fig. 5.1 for n = 100. In Fig. 5.2 are
compared, for several SNR values, the true distributions of Zn obtained from Monte-Carlo
simulations, with the Gaussian approximation N(mn, σ2

n) computed using the Proposi-
tions.

5.3.3 Derivations of closed-form expression for the outage probability

Like in [Buckingham and Valenti, 2008], the error probability P(n)
e is computed as the

cumulative distribution Po of the mutual information rate Zn, for which the distribution
has been characterized in Prop. 5.1 and Prop. 5.2:

P(n)
e = Pr {Zn ≤ R} = FZn(R), (5.29)

where FZn is the cumulative distribution function of Zn.
Since the Gaussian random variableN(mn, σ2

n) has been introduced as an approxima-
tion to Zn, the distribution of Zn can be replaced with the Gaussian distribution, leading
to:

P(n)
e ≈ Q

mn − R√
σ2

n

 , (5.30)
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Figure 5.1: Illustration of the bounds for n = 100.
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where mn and σ2
n are known explicitly from Eq. (5.19), Prop. 5.1 and Prop. 5.2. In Fig. 5.3,

the closed-form given in Eq. (5.30) is compared with the true outage probabilities (simu-
lations) for several rates R and blocklength n.
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Figure 5.3: Approximate error probability vs Monte-Carlo simulations.

5.4 Resource allocation with finite size codes

In this Section we propose a solution to Problem 4.2, which was defined for Type-I
HARQ with finite length Gaussian codes. The optimization problem is first derived
using the closed-form expression derived previously, then we present the algorithm from
the literature that will be used for the optimal resolution, and finally we show how it is
applied to our problem.

5.4.1 Optimization problem

Problem 4.2 has been defined based on the individual goodput:

η̃k(γk,Ek) = γkrk(1 − P(n)
e (GkEk, rk)), (5.31)

where P(n)
e (SNR,R) is the error probability, function of SNR, of a (n,R) Gaussian code

which has been expressed in closed-form in Section 5.3:

P(n)
e (SNR,R) = Q

 √n(µ(SNR) − R)

σ(SNR)

 . (5.32)

The mean µ and the standard deviation σ are given by (see Eq. (5.19), Prop. 5.1 and
Prop. 5.2):
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• µ(x) := e1/xE1(1/x),

• σ(x) :=
√

log2(1 + x) − e2/xE2
1(1/x) + 2 − (2/x)e1/xE1(1/x).

It is assumed that the information rate rk is fixed during the optimization procedure, and
the choice of rk will be discussed in Section 5.5. Let us rewrite Problem 4.2 by composing
with the log at both sides of the goodput constraints, as follows:

Problem 5.1.

min
(γ,E)

K∑
k=1

γkEk, (5.33a)

s.t. log η̃k(γk,Ek) ≥ log η(0)
k , ∀k, (5.33b)

K∑
k=1

γk ≤ 1, (5.33c)

γk > 0, Ek > 0, ∀k. (5.33d)

In order to facilitate the optimization procedure, the following conjecture is of great
interest (it is more discussed in Appendix E.1):

Lemma 5.1. For all k, the function log(1/η̃k) is biconvex in (γk,Ek) [Gorski et al., 2007].

In the light of Lemma 5.1, Problem 5.1 is the minimization of a biconvex objective
function (i.e. that is convex in each direction γ and E, but not jointly) over a biconvex set,
and thus falls within the class of biconvex optimization problems [Gorski et al., 2007].

The constraints Eq. (5.33d) ensure that the problem will be feasible, i.e. , if for instance
∃k such that γk = 0, then logγk is not defined, and from logγk → −∞ when γk → 0, we
find that log η̃k < log η(0)

k . Finally, the next Condition 5.1 provides an equivalence for the
problem feasibility. In the rest of the Chapter, it is assumed that Condition 5.1 holds.

Condition 5.1. Problem 5.1 is feasible if, and only if,

K∑
k=1

η(0)
k

rk
< 1. (5.34)

Sketch of proof. If Problem 5.1 is feasible, then there exists a sequence (γ, E) such that
∀k, η(0)

k ≤ η̃k(γk,Ek) and
∑

k γk ≤ 1. This implies that η(0)
k ≤ γkrk(1−P(n)

e (GkEk)) < γkrk, since
0 < P(n)

e (GkEk) < 1 for Ek > 0. So we have

K∑
k=1

η(0)
k

rk
<

K∑
k=1

γk ≤ 1. (5.35)

Conversely, assume that Eq. (5.34) holds. Then, for some sufficiently small ε > 0, the
problem is feasible by considering Ek →∞ and γk = (η(0)

k + ε)/rk. �
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5.4.2 Optimal allocation algorithm

The problem of finding globally optimal solutions to the minimization of biconvex func-
tions over a biconvex constraints set has been solved in [Floudas and Visweswaran,
1993]. The optimal solution is reached using a modified primal-dual approach called
Global OPtimization (GOP) algorithm. The proposed approach splits the original prob-
lem into primal and relaxed dual subproblems which provide valid upper and lower
bounds respectively on the global optimum. In a sense that will be detailed, the authors
have proven the finite ε-convergence of their algorithm towards an ε-global optimum.

5.4.2.1 Description of the GOP algorithm

The purpose is to solve the optimization problem:

min
x,y

f (x, y), (5.36a)

s.t. g(x, y) ≤ 0, (5.36b)

x ∈ X, y ∈ Y, (5.36c)

where X ⊂ Rn and Y ⊂ Rn are non-empty, compact, convex sets, and g(x, y) is a p-vector
of inequality constraints. Without loss of generality, it can be assumed that X represents
bounds on x and may be incorporated into the constraints g, and so will be dropped from
now. The variables y are defined such that the following conditions hold:

Condition 5.2. The problem defined by Eqs. (5.36) is a biconvex optimization problem, i.e.

(a) f (x, y) is convex in x (resp. y) for every fixed value of y (resp. x).

(b) g(x, y) is convex in x (resp. y) for every fixed value of y (resp. x).

Define now the Primal Problem at iteration `:

min
x

f (x, y`), (5.37a)

s.t. g(x, y`) ≤ 0, (5.37b)

where y` ∈ Y. Since it is simply the problem described in Eqs. (5.36) solved for fixed
values of y = y`, the Primal Problem gives an upper bound on the optimal solution to
Eqs. (5.36). The Primal Problem is convex in x, therefore its optimal Lagrange multiplier
λ` can be found from convex optimization tools .

Next, applying duality theory and projection concepts leads to the Relaxed Dual
Problem at step `:

min
y∈Y,µB

µB, (5.38a)

s.t. µB ≥ min
x

(
f (x, y) + λ`

T
g(x, y)

)
, (5.38b)
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where µB is a scalar and λ` is the optimal multiplier from the `-th Primal Problem. The
inner minimization in Eqs. (5.38) involves the Lagrangian L(x, y,λ`) formulated at the `-th
Primal Problem:

L(x, y,λ`) = f (x, y) + λ`
T

g(x, y). (5.39)

The Relaxed Dual problem defined in Eqs. (5.38) provides a lower bound on the optimal
solution to Eqs. (5.36). However it can be very difficult to solve due to the presence of the
inner minimization, so the authors define a less complex subproblem.

Let the first order Taylor series expansion of the Lagrange function at x` be given by:

L(x, y,λ`)
∣∣∣lin
x` = L(x`, y,λ`) +

(
∇xL(x, y,λ`)

∣∣∣
x`

)T
(x − x`)

= L(x`, y,λ`) +

n∑
i=1

∇xiL(x, y,λ`)
∣∣∣
x` (xi − x`i ). (5.40)

Furthermore, for i ∈ {1, . . . ,n} let xL
i and xU

i be the lower and upper bounds on xi, re-
spectively, and let B j be a combination of these bounds. Let us denote by xB j the vector
of lower/upper bounds corresponding to the combination B j, and let CB be the set of all
bound combinations. For instance, for n = 2, if xL

i = 0 and xU
i = 1 (i = 1, 2) then there are

4 combinations B j ∈ CB for j = 1, 2, 3, 4:

xB1 = [0 0]
T
, xB3 = [1 0]

T
,

xB2 = [0 1]
T
, xB4 = [1 1]

T
.

(5.41)

For a given combination B j, the sign of ∇xiL(x, y,λ`
′

)
∣∣∣
x`′ when evaluated at y = y`, is

said to be a qualification constraint of the Lagrange function L(x, y,λ`
′

) of iteration `′ < `
for iteration `:

∇xiL(x, y,λ`
′

)
∣∣∣
x`′ ≤ 0 if x

B j

i = xU
i , and (5.42a)

∇xiL(x, y,λ`
′

)
∣∣∣
x`′ ≥ 0 if x

B j

i = xL
i . (5.42b)

For all `′ < `, let F (`′, `) be the Lagrange function from iteration `′ whose qualification
constraint is satisfied at y`, and let xB j be the corresponding combination of bounds of the
x variables for this Lagrange function.

Finally, the subproblem at iteration ` for combination B` ∈ CB can be defined:

min
y∈Y,µB

µB, (5.43a)

s.t.
µB ≥ L(xB j , y,λ`

′

)
∣∣∣lin
x`′

∇xiL(x, y,λ`
′

)
∣∣∣
x`′ ≤ 0 if x

B j

i = xU
i

∇xiL(x, y,λ`
′

)
∣∣∣
x`′ ≥ 0 if x

B j

i = xL
i

∀ j ∈ F (`′, `) and `′ ∈ {1, . . . , `} (5.43b)

µB ≥ L(xB` , y,λ`)
∣∣∣lin
x`

∇xiL(x, y,λ`)
∣∣∣
x` ≤ 0 if xB`

i = xU
i

∇xiL(x, y,λ`)
∣∣∣
x` ≥ 0 if xB`

i = xL
i

(5.43c)
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In [Floudas and Visweswaran, 1993], it is shown that the optimal value of the `-th
Relaxed Dual Problem is lower bounded by the minimal value of all the subproblems
for all B` ∈ CB and all `′ ∈ {1, . . . , ` − 1}. Solving Eqs. (5.43) in an iterative fashion leads
to successive increasing lower bounds on the optimal value of Eqs. (5.38). The GOP
algorithm solves alternately the Primal Problem in Eqs. (5.37) and the subproblem in
Eqs. (5.43), ∀B` ∈ CB and `′ ∈ {1, . . . , `−1}, within an iteration `, until the upper and lower
bounds meet or the maximum number of iterations `M is attained.

Finally, in their paper the authors established the two key theorems:

Theorem 5.2 (Finite ε-convergence [Floudas and Visweswaran, 1993]). If the original prob-
lem is biconvex, then, under mild conditions, the GOP algorithm terminates in a finite number of
steps for any given gap ε > 0 on the bounds.

Theorem 5.3 (Global Optimality [Floudas and Visweswaran, 1993]). Under the same con-
ditions, the GOP algorithm will terminate at the global optimum of the original problem.

5.4.2.2 Application of the GOP to Problem 5.1

Following the GOP approach for Problem 5.1, let us define the Primal Problem at step `:

min
γ

K∑
k=1

γkE`k, (5.44a)

s.t. log η(0)
k − log η̃k(γk,E`k) ≤ 0, ∀k, (5.44b)

K∑
k=1

γk ≤ 1. (5.44c)

The Relaxed Dual Problem at step ` is:

min
E�0,µB

µB, (5.45a)

s.t. µB ≥ min
γ

L(γ,E,λ`), (5.45b)

where µB is a scalar, λ` are the optimal multipliers of Eqs. (5.44), and the Lagrangian is
defined by:

L(γ,E,λ) =

K∑
k=1

γkEk −

K∑
k=1

λk

(
log rk + logγk + log(1 − P(n)

e (GkEk, rk)) − log η(0)
k

)
+ λK+1

 K∑
k=1

γk − 1

 . (5.46)

Eqs. (5.45) are solved using the GOP, thus the following gradient is needed to define the
subproblems as in Eqs. (5.43):

∀k ∈ {1, . . . ,K}, ∇γkL(γ,E,λ) = Ek −
λk

γk
+ λK+1. (5.47)
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For a fixed precision ε > 0, the optimal allocation algorithm is thus summarized in
Algorithm 5.1, and the next result holds.

Algorithm 5.1: GOP algorithm for Problem 5.1
(1) Initialization:

Set the maximum number of iterations to `M, set UB = ∞, LB = −∞.
Set µstor

B = ∅, F (`′, `) = ∅, for all ` ≤ `M and `′ ≤ `.
Initialize CB, ` = 1 and E1.

(2) Primal Problem:
Solve Eqs. (5.44), store the solution into Q`(E`), store the optimal Lagrange
multipliers (λ`) and set UB = min(UB,Q`(E`)).

(3) Selection of Lagrange functions:
For `′ = 1 to (` − 1), evaluate the sign ∀k ∈ {1, . . . ,K} of ∇γkL(γ,E`,λ`)

∣∣∣
γ`

for all
B j ∈ CB. Select the one that satisfies the qualification constraints Eq. (5.42) to be in
F (`′, `).

(4) Relaxed Dual Problem:
Solve Eqs. (5.43), ∀B` ∈ CB and `′ ∈ {1, . . . , ` − 1}, and store the solutions into µstor

B .
Select the minimal value LB from µstor

B and the associated Emin, delete it from µstor
B ,

and set E`+1 = Emin.

(5) Check for convergence:
If UB − LB > ε, increment ` by 1 and return to Step (2).
Else stop.

Theorem 5.4. For any ε > 0, the allocation algorithm defined in Algorithm 5.1 terminates at an
ε-global optimum solution to Problem 4.2.

Proof. By Theorems 5.2 and 5.3 that hold true for the GOP when applied to the equivalent
Problem 5.1. �

5.5 Numerical results

In this Section we give some numerical results that illustrate the framework developed
in this Chapter. We begin with describing the overall simulation background. Next,
GOP results are given for fixed coding rate values when the goodput demand varies.
The choice of the coding rate within the allocation procedure is then discussed. Finally,
we see that the outage probability computed in the Chapter can tightly approximate the
performance of good FEC codes over the ergodic Rayleigh channel.
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5.5.1 Simulation settings

Due to the GOP complexity, only K = 2 communication links are considered with average
SNR configured to 10 dB and 30 dB, respectively. The transmitters use Gaussian codes of
given length n and given rates rk. The coding rates choice will be explained later. For the
sake of simplicity the rate request is uniform:

η(0)
k = ηT/K, (5.48)

with ηT the total goodput demand of the cluster (in bit/s/Hz). The total spectral efficiency
requirement ηT is related to the sum-rate of the cluster ρ (in bit/s) using the bandwidth W
(in Hz):

ρ = ηTW. (5.49)

5.5.2 GOP results versus increasing sum-rate demand

In this case, the rate rk is arbitrarily fixed to a value that satisfies Condition 5.1. If ηT < 1/2
then rk = 1/2, hence

∑K
k=1 η

(0)
k /rk = K (ηT/K)/(1/2) < 1. Else if 1/2 ≤ ηT < 1 then rk = 1,

hence
∑K

k=1 η
(0)
k /rk = ηT/1 < 1, and so on.

In Fig. 5.4, we plot the power consumption resulting from Algorithm 5.1 versus the
spectral efficiency request ηT. The ergodic capacity based algorithm from [Gault et al.,
2007] is displayed as a benchmark. Since ηT ∈ [0, 1] bit/s/Hz (corresponding to a sum-rate
ρ ∈ [0, 1] Mbit/s in W = 1 MHz), we have fixed rk = 1/2 for ηT ∈ [0, 0.5) bit/s/Hz and
rk = 1 for ηT ∈ [0.5, 1] bit/s/Hz, for all k. Very surprisingly, our optimized Type-I HARQ
scheme with finite-length Gaussian code outperforms the capacity-achieving scheme of
[Gault et al., 2007] for low spectral efficiency requests (basically, between 0.05 bit/s/Hz
and 0.5 bit/s/Hz for n = 512 and up to 0.65 bit/s/Hz for n = 104 and n = 106).

This can be explained by the total bandwidth that is allocated to the cluster, as shown
in Fig. 5.5 where

∑K
k=1 γk is plotted (in %) versus the total spectral efficiency request.

We see that the ergodic capacity dictates the allocation of the entire bandwidth for all
ηT ∈ [0, 1]. In contrast, using the goodput metric in Algorithm 5.1 indicates that the
optimum can be reached for

∑K
k=1 γk < 1 when ηT < 1. Actually, it decreases the power

consumption of the OFDM symbol, for small values of η(0)
k .

Elsewhere, the capacity-based scheme of [Gault et al., 2007] has the best performance,
as seen from Fig. 5.6. We observe, as expected, that the power consumption of Gaussian
coding with finite length decreases for increasing block length n. The performance gain
with increasing n is nonetheless limited (see the thin difference between n = 104 and
n = 106). The remaining gap between our Gaussian scheme and the Shannon limit when
n >> 1 is explained by the fact that the information rate rk is fixed in our case, whereas
the ergodic capacity chooses the best information rate. Thus, fixing rk smartly is of great
interest to get closer to the Shannon capacity, and is discussed in the next paragraph.
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Figure 5.4: Total power from Algorithm 5.1 for several n values compared with Ergodic
Capacity based algorithm.
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Figure 5.5: Occupied bandwidth from Algorithm 5.1 for several n values compared with
Ergodic Capacity based algorithm.
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Figure 5.6: Total power from Algorithm 5.1 for several n values compared with Ergodic
Capacity based algorithm.

5.5.3 How to choose the information rate rk?

In a first time, the goodput request is fixed to ηT and we let the information rate rk vary
(inside the feasible interval). In Fig. 5.7 we investigate the power consumption behavior
versus rk in order to find some insights about the way of choosing rk. Unfortunately,
Fig. 5.7 reveals no useful information: the total transmit powerQT is either nonincreasing
or nondecreasing according to the ηT values. In contrast, Fig. 5.8 shows that the occupied
bandwidth decreases for increasing values of rk, for both ηT = 0.5 bit/s/Hz and ηT =

2 bit/s/Hz.

From this, we have found no practical way of fixing rk ∈ R+. However, constraining
rk to be chosen from a finite set R ⊂ R+ can improve the performance using a good rate
selection algorithm. Fig. 5.9 plots the total transmit power versus ηT for two cases:

(a) The rates rk are chosen as in Section 5.5.2 among the values 0.5, 1, 2 or 3.

(b) A rate selection algorithm is run over R = {0.5, 1, 1.5, 2, 2.5, 3}.

Optimal choice of rk ∈ R thus improve the performance up to 4 dB. Refinement of R can
help to get closer to the Shannon limit. For the sake of simplicity, we used an exhaustive
research for the rates selection algorithm. More practical approaches will be discussed in
details in Chapter 6.
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Figure 5.7: Total transmit power of Algorithm 5.1 versus information rate rk (n = 512).
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Figure 5.9: Total transmit power versus spectral efficiency request for different rate selec-
tions (n = 512).

5.5.4 How close are powerful FEC codes?

Finally, we show that the outage probability developed within this framework can be
used to predict the performance of powerful FEC codes over the Rayleigh channel1. The
benefits of the LDPC (and more generally the turbo-like) codes come from the relaxation
of the Maximum Likelihood (ML) assumption, and the LLR messages are well modeled
by Gaussian random variables under iterative decoding [Ryan and Lin, 2009]. This
observation motivates us to describe the waterfall in the LDPC error performance, which
is the capacity-achieving region of these codes, using finite length Gaussian codes.

In Fig. 5.10 are plotted the PER figures of two BPSK modulated LDPC codes 2 [Gallager,
1963] versus SNR for n = 504 and R = 1/2. The error probability of a Gaussian code of
length n = 504 and R = 1/2 is plotted too, as well as its shifted versions using some SNR
gaps. It is very interesting to observe a tight approximation of the LDPC performance
by shifting the finite-length Gaussian code error probability with a gap, whereas it was
impossible to directly resort to gaps on the ergodic capacity function (see Chapter 4).

1The performance of finite-length Low Density Parity Check (LDPC) and Turbo-like codes over the
binary erasure channel were already studied in [Amraoui, 2006], [Andriyanova and Urbanke, 2009], and
[Andriyanova, 2009] using the scaling approach. The waterfall of finite-length LDPC codes was already
modeled by the Q(.) function in these works. Unfortunately, the formalism is outstandingly hard for any use
in our context.

2We used a (3, 6)-regular code and an irregular code generated by Progressive Edge Growth (MacKay’s
parity-check matrices found on http://www.inference.phy.cam.ac.uk/mackay/codes).

http://www.inference.phy.cam.ac.uk/mackay/codes
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Approximation is very tight for PER between 10−3 and 1. The difference is noticeable
beyond 10−3, and may be explained by the floor behavior of LDPC, which is not present
for Gaussian coding. This is satisfying since it was remarked in [Wu and Jindal, 2011]
that the operating point of FEC when optimizing the goodput is generally high (PER of
about 10−1).
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Figure 5.10: PER versus SNR of several FEC codes (n = 504 and R = 1/2).

However the performance for less powerful FEC code families do not match well with
the performance given by the finite length Gaussian codes, as seen in Fig. 5.11 for the
1/2-rate convolutional code of length n = 512 with generators (23, 35)8.

5.6 Conclusion

In this Chapter, we have first computed in closed-form the error probability of Gaussian
codes with finite length over the Rayleigh channel. This has been done using the infor-
mation spectrum framework. Based on this new result, we were able to find the optimal
power and bandwidth allocation, thus answering to Problem 4.2.

Next, we have illustrated the results of this algorithm, which gives the best perfor-
mance that one can expect from our clustered OFDMA network using Type-I HARQ.
Surprisingly, the numerical results revealed that this scheme can outperform the ergodic
capacity limit when the data rate request are low (basically, below 500 kbit/s within a
bandwidth W = 1 MHz). This is explained by the ability of our algorithm to save the
bandwidth: moreover, this ability can be very interesting for frequency reuse purposes.
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Figure 5.11: PER versus SNR of several FEC codes (R = 1/2).

Finally, this framework is well adapted to predict the performance of good FEC codes
(LDPC in this Chapter) over the Rayleigh channel. For instance, we know that the power
consumption after the resource allocation of an irregular LDPC code of length n = 504
and R = 1/2 will be only 1.9 dB away from the best achievable performance. Thus, this
framework can serve as a basis for Type-I HARQ based OFDMAresource allocation when
powerful FEC is used (typically LDPC coding).

However, the GOP steps are cost-computing (the number of constraints increases lin-
early with the number of iterations) and convergence can be very slow. Though optimal,
Algorithm 5.1 is thus not adapted to real applications. Furthermore, it cannot predict the
performance of other code families that are not capacity-achieving (in particular the con-
volutional coding). Therefore we must develop another framework, which is the point of
Chapter 6.
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Chapter 6

Resource allocation for HARQ with
practical MCS

6.1 Introduction

The framework developed in the previous Chapter is useful to perform the resource allo-
cation of schemes that use powerful channel coding like LDPC. However, this framework
fails to predict the performance of the other practical schemes (like convolutional coding
or other standard algebraic codes that are not capacity achieving). Furthermore the pro-
posed algorithm becomes very complex even for small K and cannot be implemented in
real systems.

Therefore, in this Chapter we develop another framework that is best suited to any
practical MCS. The work is organized as follows. The model for practical MCS is
described in Section 6.2. Then, in Section 6.3 we solve Problem 4.3 by providing an optimal
solution to power and bandwidth assignment when the MCS is given. An efficient MCS
selection algorithm is proposed in Section 6.3.6. Next, Problem 4.4 is solved in Section 6.4,
where optimal as well as practical solutions are proposed. Finally, Section 6.5 is devoted to
the resolution of Problem 4.5 for which new efficient suboptimal solutions are developed.

6.2 Practical MCS

This Section explains how to deal with practical MCS, e.g. QAM constellations and existing
FEC codes like convolutional codes, when they are used for the resource allocation.

The optimization results presented in the subsequent Sections are valid for any PER
function satisfying some technical conditions (convex and derivable), and thus are appli-
cable to most of the existing MCSs. It is thus necessary to have an analytic expression
of the PER that is derivable as a function of the SNR. For this, we propose to fit the
PER versus SNR curves obtained by simulation of the MCSs, with mathematical models.
We indicate in the following two different models that can be applied to perform the
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curve-fitting in the case of coded packets over Rayleigh channels.
Type-I HARQ for which a single information packet can be sent at most L times is

used. It is assumed here, without loss of generality, that all the users are limited by L.
The information packet can be either:

(i) uncoded, letting the users k choosing the size 2mk of their own constellation inside
a discrete setM ⊂N∗,

(ii) or encoded using an existing FEC code of rate Rk ∈ R, with R ⊂ Q+, before modu-
lation using a constellation of size 2mk .

We recall from Chapter 4 that the Type-I HARQ goodput is:

η̃k(SNR) = mkRk (1 − Pk(SNR)), (6.1)

with Pk(SNR) the PER of the FEC code of given rate Rk sent over the constellation of
order 2mk . A well-designed FH pattern has been assumed in Chapter 4 in order to recover
entirely the diversity offered by the channel, i.e. at least M, leading to a fast-fading channel
model.

In the uncoded case (i), assuming fast-fading channel and that the information packets
of n bits are modulated with a 2mk-QAM, the approximate bit error probability can be
found in [Chung and Goldsmith, 2001]. Then, the PER can be written with respect to SNR
as (large SNR approximation):

Pk(SNR) ≈
n amk

1 +
gmk

2mk−1

1
SNR

, (6.2)

where amk and gmk are two constants depending on the selected constellation mk and
designed to fit the simulated PER curve.

In the coded case (ii), it is known that the diversity in the fast-fading channel is
limited by the minimum Hamming distance of the block code if Bit Interleaved Coded
Modulation (BICM) is used along with ML decoding [Caire et al., 1998]. Thus, if BICM
is assumed in order to retrieve the entire diversity offered by the code, the PER can be
written with respect to SNR as:

Pk(SNR) ≈
gc(mk,Rk)

SNRd f (Rk)
, (6.3)

where d f (Rk) is the minimal (Hamming or free) distance of the code of rate Rk, and
gc(mk,Rk) is a coding gain designed to fit the simulated PER curve.

6.3 Rate constrained power minimization

In this Section we solve Problem 4.3 using the convex optimization framework. We
begin with evidencing the convexity of Problem 4.3, next optimal solution is obtained in
closed-form. The case of imperfect HARQ feedback is also discussed.
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6.3.1 Optimization problem formulation

Let Qk be the average energy consumed to send the part of the OFDM symbol associated
with link k. It becomes the new power parameter to be optimized. It can be easily shown
that:

Qk =
nkPk

W
= γkEk. (6.4)

Therefore, the nonconvex objective function
∑K

k=1 γkEk in Problem 4.3 becomes the new
objective function

∑K
k=1 Qk. It is obvious that this function is convex.

Let us define the function f : x 7→ 1 − x over [0, 1], and let us denote the goodput
function:

η̃k(γk,Qk) = γkmkRk f (Pk(GkQk/γk)). (6.5)

The optimal solution (γ∗,Q∗) is such that γ∗k > 0 and Q∗k > 0 for all k ∈ {1, . . . ,K}. Indeed,
if ∃k such that γk = 0, then this user would have no chance to satisfy his rate constraint
since η̃k(0,Qk) = 0 < η(0)

k for any Qk value. Similarly if Qk = 0, then Pk(0) = 1 and thus
η̃k(γk, 0) = 0 < η(0)

k .
Therefore, Problem 4.3 boils down to the next Problem 6.1.

Problem 6.1.

min
(γ,Q)

K∑
k=1

Qk, (6.6a)

s.t. η̃(γk,Qk) ≥ η(0)
k , ∀k, (6.6b)

K∑
k=1

γk ≤ 1, (6.6c)

γk > 0, Qk > 0, ∀k. (6.6d)

6.3.2 Feasibility and convexity properties

Now, let us study the feasibility of Problem 6.1. The next result (proved in Appendix F.1)
provides an easy way to check feasibility condition, as an inequality involving mk, Rk and
η(0)

k only.

Lemma 6.1. Problem 6.1 is feasible if, and only if,

K∑
k=1

η(0)
k

mkRk
< 1. (6.7)

In the rest of the Chapter, we assume that Lemma 6.1 holds. In the next Lemma 6.2,
we show that Problem 6.1 is convex as soon as the function SNR 7→ Pk(SNR) is convex.
Notice that Pk defined in Eqs. (6.2)-(6.3) satisfies the convexity property.

Lemma 6.2. The constraint function η̃k defined on (0, 1) ×R∗+ in Eq. (6.5) is concave as long as
Pk : R+ −→ [0, 1] is a convex function.
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Proof. Assuming the univariate function Pk convex, then η̃k is concave as the perspective
of the concave function Qk 7→ mkRk(1 − Pk(GkQk)) [Boyd and Vandenberghe, 2004]. �

Thus, Problem 6.1 will be solved in the next Section within the convex optimization
framework.

6.3.3 Optimal algorithm with fixed MCS

Assuming that a strictly feasible solution to Problem 6.1 exists1, the Karush-Kuhn-Tucker
(KKT) conditions enable one to exhibit the optimal solution (γ∗,Q∗) to Problem 6.1 since
it is convex [Boyd and Vandenberghe, 2004].

After some tedious algebraic manipulations reported in Appendix F.2, we obtain the
following result for the optimal power and bandwidth allocation.

Theorem 6.3. Let us define F : x 7→ −(1 − Pk(x))2/( f (Pk(x))P′k(x)) − x. The optimal allocation
policy (γ∗,Q∗) is:
If

K∑
k=1

η(0)
k

mkRk f (Pk(F−1(0)))
≤ 1,

then

γ∗k =
η(0)

k

mkRk f (Pk(F−1(0)))
, (6.8)

Q∗k =
γ∗k
Gk

F−1(0). (6.9)

Else:

γ∗k(λ∗) =
η(0)

k

mkRk f (Pk(F−1(λ∗Gk)))
, (6.10)

Q∗k(λ∗) =
γ∗k(λ∗)

Gk
F−1(λ∗Gk), (6.11)

with λ∗ > 0 chosen such that
K∑

k=1

γ∗k(λ∗) = 1. (6.12)

Theorem 6.3 provides a very fast algorithm for the resource allocation: basically, a lin-
ear research must be performed in order to find the only scalar value λ∗. It is summarized
in Algorithm 6.1. A fast implementation of Algorithm 6.1 is given in Appendix F.3 for the
uncoded packets case.

1This is guaranteed by Lemma 6.1.
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Algorithm 6.1: Optimal algorithm for Problem 6.1.

Set λ = 0 and compute, ∀k, γk(λ) from Eq. (6.10) and Qk(λ) from Eq. (6.11).
if

∑K
k=1 γk(λ) ≤ 1 then
γ∗ = γ(λ) and Q∗ = Q(λ),
Exit.

else
while

∑
k γk(λ) > 1 do

Increase λ
Compute γk(λ) from Eq. (6.10) and Qk(λ) from Eq. (6.11), for all k.

end
γ∗ = γ(λ) and Q∗ = Q(λ),

6.3.4 The case of imperfect feedback

We assume in this Section that the HARQ feedback is degraded, as in Chapter 3. As
the power dedicated to the direct link does not influence the SNR of the reverse channel
devoted to the acknowledgment, we assume erroneous feedback with constant probability
pfb. For the sake of simplicity, we have assumed infinite retransmissions (L = ∞). In this
case, we recall that the Type-I HARQ goodput is given by:

η̃k = γkmkRk ffb(Pk), (6.13)

with ffb : x 7→ 1/(1/(1 − x) + pfb/(1 − pfb)). For L < ∞, Eq. (6.13) becomes intractable. The
following results hold.

Lemma 6.4. The constraint function defined by:

η̃k(γk,Qk) = γkmkRk ffb(Pk(GkQk/γk)) (6.14)

on [0, 1] ×R+, is concave as long as Pk : R+ −→ [0, 1] is a convex function.

Proof. It is easy to show that the function ffb(Pk(x)) is concave in x ∈ R+:

f ′′fb(x) =
−P′′k (x)(

1 +
pfb

1−pfb
(1 − Pk(x))

)2 −
2(P′k(x))2pfb/(1 − pfb)(
1 +

pfb
1−pfb

(1 − Pk(x))
)3 ≤ 0. (6.15)

Hence, the perspective function η̃k(γk,Qk) = mkRkγk ffb(Pk(GkQk/γk)) is concave [Boyd and
Vandenberghe, 2004]. �

Lemma 6.5. Problem 6.1 (when f is replaced with ffb) is feasible if, and only if,

K∑
k=1

(
1 +

pfb

1 − pfb

)
η(0)

k

mkRk
< 1. (6.16)
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Sketch of proof. If Problem 6.1 is feasible, then there exists a sequence (γk,Qk) such that ∀k,
η(0)

k ≤ ηk(γk,Qk) and
∑

k γk ≤ 1. This implies that η(0)
k ≤ γkmkRk ffb(Pk(GkQk/γk)) < γkmkRk

1+
pfb

1−pfb

.

So we have:

1 ≥
∑

k

γk >

(
1 +

pfb

1 − pfb

)∑
k

η(0)
k

mkRk
. (6.17)

Conversely, assume that Eq. (6.16) holds. Then, for some sufficiently small ε > 0, the
problem is feasible by considering Qk →∞ and γk = (1 + pfb/(1−pfb))(η(0)

k + ε)/(mkRk). �

Thus, from Lemmas 6.4 and 6.5, Theorem 6.3 still holds for the case pfb , 0 by
replacing f with ffb. In Corollary 6.6, we derive another interpretation of Lemma 6.5 that
characterizes the maximum value of pfb at which the system can work.

Corollary 6.6. Assuming Eq. (6.16) holds, Problem 6.1 is feasible if, and only if, pfb < pt
fb with:

pt
fb = 1 −

K∑
k=1

η(0)
k

mkRk
. (6.18)

One can remark that, under Eq. (6.7), the threshold is well defined since the inequalities
0 < pfb < 1 hold. Furthermore, the proof of Corollary 6.6 is easy since Eq. (6.16) holds if
and only if Eq. (6.18) holds.

6.3.5 Numerical results with fixed MCS

In this Section, two practical MCS are considered:

• MCS1: uncoded packets of n = 128 bits, which are mapped onto a 2mk-QAM
constellation;

• MCS2: packets of n = 512 bits coming from rate R convolutional encoding.

Each link fixes the order 2mk of its QAM constellation according to a rule that will be
precised for each simulation. For the same reasons as explained in Chapter 5, the data
rate request is uniform η(0)

k = ηT/K, with ηT the total goodput demand of the cluster (in
bit/s/Hz), and the bandwidth is fixed to W = 1 MHz.

6.3.5.1 Performance gap to the Gaussian codes of length n

In Fig. 6.1 (resp. Fig. 6.2), we plot the total transmit power (resp. the total occupied
bandwidth) after allocation using:

• Algorithm 6.1 on the MCS2 with R = 1/2, and

• Algorithm 5.1 on a Gaussian code of length n = 512.
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Figure 6.1: Total transmit power of 1/2-rate convolutional code with QAM versus finite
length Gaussian codes (K = 2, n = 512).
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Figure 6.2: Occupied bandwidth of 1/2-rate convolutional code with QAM versus finite
length Gaussian codes (K = 2, n = 512).
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In the two cases, (mk,Rk) are fixed such that Lemma 6.1 holds and the Gaussian rate rk

(see Chapter 5) such that Condition 5.1 holds. As in Chapter 5, K = 2 and the average
SNRs are fixed to 10 dB and 30 dB.

We have two remarks. Firstly, there is a constant gap of about 5 dB between the
performance of scheme (b) and Gaussian coding for the range of [0,3] bit/s/Hz ([0,3] Mbit/s
within W). Secondly, the Gaussian code allocation uses less bandwidth than the MCS,
and both schemes use an increasing amount of bandwidth at each rate. Thus, frequency
reuse is possible when using such coding schemes.

6.3.5.2 Performance gap to efficient suboptimal solutions

Now the optimal Algorithm 6.1 is compared to two suboptimal policies that drastically
simplify the optimization procedure. The two suboptimal solutions are obtained by
letting the values γ∗k being proportional to η(0)

k as follows:

γk =
η(0)

k /(mkRk)∑K
k′=1 η

(0)
k′ /(mk′Rk′)

. (6.19)

By definition, the suboptimal solutions place the users in the entire bandwidth:

K∑
k=1

γk =

K∑
k=1

η(0)
k /(mkRk)∑K

k′=1 η
(0)
k′ /(mk′Rk′)

= 1. (6.20)

We define two suboptimal policies depending on how Qk are computed: a) equal Qk for
all k (Suboptimal A), i.e., Qk = Q/K where Q is chosen such that the rate constraint is
satisfied, or b) by computing Qk such that the rate constraint in Eq. (6.6b) is satisfied:

η(0)
k = γkmkRk ffb(Pk

(
GkQk

γk

)
). (6.21)

Definition 6.1 (Suboptimal A). For each k ∈ {1, . . . ,K}, compute γk from Eq. (6.19), and
Qk = Q/K with Q such that all the constraints are satisfied.

Definition 6.2 (Suboptimal B). For each k ∈ {1, . . . ,K}, compute γk from Eq. (6.19), and:

Qk =
γk

Gk
P−1

k ( f−1
fb

 η(0)
k

γkmkRk

). (6.22)

When pfb = 0, ffb boils down to f .

The path loss follows the free-space model `(D) = 1/
(
(4π f0/c)2D2

)
where c is the light

celerity and f0 the carrier frequency 2. We put f0 = 400 MHz and the noise density power

2Only free-space is considered for the sake of presentation clarity. Other models have been tested, like
the so-called Okomura-Hata path loss for urban propagation models, and it only changes the y-scale, i.e. the
conclusions remain the same.
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is fixed to N0 = −170 dBm/Hz. The distance Dk between both users associated with the
k-th link is randomly drawn from a uniform distribution in [Dm,DM]. We have taken
Dm = 50 m and DM = 1 km. Each point is averaged by Monte-Carlo drawing.

In Fig. 6.3 (resp. Fig. 6.4), we plot the total transmit power versus spectral efficiency
for the MCS1 with BPSK (resp. 16-QAM). Suboptimal B outperforms Suboptimal A for
both modulations. Interestingly, Suboptimal B performance are close to the optimal for
ηT ≥ 0.3 bit/s/Hz. Thus, Suboptimal B provides a fast allocation algorithm that performs
quasi-optimally for ηT ≥ 0.3 bit/s/Hz. This can be explained by the bandwidth occupation.
In Fig. 6.5 we plot the bandwidth fraction that is occupied after allocation by MCS1. Let us
remind from Theorem 6.3 that the bandwidth is not always full at the optimum, especially
at low ηT. We observe from Fig. 6.5 that while

∑K
k=1 γk < 90 % (i.e. while ηT < 0.3 bit/s/Hz)

Suboptimal B does not achieve the optimum because it costs up to 90 % more bandwidth.
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Figure 6.3: Total transmit power versus spectral efficiency (MCS1, BPSK, K = 4).

As we will see hereafter, similar remarks can done for the coded case MCS2. Fig. 6.6
displays the total transmit power versus spectral efficiency for the MCS2 with BPSK, and
we see again that Suboptimal B is close to optimal for low spectral efficiency. However,
when achieving higher spectral efficiency, this policy is not optimal for ηT < 1.5 bit/s/Hz
as seen from Fig. 6.7 which displays the case of 16-QAM. Finally, coding helps to save
bandwidth when switching the modulation, as seen from Fig. 6.8), where we plot the
bandwidth fraction that is occupied after allocation by MCS2.
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Figure 6.4: Total transmit power versus spectral efficiency (MCS1, 16-QAM, K = 4).
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Figure 6.5: Occupied bandwidth versus spectral efficiency (MCS1, BPSK, K = 4).
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Figure 6.6: Total transmit power versus spectral efficiency (MCS2, R = 1/2, BPSK, K = 4).
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Figure 6.7: Total transmit power versus spectral efficiency (MCS2, R = 1/2, 16-QAM,
K = 4).
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Figure 6.8: Occupied bandwidth versus spectral efficiency (MCS2, R = 1/2, BPSK to
64QAM, K = 4).

6.3.5.3 Imperfect feedback case

In order to analyze the influence of pfb, we define the power loss (in dB) as:

10 log10

(
Q
∗

T(pfb)

Q∗T(0)

)
, (6.23)

where Q∗T(pfb) is the optimal total transmit power when the feedback error probability
value is pfb. In Fig. 6.9, we plot the power loss versus pfb when MCS1 (with BSPK and
K = 4) is used. For this simulation, we have configured D = [50, 100, 500, 700] m and
η(0) = [0.2, 0.2, 0.4, 0.1] bit/s/Hz, and BPSK is used. According to Corollary 6.6 we know
that pt

fb = 0.1 for this distribution η(0). We observe that the power loss grows exponentially
and becomes too huge when pfb is close to pt

fb.
Figs. 6.10 and 6.11 show that the suboptimal performance are pretty much robust

when the probability of erroneous feedback is fixed to pfb = 0.95 pt
fb.

6.3.6 Modulation and coding scheme selection

Now, we address the problem of selecting the best MCS for each user in Problem 4.3. The
extension is straightforward for Problems 4.4 and 4.5, therefore we will only present the
results with Problem 4.3.

Let us remind that the available modulations and code rates are described by the sets
M and R, respectively. The MCS of link k is denoted by mcsik = (mik ,Rik) with mik ∈ M
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Figure 6.9: Power loss (in dB) versus the feedback error probability.
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fb,

K = 4).

and Rik ∈ R. It is assumed that the MCS combinations mcsi ∈ G ⊂ (M⊗ R) are ordered
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such that, in order to achieve a target PER:

SNR(mcsi) < SNR(mcs j) for i > j. (6.24)

Finally, let us denote a MCS vector by mcs = [(mi1 ,Ri1), . . . , (miK ,RiK )]T.

6.3.6.1 Optimization problem

The solution to Problem 6.1 optimizes the power and bandwidth allocation when the
MCS is given. However, when doing the resource allocation the choice of mk and Rk for
each link k must be optimized as well. The global problem of interest can be written as
follows:

Problem 6.2.
(γ∗,Q∗,mcs∗) = arg min

(γ,Q)∈C,mcs∈GK
QT(mcs) (6.25)

where C = {(γ,Q) ∈ (0, 1)K
×RK

+∗ | (6.6b)-(6.6c) satisfied }.

Actually, Theorem 6.3 is the key for providing the minimum total energy given mcs ∈
G

K:
Q
∗

T(mcs) = min
(γ,Q)∈C

QT(mcs). (6.26)

Thus each optimal solution to the next Problem 6.2a leads to a globally optimal solution
to Problem 6.2.
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Problem 6.2a.

mcs∗ = arg inf
mcs∈GK

Q
∗

T(mcs). (6.27)

This is a combinatorial optimization problem since the optimization space is discrete,
and it is well known that in general this class of problems is difficult (NP-hard). An
exhaustive search among all the settings in GK is a trivial and optimal way to find it, but
its complexity is out of reason and this approach is intractable for large enough users.
Combining Adaptive Modulation and Coding (AMC) and HARQ for link adaptation has
been already studied in the literature: the case of Type-I HARQ is done in [Liu et al., 2004],
and Type-II HARQ is treated in [Lagrange, 2010]. These techniques could be adapted to
our situation. In what follows, we propose a suboptimal solution inspired by [Devillers
et al., 2008] that reduces the exhaustive search complexity.

6.3.6.2 A Greedy approach towards an efficient MCS selection

The idea is to try the next mcsik+1 ∈ G in the MCS list for each user k, and to select
the users with the new MCS that has the lowest power. The approach is greedy in the
sense that the operation continues while the power decreases, and stops otherwise. Let

mcs(0) = [mcs(0)
i1
, · · · ,mcs(0)

iK
]
T
∈ G

K be such that ∀k, mcs(0)
ik

is the first feasible MCS in the
list. Basically, this can be quickly checked using Lemma 6.1. Finally the algorithm, called
"Greedy MCS selection" is summarized in Algorithm 6.2.

Algorithm 6.2: Greedy MCS selection.

Set Q∗T = ∞ and mcs = mcs(0)

1. MCS testing:
for k = 1 to K do

Let mcs(k)
∈ G

K with mcsik ←mcsik+1

Compute Q∗T(mcs(k)) according to Eq. (6.26) using Theorem 6.3

end

2. Select k∗ = arg infkQ
∗

T(mcs(k))
3. Greedy heuristic:
if Q∗T > Q

∗

T(mcs(k∗)) or Lemma 6.1 does not hold then
Q
∗

T ← Q
∗

T(mcs(k∗)), mcs← mcs(k∗), and go back to step 1.
else

Exit
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6.3.7 Numerical results for MCS selection

6.3.7.1 Simulation settings

We combine the optimal bandwidth and power allocation of Theorem 6.3 with three MCS
selections:

(i) A fixed selection of the MCS that trivially satisfies Lemma 6.1. The first MCS
mcsik such that mikRik > ηT is taken, hence

∑K
k=1 η

(0)
k /(mkRk) < K (ηT/K)/ηT = 1 and

Lemma 6.1 holds. For instance, those users requiring ηT = 1 bit/s/Hz should use the
MCS with mk = 4 and Rk = 1/2.

(ii) An exhaustive search of the best MCS associated with Problem 6.2a (tractable for
small K).

(iii) The "Greedy MCS selection" summarized in Algorithm 6.2.

QAM constellations withM = {1, 2, 4, 6}, and a punctured convolutional code with rates
M = {3/4, 2/3, 1/2} have been considered in the simulation. The four modulations shown
in Tab. 6.1 are actually associated with the (uncoded) MCS1, and the six MCS reported
in Tab. 6.2 are associated with the (coded) MCS2. In Fig. 6.12, we plot the empirical
PER for the MCS given in Tab. 6.2 and the associated theoretical PER given by Eq. (6.3).
The parameters gc and d f defined in Eq. (6.3) are determined by applying a curve-fitting
method. We remark that the theoretical PER expression predicts well the empirical
performance which justifies its use in our derivations.

MCS name BPSK QPSK 16-QAM 64-QAM
m 1 2 4 6

max bit/s/Hz 1 2 4 6

Table 6.1: Practical MCS used in the uncoded MCS1 framework.

MCS name MCSc1 MCSc2 MCSc3 MCSc4 MCSc5 MCSc6
m 1 2 2 4 6 6
R 1/2 1/2 2/3 1/2 1/2 3/4

max bit/s/Hz 0.5 1 1.33 2 3 4.5

Table 6.2: Practical MCS used in the coded MCS2 framework.

6.3.7.2 Simulation results

In Fig. 6.13, (resp. Fig. 6.14) we display the total transmit power versus the spectral
efficiency for the MCS defined in Tab. 6.1 when pfb = 0 (resp. pfb = 0.95pt

fb).
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Figure 6.12: MCS used with the coded MCS2.

First of all, Algorithm 6.2 performs close to the exhaustive algorithm (which is optimal)
and is far less complex. On the other hand, the fixed MCS selection performs quite poorly,
especially when the feedback is imperfect. For fixed MCS, notice the huge increase in
power when the total goodput requirement ηT is close to the value of an element m ∈ M.
These high peaks around 1, 2, 4 and 6 bit/s/Hz are explained by Lemma 6.1. Indeed, the
power must be strongly increased whenever

∑K
k=1 η

(0)
k /m goes close to 1 in the fixed case,

i.e. when
∑K

k=1 η
(0)
k goes close to m. Actually, switching the MCS as done in Algorithm 6.2

enables large power savings.

In Fig. 6.15, we plot the total transmit power versus the spectral efficiency for the
MCS defined in Tab. 6.2. Due to the complexity of the exhaustive selection algorithm,
we consider only K = 2 links with arbitrary average SNR configured to 10 dB and 30 dB,
respectively. The same conclusions hold in this case, i.e. , Algorithm 6.2 performance are
close to the optimum though far less complex than exhaustive selection, and that a good
MCS selection algorithm can greatly improve the performance compared to a fixed MCS
solution.

6.4 Packet error and rate constrained power minimization

In this Section we focus on the resolution of Problem 4.4, for which an additional PER
constraint has been defined:

PMAC
k (Ek) ≤ PMAC,(0)

k . (6.28)
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Recalling that the MAC level PER of Type-I HARQ with L transmission credit is:

PMAC
k (Ek) = Pk(GkEk)L, (6.29)

the MAC level constraint boils down to the PHY level PER constraint:

Pk(GkEk) ≤ P(0)
k , (6.30)

where P(0)
k = (PMAC,(0)

k )
1/L

.

The problem is first rewritten as a function of (γk,Qk) in order to exhibit once again
a convex objective function. Then the optimal algorithm is derived, and suboptimal
solutions are given too.

6.4.1 Optimization problem formulation

Rewritting Problem 4.4 using Eq. (6.4) and Eq. (6.30) leads to Problem 6.3. Notice that the
unfeasibility of the all-zero solutions (γ = 0,Q = 0) applies as well.
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Problem 6.3.

min
(γ,Q)

K∑
k=1

Qk, (6.31a)

s.t. η̃(γk,Qk) ≥ η(0)
k , ∀k, (6.31b)

Pk(GkQk/γk) ≤ P(0)
k , ∀k, (6.31c)

K∑
k=1

γk ≤ 1, (6.31d)

γk > 0, Qk > 0, ∀k. (6.31e)

6.4.2 Feasibility and structure properties

It is easy to show that Lemma 6.1 holds for Problem 6.3 too. Based on Lemma 6.7 proved
in Appendix F.4, Problem 6.3 is the minimization of a convex function over a convex set.

Lemma 6.7. The constraint functions defined on [0, 1] ×R+ by:

(γk,Qk) 7→ η̃k(γk,Qk), (6.32)

(γk,Qk) 7→ Pk(GkQk/γk), (6.33)

are respectively concave and quasi-convex [Greenberg and Pierskalla, 1971], as long as Pk : R+ −→

[0, 1] is a convex function.

In Appendix F.5, we prove the following Lemma.

Lemma 6.8. The set:

F = {(γ,Q) ∈ [0, 1]K
×RK

+ |Eqs. (6.31b)-(6.31d) are satisfied} (6.34)

is convex and Slater’s assumption holds3. Moreover, the nondegeneracy condition:

∇η̃k(γk,Qk) , 0 ∀(γ,Q) ∈ F such that η(0)
k − η̃k(γk,Qk) = 0, (6.35a)

∇Pk(GkQk/γk) , 0 ∀(γ,Q) ∈ F such that Pk(GkQk/γk) − P(0)
k = 0, (6.35b)

holds for every k = 1, . . . ,K.

Since Lemma 6.8 holds, it is proven in [Lasserre, 2010, Th. 2.3] that Problem 6.3 can
be solved optimally by using the so-called KKT conditions. Therefore in next Subsection,
we will develop the optimal algorithm by deriving the KKT conditions in closed-form.

3Basically, Slater’s condition requires that a strictly feasible solution must exist. This is guaranteed for
Problem 6.3 by Lemma 6.1
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6.4.3 Optimal algorithm

Tedious derivations available in Appendix F.6 lead to the following characterization of
optimal solutions to Problem 6.3:

Theorem 6.9. The optimal allocation policy (γ∗,Q∗) satisfies:

γ∗kmkRk(1 − Pk(GkQ∗k/γ
∗

k)) − η(0)
k = 0, (6.36)(

Θ(GkQ∗k/γ
∗

k) − λ∗Gk

) (
Pk(GkQ∗k/γ

∗

k) − P(0)
k

)
= 0, (6.37)

λ∗(
K∑

k=1

γ∗k − 1) = 0, (6.38)

where, ∀x ∈ R+∗:

Θ(x) :=
xP′k(x) + 1 − Pk(x)

P′k(x)
. (6.39)

To deduce an algorithm from Theorem 6.9, it is essential to know if the PER constraint
Eq. (6.31c), which is related to Eq. (6.37), is active or not. If the PER constraint is inactive
then Θ(GkQ∗k/γ

∗

k) = λ∗Gk from Eq. (6.37). Notice that
∑K

k=1 γk is decreasing when λ

increases, thus if the PER constraints are inactive at the optimum forλ∗ > 0, then
∑K

k=1 γ
∗

k =

1 considering Eq. (6.38). However, there may be some users who were computed through
Θ that would lead to unfeasible PER values Pk(Θ−1(λ∗Gk)) > P(0)

k . In such cases, some users
among these unfeasible users should have made their PER constraints active, i.e. Q∗k/γ

∗

k =

(1/Gk)P−1
k (P(0)

k ). Therefore, all the configurations on Eq. (6.37) are tested, i.e. , either the first
factor is zero (then PER constraint is inactive) or not (then PER constraint is active), and we
select eventually the best one with respect to the total transmit power. More precisely, in a
first step, we consider that only n ∈ {0, · · · ,K} user(s) have the PER constraint active. Then
in a second step, we compute the total transmit power for all the tested configurations and
select the best one. LetUn be the set of all the sets of n users out of K. If u is a subset of K
users, uc is the associated complementary subset. For n = 0, the loop on u is implemented
only once by considering u = ∅ and uc = {1, · · · ,K}. Algorithm 6.3 achieves optimality
but requires O

(
2K−1

)
operations, and thus becomes cost-computing for large enough K.

Therefore, we next propose two suboptimal but computationally tractable algorithms.

6.4.4 Suboptimal algorithms

6.4.4.1 Suboptimal KKT based Algorithm (SKA)

In order to reduce the complexity of the optimal Algorithm 6.3, we force the algorithm to
operate as if the constraint on the PER were not active, i.e. the left-hand term associated
with the Lagrange multiplier vanishes in Eq. (6.37). We remind that the constraint related
to the goodput is always active (see Eq. (6.36)). Finally, the suboptimal KKT based
algorithm is resumed in Algorithm 6.4.
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Algorithm 6.3: Optimal algorithm for Problem 6.3.

for n = 0 to K do
for each u ∈ Un do
∀k ∈ u,
γk = η(0)

k /(mkRk(1 − P(0)
k )), and Qk = γkP−1

k (P(0)
k )/Gk,

∀k′ ∈ uc,
γk′ = η(0)

k′ /(mk′Rk′(1 − Pk′(Θ−1(λGk′)))), and Qk′ = γk′Θ
−1(λGk′)/Gk′ ,

for λ ∈ R+
∗ such that

∑
k∈u γk +

∑
k′∈uc γk′ = 1 (if no λ leads to equality, put

first λ = 0 and test the condition
∑

k γk < 1. If the condition is not satisfied,
then put λ = ∞)
if ∃k′ ∈ uc, s.t. Pk′(Gk′Qk′/γk′) > P(0)

k′ or λ = ∞ then
QT(u) = ∞

end

end

end
Choose u minimizing QT(u).

Algorithm 6.4: Suboptimal KKT based Algorithm (SKA) for Problem 6.3.

Set λ = 0, Qk = ε > 0 and γk = 1,∀k.
while

∑
k γk > 1 or ∃k, Pk(GkQk/γk) > P(0)

k do
1. ∀k, γk = η(0)

k /(mkRk(1 − Pk(Θ−1(λGk))))
2. Qk = γkΘ

−1(λGk)/Gk

3. Increase λ

end
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6.4.4.2 Separate Linear Algorithm (SLA)

By remarking that Problem 6.3 comes from the equivalent form of Problem 4.4 that
was written with respect to (γ,E), we hereafter propose another way to exhibit a sub-
optimal algorithm. As Pk is a decreasing bijective function, Eq. (6.31c) boils down to
Ek ≥ P−1

k (P(0)
k )/Gk and so leads to the following equivalent optimization problem:

Problem 6.4. Problem 6.3 is equivalent to:

min
(γ,E)

K∑
k=1

γkEk, (6.40a)

s.t. γk ≥ η
(0)
k /

(
mkRk

(
1 − Pk(GkEk)

))
,∀k, (6.40b)

Ek ≥ P−1
k (P(0)

k )/Gk,∀k, (6.40c)
K∑

k=1

γk ≤ 1, (6.40d)

γk > 0, Ek > 0, ∀k. (6.40e)

Problem 6.4 is actually more difficult than Problem 6.3 since the objective function is
no longer convex. It is easy to see that it is a biconvex optimization problem, but the
GOP solution remains too expensive. However, we can use a suboptimal approach which
consists in optimizing the objective function separately on each parameter. Therefore we
propose to split Problem 6.4 into two subproblems.

Problem 6.4a (on E). For fixed γ, the subproblem is:

E∗ = arg min
E

K∑
k=1

γkEk (6.41)

subject to Eq. (6.40c) and Eq. (6.40e).

Problem 6.4b (on γ). For fixed E, the subproblem is:

γ∗ = arg min
γ

K∑
k=1

γkEk (6.42)

subject to Eq. (6.40b) and Eqs. (6.40d)-(6.40e).

The solution to Problem 6.4a is E∗k = P−1
k (P(0)

k )/Gk,∀k. Constraint (6.40b) has been
removed from Problem 6.4a to avoid a deadlock issue. Indeed, if Eq. (6.40b) is added to
Problem 6.4a and is active for user k, then the solution to Problem 6.4b is actually equal to
the value of γk initializing Problem 6.4a, and so the optimal γk is given by the initialization
step.

The solution to Problem 6.4b can be efficiently obtained by using linear programming
tool, for instance, the Simplex method [Boyd and Vandenberghe, 2004]. However, for
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some E, Problem 6.4b may not have a feasible solution since all the constraints may not be
satisfied simultaneously. To overcome this issue, we suggest to increase E until a feasible
solution to Problem 6.4b is found as follows: if Problem 6.4b is not feasible, add a small
increment δ to each Ek as many times as necessary. Algorithm 6.5 summarizes these steps.

Algorithm 6.5: Suboptimal Separate Linear Algorithm (SLA) for Problem 6.3.

Initialize δ, and E∗k = P−1
k (P(0)

k )/Gk,∀k.
1. ∀k, γk ←− solution of Problem 6.4b (linear programming).
2. If a feasible solution has been found in step 1., then Exit.
3. Else, increase Ek by δ and go to step 1.

6.4.5 MCS selection

Since Algorithm 6.2 can be used straightforwardly for the selection of MCS, we will not
discuss about it and consider only BPSK modulation. Thus, the target goodput will not
exceed 1 bit/s/Hz in the next Subsection devoted to numerical results.

6.4.6 Numerical results

In this Section, numerical results have been obtained for the scheme (a) presented in
Section 6.3.5, and the path loss follows the free-space model. In Fig. 6.16 we plot the total
transmit power versus spectral efficiency. It has been computed using the optimal Algo-
rithm 6.3, the SKA (Algorithm 6.4) and the SLA, in order to evaluate the performance of
the suboptimal algorithms (SKA and SLA). It can be seen that for the two PER constraints
(PMAC,(0)

k = 10−2 or PMAC,(0)
k = 10−4), the SLA performance are extremely close to the optimal

performance. The SKA performance are slightly lower than SLA for required goodput
larger than 0.5 bit/s/Hz. We conclude that SLA is a very good heuristic to approach the
optimal performance.

In Fig. 6.17 (resp. Fig. 6.18) we plot the PER (resp. the total transmit power) after
allocation versus the goodput requirement. Fig. 6.17 displays the PHY level PER Pk as
well as the MAC level PER PMAC

k for L = 3, obtained using Algorithms 6.1 and 6.5. It can
be observed that Algorithm 6.1 was not able to guarantee the target PER of PMAC,(0)

k = 10−2

for the links (in particular, it exceeds this constraint for ηT < 0.8 bit/s/Hz). Beyond
0.8 bit/s/Hz, the two problems achieve the same PER since the solution is driven by the
goodput constraint in this area. However, the solution to Problem 4.4 (computed through
the SLA algorithm) returns PMAC

k ≤ PMAC,(0)
k for all ηT, as expected. Fig. 6.18 shows that the

desired QoS is achieved at a little increase in consumed power (around 2 dB for a factor
10 gain in PER).
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Figure 6.16: Total transmit power versus spectral efficiency computed with different
algorithms (MCS1, BPSK, K = 4).
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Figure 6.18: Total transmit power versus spectral efficiency (MCS1, BPSK, K = 4).

6.5 Delay and rate constrained power minimization

This Section is devoted to the study of Problem 4.5, for which an additional delay con-
straint has been defined as:

dMAC
k (γk,Ek) ≤ d(0)

k . (6.43)

Due to the ARQ mechanism, the successful information packets associated with link k
are received after δ(Pk) packet transmissions, where x 7→ δ(x) = 1/(1 − x) − LxL/

(
1 − xL

)
[Le Martret et al., 2012]. The term δ(Pk) corresponds to the so-called "delay" in HARQ
literature. Actually, as the bandwidth is never entirely assigned to a single link, the true
delay is δ(Pk) divided by the bandwidth occupation rate γk. Therefore the delay for each
successful information packet of link k, denoted by dk, is given by:

dMAC
k (γk,Ek) =

1
γk
δ(Pk(GkEk)). (6.44)

6.5.1 Optimization problem formulation

Next we rewrite Problem 4.5 using Eq. (6.4) and Eq. (6.44). Notice that the optimal solution
(γ∗,Q∗) is such that γk > 0 and Qk > 0 for all k. Indeed, if ∃k such that γk = 0, then this
user would have no way to satisfy its goodput nor its delay requirements (η̃k = 0 whereas
dMAC

k → ∞), and such a point would be unfeasible. Thus ∀k ∈ {1, . . . ,K}, γk > 0. Now,
since Qk = γkEk, we would have Qk = 0 ⇒ Ek = 0 and hence Pk = 1. Once again, this
would lead to an unfeasible solution. This boils down to Problem 6.5.
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Problem 6.5.

min
(γ,Q)

K∑
k=1

Qk, (6.45a)

s.t. η̃(γk,Qk) ≥ η(0)
k , ∀k, (6.45b)

dMAC
k (γk,Qk) ≤ d(0)

k , ∀k, (6.45c)
K∑

k=1

γk ≤ 1, (6.45d)

γk > 0, Qk > 0, ∀k. (6.45e)

6.5.2 Feasibility property

Now, let us study the feasibility of Problem 6.5. The next result provides an easy way to
check feasibility condition, as an inequality involving mk, Rk, η(0)

k and d(0)
k only. Its proof

follows the same lines than Lemma 6.1, and only a sketch of proof is given below. In the
rest of the Chapter, we assume that Lemma 6.10 holds.

Lemma 6.10. Problem 6.5 is feasible if, and only if,
K∑

k=1

max

 η(0)
k

mkRk
,

1

d(0)
k

 < 1. (6.46)

Sketch of proof. Only if part. If Problem 6.5 is feasible, then there is (γ,Q) ∈ (0, 1)K
× RK

+∗

such that for all k ∈ {1, . . . ,K}:
η(0)

k ≤ γkmkRk f (Pk(GkQk/γk))

d(0)
k ≥

1
γk
δ(Pk(GkQk/γk))∑

k γk ≤ 1

⇒

η
(0)
k < γkmkRk

d(0)
k > γk

(6.47)

since Pk(GkQk/γk) > 0, so 1 − Pk(GkQk/γk) < 1 and δ(Pk) > 1, hence we have:

K∑
k=1

max

 η(0)
k

mkRk
,

1

d(0)
k

 < K∑
k=1

γk ≤ 1. (6.48)

If part. Conversely, let us take, ∀k ∈ {1, . . . ,K}:

γk = max

η(0)
k + ε

mkRk
,

1

d(0)
k − ε

 , (6.49)

for a sufficiently small ε > 0 such that by assumption,
∑K

k=1 γk < 1. When Qk → ∞, we
have Pk(GkQk/γk) −→ 0 and δ(Pk) −→ 1, and one obtains:

η̃k −→ mkRk max
(
η(0)

k +ε

mkRk
, 1

d(0)
k −ε

)
≥ η(0)

k + ε > η(0)
k

dMAC
k −→ min

(
mkRk

η(0)
k +ε

, d(0)
k − ε

)
≤ d(0)

k − ε < d(0)
k

(6.50)

which concludes the proof. �
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Finally, although constraints Eq. (6.45b), Eq. (6.45d) and Eq. (6.45e) are convex, the
delay constraint Eq. (6.45c) is not convex. Problem 6.5 is thus nonconvex and can be
difficult to solve efficiently. In the next Sections, we develop two suboptimal algorithms
to solve Problem 6.5.

6.5.3 KKT based algorithm (KBA)

By looking numerically, the bivariate function (x, y) 7→ dMAC
k (x, y) seems very close to be

a quasi-convex function. It can be observed in Fig. 6.19 which plots the sublevel sets
Sα := {(γk,Qk) ∈ (0, 1) × R+∗ | dMAC

k (γk,Qk) ≤ α} versus (γk,Qk). Therefore, using the KKT
conditions seems to be a relevant way even if we are not able to guarantee their optimality
[Lasserre, 2010].
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Figure 6.19: Sublevel sets of the delay function dMAC
k (γk,Qk).

Tedious algebraic manipulations given in Appendix F.7 leads to the following charac-
terization of the KKT solution (γ,Q, λ):

Theorem 6.11. The KKT point (γ,Q, λ) of Problem 6.5 satisfies:

(M(GkQk/γk) − λGk)
(
η(0)

k − γkmkRk

(
1 − Pk(GkQk/γk)

))
= 0 (6.51)

(Θ(GkQk/γk) − λGk)

δ
(
Pk(GkQk/γk)

)
γk

− d(0)
k

 = 0, (6.52)

λ(
K∑

k=1

γk − 1) = 0, (6.53)
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where, ∀x ∈ R+∗:

M(x) = −
xδ′(Pk(x))P′k(x) + δ(Pk(x))

δ′(Pk(x))P′k(x)
(6.54)

Θ(x) = −
xP′k(x) + 1 − Pk(x)

P′k(x)
. (6.55)

Now, it is shown in Appendix F.8 how to deduce a simple and efficient algorithm from
the KKT characterization Eqs. (6.51)-(6.53). The steps are summarized in Algorithm 6.6.

Algorithm 6.6: KKT based algorithm (KBA) for Problem 6.5.

Set λ = 0, and ∀k,

γk(0) = max
{

η(0)
k

mkRk(1−Pk(Θ−1(0))) ,
δ(Pk(Θ−1(0)))

d(0)
k

}
,

Qk(0) =
γk
Gk

Θ−1(0)

if
∑K

k=1 γk(0) < 1 then
Exit

else
KM = {k ∈ {1, . . . ,K} | d(0)

k ≥ 1/η(0)
k } andKΘ = {1, . . . ,K}\KM

while
∑K

k=1 γk(λ) > 1 do
1. ∀k ∈ KM, compute

γk(λ) =
η(0)

k
mkRk(1−Pk(Θ−1(λGk))) , and

Qk(λ) =
γk(λ)

Gk
Θ−1(λGk).

2. ∀k ∈ KΘ, compute
mλ = M−1(λGk), θλ = Θ−1(λGk)

if δ(Pk(mλ))(1 − Pk(mλ)) >
η(0)

k d(0)
k

mkRk
then

γk(λ) = δ(Pk(mλ))/d(0)
k , and Qk(λ) =

γk(λ)
Gk

mλ.

else if δ(Pk(θλ))(1 − Pk(θλ)) <
η(0)

k d(0)
k

mkRk
then

γk(λ) = η(0)
k /(mkRk(1 − Pk(θλ))), and Qk(λ) =

γk(λ)
Gk
θλ.

else
Compute the root x∗ ∈ (0, 1) of Eq. (F.62).

γk(λ) = δ(x∗)/d(0)
k , and Qk(λ) =

γk(λ)
Gk

P(−1)
k (x∗).

end
3. Increase λ

end

end
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6.5.4 Ping-Pong algorithm (PPA)

The second algorithm consists in rewriting Problem 6.5 as a function of (γ,E). Then,
the function to minimize becomes biconvex and solutions can be easily obtained on each
direction as done in Section 6.4.

Problem 6.6. Problem 6.5 is equivalent to:

min
(γ,E)

K∑
k=1

γkEk, (6.56a)

s.t. η̃(γk,Ek) ≥ η(0)
k , ∀k, (6.56b)

(1/γk)δ(Pk(GkEk)) ≤ d(0)
k , ∀k, (6.56c)

K∑
k=1

γk ≤ 1, (6.56d)

γk > 0, Ek > 0, ∀k. (6.56e)

Indeed, assuming fixed γ (resp. E) the problem is linear in E (resp. γ). More precisely,
we split Problem 6.6 into two subproblems which are solved alternately.

Problem 6.6a (on E). For fixed γ(i−1), the subproblem at iteration i is:

E(i) = arg min
E

K∑
k=1

γ(i−1)
k Ek, (6.57a)

s.t. Ek ≥ (1/Gk)P−1
k

(
1 − η(0)

k /(mkRkγ
(i−1)
k )

)
,∀k, (6.57b)

Ek ≥ (1/Gk)P−1
k (δ−1(γ(i−1)

k d(0)
k )),∀k. (6.57c)

Problem 6.6b (on γ). For fixed E(i−1), the subproblem at iteration i is:

γ(i) = arg min
γ

K∑
k=1

γkE(i−1)
k , (6.58a)

s.t. γk ≥ max
(
η(0)

k /
(
mkRk(1 − Pk(GkE(i−1)

k ))
)
, δ

(
Pk(GkE(i−1)

k )
)
/d(0)

k

)
,∀k, (6.58b)

K∑
k=1

γk ≤ 1. (6.58c)

The solution E(i) of the i-th iteration of Problem 6.6a is given by:

E(i)
k = (1/Gk) max

(
P−1

k

(
1 − η(0)

k /(mkRkγ
(i−1)
k )

)
,P−1

k

(
δ−1(γ(i−1)

k d(0)
k )

))
. (6.59)

The solution γ(i) to Problem 6.4b can be efficiently obtained by using linear programming
tool, for instance the Simplex method [Boyd and Vandenberghe, 2004]. The iterative
algorithm is summarized in Algorithm 6.7. We initialize the bandwidth occupation terms
by assuming infinite energy consumption. We remind, we are not able to guarantee the
optimality of this algorithm.



6.5. Delay and rate constrained power minimization 129

Algorithm 6.7: Ping-Pong algorithm (PPA) for Problem 6.5.

Initialize ε > 0, E(0)
k = ∞,

γ(0)
k =

max
(
η(0)

k /(mkRk), 1/d(0)
k

)
∑K

k′=1 max
(
η(0)

k′ /(mk′Rk′), 1/d
(0)
k′

) , (6.60)

and
E(1)

k = (1/Gk) max
(
P−1

k

(
1 − η(0)

k /(mkRkγ
(0)
k )

)
,P−1

k

(
δ−1(γ(0)

k d(0)
k )

))
. (6.61)

Initialize i = 1
while ||E(i)

− E(i−1)
||∞ > ε do

E(i)
←− Eq. (6.59)

γ(i)
←− solution to iteration i of Problem 6.4b

i←− i + 1

end

6.5.5 Numerical results

For the same reasons exposed in Section 6.4.6, we only present numerical results for
the MCS1 with BPSK described in Section 6.3.5, and the path loss follows the free-space
model. The delay will be measured in seconds by multiplying dMAC

k and d(0)
k by the time for

transmitting a single MAC packet of LMAC/ log2(M) symbols over Nc OFDM subcarriers 4,
given by:

τ :=
LMAC

log2(M)W
. (6.62)

For W = 1 MHz and since BPSK is considered, we have τ = 128 µs. Therefore, dMAC
k τ corre-

sponds to the average time for receiving the data packet without errors when transmitting
over γkNc subcarriers.

In Fig. 6.20 (resp. Fig. 6.21), we plot the total transmit power (resp. the occupied band-
width) versus the total goodput demand, for two delay requirements: d(0)

k τ = 1024 µs ≈
1 ms or d(0)

k τ = 2560 µs ≈ 2.5 ms, for all k. As expected, at larger goodput requirement (ba-
sically beyond 0.5 bit/s/Hz) the performance are driven by the goodput constraints, which
define the convex problem of Section 6.3, and the two algorithms 6.6 and 6.7 have the same
performance (bandwidth saturation and comparable power consumption). However, for
lower goodput requirement the algorithms behavior are very different since driven by the
delay constraints. As expected, a larger delay constraint (d(0)

k τ = 2.5 ms) is less restrictive
and so consumes less bandwidth and less power.

Let us recall from Appendix F.8 that the delay constraint is never active when
η(0)

k /(mkRk) ≥ 1/d(0)
k , ∀k, and so the nonconvex delay constraint can be deleted from

Problem 6.5, which is therefore convex and KKT becomes optimal. When d(0)
k τ = 1 ms,

4Ts = Nc/W is the symbol duration (in seconds) over one subcarrier.
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the KBA is optimal as soon as ηT is larger than
∑K

k=1 1/d(0)
k = K/8 = 0.5 bit/s/Hz as observed

in Fig. 6.20. When d(0)
k τ = 2.5 ms, optimality of the KBA is guaranteed as soon as ηT is

larger than 0.2 bit/s/Hz. On the other hand, the proposed PPA outperforms the KBA for
d(0)

k τ = 1 ms when the users are not in the convex area.
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Figure 6.20: Total transmit power versus spectral efficiency (MCS1, BPSK, K = 4, τ =

128 µs).

6.6 Conclusion

The study of Type-I HARQ-based OFDMA network resource allocation with statistical
CSI at the cluster head ends with this last Chapter. Upon building the Type-I HARQ
using practical MCS, we have proposed a general framework for:

• power and bandwidth allocation for minimizing the total power emitted by the
cluster, when the links are subject to minimum rate constraints (Problem 4.3, solved
by Theorem 6.3 and Algorithm 6.1),

• smart MCS selection among predefined MCS for total power minimization under
rate constraints (Problem 6.2a solved by Algorithm 6.2),

• power and bandwidth allocation for minimizing the total power emitted by the
cluster, when the links are subject to minimum rate as well as maximum PER
constraints (Problem 4.4 solved by Theorem 6.9 and Algorithm 6.3),
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Figure 6.21: Occupied bandwidth versus spectral efficiency (MCS1, BPSK, K = 4, τ =

128 µs).

• power and bandwidth allocation for minimizing the total power emitted by the
cluster, when the links are subject to minimum rate as well as maximum delay
constraints (Problem 4.5 suboptimally solved by Algorithms 6.6 and 6.7).

The numerical results were computed using QAM modulated signals associated with
convolutional coded packets, with a free-space path loss propagation model (squared
distance 1/D2 decay), a carrier frequency fc = 400 MHz, and within a bandwidth W =

1 MHz, illustrate a military context.
The main novelty of this framework, greatly influenced by some new trends in the

related literature (especially [Devillers et al., 2008] and [Wu and Jindal, 2011], or [Ro-
driguez, 2003]), is the abandonment of the celebrated Shannon capacity (as used in [Gault
et al., 2007]) as the measure of information rate. Instead, we have considered the so-called
goodput as the figure of merit for information rate, as well as measurable performance
metrics for the constraints (goodput, PER, delay).

Moreover, one important point of the proposed method is that the results are general
enough to handle any practical MCS for which its performance (PER versus SNR) are
available through simulation points only.

Finally, these results have been published in [C4], [C5] and [J2].
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Conclusions and Perspectives

The work carried out in this thesis dealt with the resource allocation of HARQ-based
OFDMA clustered MANETs, which are a flexible solution for fast and short-lived com-
munications deployment for military applications or future smart networks. Industrial
concerns about the realism of the proposed solutions led us to consider practical and exist-
ing communications schemes instead of the commonly used capacity tools. In particular,
the main objective was to design and analyze algorithms that optimize the assignment
of power, bandwidth, modulation order, and code rate, of the HARQ mechanism at the
top of the proposed multiuser communication scheme. Due to the presence of HARQ in
the proposed network, parts of the thesis were devoted to the extension of the analysis of
HARQ performance done in [Le Duc, 2009] in some particular new contexts.

The fundamentals about HARQ that are useful throughout the thesis were presented
in Chapter 1. Without being exhaustive, the state of the art exposed in this Chapter
covers a large amount of the retransmission techniques from the basic concepts of ARQ
to more advanced cross-layer HARQ techniques. We reviewed the main works related
to the study of Type-I and Type-II HARQ, and the different retransmission protocols of
ARQ (SW, GBN, and SR). We defined the metrics of interest for the study of HARQ
performance: the PER, the delay, and the efficiency. We discussed on the relation be-
tween the throughput, the goodput, and the efficiency. Finally, we reviewed the HARQ
performance study within the cross-layer concept.

In Chapter 2 we studied an ED based version of the cross-layer HARQ with IBS. The
mechanism of the ED technique was exposed, and we saw that ED modifies only the
HARQ efficiency metric. Then, we developed a new expression of efficiency that is valid
for any HARQ type with equal MAC packet length, and derived a closed-form expression
for the Type-I HARQ case. The numerical analysis revealed that the efficiency is only
slightly improved when ED is used. We concluded that the ED improvement was more
helpful when the fragmentation N and the total credit C are close together.

Chapter 3 was devoted to the analysis of cross-layer HARQ schemes with imper-
fect feedback. We proposed a model for two kinds of feedback impairments, i.e. errors
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in the acknowledgment messages and delayed feedback, and we derived new analytic
expressions at IP level for the PER, the delay and the efficiency of the HARQ schemes.
The impact of such imperfect feedback on the HARQ performance was studied through
numerical examples. While the PER is not modified by any feedback imperfection in
the FBS case, the PER of IBS is dramatically degraded, and thus the impact on the two
other metrics (delay and efficiency) is significant in this case. The best performance of
the FBS scheme are achieved by using coding inside the feedback packets and by setting
a time-out value that is close to the average arrival time of the feedback. In contrast, a
larger time-out value must be chosen in the IBS case, and even coding cannot retrieve
the ideal performance. Therefore we defined the RCS scheme, for which the analysis was
conducted within a unified framework. Numerical results revealed that the choice of
the initial credit distribution offered a soft transition from the robustness of FBS against
imperfect feedback, to the cross-layer gain brought by IBS.

Chapter 4 moved towards the second part of the thesis and was dedicated to the
resource allocation issue in the paradigm of ad hoc networks. We reviewed the different
causes to the design choice of the considered MANET and discussed the main assumptions
concerning this system, which led to a statistical channel knowledge only. Furthermore,
several practical limitations were envisaged to make the design more realistic. Precisely,
in this Chapter we established the framework for resource allocation with statistical CSI
in a Type-I HARQ-based OFDMA clustered MANET, with either finite-length Gaussian
codes or practical MCS. The main objective was the minimization of total cluster power
based on the HARQ performance metrics as figures of merit. Finally, the mathematical
formulations of the minimization problem have been led to Problems 4.2, 4.3, 4.4, and 4.5.

In Chapter 5 we solved the case of finite-length Gaussian codes formalized in Prob-
lem 4.2. We firstly computed in closed-form the error probability of Gaussian codes with
finite length over the Rayleigh channel. Based on this new result, we were able to find the
optimal power and bandwidth allocation given in Algorithm 5.1, which gives the best per-
formance that one can expect from our clustered OFDMA network using Type-I HARQ.
Numerical results revealed that the ergodic capacity limit can be outperformed when the
data rate request are low (basically, below 500 kbit/s within a bandwidth W = 1 MHz),
which was explained by the ability of our algorithm to save the bandwidth. The frame-
work developed in this Chapter can serve as a basis for Type-I HARQ based OFDMA
resource allocation when powerful FEC coding is used: the performance of LDPC codes
can be assessed by applying a power penalty to the algorithm output (for instance, 1.9 dB
for the 1/2-rate irregular LDPC code of length n = 504 on the Rayleigh channel).

In Chapter 6 we solved the case of practical MCS formalized in Problems 4.3, 4.4, and
4.5. We proposed a general framework for:
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• power and bandwidth allocation for minimizing the total power emitted by the
cluster, when the links are subject to minimum rate constraints (Problem 4.3, solved
by Algorithm 6.1),

• smart MCS selection among predefined MCS for total power minimization under
rate constraints (Problem 6.2a solved by Algorithm 6.2),

• power and bandwidth allocation for minimizing the total power emitted by the
cluster, when the links are subject to minimum rate as well as maximum PER
constraints (Problem 4.4 solved by Algorithms 6.3, 6.4 and 6.5),

• power and bandwidth allocation for minimizing the total power emitted by the
cluster, when the links are subject to minimum rate as well as maximum delay
constraints (Problem 4.5 suboptimally solved by Algorithms 6.6 and 6.7).

The main novelty of this framework, greatly influenced by some new trends in the related
literature, is the consideration of the goodput as the figure of merit. The numerical results
have been computed, without loss of generality, for QAM modulated signals associated
with convolutional coded packets. It has been shown that the performance of the 1/2-rate
convolutional code of length n = 512 were within 5 dB of the optimal finite-length Gaus-
sian performance.

Perspectives

The part of this thesis devoted the resource allocation has raised up several issues that
would deserve to be treated in future research.

To begin with, the frameworks developed in this thesis for the resource allocation
could be extended to more general systems:

• In Chapters 4, 5, and 6, we assumed Type-I HARQ for facilitate the resolution
of the optimization problems. Using instead Type-II HARQ would lead to better
performance and would be closer to practical systems. However the closed-form
expressions of the metrics will change and our results do not hold anymore. These
expressions actually lead to a more complicate optimization problem.

• The proposed framework solves optimization problems whose the QoS were de-
fined at the MAC level. Extension from MAC level defined constraints to IP level
defined constraints could be of interest. In the case of HARQ with FBS, this exten-
sion is straightforward since the IP level metrics are trivial functions of the MAC
level metrics. However, the case of HARQ with IBS or RCS would be more difficult
given the metrics expressions, and it could be interesting to know if this strategy
can outperform the power minimization based on the FBS metrics.
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• OFDM signals were used assuming perfect timing and frequency synchronization.
Relaxing this assumption would lead to a more realistic model, and it could be
interesting to evaluate the performance losses incurred by some desynchronization.
This study is left to future research since desynchronization would lead to a loss of
orthogonality amongst the OFDM subcarriers which thus reintroduces multiuser
interference inside the cluster. The optimization problems will thus be strongly
modified since the SNR has to be replaced with the SINR depending on the resource
allocation.

Adding some instantaneous CSI at the Transmitter side would provide other inter-
esting extensions. For instance one could extend the work of [Szczecinski et al., 2011]
for outdated CSI to multiuser schemes. Secondly, merging the expected goodput concept
used in [Stupia et al., 2012] with predictions based on statistical CSI can be of great interest
in order to enhance the performance of each HARQ round.

Finally, several more long-term perspectives could be envisaged: i) since the objectives
of system designer associated with a specific application could be multiple (for instance,
increasing the data rate and minimizing the delay simultaneously), multi-criteria opti-
mization can be useful and should be analyzed in the future. ii) The multiuser scheme
depicted in Chapter 4 (Fig. 4.1) leads to centralized optimization problems via the common
resource allocator (actually, the cluster head). In order to be robust against the resource
allocator (CH) failure (especially in military context), it would be of interest to develop
decentralized allocation schemes using distributed optimization based on consensus-like
approach.
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Appendix A

Appendix related to Chapter 1

A.1 Proposition A.1

Proposition A.1. ∀n, p ∈N,

p∑
k=0

(
n + k

n

)
=

(
p + n + 1

n + 1

)
. (A.1)

Proof. Let n, p ∈N be any integers. ∀k, 1 ≤ k ≤ p, the Pascal triangle formula gives:(
n + k + 1

n + 1

)
=

(
n + k
n + 1

)
+

(
n + k

n

)
. (A.2)

From this, one finds:

p∑
k=1

(
n + k

n

)
=

p∑
k=1

(
n + k + 1

n + 1

)
−

p∑
k=1

(
n + k
n + 1

)

=

p∑
k=1

(
n + k + 1

n + 1

)
−

p−1∑
k=0

(
n + k + 1

n + 1

)
, (A.3)

and it remains after straightforward simplifications:

p∑
k=1

(
n + k

n

)
=

(
p + n + 1

n + 1

)
−

(
n + 1
n + 1

)
. (A.4)

Yet,

p∑
k=0

(
n + k

n

)
=

(
n
n

)
+

p∑
k=1

(
n + k

n

)
=

(
n
n

)
+

(
p + n + 1

n + 1

)
−

(
n + 1
n + 1

)
, (A.5)

where Eq. (A.4) has been used to obtain the second line. Finally, the result comes after
recalling that ∀n > 0,

(n
n
)

= 1. �
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A.2 Proposition A.2

Proposition A.2. Let n, p ∈N and f : [0, 1] −→ R+ be the function defined by:

f (x) =

p∑
k=0

(
n + k

n

)
xn+k+1. (A.6)

Then, for µ =
(n+p+1

n+1
)
, f satisfies the differential equation:

(Eµ) y − x(1−x)
n+1 y′ = µ xn+p+2. (A.7)

Proof. Starting from the Pascal triangle relation, we have ∀k, 0 < k ≤ p and ∀x ∈ [0, 1]:

p∑
k=1

(
n + k + 1

n + 1

)
xn+k+1 =

p∑
k=1

(
n + k
n + 1

)
xn+k+1 +

p∑
k=1

(
n + k

n

)
xn+k+1

⇔xn+1 +

p∑
k=1

(
n + k + 1

n + 1

)
xn+k+1 =

p−1∑
k=0

(
n + k + 1

n + 1

)
xn+k+2 + xn+1

p∑
k=1

(
n + k

n

)
xn+k+1

⇔x
p∑

k=0

(
n + k + 1

n + 1

)
xn+k = x2

p∑
k=0

(
n + k + 1

n + 1

)
xn+k
−

(
n + p + 1

n + 1

)
xn+p+2 +

p∑
k=0

(
n + k

n

)
xn+k+1.

(A.8)

Denoting by f (x) =
∑p

k=0

(n+k
n

)
xn+k+1, then ∀x ∈ [0, 1]:

f ′(x) =

p∑
k=0

(
n + k

n

)
(n + k + 1)xn+k

= (n + 1)
p∑

k=0

(
n + k + 1

n + 1

)
xn+k. (A.9)

Thus, by expressing the binomial sums using exclusively f and f ′ we find:

x
n + 1

f ′(x) =
x2

n + 1
f ′(x) −

(
n + p + 1

n + 1

)
xn+p+2 + f (x). (A.10)

Lastly, µ :=
(n+p+1

n+1
)

and then Eq. (A.10)⇔ (Eµ). �

A.3 Proposition A.3

Proposition A.3. ∀µ ∈ R, the solutions of (Eµ) are the functions fµ : (0, 1) −→ R defined as:

fµ(x) =
( x
1 − x

)n+1 (
λ − (n + 1)µB(x; p + 1,n + 1)

)
, ∀λ ∈ R, (A.11)

where B(x; a, b) is the incomplete Beta function.

Proof. Direct resolution using classic tools from linear differential equations theory. �
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A.4 Proof of Eq. (1.30)

We recall from Chap. 1 that PI
IP = 1 − (1 − p0)N ∑C

`=N
( `−1
N−1

)
p`−N

0 , thus for n = N − 1 and
p = C −N, one finds:

PI
IP = 1 −

(
1 − p0

p0

)N

f (p0). (A.12)

From Prop. A.2, f (p0) is a solution of (Eµ) over [0,1] for µ =
(C
N
)
, and using Prop. A.3,

∀p0 ∈ (0, 1):
PI

IP = 1 − λ + NµB(p0; C −N + 1,N), µ, λ ∈ R. (A.13)

Yet, the function PI
IP is uniquely determined using the two limiting conditions:

lim
p0→0

PI
IP = 0, (A.14)

lim
p0→1

PI
IP = 1. (A.15)

Since from Eq. (A.13) we have that PI
IP → (1−λ) when p0 → 0, then from Eq. (A.14) we find

λ = 1, hence PI
IP = NµB(p0; C−N +1,N) for µ ∈ R. Similarly, since PI

IP → NµB(C−N +1,N)
when p0 → 1, from Eq. (A.15) we find µ = 1/(NB(C −N + 1,N)). Finally, remark that:

µ =
1

NB(C −N + 1,N)
=

Γ(C + 1)
NΓ(C −N + 1)Γ(N)

=
C!

N!(C −N)!
=

(
C
N

)
(A.16)

to conclude that PI
IP = B(p0; C −N + 1,N)/B(C −N + 1,N) = I(p0; C −N + 1,N).

A.5 Proof of Eq. (1.32)

From Chap. 1, we rewrite dI
IP = ((1− p0)/p0)N/(1−PI

IP)
∑C−N

k=0
(k+N−1

N−1
)
(k + N) pk+N

0 . Using the
definition of f for n = N − 1 and p = C −N, it gives:

dI
IP =

1
1 − PI

IP

(
1 − p0

p0

)N

p0 f ′(p0), (A.17)

where f ′ is obtained using (Eµ):

f ′(p0) =
N

p0(1 − p0)
f (p0) −

pC
0

(1 − p0)B(C −N + 1,N)
, (A.18)

where κ is defined as κ := C−N+1. Using Eq. (1.30), and that 1−I(p0;κ,N) = I(1−p0; N, κ),
it comes:

dI
IP =

1
I(1 − p0; N, κ)

(
1 − p0

p0

)N  N
1 − p0

I(1 − p0; N, κ)
(

p0

1 − p0

)N

−
pC+1

0

(1 − p0)B(κ,N)

 . (A.19)

The final result drops down after some algebraic computations.
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Appendix related to Chapter 2

The purpose is to find in closed-form the term pC−N+1
0 f (1 − p0), where f is the function

defined for x ∈ [0, 1] by:

f (x) =

N∑
n=1

n
(
C −N + n − 1

n − 1

)
xn−1. (B.1)

Our approach will be to find a closed-form expression for a primitive F of f :

F(x) =

N∑
n=1

(
C −N + n − 1

n − 1

)
xn, (B.2)

and then to compute its derivative. First, by using the symmetry property
(n

k
)

=
( n
n−k

)
,

∀n ≥ k, and an index reorganization, we obtain that F(x) = G(x)/x where G is defined by:

G(x) =

N−1∑
n=0

(
C −N + n

C −N

)
xC−N+n+1. (B.3)

Then, by using Prop. A.2 for n = C−N and p = N−1, the function G satisfies the following
differential equation:

y −
x(1 − x)

K
y′ = µxC+1 (B.4)

with µ =
(C
K
)

and K = C −N + 1. Prop. A.3 can be used to solve Eq. (B.4), and we have:

G(x) =
( x
1 − x

)K (
λ − KµB(x; N,K)

)
. (B.5)

Due to some binomial properties [Abramowitz and Stegun, 1972, Eq. (3.1.4)], we have
µK = 1/B(N,K). Thus

F(x) =
x

(1 − x)K
(λ − I(x; N,K)) . (B.6)

In order to characterizeλ, let us consider PI
IP. One can check that PI

IP = pK
0 /(1−p0)F(1−p0) =

λ − I(1 − p0; N,K). When p0 → 1, we know that PI
IP → 1. Thus, I(1 − p0; N,K)→ 0 and we

find λ = 1. Then:
F(x) =

x
(1 − x)K

(1 − I(x; N,K)) . (B.7)
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Moreover, 1 − I(x; b, a) = I(1 − x; a, b) and we finally have:

F(x) =
x

(1 − x)K I(1 − x; K,N). (B.8)

The final result drops down by taking the derivative of F(.) given in Eq. (B.8).
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Appendix related to Chapter 3

C.1 Proof of Proposition 3.2

In order that n fragments are received with success, each fragment #` must be acknowl-
edged according to the following ACK/NACK sequence: first, the reception of s` ≥ 0
NACKs coming from NACKs (and corresponding to the number of decoding failures),
then the reception of t` ≥ 0 NACKs coming from ACKs (and corresponding to the number
of feedback errors) and possibly one ACK. Thus, for n fragments for which 0 ≤ k ≤ n
ACKs are received, this enumeration leads to the total of

∑n
`=1(s`+t`) = i−k transmissions.

Hence, the expected transmission time αn(i) is distributed over the combinatorial set:

E
B
p,n =

(s, t) ∈Nn
×Nn

|

n∑
`=1

(s` + t`) = p and ∀`,
∑̀
m=1

(1 + sm + tm) ≤
∑̀
m=1

L(0)
m

 . (C.1)

It is written (simply by enumeration):

αn(i) =

n∑
k=0

∑
(s,t)∈EB

i−k,n

(
∑
`

s`)τr,n + kτa + (
∑
`

t`)τr,a

 Pr {(s, t)} . (C.2)

Since fragment #` is received in 1+s`+t` transmissions, but only k ACKs have been received
during the transmission of the n fragments, one finds Pr {(s, t)} = (1−pfb)k ∏n

`=1 p1(1+s`)p
t`
fb.

The final expression is straightforward.

C.2 Proof of Proposition 3.3

Direct enumeration gives, for n ≥ 1 and i ≥ n:

βn(i) =
∑

x∈χi,n

n∏
j=1

Pr{fragment # j received in x j}, (C.3)

where χk,n =
{
x ∈Nn

∗ |
∑n
`=1 x` = k and ∀`,

∑`
m=1 xm ≤

∑`
m=1 L(0)

m

}
, with A j = {

∑ j
m=1 xm <∑ j

m=1 L(0)
m }. The event {fragment # j received in x j} is split as follows: k j transmissions until
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correct decoding of the fragment (at the receiver side), next (x j − k j) transmissions for
correct ACK reception at the transmitter side. It does not matter if NACK has still been
received at the (x j − k j)-th transmission since the fragment has been correctly decoded.
This leads to:

Pr
{
fragment # j received in x j

}
=

x j∑
k j=1

p1(k j)pfb
x j−k j(1 − pfb)δ{A j}. (C.4)

C.3 Proof of Proposition 3.4

The IP packet fails when at least one fragment is received with errors. At least L1 + (N−1)
transmissions are needed (the first fragments fails with its total L1, and the last (N − 1)
fragments are received in one shot), up to C. Considering N fragments for which 0 ≤ n ≤
(N − 1) ACKs are received, we enumerate over the set EB

i−n,n:

θn(i) =
∑

(s,t)∈EB
i−n,n

(
∑
`

s`)τr,n + nτa +
∑
`

t`)τr,a

 Pr {(s, t)} . (C.5)

There may be a failure for fragment #` only if its credit is consumed, i.e. , if
∑`

m=1(1 + sm +

tm) =
∑`

m=1 L(0)
m . Therefore, let us define:

B` =

∑̀
m=1

(1 + sm + tm) ≤
∑̀
m=1

L(0)
m

 , (C.6)

Γ` =

∑̀
m=1

(1 + sm + tm) =
∑̀
m=1

L(0)
m

 , (C.7)

and KO = {∃` ∈ {1, . . . ,N} |Γ`}, and thus:

Pr {(s, t)} = (1 − pfb)nδ{KO}
N∏
`=1

(
p1(1 + s`)p

t`
fbδ{B`} + q(1 + s` + t`)δ{Γ`}

)
. (C.8)

C.4 Proof of Proposition 3.5

Success in the IBS setting consists in the acknowledgment of n consecutive fragments
with a total of i transmissions, i ∈ {n, . . . , p}. First, let us focus on i < p (the case i = p will
be completed afterward). Prop. 3.2 when applied to IBS gives:

αn,p(i) =
∑

(s,t)∈EB
i−n,n

(
∑
`

s`)τr,n + nτa + (
∑
`

t`)τr,a

 (1 − pfb)n
n∏
`=1

p1(1 + s`)p
t`
fb, (C.9)

since the transmitter must have been received n ACKs in order the n fragments be all
received. Moreover, the sets EB

i−n,n and Ei−n,n =
{
(s, t) ∈Nn

×Nn
|
∑n

m=1(sm + tm) = i − n
}
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are equal since the condition
∑`

m=1(1 + sm + tm) ≤
∑`

m=1 L(0)
m is satisfied for all ` ≥ 1 in the

IBS case.1

As a set of vectors couples, Ei−n,n can be expressed using the Cartesian product:

Ei−n,n =

i−n⋃
`=0

(
S`,n × Si−n−`,n

)
, (C.10)

where S`,n are the combinatorial sets S`,n =
{
s ∈Nn

|
∑n

m=1 sm = `
}
. Thus we obtain:

αn,p(i) =

i−n∑
`=0

(
`τr,n + nτa + (i − n − `)τr,a

) ∑
s∈S`,n

∑
t∈Si−n−`,n

(1 − pfb)n
n∏

m=1

p1(sm + 1)pfb
tm . (C.11)

Let us focus on the set S`,n, which gathers all the ways of writing any natural integer
` as the sum of n non-negative integers (also known as a weak n-composition). By use
of the bijection defined by km = sm + 1, this set is equinumerous [Stanley, 1997], hence
equivalent, to the set K`+n,n =

{
k ∈Nn

∗ |
∑n

m=1 km = ` + n
}

that represents all the ways of
writing any integer ` + n > 0 as the sum of n positive integers (n-composition). Hence,

αn,p(i) =

i−n∑
`=0

(
`τr,n + nτa + (i − n − `)τr,a

) ∑
k∈K`+n,n

∑
r∈Ki−`,n

(1 − pfb)n
n∏

m=1

p1(km)pfb
rm−1

=

i−n∑
`=0

(
`τr,n + nτa + (i − n − `)τr,a

)
(1 − pfb)n

 ∑
k∈K`+n,n

n∏
m=1

p1(km)


 ∑

r∈Ki−`,n

pfb

∑
m(rm−1)


=

i−n∑
`=0

(
`τr,n + nτa + (i − n − `)τr,a

)
(1 − pfb)n

 ∑
k∈K`+n,n

n∏
m=1

p1(km)


 ∑

r∈Ki−`,n

pfb
i−n−`

 .
(C.12)

We recall that the set of all n-compositions of k ∈N has cardinality
(k−1
n−1

)
[Stanley, 1997].

Furthermore, the term
∑

k∈K`+n,n

∏n
m=1 p1(km) is identified as the probability pn(`+n). After

changing ` into ` + n, it gives:

αn,p(i) =

i∑
`=n

(
(` − n)τr,n + nτa + (i − `)τr,a

)
pn(`)

(
i − ` + n − 1

n − 1

)
pfb

i−`(1 − pfb)n. (C.13)

Lastly, for i = p the transmitter receives (n − 1) ACKs and the last feedback message is
ACK with probability (1 − pfb). Hence, at the p-th transmission the transmitter waits
(1 − pfb)τa + pfbτr,a. Some simple algebra leads to the result.

1Indeed, if (s, t) ∈ Ei−n,n then
∑n

m=1(1 + sm + tm) = i ≤ p, and because IBS is used one has L(0)
1 = p and L(0)

` = 0
for all ` > 1. Thus, for all ` ≤ n,

∑`
m=1(1 + sm + tm) ≤ p =

∑`
m=1 L(0)

m , so that Ei−n,n ⊂ E
B
i−n,n. The case EB

i−n,n ⊂ Ei−n,n

is straightforward.
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C.5 Proof of Proposition 3.6

Prop. 3.5, by setting τr,n = τa = τr,a = 1 in Eq. (3.33), leads to:

αn,p(i) = (1 − pfb)n−δ{i=p}
i∑

k=n

i
(
i − k + n − 1

n − 1

)
pn(k)pfb

i−k. (C.14)

Since it is the average number of transmissions when feedback is unreliable, write it
αn,p(i) =

∑i
k=n iβn(k)/(1 − pfb)δ{i=p} to obtain the result.

C.6 Proof of Proposition 3.7

Fig. C.1 depicts a typical event for acknowledging (n − 1) fragments (green box) and not
decoding the n-th fragment (red box) with C transmissions:

• n − 1 ACKs are received with a probability (1 − pfb)n−1 leading to a waiting time
(n − 1)τa and C − n + 1 transmissions left.

• m ≥ 1 transmissions are spent for the last fragment, which is not decoded with a
probability q(m).

• thus, it remains at most (C−n) transmissions: ` ≥ 0 of them are used to successfully
decode the (n−1) first fragments, with a probability pn−1(`+n−1), and a time (`+m)τr,n

is spent to transmit the NACKs that are received as NACKs; the (C − n + 1 − ` −m)
other transmissions are used to transmit the ACKs that are received as NACKs (with
a probability pfb

C−n+1−`−m, in a time (C − n + 1 − ` −m)τr,a.

• the (C − n + 1 − ` −m) ≥ 0 ACKs that are transformed into NACKs are divided into
the (n − 1) fragments in

(C−`−m−1
n−2

)
ways.

Finally, we find:

θn(C) =

C−n∑
`=0

C−n+1−`∑
m=1

(
(n − 1)τa + (C − n + 1 − ` −m)τr,a + (` + m)τr,n

)
×

(
C − ` −m − 1

n − 2

)
pn−1(` + n − 1)q(m)pfb

C−n+1−`−m(1 − pfb)n−1, (C.15)

and changing index ` into (`+ n− 1) gives the desired expression. γn(C) is obtained along
the same lines.
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NACK→ NACK ACK→ NACK

n−1

C−n+1

C−n+1− ℓ−m mℓ

NACK→ NACKACK→ ACK

Figure C.1: Simple counting in θn(C).
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Appendix related to Chapter 4

D.1 Proof of problem convexity

Basically, we aim to solve the problem defined in Eq. (4.19) with the individual user rate
constraints driven by the links capacity:

Ck(γk,Ek) = γkE

log
(
1 +
|Hk(i,n)|2Ek

N0

)
−

1
2

log

1 +

(
|Hk(i,n)|2Ek

N0Mk

)2 . (D.1)

Hence, the mathematical optimization problem is:

min
(γ,E)

K∑
k=1

γkEk, (D.2a)

s.t. Ck(γk,Ek) ≥
ρ(0)

k

W
, ∀k, (D.2b)

K∑
k=1

γk ≤ 1, (D.2c)

γk ≥ 0, Ek ≥ 0, ∀k. (D.2d)

Introducing the variable Qk := γkEk, the problem turns out to:

min
(γ,Q)

K∑
k=1

Qk, (D.3a)

s.t. Ck(γk,Qk) ≥
ρ(0)

k

W
, ∀k, (D.3b)

K∑
k=1

γk ≤ 1, (D.3c)

γk ≥ 0, Qk ≥ 0, ∀k. (D.3d)

In the light of the following Property, the previous problem falls within the class of
convex minimization problems, which can be easily solved using convex optimization
tools [Boyd and Vandenberghe, 2004]:
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Property D.1. Ck is concave in (γk,Qk).

Proof. Let us study the concavity of the function f defined as:

f (x) = log(1 + x) −
1
2

log
(
1 +

x2

M2

)
. (D.4)

Deriving f twice, we find after little algebra:

f ′′(x) =
−1/M2

1 + x2/M2

(
1 − x2/M2

1 + x2/M2

)
−

1
(1 + x)2 . (D.5)

It is easy to see that f ′′(x) ≤ 0 when x ≤ M. However it is more difficult for x > M, but
it can be conjectured from Fig. D.1. Moreover, the function Ek 7→ fE

[
(Ek|Hk(i,n)|2/N0)

]
is

concave since it corresponds to the average of positive concave functions. Finally, since
(γk,Qk) 7→ Ck(γk,Qk) is the perspective of the concave function Ek 7→ E

[
f (Ek|Hk(i,n)|2/N0)

]
,

then Ck is concave in (γk,Qk) [Boyd and Vandenberghe, 2004].
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Figure D.1: Sign of f ′′ for several values of M.

�

D.2 Solution of the convex optimization problem

The minimization problem under investigation exhibits a convex structure from Prop-
erty D.1. Thus, an optimal solution is obtained by solving the KKT optimal conditions:

∇

 K∑
k=1

Qk

 − K∑
k=1

µk∇Ck(γk,Qk) + λ∇

 K∑
k=1

γk

 = 0. (D.6)
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This multivariate can be expanded as a set of 2K scalar equations µk∂Ck/∂γk = λ and
µk∂Ck/∂Qk = 1. After developing the two partial derivatives of Ck:

Ck(γk,Qk) = γk

E log
(
1 +
|Hk(i,n)|2Qk

N0γk

)
−

1
2

log

1 +

(
|Hk(i,n)|2Qk

N0Mkγk

)2 , (D.7)

which gives, denoting by gk := |Hk(i,n)|2/N0:

∂Ck

∂γk
= E

[
log

(
1 + gk

Qk

γk

)]
−

1
2
E

log

1 +
g2

kQ2
k

M2
kγ

2
k

 (D.8)

− E

[
gkQk/γk

1 + gkQk/γk

]
+ E

 g2
kQ2

k/(M
2
kγ

2
k)

1 + g2
kQ2

k/(M
2
kγ

2
k)

 (D.9)

∂Ck

∂Qk
= E

[
gk

1 + gkQk/γk

]
− E

 g2
kQk/(M2

kγk)

1 + g2
kQ2

k/(M
2
kγ

2
k)

 , (D.10)

reordering and observing that Qk/γk = Ek leads to the following set of equations:

µkE

[
log(1 + gkEk) −

gkEk

1 + gkEk

]
−

1
2
E

log

1 +
g2

kE2
k

M2
k

 − g2
kEk/M2

k

1 + g2
kE2

k/M
2
k

 = λ (D.11)

µkE

 gk

1 + gkEk
−

g2
kEk/M2

k

1 + g2
kE2

k/M
2
k

 = 1. (D.12)

Notice the two correction terms in Mk introduced by the finite-modulation approach,
compared to the set of equations that were derived in [Gault et al., 2007].

Finally, solving for the multiplier µk gives, for all k:

fk(Ek) = λ, (D.13)

where the functions fk are defined by:

fk(x) =
E

[
log(1 + xgk) − 1

2 log(1 + x2g2
k/M

2
k)
]

E
[

gk
1+xgk

− x
g2

k/M
2
k

1+x2 g2
k/M

2
k

] − x. (D.14)

Since gk is an exponential random variable with mean Gk, in order to compute fk in
closed-form one can compute the function f defined as:

f (x,M) =
E

[
log(1 + xXe) − 1

2 log(1 + x2X2
e/M2)

]
E

[
Xe

1+xXe
− x X2

e /M2

1+x2X2
e /M2

] − x, (D.15)

where Xe is an exponential random variable with mean 1. Therefore, f is related to fk
through fk(x) = (1/Gk) f (Gkx,Mk). The numerator is known from Appendix D.3 as the
capacity with M-QAM input signals:

E

[
log(1 + xXe) −

1
2

log
(
1 +

x2X2
e

M2

)]
= e1/xE1 (1/x) + ci

(M
x

)
cos

(M
x

)
+ si

(M
x

)
sin

(M
x

)
.

(D.16)
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Now, the two remaining terms at the denominator are computed:

E
[ Xe

1 + xXe

]
=

∫
∞

0

t
1 + xt

e−tdt =
1
x2

∫
∞

0

u
1 + u

e−u/xdu =
1
x2 (−e1/xE1 (1/x) + x), (D.17)

where the last equality comes from [Gradshteyn and Ryzhik, 1980, Eq. (3.353.5)], and:

E

[
X2

e/M2

1 + x2X2
e/M2

]
=

∫
∞

0

(t/M)2

1 + (xt/M)2 e−tdt

=
1
x3

∫
∞

0

u2

M2 + u2 e−u/xdu

=
1
x3 (−M(ci (M/x) sin(M/x) − si (M/x) cos(M/x)) + x), (D.18)

for which the last line is found from [Gradshteyn and Ryzhik, 1980, Eq. (3.356.2)]. Hence,
combining these results into Eq. (D.15), and defining C(x) := −ci (x) cos(x) − si (x) sin(x)
and S(x) := ci (x) sin(x) − si (x) cos(x), leads to:

f (x) = x2 e1/xE1 (1/x) − C(M/x)
M S(M/x) − e1/xE1 (1/x)

− x. (D.19)

D.3 Approximate closed-form expressions for ergodic mutual in-
formation with QAM entries

.

Let Y ∈ Cn be the channel output:

Y = HX + N, (D.20)

where X and N are random vectors of length n with i.i.d. elements Xk and Nk, respectively.
Xk is uniformly distributed over a discrete subset X ⊂ C of M elements, and such that
E

[
|Xk|

2
]

= Es, whereas Nk ∼ CN(0,N0), and H is a n × n diagonal matrix with i.i.d.
elements Hk ∼ CN(0, σ2

h).

Moreover, the channel gains |Hk| are Rayleigh distributed, such that a random SNR
can be defined as:

SNRk =
|Hk|

2Es

N0
, (D.21)

and is exponentially distributed with parameter 1/SNR, where SNR = σ2
hEs/N0 is the

average SNR.

A nice approximation can be intuited from the observation that the capacity with
discrete entries will be reduced compared to the capacity with continuous inputs. The
Shannon capacity, found as the maximal mutual information shared between the source
and the destination, is achieved for Gaussian inputs. Therefore a quantification of the
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input symbols to M > 4 states, induced by the finite nature of the alphabet, leads to a
capacity reduction for the M-QAM AWGN channel evaluated in [Weidong et al., 2007]:

CG,QAM ≈ log(1 + SNR) −
1
2

log
(
1 +

SNR2

M2

)
. (D.22)

The capacity CR,QAM of the Rayleigh channel is obtained by averaging:

CR,QAM = E
[
log(1 + SNR)

]
−

1
2
E

[
log

(
1 +

SNR2

M2

)]
. (D.23)

Next, we give a closed-form expression for Eq. (D.23). Since the first term (ergodic
Rayleigh capacity) is already known, it remains only to compute the second term in
closed-form:

A :=
1
2
E

[
log

(
1 +

SNR2

M2

)]
=

1
2

∫
∞

0
log

(
1 +

t2

M2

)
e−t/SNR

SNR
dt =

∫
∞

0

t
M2 + t2 e−t/SNRdt,

(D.24)
where the last equality is obtained after partial integration and simplification. The value
of this integral is provided in [Gradshteyn and Ryzhik, 1980, Eq. (3.354)]:

A = −ci
(

M

SNR

)
cos

(
M

SNR

)
− si

(
M

SNR

)
sin

(
M

SNR

)
, (D.25)

where ci (x) = −
∫
∞

x
cos t

t dt and si (x) = −
∫
∞

x
sin t

t dt are the cosine integral and sine integral,
respectively [Gradshteyn and Ryzhik, 1980]. These functions are related to the exponential
integral through ci (x) = −(E1 (ix) + E1 (−ix))/2 and si (x) = (E1 (ix) − E1 (−ix))/(2i). Hence,
inserting this into Eq. (D.24) boils down to:

CR,QAM ≈ e1/SNRE1

(
1/SNR

)
−

E1

(
iM/SNR

)
+ E1

(
−iM/SNR

)
2

cos
(

M

SNR

)
+

E1

(
iM/SNR

)
− E1

(
−iM/SNR

)
2i

sin
(

M

SNR

)
. (D.26)

The previous closed-form expressions are illustrated in Fig. D.2.
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Appendix E

Appendix related to Chapter 5

E.1 Proof of Lemma 5.1

From Eq. (5.31), we find that:

log η̃k(γk,Ek) = log(γk) + log(rk) + log(1 − P(n)
e (GkEk)), (E.1)

thus the goodput is clearly log-concave inγk > 0. The purpose is the study of the concavity
of the function f (x) := log

(
1 −Q(u(x))

)
, where Q is the queue of the Normal distribution,

and u is the centering/scaling function given by u(x) :=
√

n(µ(x) − R)/σ(x). In order that
the logarithm to be defined, (1 −Q) must be non-zero, which is guaranteed for x > 0.
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u(
x)
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 s

qr
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n)
(µ

(x
)−

R
)/

σ(
x)

 

 

Exact
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Figure E.1: Concavity of the function u(x) (n = 10).
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First, we compute the two first derivatives of f :

f ′(x) =
u′(x)e−u2(x)/2

1 −Q(u(x))
, (E.2)

f ′′(x) =
(
u′′(x) − (u′(x))2

) e−u2(x)/2

1 −Q(u(x))
− (u′(x))2 e−u2(x)

(1 −Q(u(x)))2 . (E.3)

Hence, if u is concave (u′′(x) ≤ 0), then f is concave:

u′(x) =
√

n
µ′(x)σ(x) − σ′(x)(µ(x) − R)

σ2(x)
, (E.4)

u′′(x) =
√

n
∆(x)
σ4(x)

, (E.5)

where the sign of u′′ is given by the sign of ∆ as defined below:

∆(x) := σ2(x)
(
µ′′(x)σ(x) − σ′′(x)(µ(x) − R) − µ′(x)σ′(x) − µ(x)σ′(x)

)
+ 2(σ′(x))2σ(x)(µ(x) − R), (E.6)

and

σ′(x) =
1√
(n)

v′(x)

2
√

v(x)
, (E.7)

σ′′(x) =
1
√

n

2v′′(x)
√

v(x) − (v′(x))2/
√

v(x)
4v(x)

, (E.8)

v(x) =

∫
∞

0

(
log2(1 + xt) − µ2(x) +

xt
1 + xt

)
e−tdt, (E.9)

v′(x) =

∫
∞

0

2t
1 + xt

(
log(1 + xt) − µ(x) +

1/2
1 + xt

)
e−tdt, (E.10)

v′′(x) =

∫
∞

0

(
−2t2

(1 + xt)2

(
log(1 + xt) − µ(x) +

1/2
1 + xt

)
+

2t
1 + xt

(
t

1 + xt
− µ′(x) −

t/2
(1 + xt)2

))
e−tdt. (E.11)

Proving that ∆(x) ≤ 0 for all x > 0 is difficult, nevertheless it can be conjectured from
Fig. E.2.
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Appendix F

Appendix related to Chapter 6

F.1 Proof of Lemma 6.1

Only if part. If Problem 6.1 is feasible, then there is (γ,Q) ∈ (0, 1)K
×RK

+∗ such that for all
k ∈ {1, . . . ,K}: η

(0)
k ≤ γkmkRk f (Pk(GkQk/γk))∑
k γk ≤ 1

⇒ η(0)
k < γkmkRk (F.1)

since 1 − Pk(GkQk/γk) < 1, hence we have:

K∑
k=1

η(0)
k

mkRk
<

K∑
k=1

γk ≤ 1. (F.2)

If part. Conversely, let us define the open set:

O =

η ∈ RK
+∗ |

K∑
k=1

ηk

mkRk
< 1

 , (F.3)

and thus t0 = η(0)
∈ O. Therefore, there is an ε > 0 such that the ball:

B(t0, ε) = {t ∈ RK
+∗ | ||t − t0|| < ε} ⊂ O, (F.4)

where ‖.‖ is the L∞-norm. In particular, we have {η ∈ RK
+∗ | ∀k ∈ {1, . . . ,K}, |ηk − η

(0)
k | < ε} ⊂

B(t0, ε). Now let us consider, ∀k ∈ {1, . . . ,K},

γk =
η(0)

k + ε/2

mkRk
. (F.5)

Since {η(0)
k + ε/2} ∈ B(t0, ε), we have

∑K
k=1 γk < 1.

Furthermore let η̃k = γkmkRk(1 − Pk(GkQk/γk)). When Qk →∞, one obtains:

η̃k −→ mkRk
η(0)

k + ε/2

mkRk
= η(0)

k +
ε
2
> η(0)

k (F.6)

which concludes the proof.
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F.2 Proof of Theorem 6.3

Let (µ, λ) be the non-negative Lagrangian multipliers associated with Eqs. (6.6b)-(6.6c),
respectively. The KKT conditions lead to the following equality:

∇(
K∑

k=1

Qk) −
K∑

k=1

µk∇η̃k(γk,Qk) + λ∇(
K∑

k=1

γk) = 0, (F.7a)

µk(η̃k(γk,Qk) − η(0)
k ) = 0, λ(

∑
k

γk − 1) = 0. (F.7b)

where ∇ stands for the gradient operator.
Before working on the KKT equations, we compute the gradients:

∂Pk

∂Qk
= Gk

1
γk

P′k(GkQk/γk), (F.8)

∂Pk

∂γk
= −Gk

Qk

γ2
k

P′k(GkQk/γk). (F.9)

We express the gradient of η̃k as:

∇η̃k = mkRkγk f ′(Pk(GkQk/γk))∇Pk +
[
0 mkRk f (Pk(GkQk/γk))

]T
. (F.10)

Stability Eq. (F.7a) is thus equivalent to the 2K scalar equations:

1 − µkmkRkγk f ′(Pk(GkQk/γk))
∂Pk

∂Qk
= 0, (F.11)

−µkmkRkγk f ′(Pk(GkQk/γk))
∂Pk

∂γk
− µkmkRk f (Pk(GkQk/γk)) + λ = 0. (F.12)

Putting the first line into the second enables the elimination of the K multipliers µk , 0,
hence the optimal Q∗k satisfies:

F(GkQ∗k/γ
∗

k) = λGk, (F.13)

with F : x 7→ −(1 − Pk(x))2/( f (Pk(x))P′k(x)) − x. Moreover since µk , 0, Eq. (F.7b) indicates
that the goodput constraint Eq. (6.6b) must be active, which gives for the optimal γ∗k:

γ∗kmkRk f (Pk(GkQ∗k/γ
∗

k)) = η(0)
k . (F.14)

The optimal (Q∗k, γ
∗

k) thus satisfy the set of equations (F.13)-(F.14) involving only one
multiplier λ.

Finally, the optimal Lagrangian multiplier λ∗ ≥ 0 is found. First of all, it is straight-
forward to show that F is strictly increasing over R+, hence the inverse function F−1 of F
with respect to the composition exists. From Eqs. (F.13)-(F.14) one finds:

γ∗k(λ) =
η(0)

k

mkRk f (Pk(F−1(λGk)))
, (F.15)

and from the monotonic behavior of F, f and Pk, we have that γ∗k(λ) decreases when λ
increases. In contrast, when λ increases then Q∗k(λ) increases too. Then two cases occur
for λ = 0:
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(i) if
∑K

k=1 γ
∗

k(0) ≤ 1, then a feasible solution is found, and λ∗ = 0. Otherwise, stopping
at a larger λ∗ would give larger Q∗k such that

∑K
k=1 Q∗k(λ∗) >

∑K
k=1 Q∗k(0), which

contradicts the optimality of λ∗.

(ii) else, by increasing λ until a feasible solution is found leads to the minimum for
λ∗ > 0 such that

∑K
k=1 γ

∗

k(λ∗) = 1 (for Eq. (F.7b) must be satisfied).

F.3 Calculations leading to fast implementation of Algorithm 6.1
in uncoded packet case

Based on Eq. (6.2), the PER derivative becomes:

P′k(GkEk) =
−n Gk

(1 + GkEk)2 =
−Gk

n
P2

k(Ek). (F.16)

Using Eq. (F.16), and since the PER is bijective, we can solve Eq. (F.13) with respect to the
variable Pk. Thus we obtain after some algebra that P∗k is a root of the polynomial φ:

φ(X) =

(
λ −

1
Gk
−

n
Gk

pfb

1 − pfb

)
X2 +

2n
Gk

1
1 − pfb

X −
n

Gk

1
1 − pfb

. (F.17)

The next result guarantees that the solution P∗k to φ(P∗k) = 0 exists and is unique:

Proposition F.1. φ has exactly one root P∗k ∈ (0, 1). Let us denote the constants a := λ − 1
Gk
−

n
Gk

pfb
1−pfb

, b := 2n
Gk

1
1−pfb

, c := −b/2, and ∆ := b2
− 4ac. Then, P∗k = (−b +

√
∆)/(2a).

Proof. Since φ is a polynomial of degree two, it has at most two distinct roots:

∆ := b2
− 4ac = b(b + 2a) = 2b

(
nS − 1

Gk
+ λ

)
> 0.

Hence, φ has exactly two distinct roots x1 = (−b +
√

∆)/(2a) and x2 = (−b −
√

∆)/(2a). Let
us investigate the two cases:

• If λ < 1
Gk

+ n
Gk

pfb
1−pfb

, i.e. a < 0. Then,

−b +
√

∆ =
−2n
Gk

1
1 − pfb

+

√
4n
Gk

1
1 − pfb

(
n − 1

Gk
+ λ

)

<
−2n
Gk

1
1 − pfb

+

√
4n2

G2
k

1
1 − pfb

(
1 +

pfb

1 − pfb

)

=
−2n
Gk

1
1 − pfb

+

√
4n2

G2
k

1
(1 − pfb)2

≤ 0.
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Thus, x1 > 0. Finally, since b > 0, we have ∆ > 0⇔ −b < 2a . Hence,

x1 =
−b +

√
∆

2a
=

2a − (b + 2a) +
√

b(b + 2a)
2a

= 1 +

√
b + 2a

(√
b −
√

b + 2a
)

2a
< 1

since a < 0 and then
√

b −
√

b + 2a > 0. For the other solution, suppose that x2 < 1,
then (since −2a > 0):

b +
√

∆ < −2a⇔
√

b(b + 2a) < −(b + 2a)

⇒ b(b + 2a) < (b + 2a)2

⇔ b < b + 2a

⇔ 0 < 2a,

which is in contradiction with a < 0. Thus, x2 > 1 and this solution is impossible.

• Or suppose that λ > 1
Gk

+ n
Gk

pfb
1−pfb

, i.e. a > 0. Then,

−b +
√

∆ >
−2n
Gk

1
1 − pfb

+

√
4n2

G2
k

1
(1 − pfb)2 ≥ 0,

thus x1 > 0. Moreover, suppose that x1 > 1. This is equivalent to:

−b +
√

∆ > 2a⇔
√

b(b + 2a) > b + 2a

⇒ b(b + 2a) > (b + 2a)2

⇔ b > b + 2a

⇔ 0 > 2a,

which is in contradiction with a > 0. Therefore, x1 < 1. In this case, the other
solution x2 = −(b +

√
∆)/(2a) < 0 is not consistent.

�

F.4 Proof of Lemma 6.7

To begin with, let us give a little recall about quasi-convexity (see [Greenberg and Pier-
skalla, 1971] and [Boyd and Vandenberghe, 2004, § 3.4]). A function f defined on dom f
is quasi-convex if, and only if, its sublevel sets:

St = {x ∈ dom f | f (x) ≤ t} (F.18)

are convex for all t ∈ R.
The following characterization of quasi-convex functions will be used in the proof.

f is quasi-convex if, and only if, for all x, y ∈ dom f and t ∈ [0, 1], f satisfies Jensen’s
inequality [Boyd and Vandenberghe, 2004]:

f (tx + (1 − t)y) ≤ max{ f (x), f (y)}. (F.19)
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Now, let us prove Lemma 6.7. The concavity of η̃ has already been established in
Lemma 6.2. In what follows we focus on the PER function. For all (γ,Q), (γ′,Q′) ∈
[0, 1] ×R+ and t ∈ [0, 1], we have:

tQ + (1 − t)Q′

tγ + (1 − t)γ′
= s

Q
γ

+ (1 − s)
Q′

γ′
, (F.20)

where s := tγ
tγ+(1−t)γ′ ∈ [0, 1], hence:

Pk

(
tQ + (1 − t)Q′

tγ + (1 − t)γ′

)
= Pk

(
s
Q
γ

+ (1 − s)
Q′

γ′

)
(a)
≤ sPk(Q/γ) + (1 − s)Pk(Q′/γ′)

≤ max{Pk(Q/γ),Pk(Q′/γ′)}, (F.21)

where (a) follows from the convexity assumption on Pk : R+ → [0, 1]. Thus, Pk is quasi-
convex in the two variables (γk,Qk).

F.5 Proof of Lemma 6.8

The set F is convex. Indeed, let us recall from Lemma 6.7 that Pk are quasi-convex
functions. By definition, the sublevel sets of Pk denoted by:

St = {(γ,Q) ∈ [0, 1]K
×RK

+ |Pk(GkQk/γk) − P(0)
k ≤ t}, (F.22)

are convex for all t ∈ R. In particular, S0 is convex. Thus F is convex by intersection of S0

with trivially convex sets defined by Eq. (6.31b) and Eq. (6.31d) [Boyd and Vandenberghe,
2004].

Now, we check that the nondegeneracy condition holds for Eqs. (6.31b)-(6.31d) defined
over the convex set dom c = (0, 1)K

×RK
+∗. The nondegeneracy of (η(0)

k −η̃k) and (
∑K

k=1 γk−1)
immediately follows from the convexity of these functions [Lasserre, 2010]. Next, we show
that if Pk(GkQk/γk) − P(0)

k = 0 then ∇Pk , 0. Assume that:

Pk(Qk/γk) = P(0)
k < 1, (F.23)

and that:

∇Pk = 0⇔


∂Pk
∂Qk

= 0

∂Pk
∂γk

= 0

⇔


1
γk

P′k(GkQk/γk) = 0

−Qk
γ2

k
P′k(GkQk/γk) = 0.

(F.24)

But since (γ,Q) ∈ dom c we have Qk > 0 and γk > 0, and from Pk(GkQk/γk) < 1 we have
P′k(GkQk/γk) , 0 which contradicts Eq. (F.24). Therefore, ∇Pk , 0.
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F.6 Proof of Theorem 6.9

From [Lasserre, 2010, Th. 2.3], any KKT point of Problem 6.3 is optimal. It remains to show
that any KKT point is a solution of Eqs. (6.36)-(6.38). Let (µ, θ, λ) be the nonnegative La-
grange multipliers associated with the 2K+1 constraints Eqs. (6.31b)-(6.31d), respectively.
Then, a KKT point (γ,Q,µ, θ, λ) is given by the following equations:

∇(
K∑

k=1

Qk) −
K∑

k=1

µk∇η̃k(γk,Qk) +

K∑
k=1

θk∇Pk(GkQk/γk) + λ∇(
K∑

k=1

γk) = 0, (F.25a)

−µk(η̃k(γk,Qk) − η(0)
k ) = 0, θk(Pk(GkQk/γk) − P(0)

k ) = 0, λ(
K∑

k=1

γk − 1) = 0. (F.25b)

Before working on the KKT equations, we compute the gradients:

∂Pk

∂Qk
= Gk

1
γk

P′k(GkQk/γk), (F.26)

∂Pk

∂γk
= −Gk

Qk

γ2
k

P′k(GkQk/γk). (F.27)

We remark that the gradient of η̃k can be expressed as:

∇η̃k = −mkRkγk∇Pk +
[
0 mkRk(1 − Pk)

]T
. (F.28)

Stability Eq. (F.25a) is thus equivalent to the 2K scalar equations:

1 +
(
mkRkγkµk + θk

) ∂Pk

∂Qk
= 0, (F.29)

(
mkRkγkµk + θk

) ∂Pk

∂γk
−mkRk(1 − Pk)µk + λ = 0, (F.30)

that are equivalent to the matrix identity:

S

µk

θk

 +

1
λ

 = 0, (F.31)

where:

S =

 mkRkγk
∂Pk
∂Qk

∂Pk
∂Qk

mkRk

(
γk

∂Pk
∂γk
− (1 − Pk)

)
∂Pk
∂γk

 . (F.32)

Therefore, we are provided with K independent linear equations in (µk, θk), which are
easily solved (S is 2 × 2) if and only if det S , 0 (this is guaranteed by the next result):

Lemma F.1. det S < 0.

Proof. By direct computation:

det S = mkRk(1 − Pk)
∂Pk

∂Qk

= (1 − Pk)Gk
P′k(GkQk/γk)

γk

< 0 (F.33)
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since the PER is a decreasing function of SNR, i.e. P′k(GkQk/γk) < 0. �

The solution of Eq. (F.31) is easy to write from

µk

θk

 = −S−1

1
λ

, hence after some basic

algebra: µk

θk

 =
−1

det S


−1
γk

GkP′k(GkQk/γk)
(

Qk
γk

+ λ
)

mkRkGkP′k(GkQk/γk)
(

Qk
γk

+ λ
)

+ mkRk(1 − Pk)

 . (F.34)

The complementary slackness equations:

−µk(η̃k(γk,Qk) − η(0)
k ) = 0,

θk(Pk(GkQk/γk) − P(0)
k ) = 0,

λ
(∑K

k=1 γk − 1
)
,

(F.35)

are thus equivalent to:(
−Gk

Qk

γk
− λGk

) (
η(0)

k − γkmkRk(1 − Pk(GkQk/γk))
)

= 0, (F.36)(
Θ(GkQk/γk) − λGk

) (
Pk(GkQk/γk) − P(0)

k

)
= 0, (F.37)

λ(
K∑

k=1

γk − 1) = 0, (F.38)

where, ∀x ∈ R+∗:

Θ(x) :=
xP′k(x) + 1 − Pk(x)

P′k(x)
. (F.39)

Finally, if the goodput constraint is inactive at the optimal point (γ∗,Q∗), then by Eq. (F.36)
we have:

− Gk
Q∗k
γ∗k
− λ∗Gk = 0⇔ −

Q∗k
γk

= λ∗. (F.40)

But λ∗ ≥ 0 (by definition), hence Q∗k = 0 which contradicts the fact that Q∗ , 0. Thus the
goodput constraint is always active at the optimal, i.e. η̃(γ∗k,Q

∗

k) − η(0)
k = 0.

F.7 Proof of Theorem 6.11

Let (µ, θ, λ) be the Lagrange multipliers associated with the 2K+1 constraints Eqs. (6.45b)-
(6.45d), respectively. Then, the KKT conditions are written:

∇

K∑
k=1

Qk −

K∑
k=1

µk∇η̃k(γk,Qk) +

K∑
k=1

θk∇dMAC
k (γk,Qk) + λ∇(

K∑
k=1

γk) = 0, (F.41a)

−µk(η̃k(γk,Qk) − η(0)
k ) = 0, θk(dMAC

k (γk,Qk) − d(0)
k ) = 0, λ(

K∑
k=1

γk − 1) = 0. (F.41b)
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Before working on the KKT equations, we compute the gradients:

∂Pk

∂Qk
= Gk

1
γk

P′k(GkQk/γk), (F.42)

∂Pk

∂γk
= −Gk

Qk

γ2
k

P′k(GkQk/γk). (F.43)

We remark that the gradients of η̃k and dMAC
k can be expressed as:

∇η̃k = −mkRkγk∇Pk +
[
0 mkRk(1 − Pk)

]T
, (F.44)

∇dMAC
k =

δ′(Pk)
γk
∇Pk +

[
0 −

dMAC
k
γk

]T
, (F.45)

with the function δ′ : x 7→ 1/(1 − x)2
− L2xL−1/(1 − xL)2 for x ∈ [0, 1].

As a consequence, Eq. (F.41a) leads to the following 2K scalar equalities:

1 +

(
mkRkγkµk +

δ′(Pk)
γk

θk

)
∂Pk

∂Qk
= 0, (F.46)(

mkRkγkµk +
δ′(Pk)
γk

θk

)
∂Pk

∂γk
−mkRk(1 − Pk)µk −

dMAC
k

γk
θk + λ = 0. (F.47)

This set of 2K equations in Eqs. (F.46)-(F.47) are equivalent to the following K independent
2-by-2 matrix linear identities on (µk, θk):

S

µk

θk

 +

1
λ

 = 0, (F.48)

where:

S =

 mkRkγk
∂Pk
∂Qk

δ′(Pk)
γk

∂Pk
∂Qk

mkRk

(
γk

∂Pk
∂γk
− (1 − Pk)

)
δ′(Pk)
γk

∂Pk
∂γk
−

dMAC
k
γk

 . (F.49)

This matrix identity can be easily solved if and only if det S , 0. This property is
guaranteed by the next result.

Lemma F.2. det S > 0.

Proof. By direct computation:

det S = −mkRkdMAC
k

∂Pk

∂Qk
+ mkRk(1 − Pk)

δ′(Pk)
γk

∂Pk

∂Qk

=
−mkRkGkP′k(GkQk/γk)

γ2
k

(δ(Pk) − (1 − Pk)δ′(Pk)) . (F.50)

Since the packet error rate is a decreasing function of SNR, P′k(GkQk/γk) ≤ 0. Thus det S
has the same sign than δ(Pk) − (1 − Pk)δ′(Pk):

δ(x) − (1 − x)δ′(x) =
−LxL

1 − xL + (1 − x)L2 xL−1

(1 − xL)2

=
L2(1 − x)xL−1

− LxL(1 − xL)
(1 − xL)2

=
LxL−1

(1 − xL)2

(
x2
− (L + 1)x + L

)
. (F.51)
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Finally, since the polynomial x2
− (L + 1)x + L = (x − 1)(x − L) > 0 for 0 < x < 1 (remind

that πk < 1 since γk > 0 and Qk > 0), then det S > 0. �

After some simple algebra, we obtain the following solutions for Eq. (F.48):µk

θk

 = −
S′

det S
(F.52)

where:

S′ =


−1
γk

2

(
δ′(Pk)P′k(GkQk/γk)Gk

(
Qk
γk

+ λ
)

+ δ(Pk)
)

mkRkP′k(GkQk/γk)Gk

(
Qk
γk

+ λ
)

+ mkRk(1 − Pk)

 . (F.53)

Hence, the complementary slackness equations Eq. (F.41b) are equivalent to:

(M(GkQk/γk) − λGk)
(
η(0)

k − γkmkRk

(
1 − Pk(GkQk/γk)

))
= 0 (F.54)

(Θ(GkQk/γk) − λGk)

δ
(
Pk(GkQk/γk)

)
γk

− d(0)
k

 = 0, (F.55)

λ(
K∑

k=1

γk − 1) = 0, (F.56)

where, ∀x ∈ R+∗:

M(x) = −
xδ′(Pk(x))P′k(x) + δ(Pk(x))

δ′(Pk(x))P′k(x)
(F.57)

Θ(x) = −
xP′k(x) + 1 − Pk(x)

P′k(x)
. (F.58)

F.8 Calculations leading to Algorithm 6.6

We deduce a simple and efficient algorithm from the KKT characterization Eqs. (6.51)-
(6.53). First of all, it is worth to emphasize that if link k satisfies d(0)

k ≥ (mkRk)/η(0)
k , then its

delay constraint is inactive. Indeed, the delay expression can be split as follows:

dMAC
k (γk,Qk) =

mkRk

η̃k(γk,Qk)
+

1
γk

L −
L

1 −
(
Pk(GkQk/γk)

)L

 . (F.59)

Since Pk(GkQk/γk) ≤ 1, the term L − L
1−(Pk(GkQk/γk))L ≤ 0, and one obtains:

dMAC
k (γk,Qk)

(a)
≤

mkRk

η(0)
k

(b)
≤ d(0)

k , (F.60)

where (a) boils down from the feasibility η̃k(γk,Qk) ≥ η(0)
k , and (b) follows by assumption.

As a consequence, the right term in the LHS of Eq. (6.51) is equal to zero while the left term
in the LHS of Eq. (6.52) is equal to zero. These both identities characterize the associated
γk and Qk (see Item 1. in Algorithm 6.6).

Otherwise (i.e. , d(0)
k < (mkRk)/η(0)

k ), we have two cases:
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(i) Let us assume that the goodput constraint is inactive, i.e. , η(0)
k < γkmkRk(1 −

Pk(GkQk/γk)). Then, by Eq. (6.51) we have M(GkQk/γk) = λGk which leads to
Qk =

γk
Gk

M−1(λGk). Then two cases are possible: the delay constraint is active or not.

– if the delay constraint is active, then γk = δ(Pk(M−1(λGk))/d(0)
k .

– if the delay constraint is inactive, then Θ(GkQk/γk) = λGk which implies that
M−1(λGk) = Θ−1(λGk), which is not possible.

(ii) Let us assume that the goodput constraint is active, i.e. , η(0)
k = γkmkRk(1−Pk(GkQk/γk)).

Once again, two cases are possible: the delay constraint is active or not.

– if the delay constraint is active, then δ(Pk(GkQk/γk)) = γkd(0)
k which implies that

there is some Pk such that (due to the active goodput constraint):

mkRk(1 − Pk)δ(Pk) = η(0)
k d(0)

k . (F.61)

According to the closed-form expression of δ, the corresponding Pk (in (0, 1))
is a root of the polynomial equation:

LxL+1
− (L + 1 − d(0)

k η
(0)
k /(mkRk))xL + 1 − d(0)

k η
(0)
k /(mkRk) = 0. (F.62)

– if the delay constraint is inactive, then Θ(GkQk/γk) = λGk. Therefore, γk(λ) =

η(0)
k /(mkRk(1 − Pk(Θ−1(λGk)))) (thanks to the active goodput constraint) and

Qk(λ) =
γk(λ)

Gk
Θ(−1)(λGk) (thanks to the inactive delay constraint).

Notice that when the goodput constraint is inactive and the delay constraint is
active, we have:

δ(Pk(M−1(λGk)))(1 − Pk(M−1(λGk))) >
η(0)

k d(0)
k

mkRk
. (F.63)

Similarly, when the goodput constraint is active and the delay constraint is inactive,
we have:

δ(Pk(Θ−1(λGk)))(1 − Pk(Θ−1(λGk))) <
η(0)

k d(0)
k

mkRk
. (F.64)

The algorithm is initialized with λ = 0 and assuming that only the goodput constraint
is active. If the delay constraint is not satisfied, we choose a higher γk for satisfying this
constraint even if the constraint Eq. (6.45d) does not hold anymore. Then we will increase
λ until a solution that satisfies Eq. (6.45d) is found.



169

Bibliography

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, with formulas, graphs, and
mathematical tables, 20th ed., ser. Applied Mathematics. National Bureau of Standards, Jun. 1972,
vol. 55. Cited pages 22, 70, 81, and 141

F. Adachi, S. Ito, and K. Ohno, “Performance analysis of a time diversity ARQ in land mobile radio,” vol. 37,
no. 2, pp. 177–187, Feb. 1989. Cited page 8

A. Amraoui, “Asymptotic and finite-length optimization of LDPC codes,” Ph.D. dissertation, EPFL, 2006.
Cited page 95

I. Andriyanova, “Finite-length scaling of turbo-like code ensembles on the binary erasure channel,” IEEE J.
Sel. Areas Commun., vol. 27, no. 6, pp. 918–927, Aug. 2009. Cited page 95

I. Andriyanova and E. Soljanin, “Optimized IR-HARQ schemes based on punctured LDPC codes over the
BEC,” IEEE Trans. Inf. Theory, vol. 58, no. 10, pp. 6433–6445, Oct. 2012. Cited page 20

I. Andriyanova and R. Urbanke, “Waterfall region performance of punctured LDPC codes over the BEC,” in
Information Theory (ISIT), 2009 International Symposium on. IEEE, Jun. 2009. Cited page 95

K. Ausavapattanakun and A. Nosratinia, “Analysis of selective-repeat ARQ via matrix signal-flow graphs,”
IEEE Trans. Commun., vol. 55, no. 1, pp. 198–204, Jan. 2007. Cited pages 38 and 39

——, “Analysis of go-back-N ARQ in block fading channels,” IEEE Trans. Wireless Commun., vol. 6, no. 8,
pp. 2793–2797, Aug. 2007. Cited page 38

L. Badia, “On the effect of feedback errors in Markov models for SR ARQ packet delays,” in Global Com-
munications Conference (GLOBECOM). IEEE, 2009. Cited pages 38 and 39

A. W. Berger, “Comparison of call gapping and percent blocking for overload control in distributed switching
systems and telecommunications networks,” IEEE Trans. Commun., vol. 39, no. 4, pp. 574–580, Apr. 1991.
Cited page 12

S. Boyd and L. Vandenberghe, Convex Optimization, 7th ed. Cambridge University Press, 2004. Cited
pages 102, 103, 121, 128, 149, 150, 162, and 163

F. Brah, L. Vandendorpe, and J. Louveaux, “Constrained resource allocation in OFDMA downlink systems
with partial CSIT,” in International Conference on Communications (ICC). IEEE, 2008, pp. 4144–4148.
Cited page 64

D. S. Buckingham and M. C. Valenti, “The information-outage probability of finite-length codes over AWGN
channels,” in Information Sciences and Systems (CISS), 2008 42nd Annual Conference on, Nov. 2008.
Cited pages 79, 81, and 83



170 BIBLIOGRAPHY

G. Caire and D. Tuninetti, “The throughput of Hybrid-ARQ protocols for the Gaussian collision channel,”
IEEE Trans. Inf. Theory, vol. 47, no. 5, pp. 1971–1988, Jul. 2001. Cited pages 12 and 20

G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Trans. Inf. Theory, vol. 44,
no. 3, pp. 927–946, May 1998. Cited page 100

D. Chase, “Code combining – A maximum-likelihood decoding approach for combining an arbitrary number
of noisy packets,” IEEE Trans. Commun., vol. 33, no. 5, pp. 385–393, May 1985. Cited pages 9 and 20

Q. Chen and P. Fan, “Performance analysis of Hybrid ARQ with code combining over interleaved Rayleigh
fading channel,” IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 1207–1214, May 2005. Cited page 20

J.-F. T. Cheng, “Coding performance of hybrid ARQ schemes,” IEEE Trans. Commun., vol. 54, no. 6, pp.
1017–1029, Jun. 2006. Cited page 20

Y. Choi, S. Choi, and S. Yoon, “MSDU-based ARQ scheme for IP-level performance maximization,” in Global
Communications Conference (GLOBECOM), vol. 5. IEEE, Oct. 2005, pp. 2495–2499. Cited pages 18,
25, 43, and 44

S. T. Chung and A. J. Goldsmith, “Degrees of freedom in adaptive modulation: A unified view,” IEEE Trans.
Commun., vol. 49, no. 9, pp. 1561–1571, Sep. 2001. Cited page 100

B. Devillers, J. Louveaux, and L. Vandendorpe, “Bit and power allocation for goodput optimization in coded
parallel subchannels with ARQ,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3652–3661, Aug. 2008.
Cited pages 12, 69, 73, 113, and 131

B. T. Doshi and H. Heffes, “Overload performance of several processor queuing disciplines for the M/M/1
queue,” IEEE Trans. Commun., vol. 34, no. 6, pp. 538–546, Jun. 1986. Cited page 12

W. El bahri, H. Boujemâa, and M. Siala, “Effects of noisy feedback on the performance of HARQ schemes over
multipath block fading channels for DS-SSS,” in Personal, Indoor and Mobile Radio Communications
(PIMRC), 2005 16th International Symposium on. IEEE, 2005, pp. 2552–2556. Cited pages 38, 50, and 51

C. A. Floudas and V. Visweswaran, “A primal-relaxed dual global optimization approach,” Journal of
Optimization Theory and Applications, vol. 78, no. 2, p. 187, 1993. Cited pages 87 and 89

R. G. Gallager, “Low-Density Parity-Check codes,” Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge, MA, 1963. Cited page 95

——, Information Theory and Reliable Communication. Wiley, 1968. Cited page 78

S. Gault, W. Hachem, and P. Ciblat, “Performance of OFDMA on Rayleigh fading channels in a multi-cell
environment,” IEEE Trans. Commun., vol. 55, no. 4, pp. 740–751, Apr. 2007. Cited pages 69, 73, 91, 131,
and 151

M. Goldenbaum, R. Akl, S. Valentin, and S. Stanczak, “On the effect of feedback delay in the downlink of
multiuser OFDM systems,” in Information Sciences and Systems (CISS), 2011 45th Annual Conference
on. IEEE, 2011, pp. 1–6. Cited page 64

J. Gorski, F. Pfeuferret, and K. Klamroth, “Biconvex sets and optimization with biconvex functions: a survey
and extensions,” Mathematical Methods of Operations Research, vol. 66, no. 3, pp. 373–407, 2007. Cited
page 86

I. Gradshteyn and I. Ryzhik, Table of integrals, series, and products, 7th ed. Academic press New York,
1980. Cited pages 71, 82, 83, 152, and 153



BIBLIOGRAPHY 171

H. J. Greenberg and W. P. Pierskalla, “A review of quasi-convex functions,” Operations research, vol. 19,
no. 7, pp. 1553–1570, Nov. 1971. Cited pages 118 and 162

J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC codes) and their applications,” IEEE
Trans. Commun., vol. 36, no. 4, pp. 389–400, Apr. 1988. Cited pages 9 and 20

T. S. Han, Information spectrum methods in information theory. Springer, 2003. Cited page 79

Z. K. Ho, V. K. Lau, and R. S. Cheng, “Cross-layer design of FDD-OFDM systems based on ACK/NACK
feedbacks,” IEEE Trans. Inf. Theory, vol. 55, no. 10, pp. 4568–4584, Oct. 2009. Cited pages 64 and 75

S. Kallel, “Analysis of a type II Hybrid ARQ scheme with code combining,” IEEE Trans. Commun., vol. 38,
no. 8, pp. 1133–1137, Aug. 1990. Cited page 20

J. Kim, W. Hur, A. Ramamoorthy, and S. W. McLaughlin, “Design of rate compatible irregular LDPC codes
for incremental redundancy Hybrid ARQ systems,” in Information Theory (ISIT), 2006 International
Symposium on. Seattle, USA: IEEE, Jul. 2006. Cited page 9

N. Ksairi, P. Bianchi, P. Ciblat, and W. Hachem, “Resource allocation for downlink cellular OFDMA systems
- Part I: Optimal allocation,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 720–734, Feb. 2010. Cited
page 63

——, “Resource allocation for downlink cellular OFDMA systems - Part II: Practical algorithms and optimal
reuse factor,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 735–749, Feb. 2010. Cited page 63

X. Lagrange, “Throughput of HARQ protocols on a block fading channel,” IEEE Commun. Lett., vol. 14,
no. 3, pp. 257–259, Mar. 2010. Cited page 113

J. N. Laneman, “On the distribution of mutual information,” in Information Theory and its Applications
(ITA), Workshop on, Feb. 2006. Cited pages 79 and 80

J. B. Lasserre, “On representations of the feasible set in convex optimization,” Optimization Letters, no. 4,
2010. Cited pages 118, 126, 163, and 164

V. K. Lau, W. K. Ng, and D. S. W. Hui, “Asymptotic tradeoff between cross-layer goodput gain and outage
diversity in OFDMA systems with slow fading and delayed CSIT,” IEEE Trans. Wireless Commun., vol. 7,
no. 7, pp. 2732–2739, Jul. 2008. Cited page 64

A. Le Duc, “Performance closed-form derivations and analysis of Hybrid-ARQ retransmission schemes in a
cross-layer context,” Ph.D. dissertation, Télécom ParisTech, Paris, France, 2009. Cited pages 2, 10, 11, 14,
17, 20, 21, 25, 27, 31, and 133

C. J. Le Martret, A. Le Duc, S. Marcille, and P. Ciblat, “Analytical performance derivation of Hybrid ARQ
schemes at IP layer,” IEEE Trans. Commun., vol. 60, no. 5, pp. 1305–1314, May 2012. Cited pages 11, 17,
20, and 124

M. Levorato and M. Zorzi, “Performance analysis of type II Hybrid ARQ with Low-Density Parity-Check
codes,” in Communications, Control and Signal Processing (ISCCSP), 2008 3rd International Sympo-
sium on, 2008, pp. 804–809. Cited page 20

S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ:
Prentice-Hall, 1983. Cited pages 9, 10, 11, 12, 13, and 18

Q. Liu, S. Zhou, and G. B. Giannakis, “Cross-layer combining of adaptive modulation and coding with
truncated ARQ over wireless links,” IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 1746–1755, Sep.
2004. Cited page 113



172 BIBLIOGRAPHY

A. Lozano, A. M. Tulino, and S. Verdù, “Optimum power allocation for parallel Gaussian channels with
arbitrary input distributions,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 3033–3051, Jul. 2006. Cited
pages 69 and 70

E. Malkamäki and H. Leib, “Performance of truncated type-II Hybrid ARQ schemes with noisy feedback
over block fading channels,” IEEE Trans. Commun., vol. 48, no. 9, pp. 1477–1487, Sep. 2000. Cited pages
38, 39, 49, and 50

Y. Polyanskiy, H. V. Poor, and S. Verdù, “Channel coding rate in the finite blocklength regime,” IEEE Trans.
Inf. Theory, vol. 56, no. 5, pp. 2307–2359, May 2010. Cited page 78

V. Rodriguez, “An analytical foundation for resource management in wireless communications,” in Global
Communications Conference (GLOBECOM). IEEE, 2003. Cited page 131

S. M. Ross, Introduction to probability models, 9th ed. Academic Press, 2007. Cited pages 11 and 81

M. Rossi and M. Zorzi, “Analysis and heuristics for the characterization of Selective Repeat ARQ delay
statistics over wireless channels,” IEEE Trans. Veh. Technol., vol. 52, no. 5, pp. 1365–1377, Sep. 2003.
Cited page 17

W. Rui and V. K. N. Lau, “Combined cross-layer design and HARQ for multiuser systems with outdated
channel state information at transmitter (CSIT) in slow fading channels,” IEEE Trans. Wireless Commun.,
vol. 7, no. 7, pp. 2771–2777, Jul. 2008. Cited page 64

W. E. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge University Press, 2009. Cited
page 95

M. P. Schmitt, “ARQ systems for wireless communications,” Ph.D. dissertation, Technischen Universität
Darmstadt, Darmstadt, Germany, Sep. 2002. Cited page 9

L. S. Schwartz, “Feedback for error control and two-way communication,” IEEE Transactions on Commu-
nication Systems, pp. 49–56, Mar. 1963. Cited page 7

S. Sesia, I. Toufik, and M. Baker, LTE: the Long Term Evolution - From theory to practice. Wiley, 2009.
Cited page 7

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, no. 379, p. 623, 1948.
Cited page 78

R. A. Silverman, “On binary channels and their cascades,” IRE Transactions — Information Theory, pp.
19–27, Dec. 1955. Cited page 41

R. P. Stanley, Enumerative combinatorics. Cambridge University Press, Apr. 1997, vol. 1. Cited page 145

T. Starr, J. M. Cioffi, and P. J. Silverman, Understanding digital subscriber line technology. Englewood
Cliffs, NJ: Prentice-Hall, 1999. Cited pages 72 and 73

I. Stupia, V. Lottici, F. Giannetti, and L. Vandendorpe, “Link resource adaptation for multiantenna bit-
interleaved coded multicarrier systems,” IEEE Trans. Signal Process., vol. 60, no. 7, pp. 3644–3656, Jul.
2012. Cited page 136

L. Szczecinski, P. Duhamel, and M. Rahman, “Adaptive incremental redundancy for HARQ transmission
with outdated CSI,” in Global Communications Conference (GLOBECOM). IEEE, 2011. Cited pages
64 and 136



BIBLIOGRAPHY 173

D. N. Tse and P. Viswanath, Fundamentals of Wireless Communications. Cambridge University Press,
2005. Cited pages 63, 64, 65, 69, 73, 77, and 79

H. C. A. Van Duuren, “Printing telegraph systems,” U.S. Patent 2313980, Mar. 1943. Cited page 7

R. Wang and V. K. N. Lau, “Robust optimal cross-layer designs for TDD-OFDMA systems with imperfect
CSIT and unknown interference: state-space approach based on 1-bit ACK/NAK feedbacks,” IEEE Trans.
Commun., vol. 56, no. 5, pp. 754–761, May 2008. Cited page 64

L. Weidong, Y. Hongwen, and Y. Dacheng, “Approximation formulas for the symmetric capac-
ity of M-ary modulations,” Beijing University of Posts and Telecommunications, Apr. 2007,
http://www.paper.edu.cn/en. Cited pages 71 and 153

S. B. Wicker, Error Control Systems for Digital Communications and Data Storage. Englewood Cliffs, NJ:
Prentice-Hall, 1995. Cited pages 10, 18, 38, and 51

C. W. Wong, R. S. Cheng, K. Ben Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit,
and power allocation,” IEEE J. Sel. Areas Commun., vol. 17, no. 10, pp. 1747–1758, Oct. 1999. Cited pages
69 and 72

P. Wu and N. Jindal, “Coding versus ARQ in fading channels: how reliable should the PHY be ?” in Global
Communications Conference (GLOBECOM). IEEE, 2009. Cited pages 38, 50, and 51

——, “Coding versus ARQ in fading channels: how reliable should the PHY be ?” IEEE Trans. Commun.,
vol. 59, no. 12, pp. 3363–3374, Dec. 2011. Cited pages 69, 73, 96, and 131

M. Zorzi and R. R. Rao, “On the use of renewal theory in the analysis of ARQ protocols,” IEEE Trans.
Commun., vol. 44, no. 9, pp. 1077–1081, Sep. 1996. Cited page 20


	List of Acronyms
	General Introduction
	An overview of Hybrid ARQ techniques
	Introduction
	From Automatic Repeat reQuest (ARQ) to Hybrid ARQ
	ARQ
	Hybrid ARQ

	The retransmission protocols
	Throughput, efficiency, and their byproducts
	Selective Repeat protocol
	Go-Back-N protocol
	Stop and Wait protocol

	Cross-layer HARQ techniques for packet-oriented systems
	Layer model
	Definition of the HARQ performance metrics
	Cross-layer HARQ techniques
	Brief state of the art on HARQ performance expressions

	Conclusion

	An Early-Drop version of cross-layer Hybrid ARQ
	Introduction
	Description of the Early-Drop mechanism
	Efficiency new closed-form expression
	General expression
	Computation of IPED
	Main result

	Particular case: Type-I HARQ
	Numerical results
	Simulation settings
	Exact analytic expressions versus simulations
	Discussion on the relevance of Early-Drop

	Conclusion

	Hybrid ARQ with imperfect feedback
	Introduction
	State of the art
	Unreliable ACK/NACK
	Non-zero RTT

	Imperfect feedback model
	Typical feedback errors
	Mathematical model

	A general cross-layer HARQ scheme using report of credit
	Description of the proposed scheme
	IBS seen as a particular case
	An example of RCS and IBS with imperfect feedback

	HARQ performance analysis with imperfect feedback
	IP level analysis of RCS
	IP level analysis of IBS
	IP level analysis of FBS

	Some particular cases
	IBS performance at large SNR
	Instantaneous noisy feedback (T=0)
	Type-I HARQ

	Numerical results
	Simulations setup
	Monte-Carlo simulations
	Discussion on the feedback: effect of pe
	Discussion on the time-out value: effect of RTT
	PER performance of RCS versus FBS and IBS

	Conclusion

	Resource allocation problems in mobile ad hoc networks
	Introduction
	Working context
	Clustered mobile ad hoc networks: assumptions
	Interference management
	Channel state information

	Mathematical model
	Channel model
	Power and bandwidth parameters
	Resource allocation optimization issue

	State of the art
	Information-theoretic tools based allocation with continuous modulation schemes
	Information theoretic tools based allocation with finite-size modulation schemes
	Allocation with practical modulation and coding schemes

	Optimization problem
	Finite-length Gaussian codes
	Practical MCS

	Conclusion

	Resource allocation for HARQ with finite length codes
	Introduction
	Maximum rate codes with finite block length: previous works
	Random coding bound
	Channel dispersion
	Mutual information spectrum

	The error probability of finite length Gaussian codes over the Rayleigh channel
	Channel model
	The distribution of the mutual information rate
	Derivations of closed-form expression for the outage probability

	Resource allocation with finite size codes
	Optimization problem
	Optimal allocation algorithm

	Numerical results
	Simulation settings
	GOP results versus increasing sum-rate demand
	How to choose the information rate rk?
	How close are powerful FEC codes?

	Conclusion

	Resource allocation for HARQ with practical MCS
	Introduction
	Practical MCS
	Rate constrained power minimization
	Optimization problem formulation
	Feasibility and convexity properties
	Optimal algorithm with fixed MCS
	The case of imperfect feedback
	Numerical results with fixed MCS
	Modulation and coding scheme selection
	Numerical results for MCS selection

	Packet error and rate constrained power minimization
	Optimization problem formulation
	Feasibility and structure properties
	Optimal algorithm
	Suboptimal algorithms
	MCS selection
	Numerical results

	Delay and rate constrained power minimization
	Optimization problem formulation
	Feasibility property
	KKT based algorithm (KBA)
	Ping-Pong algorithm (PPA)
	Numerical results

	Conclusion

	Conclusions and Perspectives
	Appendices
	Appendix related to Chapter 1
	Proposition A.1
	Proposition A.2
	Proposition A.3
	Proof of Eq. (1.30)
	Proof of Eq. (1.32)

	Appendix related to Chapter 2
	Appendix related to Chapter 3
	Proof of Proposition 3.2
	Proof of Proposition 3.3
	Proof of Proposition 3.4
	Proof of Proposition 3.5
	Proof of Proposition 3.6
	Proof of Proposition 3.7

	Appendix related to Chapter 4
	Proof of problem convexity
	Solution of the convex optimization problem
	Approximate closed-form expressions for ergodic mutual information with QAM entries

	Appendix related to Chapter 5
	Proof of Lemma 5.1

	Appendix related to Chapter 6
	Proof of Lemma 6.1
	Proof of Theorem 6.3
	Calculations leading to fast implementation of Algorithm 6.1 in uncoded packet case
	Proof of Lemma 6.7
	Proof of Lemma 6.8
	Proof of Theorem 6.9
	Proof of Theorem 6.11
	Calculations leading to Algorithm 6.6

	Bibliography

