
DISTRIBUTED ESTIMATION AND OPTIMIZATION

IN ASYNCHRONOUS NETWORKS

Franck IUTZELER

TABLE OF CONTENTS

LIST OF ACRONYMS v

GENERAL RULES FOR NOTATION vii

INTRODUCTION 1

1 GENERAL MODEL AND TECHNICAL PRELIMINARIES 5

1.1 Network Model . 5

1.1.1 Graph-based network . 5

1.1.2 Nodes activations . 6

1.1.3 Nodes measurements . 7

1.2 Non-negative matrices . 7

1.2.1 Definitions . 7

1.2.2 Irreducible (non-negative) matrices . 7

1.2.3 Primitive (non-negative) matrices . 8

1.2.4 Stochastic (non-negative) matrices . 9

1.2.5 Stochastic matrices and Markov Chain . 10

1.3 Norms . 12

2 MAXIMAL VALUE SPREADING 13

2.1 Introduction . 13

2.2 The maximum value diffusion seen as a Rumor Spreading problem 14

2.2.1 The rumor spreading problem . 14

2.2.2 Rumor spreading algorithms . 15

2.2.3 Maximum value gossipping algorithms . 15

2.3 Setup . 17

2.3.1 Precisions about the setup . 17

2.3.2 The convergence time . 18

2.4 Performance Analysis . 19

2.4.1 Random-Walk . 19

2.4.2 Random-Pairwise-Max . 20

2.4.3 Random-Broadcast-Max . 21

2.5 Numerical illustrations . 23

ii TABLE OF CONTENTS

2.5.1 About Random Geometric Graphs (RGGs) 23

2.5.2 About the tightness of the derived bounds 24

2.6 Conclusion . 26

3 DISTRIBUTED AVERAGE CONSENSUS 29

3.1 Introduction . 29

3.2 Standard (single-variate) framework . 31

3.2.1 Model . 31

3.2.2 Case of doubly-stochastic matrices . 32

3.2.3 Case of non-doubly-stochastic matrices . 37

3.3 Sum-Weight framework . 41

3.4 Convergence of Sum-Weight-based averaging algorithms 42

3.4.1 Preliminary results . 42

3.4.2 Analysis of Ψ1(t) . 43

3.4.3 Analysis of Ψ2(t) . 45

3.4.4 Final results . 49

3.5 Proposed algorithm and extensions . 52

3.5.1 Broadcast Weighted Gossip (BWGossip) algorithm 52

3.5.2 Performance of the BWGossip . 53

3.5.3 Adaptation to smart clock management . 54

3.5.4 Distributed estimation of the sum . 56

3.5.5 Convergence with i.i.d. failures in the communication graph 56

3.6 Comparison with existing works . 57

3.6.1 Comparison with Kempe’s algorithm . 58

3.6.2 Comparison with Bénézit’s algorithm . 60

3.6.3 Comparison with the single-variate algorithms 60

3.7 An application of averaging algorithms to cognitive radio 62

3.7.1 The problem of distributed spectrum sensing in cognitive radio networks 62

3.7.2 Model . 63

3.7.3 Review on centralized cooperative spectrum sensing 64

3.7.4 Fully distributed spectrum sensing algorithms 66

3.7.5 Numerical illustrations . 70

3.8 Conclusion . 73

4 DISTRIBUTED OPTIMIZATION 75

4.1 Introduction . 75

4.2 First order methods . 78

4.2.1 Model . 78

4.2.2 Convergence of the Synchronous Distributed gradient algorithm 80

4.2.3 Convergence of the Asynchronous distributed gradient algorithm 83

4.2.4 Extensions . 84

iii

4.3 Distributed Optimization with the ADMM . 84

4.3.1 Proximal methods . 84

4.3.2 Constrained problems and Method of Lagrange multipliers 87

4.3.3 ADMM . 90

4.3.4 Distributed optimization using the ADMM 91

4.4 Review on Monotone operators . 94

4.4.1 Monotone operators . 94

4.4.2 The resolvent and the proximal point algorithm 96

4.4.3 From the proximal point algorithm to the ADMM 99

4.5 Asynchronous Distributed Optimization using random ADMM 106

4.5.1 Motivation . 106

4.5.2 Subgraphs and block-variables . 107

4.5.3 Random Gauss-Seidel iterations on the proximal point algorithm 108

4.5.4 Asynchronous Distributed Optimization with the ADMM 110

4.6 Numerical Illustrations . 112

4.7 Conclusion . 114

CONCLUSION AND PERSPECTIVES 117

APPENDICES 121

APPENDIX A PROOFS RELATED TO CHAPTER 2 123

A.1 Proof of Eq. (2.3) . 123

A.2 Proof of Theorem 2.4 . 124

A.3 Proof of Theorem 2.6 . 125

A.4 Proof of Theorem 2.7 . 126

A.5 Proof of Theorem 2.8 . 127

APPENDIX B PROOFS RELATED TO CHAPTER 3 129

B.1 Derivations for Eq. (3.38) . 129

B.2 Derivations for Eq. (3.40) . 130

B.3 Computations related to Section 3.7.3-a . 131

BIBLIOGRAPHY 133

iv TABLE OF CONTENTS

LIST OF ACRONYMS

i.i.d. independent and identically distributed

WSN Wireless Sensor Network

RGG Random Geometric Graph

SE Squared Error

MSE Mean Squared Error

LRT Likelihood Ratio Test

LLR Log-Likelihood Ratio

SNR Signal-to-Noise Ratio

cdf cumulative distribution function

ROC Receiver Operating Characteristic

Algorithms:

BWGossip Broadcast Weighted Gossip

lasso least absolute shrinkage and selection operator

ADMM Alternating Direction Method of Multipliers

vi LIST OF ACRONYMS

GENERAL RULES FOR NOTATION

x vector (generally in R
n and potentially scalar)

x i i-th coefficient of vector x

xk vector x at time k

1 , 1N the vector of ones, ” of size N

X matrix

X≥ 0 , X> 0 elementwise nonnegative matrix , elementwise positive matrix

X¼ 0 , X≻ 0 positive semidefinite matrix , positive definite matrix

X operator

G = (V, E) a graph seen as vertex set V and an edge set E

V a vertices/agents set

E an edge/link set

(i, j) a directed edge/link from i to j

{i, j} an undireted edge/link between i and j

viii NOTATIONS

INTRODUCTION

The work presented in this thesis was produced within the Digital Communications group,

COMmunications and ELECtronics (COMELEC) department of TELECOM ParisTech between

October 2010 and October 2013. It was partially funded by the French Defense Agency (DGA)

and Télécom/Eurécom Carnot Institute.

Problem statement

During the past decade, the distributed estimation/computation/detection/optimization issue

has received a lot of attention. The reasons are manifold since such topics occur in many

different applications from cloud computing to wireless sensor networks via machine learning.

Let us focus on two examples in order to be convinced by the importance of this topic. The

first example deals with big data. Assume that we have to treat a large amount of data. No

device can handle data this big so the processing has to be split in many subtasks for which

the computational load is reasonable. In order to find the global result, the subtasks have

to exchange partial outputs and so the decentralized devices (called agents/nodes/sensors,

in the following) have to communicate their own results often. In order to avoid network

congestion and overhead due to routing algorithm, a fusion center approach is prohibitive

and the decentralized devices have to talk locally and in a distributive way. In addition, as

each device has its own computational ability (due to the processor, the load, etc.), the local

outputs are not available synchronously. So, we need to develop asynchronous distributed

algorithms. The second example deals with Wireless Sensor Networks which are mainly con-

sider to sensing and inferring in hostile large-scale environments (mountains, deserts, etc.).

Assume that we would like to monitor the temperature (max or mean) of an area. Once again

in order to avoid network congestion and overhead due to routing algorithm, no fusion center

is available. So the value of interest has to be available at each sensor in a distributive way.

Once again, an asynchronous communication scheme is considered since it avoids the use of

complicated communications coordination (in time and/or frequency).

Therefore, in this thesis, we will focus on the computation/optimization of a global

value of interest using only local and asynchronous (sometimes wireless) communica-

tions, thus when no fusion center is available. Obviously, the methods dealing with such a

problem greatly depend on the value of interest of the network which ranges from a particular

2 INTRODUCTION

sensor measurement (the problem then simply consists in spreading this value) to the output

of a complex optimization problem. Therefore we address in this thesis three very different

problems.

• Problem 1: how to find and spread the maximal initial value of the sensors throughout

the network; this problem will enable us to understand how a piece of information

spreads over in a network.

• Problem 2: how to compute the average of the initial values of the sensors; this problem

will enable us to understand how to merge local information in a linear way.

• Problem 3: how to optimize a global function when each sensor can only compute

optimization of its own local cost function. To do so, we assume that the global function

is the sum of the local cost functions.

Outline and Contributions

Before focusing on the above-mentioned problems, in Chapter 1, we introduce, on the one

hand, the considered model for Wireless Sensor Networks where the network of agents and

their link are seen as a graph and, on the other hand, we provide some essential properties

about non-negative matrices and their relations with graphs. Notice that one of the main

important assumption done throughout the thesis is the asynchronism between the nodes

communications.

In Chapter 2, we will study the problem of finding the maximal value in a wireless net-

work. More precisely, take a sensor network where every agent owns a scalar measurement,

we want the network to exchange through their wireless links (which ultimately means that

they can broadcast) in order to make the maximum value known everywhere in the network.

This problem seems artificial but it is very useful to understand the propagation of a infor-

mation across the network. Actually, our problem is quite close to the well-known rumor

spreading problem in an asynchronous radio network; however, a major difference exists as

in the rumor spreading problem the nodes of the network know if they have the wanted value

or not, which is not the case for us. We will analyze this problem through three very different

algorithms: a simple random walk, a random algorithm based on pairwise communications,

and a random algorithm based on broadcasting. Whereas the random walk which has been

studied extensively in the literature, the two other algorithms remain untreated. Our contri-

bution to this problem is thus to analyze the performance of these two algorithms by deriving

bounds on their mean convergence time and their convergence time dispersion. These new

results enable us to compare with similar algorithms from the rumor spreading literature and

give considerations about the performance gain due to the use of broadcast communications.

In Chapter 3, we will focus on distributed averaging algorithms. Given initial nodes mea-

surements, these algorithm aim at making every sensor learn the average of the initial mea-

surements in a distributive way. So each sensor performs local, cleverly weighted averages

and exchanges the results of these averages with their neighbors. This topic has received a

3

lot of interest in the past ten years; one of the first and most famous algorithms is called

random gossip and simply consists in selecting a random pair of neighbors which will average

their values. Broadcast-based algorithms have also been developed but they suffer either from

collision-related issues due the need of feedback, or from convergence issues. Thanks to the

results reminded in Chapter 1, we will review the convergence (or non-convergence) results

of the literature. As we exhibited the benefits of broadcast communications on information

spreading in Chapter 2, we then focused on the class of averaging algorithm where feedback

links were not mandatory (broadcast communications are a special case). Recently, Bénézit et

al. proved that by updating identically two variables per sensor, one initialized to the sensor

measurement and the other to 1, one could design feedback-free algorithm such that the ratio

of these two values converged to the wanted average for every sensor. Actually, this setup

based on two variables is called Sum-Weight and was introduced by Kempe in 2003. The main

contributions of this Chapter are twofold: i) we design a new broadcast-based averaging al-

gorithm called Broadcast Weight Gossip (BWGossip) which outperforms existing algorithms.

And, ii) we prove that algorithms based on Sum-Weight set-up converges with an exponential

rate (and a bound on the slope is also characterized) under mild assumptions. Notice that

our results apply to existing gossip algorithms (with feedback and a single variable per sen-

sor). We show by numerical simulations that the obtained bound is very tight for both our

algorithm and existing ones. Finally, we remark that the Sum-Weight scheme enables us to

distributively compute the sum without any information about the number of nodes in the

network too. As an application example, we consider the problem of signal detection in a

cognitive radio network; the secondary users have great interest in collaborating as some may

have much more information about the primary transmitters than others. We show that this

distributed detection problem ultimately relies on the computation of the average and the

sum of the test result of the secondary users. Thanks to our previous considerations we are

thus able to design a new fully distributed signal detection algorithm.

In Chapter 4, we will consider the problem of solving a distributed optimization problem,

that is a problem where the network wants to know the minimum of the sum of its agents cost

functions. This situation often arises while performing data processing over big data network;

indeed, the quantity of information stored in physically distant servers has grown to become

way too large to be transmitted to a fusion node. Hence, in order to process this whole

information, the agents of the network have to cleverly process their own information and

exchange some information (a few scalars at most) asynchronously with conveniently close

nodes (in order not to flood the network with information). Let f be the convex function,

depending on all the data of the network, that we want to know a minimum; we will assume

that f can be written as
∑

i fi where fi is a convex function depending only on the data of the

i-th node. The considered problem is to minimize f over a network where each node i only

knows its function fi . We will first review first order algorithms where each node performs a

gradient on its cost function and then the network performs an average gossip step (as studied

in the previous chapter). These algorithms use low computational power but they are quite

4 INTRODUCTION

slow and only use a portion of the information of their cost function (the gradient at a given

point); with the increase in the computational abilities, it is pertinent to design algorithms

that use a greater part of the sensors information at the expense of a increased computational

cost. Recently, the Alternation Direction Method of Multipliers (ADMM) has been proved

to perform very well for distributed optimization over networks but in a synchronous setup.

Our main contributions here are twofold: i) we develop an new ADMM-based distributed

optimization algorithm in the asynchronous setup. And, ii) we obtain the convergence of this

algorithm by using the monotone operators framework.

Publications

Journal Papers

J2 F. Iutzeler, P. Ciblat, and W. Hachem, “Analysis of Sum-Weight-like algorithms for av-

eraging in Wireless Sensor Networks,” IEEE Transactions on Signal Processing, vol. 61,

no. 11, pp. 2802–2814, June 2013.

J1 F. Iutzeler, P. Ciblat, and J. Jakubowicz, “Analysis of max-consensus algorithms in wire-

less channels,” IEEE Transactions on Signal Processing, vol. 60, no. 11, pp. 6103–6107,

November 2012.

International Conferences

C4 F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous Distributed Optimization

using a Randomized Alternating Direction Method of Multipliers,” in IEEE Conference on

Decision and Control (CDC), December 2013.

C3 F. Iutzeler and P. Ciblat, “Fully-distributed spectrum sensing: application to cognitive

radio,” in European Signal Processing Conference (EUSIPCO), September 2013.

C2 F. Iutzeler, P. Ciblat, W. Hachem, and J. Jakubowicz, “New broadcast based distributed

averaging algorithm over wireless sensor networks,” in IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), March 2012.

C1 F. Iutzeler, J. Jakubowicz, W. Hachem, and P. Ciblat, “Distributed estimation of the

maximum value over a Wireless Sensor Network,” in Asilomar Conference on Signals,

Systems and Computers, November 2011.

French Conferences

N2 F. Iutzeler and P. Ciblat, “Sondage de spectre coopératif totalement distribué: applica-

tion à la radio cognitive,” in Colloque GRETSI , September 2013.

N1 F. Iutzeler, P. Ciblat, W. Hachem, and J. Jakubowicz, “Estimation distribuée du maxi-

mum dans un réseau de capteurs,” in Colloque GRETSI, September 2011.

CHAPTER 1

GENERAL MODEL AND

TECHNICAL PRELIMINARIES

In this chapter, we will present the mathematical framework used throughout the thesis (e.g.,

graph theory, nonnegative matrices) as well as some very useful mathematical preliminaries.

1.1 Network Model

1.1.1 Graph-based network

Consider a network of N sensors – often called agents – modeled as a graph G = (V, E) where

V is the set of agents – the vertices of the graph, identified by their indexes – and E is the set

of links between agents – the edges of the graph represented as an ordered pair (i, j) if there

is a link from i to j. We assume that each link is error-free. The set of neighbors of agent i –

the nodes to which it can send information – is denoted Ni = { j ∈ V : (i, j) ∈ E}. For any set

S, we denote its cardinality by |S|. Obviously, we have |V |= N .

When a graph only has bidirectional edges (mathematically, (i, j) ∈ E ⇒ (j, i) ∈ E), it

is called undirected and we will note the edges {i, j} = (i, j) ∪ (j, i), whereas in the general

case it is directed. This has an impact on the reachability of the nodes from one another: in

directed graphs, if there is a path (i.e.a succession of edges) from i to j (i 6= j), there may not

be one from j to i; in undirected graphs, there is always one. In directed graphs, we will call

weakly connected a graph such that for any i, j ∈ V (i 6= j), there is either a path from i to j or

a path from j to i; and we will call strongly connected a graph such that for any i, j ∈ V (i 6= j),

there is both a path from i to j and a path from j to i. Obviously, in undirected graphs the

two notions are equivalent and we just use the term connected. When a node i is connected

with itself ((i, i) ∈ E), we say that i has a self-loop. Finally, we assign a weight ω(i, j) > 0 to

any edge (i, j) ∈ E; by default all the weights are set to 1, if it is not the case the graph is said

to be weighted. One can easily remark that the values of the edges non-null weights do not

change anything in the connectivity properties of the graph. In addition, one can define the

6 CHAPTER 1. GENERAL MODEL AND TECHNICAL PRELIMINARIES

adjacency matrix of the graph A as the matrix such that Ai, j =ω(i, j) if there is an edge from i

to j and zeros elsewhere. Consequently, if the graph is self-loop-free, then each diagonal term

of the adjacency matrix is zero. In contrast, if the graph has self-loop, the adjacency matrix

has some non-null diagonal terms. Once again, one can easily prove that removing self-loop

in a graph does not modify its connectivity property. One can define the support of the graph

associated with the adjacency matrix A as the matrix S= Supp(A) such that Si, j = 1 if Ai, j 6= 0

and zeros elsewhere. Notice that the connectivity of the graph can be checked either on A or

S equivalently. Moreover, if the graph is unweighted, the adjacency matrix is identical to its

support.

Let G = (V, E) be a N -vertices undirected graph. We also define the degree matrix D as

the N × N diagonal matrix such that Di,i = di with di =
∑

j∈V Ai, j; if the graph is unweighted

then di = |Ni | the degree of i. Finally, we define the Laplacian matrix of the graph L = D−A.

The eigenvalues of this matrix play a fundamental role in algebraic graph theory, indeed L

is i) positive semidefinite (see for example [1, Section 1.2] or [2]); and ii) its row sum is

null so 1N is an eigenvector associated with eigenvalue 0. Hence, the eigenvalues of L satisfy

0 = λL
1 ≤ λL

2 ≤ ... ≤ λL
N (see [3, Th. 7.2.1]). Furthermore, if G is connected, then the second

smallest eigenvalue of the Laplacian1 λL
2 is strictly positive (see [1, Lemma 1.7]). One can

see that the Laplacian matrix is insensitive to the presence or absence of self-loops in the

considered graph. These definitions (adjacency matrix, degree matrix, and Laplacian one)

can be extended to the case of directed graph. Since these tools for directed graphs will not

be used in the thesis, we omit them (see [5] for more details).

1.1.2 Nodes activations

The network is assumed asynchronous, meaning that no common clock is available for the

agents. Instead, each agent has its own clock and can only initiate a communication at its

clock ticks. Assuming that the communication time is small compared to the time between

clock ticks, it makes sense (as usually done for other consensus-like algorithms [6, 7]) to

assume the absence of collisions between communicating nodes. In addition, we can consider

that the agents clocks are modeled by independent Poisson processes with intensity Λi for

each agent i. It is then equivalent to having a global Poisson clock with intensity Λ =
∑

i Λi

and to attribute each clock tick to an agent. More precisely, the process, indexed by the

number of global clock ticks, of the sensors to which the global clock ticks are attributed is

thus independent and identically distributed (i.i.d.) and the probability that node i becomes

active at time k is equal to pi = Λi/Λ. This newly active sensor will then communicate with

some of its neighbors. Given that node i is the activating sensor, the probability that i sends

information to j will be denoted by q(i, j).

Let us consider the N × N matrix Q whose (i, j)-th entry is equal to q(i, j) which we will

call the communication matrix of the network. As we want information to spread using the

1often called the Fiedler value in dedication to its pioneering work [4], or the spectral gap.

1.2. Non-negative matrices 7

available links, we will make the following assumption throughout the thesis.

Assumption 1.1. The communication matrix Q is adapted to the graph G , i.e. Q and A have

the same support.

1.1.3 Nodes measurements

In Wireless Sensor Networks (WSNs), the sensors often have measurements that we will call

initial values and the goal of the WSN will then be to cooperate in order to compute distribu-

tively a function of these initial values (the average, the maximum, etc.). Formally, the initial

value of sensor i is denoted by x0
i

and we define x0 = [x0
1 , ..., x0

N]
T. After sending or receiving

information, a sensor may update its value so we denote by xk
i

the value of sensor i at the

k-th global clock tick and xk = [xk
1 , ..., xk

N]
T.

1.2 Non-negative matrices

In this thesis, the matrices with non-negative entries will play a great role (see matrices A

and Q defined in the previous sections). Any non-negative matrices can be actually associated

with a graph. In the following, we will remind some properties of the non-negative matrices

and their associated graphs. All below-mentioned results can be found in Chapters 6.2 and 8 of

[3].

1.2.1 Definitions

Let A be a N ×N matrix. We say that A≥ 0 (A is non-negative) if ∀i, j, Ai, j ≥ 0. Similarly, we

say that A> 0 (A is positive) if ∀i, j, Ai, j > 0.

For any N × N non-negative matrix A, we define its induced graph G (A) as the (directed

and weighted) graph of N nodes such that there is a directed edge from i to j if and only if

Ai, j > 0, its weight of this edge is then ω(i, j) = Ai, j . Consequently, the adjacency matrix of

the graph G (A) is A. So, there is a one-to-one mapping between the set of graphs (and its

associated adjacency matrix) and the non-negative matrices.

In Section 1.1.1, we said that the graph is connected if it exists a path from i to j for

any i and j. Actually, there exists a path of length mi, j > 0 in G (A) from i to j if and only

if (Am
i, j)i, j > 0. Therefore, it is of great interest to inspect the powers of A and its possible

positivity.

1.2.2 Irreducible (non-negative) matrices

Let A be a N×N non-negative matrix. We say that A is irreducible if and only if (I+A)N−1 > 0.

Since (I+A)N−1 =
∑N−1

i=0

�N−1

i

�
Ai , we see that if A is irreducible, then for any i, j (with i 6= i)

at least one of the matrices A,A2, ...,AN−1 has a positive (i, j)-th entry. This means that, for

any i, j (with i 6= i), there is a path from i to j in G (A); in other words, G (A) is strongly

connected. Let us summarize:

8 CHAPTER 1. GENERAL MODEL AND TECHNICAL PRELIMINARIES

Proposition 1.2. Let A be a N × N non-negative matrix. The following are equivalent:

i) A is irreducible;

ii) (I+A)N−1 > 0;

iii) G (A) is strongly connected.

Thanks to Proposition 1.2, one can remark that if A is irreducible, then Supp(A) is irre-

ducible too.

A very interesting result about irreducible matrices is Perron-Frobenius theorem which

states that if A is irreducible, then its spectral radius ρ(A) ¬ maxi{|λA
i |} is a simple eigen-

value of A associated with a positive vector.

Theorem 1.3 (Perron-Frobenius theorem for irreducible non-negative matrices). Let A be a

N × N non-negative matrix and suppose that A is irreducible. Then

i) ρ(A)> 0 is a simple eigenvalue of A;

ii) there is a positive vector x such that Ax = ρ(A)x.

1.2.3 Primitive (non-negative) matrices

Let A be a N × N non-negative matrix. We say that A is primitive if and only if it exists m ≥ 1

such that Am > 0. First of all, since (I + A)N−1 =
∑N−1

i=0

�N−1

i

�
Ai and any Am with m ≥ N

is a linear combination of {An}n=0,...,N−1 (see Cayley-Hamilton polynomial), we obtain that a

primitive matrix is irreducible which implies that G (A) is strongly connected. Consequently

the primitivity property is stronger than the irreductibility one. So there are some fundamental

differences between irreducible and primitive matrices and their associated graphs. The main

difference is as follows: one can prove that, if A is primitive (related to the power m), then

Ak > 0 for any k ≥ m. Consequently, for any k ≥ m, and any i, j, there is a path from i to j

of length k in G (A). It is not the case for graphs induced by irreducible matrices. Notice also

that a self-loop-free graph associated with a irreducible matrix can induced a primitive matrix

very easily since its self-loop related graph (a self-loop is added for each node) has a primitive

adjacency matrix. The next proposition will be very useful in the remainder of the thesis.

Proposition 1.4. Let A be a N × N non-negative matrix. If A is irreducible and has positive

diagonal entries, then A is primitive.

Once again, one can see that if A is primitive, then Supp(A) is primitive too.

Perron-Frobenius theorem can be slightly improved for primitive matrices. Indeed, a use-

ful property can be added compared to the case of irreducible matrices: the eigenvalue ρ(A)

is the only eigenvalue of maximal modulus.

Theorem 1.5 (Perron-Frobenius theorem for primitive matrices). Let A be a N × N non-

negative matrix and suppose that A is primitive. Then

i) ρ(A)> 0 is a simple eigenvalue of A;

ii) there is a positive vector x such that Ax = ρ(A)x;

1.2. Non-negative matrices 9

iii) ρ(A) is the only eigenvalue of maximal modulus.

Actually, a more stronger result holds: if A is irreducible but not primitive, then there exists

a integer kA strictly greater than one, such that the matrix A has kA eigenvalues of maximal

modulus. This property will be a major role in the following and explain why the primitivity

property will be often required.

1.2.4 Stochastic (non-negative) matrices

A non-negative N × N matrix is said to be row-stochastic if the sum of each row is equal to

one, i.e.,

A1= 1 (row-stochastic).

A non-negative N × N matrix is said to be column-stochastic if the sum of each column is

equal to one, i.e.,

1
TA= 1

T (column-stochastic).

A non-negative N × N matrix is said to be doubly-stochastic if it is row-stochastic as well

as column-stochastic.

In the following, we remind that very useful results about such matrices. First of all, the

spectral radius of a row-stochastic or column stochastic matrix is equal to one which means

that any eigenvalue has a magnitude (non-strictly) smaller that one. The proof is given in [3,

Lemma 8.1.21]. This property will also play a major role in our derivations.

Theorem 1.6. Let A be a either row-stochastic or column-stochastic matrix. Then, we have

ρ(A) = 1.

Consequently, the vector 1 is a (left or right)-eigenvector associated with the largest eigen-

value. In the remainder of the thesis, the orthogonal projection on the span of 1 will be often

used. Let J be this projection matrix. Then we have

J=
1

N
11

T.

In addition, let J⊥ be the projection matrix on the orthogonal of span(1). We easily have that

J⊥ = I− J.

Proposition 1.7. Let A be a row-stochastic matrix. We have

J⊥AJ⊥ = J⊥A.

Proposition 1.8. Let A be a column-stochastic matrix. We have

JA= J and J⊥A= A− J.

10 CHAPTER 1. GENERAL MODEL AND TECHNICAL PRELIMINARIES

1.2.5 Stochastic matrices and Markov Chain

First of all, any N × N row-stochastic matrix can be viewed as a transition probability matrix

of a discrete-time Markov Chain with N states and conversely.

Let Wk be the transition probability matrix of a discrete-time non-homogeneous Markov

Chain at time k. If tk is the distribution over the states at time k, then, at time k+ 1, the new

distribution over the states is denoted by tk+1 and is given by

tk+1T
= tkT

Wk (1.1)

Since tk corresponds to a distribution, tk is a non-negative column-vector such that 1T tk = 1.

Obviously, for analyzing the evolution in time of the states distribution, the aggregate of

the row-stochastic matrices Wk has to be done as follows

P
1,k

f
=W1W2 · · ·Wk.

We thus have to operate right matrix multiplications, and this direction is called forward.

Obviously, the analysis of the matrix P
1,k

f
is of great interest in order to inspect the asymptotic

behavior of the associated Markov Chain.

1.2.5-a Forward direction

To handle the analysis of the forward matrix P
1,k

f
, the notion of (weak or strong) ergodicity

has to be introduced.

Definition 1.9. A sequence of N × N row-stochastic matrices {Wk}k>0 is said to be weakly

ergodic if for all i, j,ℓ ∈ {1, ..., N} and all s > 0

��

P
s,s+k

f

�

i,ℓ
−
�

P
s,s+k

f

�

j,ℓ

�
k→∞−→ 0.

where

P
s,s+k

f
=WsWs+1 · · ·Ws+k.

In other words, weak ergodicity means that the rows of the aggregative matrix tend to be

identical, but may vary with k. By abuse of notations, we write that weak ergodicity implies

that it exists a sequence of non-negative column vector vk (with 1
Tvk = 1) such that

P
1,k

f

k→∞∼ 1vkT
(1.2)

where the notation
k→∞∼ stands for two terms are equivalent for k large enough. As conclusion,

when we will apply such a result to our consensus algorithms, we will obtain that the nodes

agree but do not reach a consensus since the agreement value changes at each iteration.

A stronger definition of the ergodicity exists in the literature. If this type of ergodicity

holds, then the nodes reach a consensus.

1.2. Non-negative matrices 11

Definition 1.10. A sequence of N × N row-stochastic matrices {Wk}k>0 is said to be strongly

ergodic if there is a non-negative column vector v (with 1
Tv = 1) such that for all s > 0

P
s,s+k

f

k→∞−→ 1vT. (1.3)

In other words, strong ergodicity means that the rows of the aggregative matrix tend to

the same vector vT which represents actually a distribution. Clearly strong ergodicity implies

weak ergodicity (see [8, Chap. 6.8]).

Remark 1.11. If the considered matrices {Wk}k>0 are column-stochastic (and not row-stochastic),

then all the above-mentioned results still hold by replacing Wk with WT
k

since WT
k

is a row-

stochastic matrix.

Remark 1.12. If the considered matrices {Wk}k>0 are doubly-stochastic, then all the above-

mentioned results still hold. In addition, we have v = (1/N)1 in Definition 1.10.

1.2.5-b Backward direction

As we will see later in the thesis (in Chapter 3), we also have to work with the so-called

backward direction defined as follows

P
1,k

b
=WkWk−1 · · ·W1

where {Wk}k>0 are a set of N × N row-stochastic matrices.

Obviously, the weak ergodicity and the strong one can defined similarly to previous Sub-

section by replacing P
s,s+k

f
with P

s,s+k

b
. In that case, it has been surprisingly proven that the

weak ergodicity is equivalent to the strong one [9].

1.2.5-c Particular case: homogeneous Markov Chain

A Markov Chain is said homogeneous when the transition probability matrix is independent

of time k. So, we then can work with an unique row-stochastic matrix, denoted here by W.

In that case, we have P
s,s+k

f
= P

s,s+k

b
= Wk+1 and the forward direction is equivalent to the

backward one. In addition, the weak ergodicity is equivalent to the strong one by applying

the result given in Subsection 1.2.5-b. Therefore, in homogeneous case, the adjectives weak,

strong, forward, and backward are omitted.

In homogeneous case, if a non-negative column-vector π (with 1
Tπ= 1) is a left-eigenvector

of W associated with the eigenvalue equal to 1, i.e.,

πTW= πT,

then the vector represents a stable distribution of the associated Markov Chain.

In addition if the Markov Chain is ergodic, then

π= v (1.4)

where v is defined as in Definition 1.10.

12 CHAPTER 1. GENERAL MODEL AND TECHNICAL PRELIMINARIES

1.3 Norms

Here, we just recall the definitions of two norms associated with matrices (see [3, Chapter 5]

for details).

Let x = [x1, · · · , xN]
T be a N × 1 vector. The Euclidian (or l2) norm is defined as

‖x‖2 =

s
N∑

n=1

|xn|2.

Let A be any N × N matrix. The spectral (or l2-induced) norm of this matrix, denoted by

‖| · ‖|2, is defined as follows

‖|A‖|2 = max
x∈CN

‖Ax‖2
‖x‖2

=

§p

λ : λ is an eigenvalue of ATA

ª

.

The Frobenius norm, denoted by ‖ · ‖F , is defined as

‖A‖F =
p

Trace
�
ATA

�
=

√
√
√
√

N∑

i, j=1

|Ai, j|2.

CHAPTER 2

MAXIMAL VALUE SPREADING

In this chapter, we analyze different techniques for distributively spreading the greatest of the

initial values in the context of an asynchronous Wireless Sensor Network. This quite simple

question can arise in many applications and it also sheds light on the speed of information

dissemination in an asynchronous network.

2.1 Introduction

Wireless Sensor Networks can often be seen as groups of connected agents that cooperate to

achieve a common goal. As they are generally deployed in hostile environments, there can

not be a master agent acting as a fusion center fetching the data and coordinating the agents;

hence, they have to exchange locally with each other in order to achieve their objective.

For example, if a network has to transmit periodically some data through a costly link,

a natural way to operate would be to elect the sensor with the largest amount of power

remaining to operate that communication. To do so, the sensor network has to retrieve and

spread the maximal amount of energy left in the sensors battery (along with the ID of the

corresponding sensor); this has to be done distributively using only the wireless links between

some of them.

Another useful application deals with distributed medium access control: in the case

where many nodes want to send information using the same medium, the network has to

choose which node will effectively transmit. A possible distributed protocol is to make the

agents that want to send i) draw a number in a common window; and then ii) reach consen-

sus over the greatest drawn value (and the ID of the associated agent). The sensor with the

maximal value then sends its packet to the access point.

We remark that all these actions require the computation of the maximum between the

initial values of the network. Mathematically, we need an asynchronous distributed algorithm

which produces a sequence {xk} such that

xk −→ xmax1 (2.1)

14 CHAPTER 2. MAXIMAL VALUE SPREADING

with xmax ¬ maxi x0
i
. Obviously, all maximal value spreading algorithms easily generalize to

the computation of the minimum value, the closer to a constant, etc.

Interestingly, if the sensor with the maximal value knows that it has the maximum across

the network, then our problem reduces to the well-known rumor spreading problem where the

rumor bearing sensor spreads it to the others using the underlying communication network.

Our setup, where the agents of the network do not know if they have the rumor to spread or

not, can be seen as a juiciest rumor spreading in which the network has to locate the juiciest

rumor before spreading it. Another fundamental difference with standard rumor spreading

is that most rumor spreading algorithms are designed in the context of a synchronous wired

networks whereas our setup is an asynchronous wireless network. However, it will be infor-

mative to compare the performance of asynchronous maximum value spreading algorithms

on wireless networks with similar rumor spreading procedures.

This chapter is organized as follows. Section 2.2 will present the rumor spreading problem

and its similitudes and differences with our problem; it will also introduce the algorithms

that we will consider for analysis. The details about the setup and how to investigate the

algorithms convergence will be given in Section 2.3. Then, Section 2.4 will be dedicated

to the mathematical analysis of the mentioned algorithms. Finally, numerical results will

illustrate our claims in Section 2.5 and conclusions will be drawn in Section 2.6.

2.2 The maximum value diffusion seen as a Rumor Spreading

problem

2.2.1 The rumor spreading problem

Rumor spreading is the problem of spreading a particular, local information through a net-

work. It was introduced by [10] in the case of replicated databases (name servers, yellow

pages, etc.) where the updates are made locally (on a single database) and have to be propa-

gated to all other sites. This seminal paper introduced some very useful concepts:

• rumor mongering – it is the idea that all updates are not of equal importance to the

network so that only the most recent ones may be propagated. It is clear that this

asymmetry is something we encounter when trying to spread the maximal initial value

through a network.

• push transmission – it is when information go from the caller to the called agent. This

transmission setup is responsible for the term epidemic algorithms which is the original

term coined by Demers et al.[10].

• pull transmission – it is when information go from the called to the calling agent.

The push and pull transmission methods are often combined to form push&pull algorithms.

These algorithms are based on pairwise exchanges between neighbors in the network which

recall the Random Gossip algorithm [11] introduced for average value computation and in a

asynchronous context.

2.2. The maximum value diffusion seen as a Rumor Spreading problem 15

Due to i) the wired medium in the original works which implies that an agent may only

call (or be called by) its neighbors one by one; and ii) the possible congestion and collisions

in the network, the rumor spreading algorithms are randomized by nature.

2.2.2 Rumor spreading algorithms

In terms of communication between agents, most papers dealing with rumor spreading con-

sider push and/or pull transmission methods [12, 13, 14, 15, 16, 17, 18, 19] as it is more

suited for a wired networks. Some papers [20, 21, 22, 23, 24] consider a radio medium and

hence propose broadcast1 based algorithms.

Randomized rumor spreading may seem very close to our problem but the two problems

differ on two major points summarized in Table 2.1. On the one hand, even if the commu-

nications of rumor spreading are randomized, many nodes may communicate simultaneously

which leads to collisions. In the WSN setup, communications are asynchronous so collisions

are avoided by construction and only one sensor can speak at a time. On the other hand, in the

rumor spreading problem, the nodes know if they have the desired rumor and hence can act

consequently. In the maximal value problem, no sensor can know if it has the maximum value

so the time spent by each (potentially useless) communication has to be taken into account.

These two differences make our problem quite different from classical rumor spreading and

imply the use of different mathematical tools for analyzing the related algorithms. The fact

that the sensors do not know if they have the maximal value in our context is a key difference

with rumor spreading as it will change the algorithms as well as the proof techniques.

Rumor spreading Maximum value diffusion

Communication timing Synchronous. Many nodes

may speak at each clock

tick. Collisions.

Asynchronous. One node

speaks per clock tick. No

collisions

Rumor awareness Aware. Unaware.

Table 2.1: Key differences between rumor spreading and maximal value spreading in WSNs.

The maximal value diffusion can thus be seen as an “asynchronous juiciest rumor spread-

ing problem” where i) asynchronous is linked to the communication framework of WSNs; and

ii) juiciest means the agents do not know if they own the rumor. Consequently, we need to

develop gossip algorithms (i.e. algorithms suited for WSNs) solving this problem.

2.2.3 Maximum value gossipping algorithms

To the best of our knowledge, in the framework of distributed computation for WSNs, only

[25] has focused on the maximal value computation. Actually, [25] developed a general

1the term broadcast means here sending information to all its neighbors and not spreading information across

a network.

16 CHAPTER 2. MAXIMAL VALUE SPREADING

framework to compute a wide family of functions (including the maximum value) of the

nodes initial values in a distributed fashion. Compared to our setup, this work has been

done under continuous time and synchronous clocks assumptions. It can nevertheless be

adapted to our context (discrete time and asynchronous clocks), but the derived algorithm

will perform poorly since each node goes to the maximum in an incremental way even if one

of its neighbors has the maximum value. Therefore, we proposed gossip algorithms adapted

to maximal value computation in Wireless Sensor Networks.

2.2.3-a Random-Walk

First, as a toy example, we consider a simple random walk on the graph propagating the

maximal encountered value. This algorithm is not really asynchronous nor synchronous and

will be a comparison point as it is very popular and well studied [26, 27].

Random-Walk

At time k, let i be the active node:

◮ i sends xk
i

to a neighbor j uniformly chosen in Ni;

◮ j updates: xk+1
j
=max

�

xk
i
, xk

j

�

;

◮ j is then the active node for time k+ 1.

2.2.3-b Random-Pairwise-Max

A simple way to estimate the maximal value would be to mimic the Random Gossip algorithm

introduced for averaging [11]. The agents would wake up randomly and exchange their value

with another reachable sensor chosen uniformly; both sensors would then keep the maximum

between their former and received values. This can also be seen as a asynchronous push&pull

algorithm.

Random-Pairwise-Max

At each clock tick k, let i be the activating node:

◮ i chooses a neighbor j uniformly in Ni and they exchange their values.

◮ Both i and j update: xk+1
i
= xk+1

j
=max

�

xk
i
, xk

j

�

.

This algorithm is suited for wired networks whereas it is clearly not optimal for wireless

networks. Indeed, it does not take advantage of the broadcasting abilities of the wireless

channel.

2.2.3-c Random-Broadcast-Max

Since the communications between the sensors are wireless in our context, it seems more

natural for the active sensor to broadcast its value, and then the sensors which have received

2.3. Setup 17

the information would update their value accordingly. Note that an averaging algorithm based

on broadcast communications has been proposed in [7], but it does not perform well due

to the non-conservation of the initial sum. This is not an issue for estimating the maximum

value since the maximum value is preserved. The RANDOM-BROADCAST-MAX will be our flagship

algorithm.

Random-Broadcast-Max

At each clock tick k, let i be the activating node:

◮ i broadcasts xk
i

to all its neighbors.

◮ All the neighbors update: xk+1
j
=max

�

xk
j
, xk

i

�

for all j ∈ Ni .

One can remark that that if the activating sensor has not received information since the

last time it broadcast, it is useless that it broadcasts as its neighbors are already informed with

its current value, it could just stay idle. This minor change does not affect the convergence

time (as it is always driven by the independent Poisson clocks of the sensors) but reduces the

number of transmission and thus the consumed power. In the following we will not consider

this this change for the sake of simplicity.

2.3 Setup

2.3.1 Precisions about the setup

We will use the model defined in Section 1.1, that is a WSN of N agents modeled as an

undirected connected graph G = (V, E). For the sake of clarity and without loss of generality,

we will consider that the agents activate though an i.i.d. process and at any (global) clock tick

the activating agent is chosen uniformly in V .

The underlying graph model is very important as the convergence speed is closely linked

to the graph structure and the rumor spreading community focuses on finding relations be-

tween the performance of the algorithms and the properties of the underlying graph. The

following quantities will be useful to characterize the graph (see Section 1.1 for definition

and properties):

• the number of vertices N ;

• the maximal degree dmax =maxi∈V |Ni |;
• the second smallest eigenvalue of the Laplacian λL

2;

• the diameter ∆G =max{lG (i, j) : (i, j) ∈ V 2} where lG (i, j) is the minimum number of

edges needed to connect i to j in G .

Even if we want our performance analysis to depend closely on the graph properties, we

do not focus on a particular graph unlike [18] which focuses on expanders and [28] which

focuses on regular graphs, both in the rumor spreading context.

18 CHAPTER 2. MAXIMAL VALUE SPREADING

2.3.2 The convergence time

We define the convergence time τ as the first time when all the nodes share the maximum of

the initial values (at this point they should not change their values), i.e.,

τ¬ inf
¦

t ∈N : ∀k ≥ t xk = xmax1

©

. (2.2)

We will now prove a convergence result (τ <∞ almost surely) for a vast class of random

spreading algorithms. Let us consider the class of Random Maximum Spreading algorithms,

that is the algorithms such that:

• each sensor has one variable initialized with their measurements;

• the activating sensors are chosen through an irreducible Markov process;

• at any time k > 0, the newly active sensor sends its variable to some of its neighbors

and may also receive the variables of some of its neighbors;

• when a sensor receive a variable greater than its, it updates by replacing its variable by

the received one.

Theorem 2.1. Let Assumption 1.1 hold. Then, for any Random Maximum Spreading algorithm,

one has τ <∞ with probability 1.

Proof. Let M k = {i ∈ V : xk
i
= xmax} be the set of nodes sharing the maximum at time k. Let

X k = |M k| be the cardinal of M k and Y k = δ{X k+1>X k} be the random variable equal to 1 when

X k+1 > X k and 0 otherwise where δ{·} is the Kronecker symbol.

The considered algorithms are such that M k is a nondecreasing sequence of subsets of V

so X k is a nondecreasing sequence of integers upper-bounded by N and X k then converges to a

random variable X∞ ≤ N . Hence, we have that
∑∞

k=1 Y k < X∞ ≤ N and, taking expectations

over the choice of the activating and receiving sensors,
∑∞

k=1E[Y
k]<∞.

Whenever X k < N , using the graph connectedness, there is at least one couple (i, j) ∈
M k× (V −M k) such that j ∈ Ni . For any pair of sensors i, j ∈ V , the probability that i informs

j with xmax before N iterations is positive and we will denote by p > 0 the lower of these

probabilities over any pair of sensors (see Section 1.2.2 for more details). Then, for all k > 0

E[
k+N∑

t=k

Y t]≥ P[
k+N∑

t=k

Y t = 1, X k < N] = P[
k+N∑

t=k

Y t = 1|X k < N]P[X k < N]≥ pP[X k < N].

Then, by summing over k > 0, we have

∞∑

k=1

P[X k < N]≤
N

p

∞∑

k=1

E[Yn]<∞.

Thanks to Borel-Cantelli lemma, we know that P[X k < N infinitely often] = 0. Hence,

there is a finite time τ such that Xτ = N almost surely.

Then, we obviously have the following result.

2.4. Performance Analysis 19

Corollary 2.2. The RANDOM-WALK, RANDOM-PAIRWISE-MAX and RANDOM-BROADCAST-MAX con-

verge to a consensus over xmax in finite time with probability 1.

This result is not surprising and we would like now to have more information about the

behavior of τ versus some characteristics of the operating graph. For this purpose, we will

measure the performance of the proposed algorithms in the light of two criteria:

• the mean convergence time: E[τ] gives a first order approximation of the convergence

speed;

• the convergence time dispersion: for all ǫ ∈]0,1[, finding a bound B such that P[τ <

B] ≥ 1− ǫ gives a more general view of the convergence speed through the tail of the

convergence time distribution.

Finally, in order to be able to compare with the results of the rumor spreading literature,

we will study the behavior of our bounds with respect to the number of nodes N when it

goes to infinity. To this purpose, we will use the notation O (·) to get results of the form

τ = O (f (N)) meaning that there is a finite constant C such that τ ≤ C f (N) for N large

enough.

2.4 Performance Analysis

In this section, we will derive performance bounds for the introduced algorithms by the crite-

ria introduced in the previous section.

2.4.1 Random-Walk

This algorithm has mainly a comparison purpose and hence its performance will not be studied

extensively. Still, we will relate its performances to some well-studied quantities and give

pointers to find results about the expectation and the tail inequalities for these quantities

enabling the reader to derive the mean convergence time and convergence time dispersion of

the algorithm.

Let us denote by vk the active node at time k. We define the walk matrix W as Wi, j =

P[vk+1 = j | vk = i] for any i, j ∈ V . This matrix has the same support as the communication

matrix defined in Section 1.1.2 and thus Assumption 1.1 imply that W is irreducible by Propo-

sition 1.2. In addition, it is a stochastic matrix i.e.a non-negative matrix whose row sum is 1;

W can thus be seen as the transition matrix of N -states irreducible Markov chain. The random

walk on a graph can thus be seen as the visit of the states of a stationary Markov chain of

transition matrix W.

Let us imagine that agent j has the maximal value at time 0 and that the Random-Walk

algorithm begins at sensor v0 = i. Then, the convergence time of the Random-Walk algorithm

is the sum of i) the time the walk takes to go from i to j, namely the (i, j)-hitting time HW(i, j);

and ii) the time the algorithm takes to go through all the other vertices of the graph starting

from j (or identically all the states of the Markov chain), namely the j-cover time CW(j).

20 CHAPTER 2. MAXIMAL VALUE SPREADING

Finally, as we want our results to be true for any initialization, we have the following

result.

Proposition 2.3. For the RANDOM-WALK algorithm, one has

τ≤ HW+ CW

where:

• HW =maxi, j HW(i, j) is the maximal hitting time on W;

• CW =maxi CW(i) is the maximal cover time on W.

From this proposition, the reader can find bounds on E[τ] in [26, 29] for general graph

and in [27, 30] in the case of Random Geometric Graphs. Concentration bounds on expander

graphs can be found in [31].

2.4.2 Random-Pairwise-Max

2.4.2-a Expected convergence time

Theorem 2.4. For RANDOM-PAIRWISE-MAX, one has

E[τ]≤ Ndmax

hN−1

λL
2

,

with hn =
∑n

k=1 1/k the n-th harmonic number.

The details of the proof are reported in Appendix A.2. The idea of the proof is that

considering the set S of the nodes informed by the maximum value, the probability for another

sensor to become informed after an iteration of Random-Pairwise-Max is the same as the

probability that one of the exchanging nodes is in S while the other is in V \S. This probability

is lower-bounded by pmin|∂ S| where i) pmin = 1/(Ndmax) is a lower bound of the probability

for any pair of connected nodes to be active at each iteration of the algorithm; and ii) ∂ S =

{{i, j} ∈ E : i ∈ S, j /∈ S} is the set of edges with one end in S and the other end in V \S. Then,

a useful inequality proved in Appendix A.1 is

|∂ S|
|S| ≥ λ

L
2

�

1−
|S|
N

�

. (2.3)

For the sake of clarity in the comparisons with the literature, it is useful to derive a slightly

different version of our bound depending on the vertex expansion αG of the graph instead of

λL
2. This quantity is defined as

αG =min
S⊆V

|δS|
min{|S|, N − |S|}

where S is any subset of the nodes of G and δS = {i ∈ V \ S : ∃ j ∈ S such that {i, j} ∈ E} is

the set of vertices in V \ S with at least one neighbor in S.

2.4. Performance Analysis 21

Theorem 2.5. For RANDOM-PAIRWISE-MAX, one also has

E[τ]≤ Ndmax

h⌈ N

2
⌉

αG
,

with hn =
∑n

k=1 1/k the n-th harmonic number and αG the vertex expansion.

Proof. The proof is very similar to the one of Theorem 2.4 in Appendix A.2. To obtain the

result of the corollary, we remark that for any set S, |∂ S| ≥ |δS|, thus Eq. (A.2) still holds

with |δS| instead of |∂ S|. Then, applying the definition of the vertex expansion we have

|δS| ≥ αG min{|S|, N − |S|} that we plug in the previously mentioned equation to obtain

P[X k+1 = X k + 1 | X k]≥ 2
αG

Ndmax

min{X k, N − X k}

and as in Appendix A.2, we sum the inverse of this bound for X k = 1, ..., N − 1 to obtain the

claimed result.

In order to illustrate the upper-bound given in Theorem 2.4, let us consider a complete

graph2; for this particular graph, dmax/λ
L
2 is of order O (1) hence our bound is of order

O (N log N). In the standard rumor spreading context, the bound is of order O (log N) [32].

We thus pay an extra factor of order N for not knowing which nodes are informed or not.

2.4.2-b Convergence time dispersion

Theorem 2.6. For RANDOM-PAIRWISE-MAX, with probability 1− ǫ,

τ≤ CE(N)

�

1+ log

�
N

ǫ

��

where CE(N) is one of the bounds (RHS) of Theorem 2.4 or 2.5.

The proof is reported in Appendix A.3 and is based on concentration inequalities.

Again, in order to compare ourselves with the rumor spreading literature, let us take

ǫ = 1/N , we now have CE(N)(1+2 log(N)) as a right hand side. Hence, τ= O (CE(N) log(N))

with probability 1−1/N . Using the bound of Theorem 2.5, we get that τ= O (Nα−1
G log2(N)dmax)

with probability (1− 1/N).

In [33], it is proven that τ for the Push-Pull is O (α−1
G log2.5(N)) with probability (1−1/N).

Apart from the factor N (essentially due to our communication protocol), the trends offer

strong similarities.

2.4.3 Random-Broadcast-Max

2.4.3-a Expected convergence time

Theorem 2.7. For RANDOM-BROADCAST-MAX, one has

E[τ]≤ N∆G + N(∆G − 1) log

�
N − 1

∆G − 1

�

2a complete graph is a graph where every vertex is connected to any other one.

22 CHAPTER 2. MAXIMAL VALUE SPREADING

where ∆G is the diameter of the graph.

The proof is reported in Appendix A.4. In this proof, we actually compute the expected

convergence time on a spanning tree subgraph of G rooted on the node that has the maximum

at time 0, that is a graph with the same vertices set but where we delete some vertices so that

the graph is still connected but has no cycles (or loops, that is sequences of edges starting and

ending at the same vertex). Seeing the sensor that has the maximum as the top of the tree, we

count the time it needs to inform all its successors (the neighbors, in a descending way) that

we call the first layer L1. Once the first layer is informed, we add the time to inform the second

layer, etc. When layer Ln is informed, the time to inform Ln+1 using Random-Broadcast-Max

is the time for all the sensors of Ln to become active, this time is equal to Nh|Ln| following the

standard proof of the coupon collector problem [34].

Note that for complete graphs (∆G = 1), the upper bound of Theorem 2.7 is tight since

the time needed for propagating the max is the time needed for the initially informed node

to wake up and communicate its value to all other nodes using only one broadcast commu-

nication, hence N in expectation. Moreover, for the ring graph, we can prove that E[τ] =

(N2− N)/2 while our bound is close to N2(1+ log(2))/2, thus both quantities scale in N2.

Let us now consider the previous works on maximum propagation by using the broadcast-

ing nature of the medium [20, 21, 22, 23, 24]. Even if the framework is strongly different

(as showed in Section 2.2), it is interesting to compare the obtained performance bounds. In

the rumor spreading framework where all the informed nodes wake up simultaneously and

broadcast the information to their neighbors (causing collisions), the expected convergence

time behaves like ∆G log(N/∆G) [22]. Quite surprisingly, their bound has almost the same

shape as ours up to a factor N , which was already observed for the Random-Pairwise-Max

(Section 2.4.2-a).

2.4.3-b Convergence time dispersion

Theorem 2.8. For RANDOM-BROADCAST-MAX, with probability 1− ǫ,

τ≤ CE(N) + N∆G

�

log

�
∆G
ǫ

�

− 1

�

where CE(N) is the bound of Theorem 2.7.

The proof is reported in Appendix A.5. It is based on the same framework as the proof of

Theorem 2.7 and uses the tail probabilities of the Bernoulli distribution as well as the Union

bound.

If we take a look at the complete graph, we remark that the extra time cost scales like

N log N for ǫ = 1/N . Again, quite surprisingly, [14] obtained similar results although, as

before, the two frameworks are strongly different.

2.5. Numerical illustrations 23

2.5 Numerical illustrations

In order to evaluate the performance of the proposed algorithms and the tightness of our

bounds, we need to put a model on the underlying graph. Contrary to the rumor spreading

literature, we do not want to impose a specific structure on the graph (e.g. to be regular). We

thus chose to use Random Geometric Graphs [35] which is a large class of graphs that is very

well suited for modeling WSNs as we will see in the following. We will first define and give

intuitions about connectivity in RGGs in Section 2.5.1 then we will examine the algorithms

performance and the tightness of our bounds in Section 2.5.2.

2.5.1 About RGGs

To obtain such a graph, one has to choose N points uniformly in the unit square [0,1] ×
[0,1] (these points represent the position of the nodes/sensors). Then, one has to draw an

(undirected) edge between any pair of sensors closer than a pre-defined radius r (this radius

represents the communication radius of a sensor, thus the edges link sensors that are able to

communicate). The construction of a 10-nodes RGG with radius 0.3 is illustrated in Figure 2.1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2.1: Construction of a RGG.

This class of random graphs is well suited for modeling WSNs by their construction and

can lead to very different graphs (the circle or the complete graph can be generated with this

method with a large variety of intermediaries) which coincide with our objective of finding

general bounds valid for any graphs. However, we assumed that our communication graph

was connected which may not be the case for some of the RGGs, in this case we just drop the

graph (in order to determine if a graph is connected a simple method is to use the properties of

Proposition 1.2). By choosing r = r0

p

log(N)/N with r0 not too small, connectivity is ensured

24 CHAPTER 2. MAXIMAL VALUE SPREADING

with a high probability (asymptotic connectivity with high probability has been proved for

r0 ≥ 3, see [36, Appendix A], though smaller radii seem to work quite well for relatively

small N).

In Figure 2.2, we plot i) the percentage of connected graphs; ii) the mean percentage of

edges (that is the number of edges of the graph over the number of edges of the complete

graph with the same number of nodes which is equal to N(N−1)/2); and iii) the mean second

smallest eigenvalue of the Laplacian λL
2 versus the number of nodes for different values of r0.

We remark that for r0 ≥ 2 the graph is always connected for 10 to 100 nodes. We also see

that the mean percentage of nodes decreases with N but remains quite high. Finally, the value

of λL
2 is very instructive as it is always positive and upper bounded by the number of nodes

(bound attained in the case of a complete graph), it also gives a insight on how well the graph

is connected. This enables us to see how the graphs are more and more connected as r0 grows,

and finally that the graphs generated with r0 = 6 are almost always complete.

20 40 60 80 100
0

20

40

60

80

100

Number of nodes

P
e
rc

e
n

ta
g
e
/

V
a
lu

e
o
f
λ

L 2

Percentage of connected graphs

Mean percentage of edges

Mean λL
2

(a) r0=1

20 40 60 80 100
0

20

40

60

80

100

Number of nodes

P
e
rc

e
n

ta
g
e
/

V
a
lu

e
o
f
λ

L 2

Percentage of connected graphs

Mean percentage of edges

Mean λL
2

(b) r0=2

20 40 60 80 100
0

20

40

60

80

100

Number of nodes

P
e
rc

e
n

ta
g
e
/

V
a
lu

e
o
f
λ

L 2

Percentage of connected graphs

Mean percentage of edges

Mean λL
2

(c) r0=4

20 40 60 80 100
0

20

40

60

80

100

Number of nodes

P
e
rc

e
n

ta
g
e
/

V
a
lu

e
o
f
λ

L 2

Percentage of connected graphs

Mean percentage of edges

Mean λL
2

(d) r0=6

Figure 2.2: Connectivity of RGGs with different radii.

2.5.2 About the tightness of the derived bounds

Following what we saw in the previous section, we choose the RGGs with r0 = 4 as a graph

model; indeed, they are pretty well connected while at the same time being quite far from

the complete graph for N > 60 as seen in Fig. 2.2c. All simulations will thus be done over

2.5. Numerical illustrations 25

Monte-Carlo trials of these graphs.

In Figure 2.3, we look at the percentage of informed sensors versus the number of iter-

ations for a 50-sensors graph. We remark that the Random-Broadcast-Max converges faster

than the two other algorithms which have similar convergence speeds. After a short first hit

step, the Random-Walk is faster than the Random-Pairwise-Max for the first 150 iterations but

slows down after that and is finally slower. This is due to the fact that Random-Walk informs a

new sensor very frequently when only a few sensors are aware whereas the last sensors take a

long time to inform as it is a local algorithm. In contrast, the Random-Pairwise-Max performs

updates uniformly on the graph and is thus more successful when many sensors are informed.

0 50 100 150 200 250 300 350
0

20

40

60

80

100

Number of iterations

P
e
rc

e
n

ta
g
e

o
f

se
n

so
rs

sh
a
ri

n
g

th
e

m
a
x
im

u
m

Random-Walk

Random-Pairwise-Max

Random-Broadcast-Max

Figure 2.3: Percentage of informed nodes versus the number of iterations.

In Figure 2.4, we plot the (empirical) mean number of communications for reaching con-

vergence and the associated upper-bounds (given by Theorems 2.4 and 2.7) for Random-

Pairwise-Max and Random-Broadcast-Max versus the number of sensors N . The number

of communications is a good indicator in the case of WSNs as the power constraints are

important, it is simply obtained by multiplying the number of iterations by the number of

communications per iteration, that is, 1 for the Random-Walk and the Random-Broadcast-

Max3 and 2 for the Random-Pairwise-Max. We again observe that the Random-Broadcast-

Max outperforms the Random-Pairwise-Max; however, due to its communication cost the

Random-Pairwise-Max is no longer faster than the Random-Walk. For small networks, the

graph is almost always complete (see Fig. 2.2c) and thus our bound is tight as mentioned

in Section 2.4.3-a for the Random-Broadcast-Max. When the network size increases, the

upper-bounds become quite pessimistic due to the various used simplifications (in the case of

Random-Pairwise-Max, we use the inequality of Eq. (2.3) and the approximation di ≈ 1/dmax;

3we assume that a point-to-point communications costs roughly as much as broadcasting in a wireless setup.

26 CHAPTER 2. MAXIMAL VALUE SPREADING

in the case of Random-Broadcast-Max, we rely on the spanning tree instead of the whole

graph and we broadcast the information layer per layer). The looseness of our bounds is in

fact inherent to the problem of rumor spreading on graphs as soon as one want to consider

all kinds of graphs; the graph-related tools and inequalities used in our derivations are indeed

similar to the ones used in the rumor spreading literature so the derived bounds suffer from

the same tightness problem.

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

1,200

1,400

Number of nodes

N
u

m
b
e
r

o
f

co
m

m
u

n
ic

a
ti

o
n

s

Random-Walk

Random-Pairwise-Max

Random-Pairwise-Max: bound of Theorem 2.4

Random-Broadcast-Max

Random-Broadcast-Max: bound of Theorem 2.7

Figure 2.4: (Empirical) mean number of communications for reaching convergence and asso-

ciated upper-bounds versus N .

As the Random-Broadcast-Max is much more interesting in terms of performance, we

hereafter focus on it exclusively. In Figure 2.5, with N = 40 sensors, we plot the histogram of

the convergence time and i) the quantile at 1/N (that is the value such that a fraction of 1/N

of the trials are greater than this value); ii) the upper-bound of Theorem 2.8. Once again,

our bound is loose which illustrates the fact that it is very hard to obtain tight bounds for

spreading problems on general graphs.

2.6 Conclusion

In this chapter, we presented and analyzed the problem of distributed estimation of the maxi-

mal initial value in a WSN. After detailing the problem, we examined precisely the similitudes

and differences between this problem and the well-known rumor spreading problem. Then,

we presented and analyzed three algorithms: i) the Random-Walk which acts here as a toy

example; ii) the Random-Pairwise-Max which mimics the well-known Random Gossip; and

iii) the Random-Broadcast-Max which uses broadcast communications.

We showed that, roughly speaking, we pay a factor of the size of the network due to the

fact that the sensors do not know if they have the wanted information (maximal value or ru-

2.6. Conclusion 27

0 100 200 300 400 500 600 700 800

Quantile at 1

N

Bound of Theorem 2.8

Number of iterations

Figure 2.5: Histogram of the convergence time and associated upper-bound with probability

(1− 1/N) for the Random-Broadcast-Max when N = 40.

mor). We also observed that the use of the broadcast nature of the wireless channel improves

dramatically the convergence speed of gossip algorithms for the maximum estimation.

In the next chapter, we will consider the problem of distributed estimation of the average

value. Comforted in the idea that broadcasting would improve the convergence speed we will

exhibit the convergence issues due to broadcasting in an averaging context and present a way

to overcome this problem.

This work has led to the following publications:

J1 F. Iutzeler, P. Ciblat, and J. Jakubowicz, “Analysis of max-consensus algorithms in wire-

less channels,” IEEE Transactions on Signal Processing, vol. 60, no. 11, pp. 6103–6107,

November 2012.

C1 F. Iutzeler, J. Jakubowicz, W. Hachem, and P. Ciblat, “Distributed estimation of the

maximum value over a Wireless Sensor Network,” in Asilomar Conference on Signals,

Systems and Computers, pp. 62–66, November 2011.

N1 F. Iutzeler, P. Ciblat, W. Hachem, and J. Jakubowicz, “Estimation distribuée du maxi-

mum dans un réseau de capteurs,” in Colloque GRETSI, September 2011.

28 CHAPTER 2. MAXIMAL VALUE SPREADING

CHAPTER 3

DISTRIBUTED AVERAGE CONSENSUS

In this chapter, we will study the problem of distributed average consensus which consists in

making a network to share the average of its initial values by performing local communications

and linear operations at each sensor.

3.1 Introduction

As mentioned in Chapter 1, one of the most studied problems in WSNs is how to reach con-

sensus over the average of the initial measurements of the sensors in a asynchronous way. In

the seminal paper written by Boyd et al. [11], the problem is solved through the so-called

Random Gossip algorithm in with at each iteration a randomly chosen sensor chooses one of

its neighbors, then they exchange their values and update them by taking the mean between

their received and former values. In the rest of the literature, the main proposed improve-

ments for averaging algorithms (and any gossip algorithm in general) were based on either

i) a better exploitation of the global geometry of the network; or ii) the use of broadcast

communications.

The network structure was exploited in [37, 38] in order to perform a better mixing over

the graph. Indeed, [37] proposed an algorithm called Geographic Gossip very similar to the

random gossip but where the two exchanging nodes are not necessarily connected; the mixing

is thus more global and hence the algorithm converges faster than the standard random gossip

but this algorithm needs routing between the waking and the chosen sensor. This routing step

can be in terms of communications/overhead and energy. [38] improved this algorithm by

collecting the values of the sensors along the way of the routing, the chosen sensor thus has

the values of all the sensors on the route between the waking sensor and itself. The chosen

sensor can thus compute the average of these values and send it back through the same

route as before. This algorithm named Randomized Path Averaging converges even faster than

geographic gossip but still needs a costly routing. All these algorithms suffer from the need

of costly routing. In addition, all the algorithms assume that the node receiving information

feeds back its information to the sending node. This assumption can be very restrictive in

30 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

case of link failures (which may occur in real-life static network) or mobile wireless networks.

Therefore we would like to propose feedback-free (and routing-free) gossip algorithms.

We have seen in the previous chapter that broadcast-based algorithms converge much

faster than pairwise-based ones in the case of maximum value estimation. Thus it is natural

to propose broadcast-based averaging algorithms. In the most simple algorithm of this type,

called Broadcast Gossip [7], the waking node broadcasts its value to all its neighbors which

update their estimates by taking the mean between their received and former values, this al-

gorithm is in addition feedback-free, and so should be very promising. Indeed, it has a very

fast convergence to a consensus but unfortunately does not converge to the true average of

the initial values but to a random variable centered over the true average which is problematic

and thus prevents its use. The inexact final value is due to the fact that the sum of the sensors

estimates is not preserved over time. Some other broadcast-based averaging algorithms con-

verge to the true average exist but they need feedback. This feedback is a problem when link

failures happen (as mentioned in previous paragraph) and also induces a non-negligible com-

munication cost. In this context (broadcast with feedback-based algorithms), one can quote

the Neighborhood Gossip [39] in which the waking sensor broadcasts a beacon to all its neigh-

bors which then send back their values (the collisions are avoided by superposition coding) to

the waking sensor which computes and broadcasts the average of the communicated values.

The multiple transmissions and the multiple access issues are the negative points of this algo-

rithm in the WSN setup. One can also quote the Greedy Gossip with Eavesdropping [40] which

is a modified version of the random gossip where the waking sensor chooses its neighbor with

the most different value to exchange, every sensor knows its neighbors values as the sensors

broadcast their value after each update. As a conclusion, finding a feedback-free broadcast

based algorithm converging to the true average is still an open issue. We propose hereafter to

fix this issue.

To do so, we cannot rely on the standard gossip framework. Indeed, it is impossible to find

such an algorithm via this framework as remarked in [41]. In contrast, as remarked in [42] 1,

the so-called Sum-Weight framework introduced in [43] is well adapted to the feedback-free

algorithms. We will also show that it is well adapted to design a (feedback-free) broadcast-

based algorithm. In this framework, each sensor maintains and updates two local variables

instead of one; the average estimate being the quotient of these two variables. In oppo-

sition to the two variables of the Sum-Weight framework, we will call the standard gossip

algorithms depending on only one variable single-variate. The Sum-Weight formalism was

originally proposed and studied in terms of convergence for synchronous average computa-

tion, the asynchronous case was treated by Bénézit et al.[42] and later in [41]. However, the

convergence speed has never been theoretically evaluated except in [43] for a very specific

case.

As a conclusion, our objective is twofold: on the one hand, we propose to theoretically

1where the authors generalize the randomized path averaging to a new feedback-free algorithm leading to the

so-called One-Way Path Averaging algorithm

3.2. Standard (single-variate) framework 31

analyze the convergence speed of any algorithm based on the Sum-Weight framework; on the

other hand, we design a feedback-free broadcast-based algorithm using this framework which

converges very quickly and outperforms existing algorithms.

The chapter is organized as follows: in Section 3.2 we remind some results and algo-

rithms associated with the standard (single-variate) framework. In Section 3.3, we recall the

Sum-Weight framework and introduce our assumptions. In Section 3.4, we provide our re-

sults about the convergence and convergence speed for sum-weight-based algorithms. This

section corresponds to the main contributions of the chapter. In Section 3.5, we propose a

new feedback-free broadcast-based Sum-Weight algorithm called BWGossip. In Section 3.6,

we revisit the results on the standard (single-variate) gossip algorithms according to results

obtained in Section 3.4. Finally, in Section 3.7, we provide one application for averaging al-

gorithms which is the distributed spectrum sensing in a cognitive radio context. We especially

see that the BWGossip helps us to fix some problems raised in this Section.

3.2 Standard (single-variate) framework

3.2.1 Model

According to Chapter 1, we consider a WSN modeled by a graph G = (V, E) and each sensor

i has an initial value x0
i

but now the goal of the algorithms is to compute xave ¬ 1/N
∑N

i=1 x0
i

by i) exchanging only locally in the sense of Assumption 1.1; and ii) through linear operations

with non-negative coefficients2. In the standard single-variate framework, all the algorithms

can then be expressed with a matrix formulation as

xk+1 = Kξk+1 xk (3.1)

where the process {Kξk}k>0, valued in the setK = {Ki}i=1,...,M , is i.i.d.. The setK contains M

non-negative matrices whose support is included in the support of I+A with A the adjacency

matrix of G . The goal of an averaging algorithm can be written

xk xave1 (=
1

N
11

T x0 = Jx0) (3.2)

where is a convergence to be defined later.

Before going further, it seems natural that the matrices of K satisfy two properties:

• Sum conservation: in order to keep the sought information (the average/sum of the

initial values) throughout the processing time, it is mandatory that the sum of the nodes

variables should be unchanged at each iteration and so identical to the sum of the initial

values given by xave. Therefore, we need

1
T xk+1 = 1

T xk. (3.3)

As xk = KξkKξk−1 . . .Kξ1 x0, Eq. (3.3) holds if and only if each matrix of the set K is

column-stochastic.

2this is actually not restrictive as it seems logical to combine receive values using weighted means.

32 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

• Consensus conservation: it seems important that the consensus is stable (if it exists).

Let c be the consensus value. The stability leads to

xk = c1⇒ xk+1 = c1 (3.4)

As xk+1 = Kξk+1 xk, Eq. (3.4) for any c holds if and only if the set K is row-stochastic.

Notice that, in the remainder of this Section, the relative importance of both above-mentioned

properties will be analyzed. Therefore we will not assume these properties by default but case

by case.

Finally, it seems natural that a sensor always keeps a part of its own value at each iteration.

This implies that each matrix of the set K has positive diagonal entries. Therefore, we will

consider that the following Assumption 3.1 holds throughout this Chapter.

Assumption 3.1. The matrices of K are non-negative and positive diagonal entries.

This section is organized as follows: in Subsection 3.2.2, we consider the doubly-stochastic

matrices case whereas in Subsection 3.2.3, we focus on the strictly non-doubly-stochastic

(either row or column) matrices case.

3.2.2 Case of doubly-stochastic matrices

In order to introduce the problem in a more simple way, we start this Subsection by focusing

on the synchronous communications context (even if the contributions of the thesis concern

the asynchronous communications context) in Section 3.2.2-a.

3.2.2-a Synchronous communications context

In synchronous communications context, all the nodes speak at the time and do always the

same operation. We consider that collisions are avoided by choosing an appropriate multi-

ple access scheme. Consequently, the algorithms are no random and simply characterize by

the initial vector x0 and an unique K (satisfying Assumption 3.1 and the doubly-stochastic

property, obviously). We so have

xk+1 = Kxk. (3.5)

Notice that the below-mentioned existing results are based on [3, 44, 45] and [46].

According to Chapter 1, K can be viewed a transition probability matrix of a homogeneous

Markov Chain since it is row-stochastic. From [46, Prop. 8.3] (or [3, Theorem 8.5.1]), this

related homogeneous Markov chain is ergodic if K is primitive. Thanks to Definition 1.10, we

know that, if K is primitive and so ergodic, then it exists a positive vector v (with 1
Tv = 1)

such that

lim
m→∞

(K)m = 1vT.

As K is also column-stochastic, we have v = (1/N)1 and so

lim
m→∞

(K)m =
1

N
11

T. (3.6)

3.2. Standard (single-variate) framework 33

Eq (3.6) implies directly that

lim
kt o∞

xk = xave1

which corresponds to the convergence proof.

Once the convergence ensures, we would like to analyze the convergence speed to the

consensus. Before going further, we need two preliminary (well-known) propositions. For

pedagogical reasons, we will also remind their proofs.

Result 3.2. Under Assumption 3.1, if K is primitive, then KTK is also primitive.

Proof. As K is non-negative, we have (KTK)i, j ≥ Ki,iKi, j . Furthermore, as K has positive di-

agonal entries, we get that the support of K is included in the support of KTK. This implies

that if G (K) is strongly connected (and so K primitive as it is irreducible with positive diag-

onal entries), then G (KTK) is also strongly connected and so KTK is irreducible with positive

diagonal entries and so primitive.

Result 3.3. Under Assumption 3.1, if K is doubly-stochastic and primitive, then

ρ
�

KTK− J
�

< 1. (3.7)

Proof. As KTK is doubly-stochastic, its largest eigenvalue in magnitude is 1 associated with

left- and right-eigenvectors 1/
p

N1. According to Result 3.2, KTK is primitive. So thanks to

Theorem 1.5, 1 is the sole eigenvalue of magnitude 1. Consequently, all the eigenvalue of

KTK− J are strictly less than 1 in magnitude which concludes the proof.

Eq. (3.7), will play a great role for finding the convergence speed. Indeed, the term xk

can be decomposed as follows

xk = Jxk + J⊥xk

and as K is column-stochastic, one can easily see that Jxk = xave1 for any k. Consequently,

we have

xk = xave1+ J⊥xk (due to the column-stochasticity of K) (3.8)

which implies the convergence of the {xk}k>0 to the average consensus is equivalent to the

convergence of ‖J⊥xk‖22 to 0. As K is row-stochastic, Proposition 1.7 holds and so we have

‖J⊥xk+1‖22 = ‖J
⊥K(J⊥xk)‖22 (due to the row-stochasticity of K).

Consequently, we have a simple link between the projections of the nodes variables into

span(1)⊥ at time k and (k+1) enabling us to conclude quickly. Indeed, thanks to the previous

equation, we have

‖J⊥xk+1‖22 ≤ ‖|J
⊥K‖|22‖J

⊥xk‖22.

After simple algebraic manipulations, if K is column-stochastic (cf. Proposition 1.8), we have

‖|J⊥K‖|22 = ρ
�

KTK− J
�

which is less than 1 according to Result 3.3.

To sum up, we have the following well-known Theorem.

34 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

Theorem 3.4. Let Assumption 3.1 hold. If K is doubly-stochastic and primitive, the sequence

{xk}k>0 defined in Eq. (3.5)

• converges to xave1.

• the squared error ‖xk − xave1‖22 goes exponentially to zero with the slope ρ
�

KTK− J
�

which is ensured to be less than 1.

Example: Metropolis algorithm. Each node replaces its own value with a weighted average

of its previous value and the values of all its neighbors at each iteration. The Metropolis

weights, introduced in the context of Markov chain Monte Carlo [47, 48], are as follows

Ki, j =

1

1+max{di ,d j}
if j ∈ Ni

1−
∑

j∈Ni
Ki, j if i = j

0 otherwise.

(3.9)

In order to the algorithm to converge, we would like to check the sufficient conditions on the

matrix K given in Theorem 3.4. The above-defined matrix K trivially satisfies Assumption 3.1

and is doubly-stochastic. We now just have to check its primitivity. This matrix has the same

support as I+A where A is the adjacency matrix of the underlying (undirected, self-loop-free)

communication graph G . According to Proposition 1.2, if G is (strongly) connected, then A

is irreducible, so the matrix I+ A is primitive and so the support I+ A is primitive too which

implies that K is primitive. So this algorithm converges to the true consensus as soon as the

communication graph is connected.

We are now ready to move on the asynchronous communications context in Section

3.2.2-b.

3.2.2-b Asynchronous communications context

Now, the sequence {xk}k>0 is defined as in Eq. (3.1). We would like to obtain conditions on

the set K for converging to the true consensus almost surely. To do so, we have to see the

choice of the matrices of K at each time as a random process. Obviously, the random may

differ from the considered algorithm. We will just consider that this process is i.i.d. for the

sake of simplicity. In addition, we consider that each matrix of K satisfies Assumption 3.1

and are doubly-stochastic. The results will be similar to the synchronous case by adding some

mathematical expectations well localized!

Notice that the below-mentioned existing results are based on [6, 42, 49] and [8]. We still

consider that Assumption 3.1 holds.

Once again, one can use the Markov Chain formalism to prove the convergence to a con-

sensus (here in the almost sure sense). The sequence of random matrices {Kξk}k>0 is assumed

i.i.d.. We obviously have

xk = P1,k x0

with

Ps,k ¬ KξkKξk−1 . . .Kξs for any s and k ≥ s. (3.10)

3.2. Standard (single-variate) framework 35

Clearly, xk is obtained through a (backward) concatenation of transition probability matrix of

a heterogeneous Markov Chain since each matrix of the setK is row-stochastic. According to

Section 1.2.5-b, when backward direction is considered, the notions of weak ergodicity and

strong ergodicity are equivalent. In [42, Lemma 4.3], it is proven that, if E[K] is primitive,

then the sequence {Kξk}k>0 is weak ergodic (in backward direction) almost surely and so

strong ergodic. Consequently, according to Definition 1.10, it exists one non-negative vector v

with unit sum such that limk→∞ P1,k = 1vT. In addition, as the matrices in the set K are also

column-stochastic, we have v = (1/N)1. Finally, as each matrix inK is doubly-stochastic and

as E[K] is primitive, we obtain that

xk = xave1 almost surely

So the condition of primitivity has to be checked by the mean matrix instead of by each matrix

in K at each time.

We hereafter would like to inspect the convergence speed. Once again, the column-

stochasticity of each matrix inK implies that we only have to analyze the convergence speed

of ‖J⊥xk‖2. Using the same approach as in the synchronous case, we have, due to the row-

stochasticity (cf. Proposition 1.7),

‖J⊥xk+1‖22 = ‖(J
⊥Kξk+1)matJ⊥xk‖22 = (J

⊥xk)T(J⊥Kξk+1)T(J⊥Kξk+1)(J⊥xk). (3.11)

Taking the expectation over ξk+1, we get

E
�

‖J⊥xk+1‖22|x
k
�

= (J⊥xk)TE[(J⊥Kξk+1)T(J⊥Kξk+1)](J⊥xk)

≤ ρ
�

E
�

(J⊥Kξk+1)T(J⊥Kξk+1)
��

‖J⊥xk‖22. (3.12)

Now, the main important term providing the slope of the exponential decrease is

ρ
�

E
�

(J⊥Kξk+1)T(J⊥Kξk+1)
��

and we have to prove that it is less than 1. As each matrix in K is also column-stochastic, we

get that for every i ∈ {1, ..., M},

(J⊥Ki)
T(J⊥Ki) = KT

i Ki − J

which means that we just have to verify that ρ(E[KTK] − J) is less than 1. As E[KTK] is

trivially doubly-stochastic, we have ρ(E[KTK]) = 1. Similarly to Result 3.2 (so by considering

the associated support matrices), we have that Assumption 3.1 leads to the primitivity of

E[KTK] if E[K] is primitive. Consequently, by Perron-Frobenius Theorem, 1 is the unique

eigenvalue of maximum modulus, and 1 is the unique eigenvector of E[KTK] associated with

the eigenvalue 1. So the eigenvalues of E[KTK]− J are strictly less than 1 since the matrix

J has removed the eigenspace associated with 1 in E[KTK]. Finally, the primitivity of E[K]

leads to

ρ
�

E[KTK]− J
�

< 1. (3.13)

36 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

We just have to check now that Eqs. (3.12)-(3.13) enable us to fix the problem. For any ǫ > 0,

thanks to Markov’s inequality, we have

∞∑

k=0

P[‖J⊥xk‖2 > ǫ]≤
1

ǫ
v

∞∑

k=0

E[‖J⊥xk‖2]

According to Eq. (3.12), we obtain that

∞∑

k=0

P[‖J⊥xk‖2 > ǫ]≤
C

ǫ

∞∑

k=0

rk

with r = ρ
�

E[KTK]− J
�

and C = ‖J⊥x0‖2. According to Eq. (3.13), we have r < 1, so

∞∑

k=0

P[‖J⊥xk‖2 > ǫ]≤
C

ǫ(1− r)
<∞,

and the Borel-Cantelli Lemma holds which implies ‖J⊥xk‖2 converges to zero almost surely

at an exponential rate equal to r. To sum up, we have the following Theorem.

Theorem 3.5. Let Assumption 3.1 hold. If each matrix in K is doubly-stochastic and i.i.d. and

if E[K] primitive, the sequence {xk}k>0 defined in Eq. (3.1)

• converges to xave1 almost surely.

• the mean squared error E[‖xk − xave1‖22] goes exponentially to zero with the following

slope ρ
�

E[KTK]− J
�

which is ensured to be less than 1.

Example: Random Gossip algorithm. The Random Gossip algorithm, introduced in [11],

relies on a pairwise exchange between the activating node and one of its neighbors chosen

uniformly. Then they compute the average of their received and former values. The algorithm

is summed up in next Table. As mentioned in Section 1.1.2, the agents activate through an

Random Gossip

Let i be the node activating at time k.

◮ i chooses a neighbor j uniformly in Ni and they exchange their values.

◮ Both i and j then update: xk+1
i
= xk+1

j
=

xk
i
+xk

j

2
.

i.i.d. process and for any time k > 0 and any node i ∈ V , P[i activates at time k] = 1/N .

Using the matrix framework described in previous Sections, the iteration at time k can be

written as follows

xk+1 = K{i, j}x
k

3.2. Standard (single-variate) framework 37

with

K{i, j} ¬

1

...

1

1/2 1/2

1

...

1

1/2 1/2

1

...

1

.

According to our framework, we have K = {K{i, j}}{i, j}∈E and ξk = {i, j} with probability

N−1(|Ni|−1+ |N j |−1).

In order to apply results developed previously, we just have to check that matrices in ‖
satisfy all the constraints. Assumption 3.1 holds since each matrix in K is non-negative with

a positive diagonal. In addition, it is doubly-stochastic. Thus, we now just have to check that

E[K] is primitive for applying Theorem 3.5. As this matrix has the same support as I + A

where A is the adjacency matrix of the underlying communication graph G , E[K] is primitive

as soon as G is connected (as done for Metropolis algorithm example.).

3.2.3 Case of non-doubly-stochastic matrices

First of all, we will see that the double stochasticity of the updates requires a feedback.

Therefore, when feedback-free algorithm is of interest, the update matrices will be either

row-stochastic or column-stochastic but not both simultaneously. Hereafter, we will inspect

existing results under this less-restrictive assumption.

Let us focus on the relationship between doubly-stochasticity and the feedback require-

ment. Let K be an update matrix. If the node i provides information to the node j, then

K j,i > 0. Node j performs weight mean with these values of interest (in this toy example, its

38 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

own value and that of node i). We thus have

K=

1

...

1

1

1

.. .

1

1/2 1/2

1

...

1

and, due to the weight mean, the sum of each row is equal to 1. By construction, the matrix

K is row-stochastic but not column-stochastic. In order to be doubly-stochastic, the i-th row

must modify entries (i, i) and (i, j) and force them to be equal to 1/2 (leading actually to

the so-called Random Gossip algorithm described in Section 3.2.2-b). Having a non-null

coefficient at entry (i, j) means that j must also provides its value to i. Therefore, the double

stochasticity property requires feedback communications.

3.2.3-a Row-stochastic matrices

The previous example shows that it is easy to design a lot of algorithms by considering dif-

ferent weight means at the receive node. Then such algorithms have row-stochastic update

matrices. Therefore, we first focus on this case of row-stochastic matrices.

As matrices in K are row-stochastic, they can still be seen as transition probability ma-

trices of a heterogeneous Markov Chain but in backward direction. According to Section

1.2.5-b, weak and strong ergodicity are equivalent. Moreover, like [42, Lemma 4.3], if the

update matrices satisfy Assumption 3.1 and E[K] is primitive, then the product of matrices

in K chosen in an i.i.d. manner, is weak ergodic and so strong ergodic almost surely which

implies that Eq. (1.3) applies (we just have to consider the backward direction instead of the

forward one.).

So let ξ = {ξk}k∈N be a realization of the chosen node. According to Definition 1.10, it

exists almost surely a non-negative vector v (with 1
Tv = 1 and depending on ξ) such that

lim
k→∞

Kξk · · ·Kξ1 → 1vT.

Given the previous equation, we have that

xk k→∞→ (vT x0)1 (almost surely)

Moreover as matrices in K are not column-stochastic,we have v 6= (1/N)1. As a conclusion,

the algorithm will converge to a consensus but the consensus is random and different from

xave.

3.2. Standard (single-variate) framework 39

Nevertheless, notice that if E[K] is column-stochastic (so column stochastic in expectation

not for each realization), then one can prove E[v] = (1/N)1 which implies that the algorithm

converges to an unbiased random consensus [7, 41]. We sum up these results in the following

Theorem.

Theorem 3.6. Let Assumption 3.1 hold. If each matrix in K is row-stochastic and i.i.d. and if

E[K] primitive, it exists a non-negative random vector v with (1Tv = 1) such that the sequence

{xk}k>0 defined in Eq. (3.1)

• converges to (vT x0)1 almost surely,

• Furthermore, if E[K] is column-stochastic, then E[vT x0] = xave and the algorithm is

unbiased.

As a remark, the row-stochasticity implies that the consensus is stable but does not ensure

that the sought main information (here, the average) is kept. Consequently, it is hopeless to

expect the convergence to the true value since the true value (here, the average) is lost as

soon as the first iteration. In order to design algorithms converging to the true consensus,

the column-stochasticity is much more important since it ensures the average conservation

at each iteration. Therefore, we now focus on this case. Before going further, let us give an

example of a (feedback-free broadcast) algorithm based on row-stochastic update matrices.

Example: Broadcast Gossip algorithm. The Broadcast Gossip algorithm, introduced in [7],

relies on a broadcast of its value by the activating node to its neighbors. Then its neighbors

compute the average of their received and former values. This algorithm is clearly feedback-

free as wanted. The algorithm is summed up in next Table. As mentioned in Section 1.1.2,

Broadcast Gossip

Let i be the activating node at time k.

◮ i broadcasts its estimate to all its neighbors.

◮ Every neighbor j ∈ Ni update: xk+1
j
=

xk
i
+xk

j

2
.

the agents activate through an i.i.d. process and for any time k > 0 and any node i ∈ V ,

P[i activates at time k] = 1/N .

Using the matrix framework described in previous Sections, the iteration at time k can be

written as follows

xk+1 = Ki x
k

40 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

with

Ki ¬

1/2 1/2

1/2 1/2

1

...

1

1/2 1/2

1

...

1

1/2 1/2

.

According to our framework, we have K = {Ki}i∈V and ξk = i with probability 1/N .

In order to apply results developed previously, we just have to check that matrices in ‖
satisfy all the constraints. Assumption 3.1 holds since each matrix in K is non-negative with

a positive diagonal. In addition, it is only row-stochastic. Thus, we now just have to check that

E[K] is primitive for applying Theorem 3.6. As this matrix has the same support as I+A where

A is the adjacency matrix of the underlying communication graph G , E[K] is primitive as soon

as G is connected (as done for Metropolis algorithm example.). Moreover, the sum of the i-th

column of E[K] is equal to 1+ 1/N(di/2)− di1/N(1/2) = 1. So, E[K] is column-stochastic

and the consensus value is well centered on xave as proven in [7, 41].

3.2.3-b Column-stochastic matrices

Let us now focus on the case of column-stochastic update matrices. Compared to the row-

stochastic update matrices case, the average is kept at each iteration. We just want to exhibit

algorithms providing this average.

As the update matrices are column-stochastic, they can not be viewed as transition prob-

ability matrices of Markov Chain. It is easy to overcome this problem by working on

(Kξk · · ·Kξ1)T = KT
ξ1 · · ·KT

ξk (3.14)

instead on

Kξk · · ·Kξ1

as naturally done by the algorithm.

So we can work with a concatenation of row-stochastic "update matrices" (actually, the

transpose of the real update matrices) but in forward direction. In forward direction case,

weak and strong ergodicity are distinguished. Under similar assumptions as before, we can

just ensure the weak ergodicity. This means that it exists a random sequence of non-negative

vectors vk (with 1
Tvk = 1) such that

(Kξk · · ·Kξ1)T ∼ 1vkT

3.3. Sum-Weight framework 41

or equivalently

Kξk · · ·Kξ1 ∼ vk
1

T. (3.15)

Compared to the row-stochastic case, we have two fundamental differences: i) the vector vk is

moving so there is no stable consensus (this is logical since the consensus conservation related

to the row-stochasticity is not assumed), ii) the vector vk multiplies 1 by the left (and not by

the right in the row-stochastic case). The last difference is crucial and will be the key way to

solve our problem.

Let us inspect the consequence on xk. We thus have that

xk ∼ vkN xave

or equivalently, at node i, we have

xk
i ∼ vk

i N xave. (3.16)

We observe that the average is kept but is hidden in xk
i

by the unknown term vk
i
. Conse-

quently the algorithms based on column-stochastic update matrices do not have any chance

to converge to the true value even if this value is there !

To fix this issue, we have to remove the term vk
i
, and so we need side information on this

term. Therefore, an other variable linked to the value of vk
i

has to be computed in parallel. But

which one ? the answer will be given in next Section by the so-called Sum-Weight framework.

The Sum corresponds to Eq. (3.16), and the Weight corresponds to the variable related to vk
i
.

3.3 Sum-Weight framework

According to Section 3.2.3-b, it seems reasonable to design algorithms with column-stochastic

matrices, but then two variables are needed. Clearly, a way to compute vk
i

at node i in parallel

with vk
i
N xave is to apply Eq. (3.16) with an other initialization point, i.e., 1. Therefore at each

iteration, we will update two variables sk (the sum as initialized with x0) and wk (the weight

as initialized with 1) with the same update matrix. In such a case, the first (resp. second)

variable behaves as vK
i

N xave (resp. vK
i

N) at node i. Doing the division (assuming non-null

vk
i
) leads to the average xave.

The Sum-Weight framework, introduced in [43] and adapted in [42] to the wireless net-

work, is thus based on the joint update of two variables per node as above explained. Mathe-

matically, we have two variables sk
i

and wk
i

at node i and time k.

We initialize with s0 = x0 and w0 = 1. Then at time k, we have

sk+1 = Kξk+1sk

wk+1 = Kξk+1 wk

xk+1 = sk+1

wk+1

(3.17)

where

• the division is elementwise,

42 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

• the process of update matrices {Kξk}k>0 belonging to K = {Ki}i=1,...,M is i.i.d.,

• the set K contains M non-negative matrices whose support is included in the support

of I+A with A the adjacency matrix of G .

The goal of Sum-Weight averaging algorithms is the same as the one of standard gossip

algorithms (see Eq. (3.2)) and writes as follows

xk→ xave1 almost surely. (3.18)

In the remainder of this Section, we will prove new results about the convergence and

convergence speed of Sum-Weight-based averaging algorithms under the following assump-

tions.

Assumption 3.7. The update matrices must verify:

a. the matrices ofK are non-negative, column-stochastic, and have positive diagonal entries;

b. the update matrices are chosen through an independent and identically distributed process

{ξk}k>0 valued in {1, ..., M};
c. E[K] is primitive.

The column-stochasticity in Assumption 3.7a ensures that, for any k,
∑

i∈V sk
i
=
∑

i∈V x0
i

and
∑

i∈V wk
i
= N . Notice that Assumption 3.7c holds if Supp(E[K]) = (I+ A) and A is the

adjacency matrix of a (strongly) connected graph.

3.4 Convergence of Sum-Weight-based averaging algorithms

The convergence proofs and convergence speed bounds derived in this Section correspond to

our main contribution in distributed average consensus algorithms.

3.4.1 Preliminary results

In order to intuitively get how to prove the convergence xk to the average consensus3, let us

write it as follows:

xk =
sk

wk
=

P1,k x0

P1,k1

=
P1,kJx0

wk
+

P1,kJ⊥x0

wk

=
xaveP

1,k
1

P1,k1
+

P1,kJ⊥x0

wk

= xave1+
P1,kJ⊥x0

wk
. (3.19)

3notice that we can not follow the approach done for standard (single-variate) algorithms since the update

matrices are not row-stochastic. This especially implies that Eq. (3.11) does not hold anymore and the recursion

on J⊥x k does not work anymore.

3.4. Convergence of Sum-Weight-based averaging algorithms 43

The last inequality indicates that proving that the convergence of xk to xave1 is equivalent

to proving that P1,kJ⊥x0/wk vanishes. As it is uneasy to work with elementwise division, the

proof has to be divided into two parts: i) proving that wk is bounded away from zero; and

ii) proving that P1,kJ⊥x0 vanishes for any x0. This approach for analyzing the convergence of

Sum-Weight algorithms is inspired by [43] (with a number of important differences explained

below).

Formally, let us upper-bound the Squared Error (SE) by a product of two terms as follows

‖xk − xave1‖22 =

N∑

i=1

�
�xk

i − xave

�
�
2
=

N∑

i=1

1

(wk
i
)2

�
�sk

i − xavewk
i

�
�
2

(3.20)

=

N∑

i=1

1

(wk
i
)2

�
�
�
�
�
�

N∑

j=1

P
1,k
i, j

x0
j −

N∑

j=1

P
1,k
i, j

1

N

N∑

l=1

x0
l

�
�
�
�
�
�

2

≤ Ψk
1Ψ

k
2 (3.21)

with Ψk
1 =

‖x0‖22
[min

i
wk

i
]2

(3.22)

Ψk
2 =

N∑

i=1

N∑

j=1

�
�
�

�

P1,k(I− J)
�

i, j

�
�
�

2

=

P1,kJ⊥

2

F
. (3.23)

From now, our main contributions will be to understand the asymptotic behavior of both

terms Ψk
1 and Ψk

2. In Section 3.4.2, we will prove that there is a constant C < ∞ such that

the event {Ψk
1 ≤ C} occurs infinitely often with probability 1. The term Ψk

2 represents the

projection of the current sensor values on the orthogonal space to the consensus line; the

exponential decay of this term will be proven in Section 3.4.3. Finally, we will put together

these two results in Section 3.4.4 to derive our core results.

3.4.2 Analysis of Ψ1(t)

This term depends on the inverse of the minimum of the sensors weights (see Eq. (3.22))

and thus can increase quickly if one of the weights goes close to zero. However, the sensors

frequently exchange information and hence spread their weight so the probability that a node

weight keeps decreasing for a long time should be very small. We will work on the probability

that every sensor weight is greater than a positive constant and show that this event occurs

infinitely often. This will enable us to prove that there exists C < ∞ such that P[{Ψk
1 ≤

C} infinitely often] = 1. To obtain these results, some preliminary lemmas are needed.

Lemma 3.8. Under Assumption 3.7, for any s < k,

if Ps,k ≥ c11T for some c > 0 then wk ≥ cN1.

44 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

Proof. First let us remark that as the matrices of K are column-stochastic from Assump-

tion 3.7 and w0 = 1, we have that ws is non-negative and 1
Tws = N for all s > 0. Hence, if

Ps,k ≥ c11T for some c > 0, then wk = Ps,kws ≥ c11Tws = cN1 (see [3, Chap. 8.1] for details

about inequalities for non-negative matrices).

It is thus interesting to focus on the minimal value of Ps,k. To this purpose, we will i) give

a lower-bound on the smallest non-null value of Ps,k; and then ii) prove that there is a time L

such that the probability that Ps,s+L > 0 is positive.

Lemma 3.9. Under Assumption 3.7, for all 1≤ s < k and i, j,

P
s,k
i, j
= 0 or P

s,k
i, j
≥ (mK)k−s+1

where mK = mini, j

¦

Ki, j : K ∈K ,Ki, j > 0
©

is the smallest non-null entry of all the matrices of

the set K .

Proof. Let us consider the random matrix P1,k (as the matrix choice is i.i.d., we drop the offset

s). We will prove this result by induction. It is trivial to see that every non-null coefficient of

P1,1 = Kξ1 is greater than mK and as

P
1,k
i, j
=

N∑

l=1

(Kξk)i,lP
1,k−1

l, j
,

it is obvious that if P
1,k
i, j
> 0, there is a term in the above sum that is positive (we recall that

all the coefficient here are non-negative). This term is the product of a positive coefficient

of Kξk and a positive coefficient of P1,k−1. Hence, if all the non-null coefficients of P1,k−1

are greater than (mK)
k, then any non-null coefficient of P1,k is greater than (mK)

k.mK =

(mK)
k+1. So, by induction, we have that ∀k > 1 every non-null coefficient of P1,k is greater

than (mK)
k+1.

Now that we have lower bounded the positive coefficients of the product matrices, we

have to investigate the instants where these matrices are positive.

Lemma 3.10. Under Assumption 3.7, there is a finite constant L such that for all s > 0,

P[Ps,s+L > 0]> 0.

Proof. As {ξk}k>0 is an i.i.d. sequence and E[K] is primitive from Assumption 3.7, there is a fi-

nite m such that E[K]m > 0 and E[KξmKξm−1 . . .Kξ1] = E[K]m > 0 so P[(KξmKξm−1 . . .Kξ1)i, j >

0] > 0 for any entry (i, j). Furthermore, P
s,k
i, j
> 0 implies that P

s,k′

i, j
> 0 for all k′ ≥ k be-

cause all the matrices of K have positive diagonal elements (indeed Ps,k′ = Pk+1,k′Ps,k =

(ǫI + (Pk+1,k′ − ǫI))Ps,k = ǫPs,k + (Pk+1,k′ − ǫI)Ps,k and as one can find ǫ > 0 so that the

second matrix is non-negative, P
s,k′

i, j
is positive if P

s,k
i, j

is). Finally, by taking L = mN2, we

3.4. Convergence of Sum-Weight-based averaging algorithms 45

get that the probability that all entries of Ps,s+L are positive is greater than the probability of

{Ps,s+m
1,1 > 0} ∩ {Ps+m+1,s+2m

1,2 > 0} ∩ · · · ∩ {Ps+L−m+1,s+L
N ,N > 0} so

P[Ps,s+L > 0]≥
N∏

i, j=1

P[(Ps+m[(i−1)+(j−1)N]+1,s+m[i+(j−1)N])i, j > 0]> 0

which concludes the proof.

Under Assumption 3.7 and where L be the same constant as in Lemma 3.10, we define

En ¬ {PnL,(n+1)L > 0} as being the event where the product matrix is positive considering

iterations L by L. We also define the following times:

τ0 = 0

τn = L ×min
n

j :
∑ j

ℓ=1
IEℓ = n

o

where IE is the indicator function4 of event E. And,

∆n = τn−τn−1 n= 1, ...,∞.

The events {En}n>0 are i.i.d. and P[E1]> 0 according to Lemma 3.10, so Borel-Cantelli lemma

tells us that En occurs infinitely often. Hence, the inter-arrival times {∆n}n>0 are i.i.d. and

geometrically distributed up to a multiplicative factor L i.e. P[∆1 = j L] = p j−1(1− p) for

j ≥ 1 and p ∈ (0,1). Finally, observe that the {τn}n>0 are all finite and the sequence converges

to infinity with probability one. These results along with Lemmas 3.8 and 3.9 enable us to

state the final result on {Ψk
1}k>0.

Proposition 3.11. Under Assumption 3.7, there is a finite constant L such that there exists a

sequence of positive i.i.d. geometrically distributed random variables {∆n}n>0 such that for all

n> 0,

Ψ
τn

1 ≤ ‖x
0‖22(mK)

−2L

where τn =
∑n

ℓ=1∆ℓ.

3.4.3 Analysis of Ψ2(t)

This section deals with the exponential decay of {Ψk
2}k>0; these results extend significantly

those given in [43] since we consider a more general model forK and {ξk}k<0. According to

Eq. (3.23), we have, for all k > 0,

Ψk
2 = ‖P

1,kJ⊥‖2F. (3.24)

The technique developed in Section 3.2.2-b (and used in e.g. [6]) which is based on the

spectral norm can be mimicked. We write

E[Ψk+1
2 |Ψ

k
2] = E[Trace

�

J⊥(P1,k+1)TP1,k+1J⊥
�

|P1,k]

= Trace
�

J⊥(P1,k)TJ⊥E[KTK]J⊥P1,kJ⊥
�

(3.25)

≤ ρ(J⊥E[KTK]J⊥)2 Ψk
2 (3.26)

4that is the function equal to 1 if E is true and zero otherwise.

46 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

where the first equality comes from the identity ‖X‖2F = Trace(XTX) for any real matrix, the

second comes from the linearity of the trace. The final inequality comes from the fact that the

trace can be seen as the sum of the eigenvalues and XTYTYX´ ρ(YTY)XTX where ‘´’ denotes

an inequality in the semi-definite ordering (see [3, Chap. 7.7]).

Unfortunately, this proof technique does not work in the most general case5. As a conse-

quence, this inequality is not tight enough to prove a general convergence result and another

recursion has to be found.

3.4.3-a A new and tighter recursion matrix: R

Therefore, as proposed alternatively in [6] (though not essential in [6]) in the context of

Random Gossip algorithm, we write Ψk
2 with respect to a more complicated matrix for which

the recursion property is tighter. Indeed, recalling that for any real matrix X,

‖X‖2F = Trace
�

XTX
�

and Trace (X⊗X) = (Trace (X))2

where ‘⊗’ denotes the Kronecker product, one can find that

‖X‖2F = Trace
�

XTX
�

=
p

Trace
��

XTX
�
⊗
�
XTX

��

=
p

Trace
��

XT⊗XT
�
(X⊗X)

�
=

q

Trace
�

(X⊗X)T (X⊗X)
�

= ‖X⊗X‖F.

So, we have that

Ψk
2 = ‖Ξ

k‖F
with

Ξ
k ¬
�

P1,kJ⊥
�

⊗
�

P1,kJ⊥
�

. (3.27)

As before, we easily see that for a column stochastic matrix K, one has J⊥KJ⊥ = (I −
J)KJ⊥ = (K− J)J⊥ = KJ⊥. Hence, using standard properties on the Kronecker product, we

have

Ξ
k+1 =

�

Kξk+1P1,kJ⊥
�

⊗
�

Kξk+1P1,kJ⊥
�

=
�

Kξk+1J⊥P1,kJ⊥
�

⊗
�

Kξk+1J⊥P1,kJ⊥
�

=
�

Kξk+1 ⊗Kξk+1

� �

J⊥ ⊗ J⊥
�

Ξ
k. (3.28)

By considering the mathematical expectation given the natural filtration of the past events

Fk = σ
�

ξ1, . . . ,ξk
�

, we obtain

E
�

Ξ
k+1|Fk

�

= E [K⊗K]
�

J⊥ ⊗ J⊥
�

Ξ
k

5Sometimes, this spectral radius of J⊥E[KTK]J⊥ can be greater than 1; indeed for the BWGossip algorithm

(introduced later in Section 3.5.1), one can have ‖|J⊥E[KTK]J⊥‖|2 > 1 for some underlying graphs even is the

algorithm converges as we will see later.

3.4. Convergence of Sum-Weight-based averaging algorithms 47

and so we have

E
�

Ξ
k
�

= (R)k (3.29)

with

R¬ E [K⊗K]
�

J⊥ ⊗ J⊥
�

. (3.30)

We thus have to analyze the behavior of (R)k as k goes to infinity.

3.4.3-b Relationship between the recursion matrix R and the convergence speed

Now, let us find a simple relationship between E[Ψk
2] and the entries of the matrix E[Ξk] by

considering Qk ¬ P1,kJ⊥. We show that

�

E[Ξk]
�

i+(l−1)N , j+(m−1)N
= E[Qk

i jQ
k
lm], ∀i, j, l, m ∈ {1, . . . , N}.

According to Eq. (3.24), we have E[Ψk
2] = E[‖Qk‖2F] which implies that

E[Ψk
2] =

N∑

i, j=1

E
h

(Qk
i j)

2
i

=

N∑

i, j=1

�

E
�

Ξ
k
��

i+(i−1)N , j+(j−1)N
. (3.31)

As a consequence, the behavior of the entries of E[Ξk] drives the behavior of E[Ψk
2].

Using the Jordan normal form of R (see [3, Chap. 3.1 and 3.2]) and the l∞ vector norm on

matrices ‖X‖∞ = N maxi, j=1,...,N |Xi, j | (see [3, Chap. 5.7]), we get that there is an invertible

matrix S such that

‖(R)k‖∞ = ‖S(Λ)kS−1‖∞ ≤ ‖S‖∞‖S−1‖∞‖(Λ)k‖∞ (3.32)

where Λ is the Jordan matrix associated with R.

After some computations, we derive that the absolute value of all the entries of (Λ)k is

bounded in the following way:

(Λ)k

∞ ≤ max

0≤ j≤J−1

�
k

k− j

�

ρ(R)k− j ≤ kJ−1ρ(R)k−J+1 (3.33)

where J is the size of the greatest Jordan block. Note that when R is diagonalizable, J = 1,

and we get that

(Λ)k

∞ ≤ ρ(R)

k (when R is diagonalizable). (3.34)

Putting together Eqs. (3.29), (3.31), (3.32), (3.33), and remarking that the subspace

spanned by 1⊗ 1 is in the kernel of R, we get that the size of the greatest Jordan block is

smaller than N − 1, we can derive a fundamental result on the convergence speed of E[Ψk
2].

Lemma 3.12. We have

E[Ψk
2] = O

�

kN−2ρ(R)k
�

where R is defined in Eq. (3.30).

48 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

This lemma states that E[Ψk
2] globally decreases exponentially6 at speed ρ(E[K⊗K] (J⊥⊗

J⊥). We will thus focus on this spectral radius and particularly on the conditions under which

it is smaller than 1.

Remark 3.13. As E[Ξk] = (R)k, we have from [3, Thm. 5.6.12] that

E
�

Ξ
k
�

−→
k→∞

0 ⇔ ρ(R)< 1.

Furthermore, we get from Eq. (3.31) that E
�

Ξ
k
�

−→k→∞0 if and only if E[Ψk
2]−→k→∞0. The

spectral radius of R thus plays a central role in the convergence and convergence speed of {Ψk
2}k>0.

3.4.3-c Analysis of the spectral radius of R

The next step of our analysis is to prove that the spectral radius ρ(R) is strictly less than

1 when Assumption 3.7 hold. For this, we will prove that E
�

Ξ
k
�

converges to zero using

another matrix recursion and use Remark 3.13 to conclude on ρ(R).

Actually, one can find a simple linear recursion on Ξk(t) (different from the one exhibited

in Eq. (3.28)) as

Ξ
k+1 =

�

Kξk+1 ⊗Kξk+1

�

Ξ
k

thus by taking the mathematical expectation given the past we obtain

E
�

Ξ
k+1|Fk

�

= E [K⊗K] Ξk.

Remarking that (1⊗1)TΞk = 0, we have for any vector v of RN2

,

E
�

Ξ
k+1|Fk

�

=
�

E [K⊗K]− v(1⊗1)T
�

Ξ
k

and then,

E
�

Ξ
k
�

= (Tv)
k
Ξ

0 (3.35)

with Tv = E [K⊗K]− v(1⊗1)T.

By considering Eq. (3.35), it is straightforward that E
�

Ξ
k
�

converges to zero as k goes to

infinity if there is a vector v such that ρ(Tv) < 1. However, this condition is only sufficient

whereas the one derived from Eq. (3.29) is a necessary and sufficient condition.

The following lemma is very important in our proof as it ensures that, under Assump-

tion 3.7, there is a vector v such that ρ
�

E [K⊗K]− v(1⊗1)T
�

< 1.

Lemma 3.14. Under Assumption 3.7, there is a vector v such that

ρ
�

E [K⊗K]− v(1⊗1)T
�

< 1

and thus E
�

Ξ
k
�

−→k→∞0.

6as in log scale log(k) + k log(a) ∼k→∞ k log(a). Furthermore, we could have directly derived that ∀ǫ >
0, E[Ψk

2
] = O

�

(ρ(R) + ǫ)k
�

from Eqs. (3.29), (3.31) and [3, Corollary 5.6.13] but this introduces an epsilon that

might make the following results less clear.

3.4. Convergence of Sum-Weight-based averaging algorithms 49

Proof. Assumption 3.7 implies that:

i) E[K⊗ K] is a non-negative column-stochastic matrix so ρ(E[K⊗ K]) = 1 according to

[3, Lemma 8.1.21];

ii) according to Lemma 3.10 there is a finite L such that P[P1,L > 0] = P[P1,L⊗P1,L > 0]>

0 so (E[K⊗K])L > 0 which imply that E[K⊗K] is a primitive matrix.

These two properties imply that 1 is the only eigenvalue of maximal modulus of E[K⊗K]

and it is associated with the left eigenvector 1⊗1. This means that by taking v = v1 the right

eigenvector corresponding to eigenvalue 1 such that (1⊗1)Tv1 = 1, we get that the spectrum

of Tv1
is the same as the one of E[K⊗ K] without the maximal eigenvalue equal to 1. As a

consequence, the modulus of the eigenvalues of Tv1
is strictly less than 1, i.e. ρ(Tv1

)< 1.

Finally, Remark 3.13 enables us to conclude on the spectral radius of R.

Corollary 3.15. Under Assumption 3.7,

ρ(R)< 1

with R defined in Eq. (3.30).

Combining Lemma 3.12 and Corollary 3.15 concludes our analysis of {Ψk
2}k>0.

Proposition 3.16. Under Assumption 3.7,

E[Ψk
2] = O

�

kN−2e−ωk
�

with ω =− log
�
ρ (R)

�
> 0 and R defined in Eq. (3.30).

3.4.4 Final results

Thanks to the various intermediate Lemmas and Propositions provided above, we are now

able to state our general theorems for the convergence and convergence speed of Sum-Weight-

based averaging algorithms.

3.4.4-a Result on the convergence

First, let us prove an interesting result: the estimates {xk}k>0 get closer from each other in

the sense of the l∞ norm and thus the error {xk − xave1}k>0 is non-increasing in terms of l∞
norm.

Lemma 3.17. Under Assumption 3.7, ‖xk− xave1‖∞ =maxi |xk
i
− xave| forms a non-increasing

sequence with respect to k.

Proof. One can remark that, at time k+ 1, for all i,

xk+1
i

=

∑N

j=1 Ki, js
k
j

∑N

j=1 Ki, jw
k
j

=

∑N

j=1 Ki, jw
k
j
xk

j
∑N

j=1 Ki, jw
k
j

=

N∑

j=1

Ki, jw

k
j

∑N

l=1 Ki,l w
k
l

!

xk
j

50 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

where K corresponds to any matrix in K . Hence, xk+1
i

is a center of mass of {xk
j
} j=1,...,N .

Therefore, using the fact that xave1 verifies the same above inequality as xk+1, we have that

∀i = 1, ..., N ,

|xk+1
i
− xave| ≤

N∑

j=1

Ki, jw

k
j

∑N

l=1 Ki,l w
k
l

!

|xk
j − xave|

≤ max
j
|xk

j − xave|

which implies that ‖xk+1− xave1‖∞ ≤ ‖xk − xave1‖∞.

Now, let us use the results derived in Sections 3.4.2 and 3.4.3 to state our convergence

theorem under necessary and sufficient conditions.

Theorem 3.18. Under Assumption 3.7,

{xk}k>0 is bounded and converges to the average consensus xave1 almost surely.

Furthermore, if Assumption 3.7c does not hold, {xk}k>0 does not converge to the average consen-

sus with probability one for some values of x0.

Proof. We divide the proof into three steps: i) the boundedness of the sequence; ii) the almost

sure convergence; and iii) the fact that Assumption 3.7c is necessary.

⋄ boundedness: As {‖xk− xave1‖∞}k>0 is non-increasing from Lemma 3.17, it is obvious

that for any k > 0, ‖xk − xave1‖∞ ≤ ‖x0− xave1‖∞ thus {xk}k>0 is bounded.

⋄ almost sure convergence: Let us assume that Assumption 3.7 holds. Using Markov’s

inequality along with Proposition 3.16, there is a finite constant C such that for any ǫ > 0,

∑

k>0

P[Ψk
2 > ǫ] ≤

1

ǫ

∑

k>0

E[Ψk
2]

≤
1

ǫ
C
∑

k>0

kN−2e−ωk <∞.

Thus, Borel-Cantelli’s lemma leads to the almost sure convergence of {Ψk
2}k>0 to zero.

In addition, as the random variables {τn}n>0 provided in the statement of Proposition 3.11

converge to infinity with probability one, Ψ
τn

2 →n→∞ 0 almost surely. Since Ψ
τn

1 is (upper)

bounded for any n> 0,

Ψ
τn

1 Ψ
τn

2 −→n→∞
0 almost surely.

According to Lemma 3.17, ‖xk − xave1‖∞ is a non-increasing nonnegative sequence ver-

ifying ‖xk − xave1‖2∞ ≤ ‖xk − xave1‖22 ≤ Ψk
1Ψ

k
2 and there is a converging subsequence with

limit 0 with probability one (following the {τn}n>0). As a consequence, the sequence {‖xk −
xave1‖∞}k>0 converges almost surely to the 0 which imply the almost sure convergence of

{xk}k>0 to the average consensus.

⋄ Assumption 3.7c is necessary: Let us consider that Assumption 3.7c does not hold.

Recalling Lemma 3.10 and its proof, it is easy to see that if Assumption 3.7c is not true, then ∄L

3.4. Convergence of Sum-Weight-based averaging algorithms 51

such that P[P1,L > 0]> 0 so P[P1,k > 0] = 0 for any k with probability 1. Let i, j be such that

P
1,k
i, j
= 0 for any k > 0 (As from Assumption 3.7a the matrices of K have positive diagonals

if P
1,k
i, j
= 0 then P

1,s
i, j
= 0 for any s ≤ k), the i-th component of {xk

i
}k>0 is independent of x0

j

hence {xk
i
}k>0 cannot converge to xave for all x0.

Remark 3.19. One can note that the previous theorem implies that {xk}k>0 converges to the

average consensus xave1 in Lp for any p ∈ N by an immediate consequence of the dominated

convergence theorem. As a particular case, the Mean Squared Error (MSE) converges to 0.

3.4.4-b Result on the convergence speed

The next result on the convergence speed corresponds to the main challenge and novelty

of our contribution to averaging algorithms. For this theorem we introduce the following

notation: given two sequences of random variables {X k}k>0 and {Y k}k>0, we will say that

X k = oa.s.(Y
k) if X k/Y k→k→∞ 0 almost surely.

Theorem 3.20. Under Assumptions 3.7, the Squared Error (SE) is upper-bounded by a non-

increasing sequence converging to 0. Furthermore, it is also upper-bounded by an exponentially

decreasing function as follows

SEτn = ‖xτn − xave1‖22 = oa.s.

�

τN
n e−ωτn

�

with ω = − log
�

ρ
�

E [K⊗K]
�

J⊥ ⊗ J⊥
���

> 0 and τn =
∑n

i=1∆i as defined in Proposi-

tion 3.11.

This result tells us that the squared error will globally vanish exponentially and we derived

a lower bound for this speed. The particular behavior of the weights variables in this very

general setting does not enable us to provide a more precise result about the squared error

(we can just say that the elementwise maximum does not increase in interval [τn,τn+1] for

any n – see Theorem 3.18 –); however for some particular algorithms (e.g. standard gossip

ones) this derivation is possible (see Section 3.6 for more details). We will illustrate the

tightness of the exponential decrease constant ω via numerical results in Section 3.5.

Proof. To prove this result we will once again use the decomposition of the squared error

introduced in Eq. (3.21). We know from Proposition 3.16 that E[k−N eωkΨk
2] = O (1/k2). By

Markov’s inequality and Borel-Cantelli’s lemma,

k−N eωkΨk
2 −→

k→∞
0 almost surely.

Composing with the {τn}n>0, we get

τ−N
n eωτnΨ

τn

2 −→n→∞
0 almost surely.

Since there is a finite constant C such that ∀n> 0,Ψ
τn

1 ≤ C , we get the claimed result.

52 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

3.5 Proposed algorithm and extensions

We have proven the convergence and given a bound on the convergence speed of Sum-Weight-

like averaging algorithms under mild assumptions, it is interesting to see how the Sum-Weight

formalism allows us to derive faster averaging algorithms. In Subsection 3.5.1, we propose

a new Sum-Weight algorithm using the broadcast nature of the wireless channel which con-

verges and offers remarkable performance. This algorithm is hereafter called BWGossip. In

Subsection 3.5.3, we introduce a distributed management of the nodes clocks which can im-

prove averaging algorithms. Finally, Subsections 3.5.4 and 3.5.5 provide an extension of this

work to distributed sum computation and the case of i.i.d. failures in the communication

graph.

3.5.1 BWGossip algorithm

Remarking i) that the broadcast nature of the wireless channel was often not taken into ac-

count in the distributed estimation algorithms (apart in [7] but this algorithm does not con-

verge to the average) and ii) that information propagation is much faster while broadcasting

compared to pairwise exchanges (see Chapter 2), we derive an algorithm taking into account

the broadcast nature of the wireless channel. At each global clock tick, it simply consists

in uniformly choosing a sensor that broadcasts its pair of values in an appropriate way (to

ensure column-stochasticity); then, the receiving sensors add their received pair of values to

their current one. A more algorithmic formulation is presented below.

As mentioned in Section 1.1.2, the agents activate through an i.i.d. process and for any

time k > 0 and any sensor i ∈ V , P[i activates at global time k] = 1/N .

BWGossip

At each clock tick k, let i be the activating node:

◮ i broadcasts a scaled version of its pair of values to all its neighbors
�

si(t)

di+1
;

wi(t)

di+1

�

◮ Every neighbor j ∈ Ni update :

s j(t + 1) = s j(t) +
si(t)

di+1

w j(t + 1) = w j(t) +
wi(t)

di+1

◮ The sensor i updates :

si(t + 1) =
si(t)

di+1

wi(t + 1) =
wi(t)

di+1

Using a matrix formalism, the iteration at step k is

(

sk+1 = Kis
k

wk+1 = Kiw
k

3.5. Proposed algorithm and extensions 53

with

Ki ¬

1 1/(di + 1)

1 1/(di + 1)

. . .

1

1/(di + 1)

1/(di + 1) 1

1

...

1

1/(di + 1) 1

.

This form matches our formalism withK = {Ki}i∈V and ξk = i with probability 1/N . Ob-

viously, all matrices ofK are column-stochastic but not row-stochastic and they have positive

diagonal elements. Again, Supp(E[K]) = (I+ A) with A the adjacency matrix of the underly-

ing graph and Proposition 1.2 tells us that E[K] is primitive as soon as the underlying graph

is connected.

This implies that Assumption 3.7 is verified and hence that the BWGossip converges to

the average consensus almost surely by Theorem 3.18 and Theorem 3.20 gives us an insight

about the decrease speed of the squared error.

3.5.2 Performance of the BWGossip

In order to investigate the performance of distributed averaging algorithms over WSN Wireless

Sensor Networks, we plot the MSE obtained by Monte-Carlo simulations versus the number

of iterations. The underlying graph is modeled by 100-nodes connected RGGs with radius 2

(see Section 2.5.1 for details about these graphs).

In Fig. 3.1, we compare different average gossip algorithms: i) the Random Gossip [11]

which is the reference algorithm in the literature (see Section 3.2.2-b for details); ii) the

Broadcast Gossip [7] which uses the broadcasting abilities of the wireless channel but does

not converge to the average (see Section 3.2.3 for details); iii) the algorithm introduced

by Franceschelli in [50] which uses a bivariate scheme similar to Sum-Weight and seems to

converge (no convergence proof is provided in the paper); and iv) the proposed BWGossip

algorithm.

We remark that the BWGossip algorithm outperforms the existing algorithms without

adding routing or any other kind of complexity. Furthermore, the slope is linear in log scale,

it is thus interesting to compare this slope to the one derived in Theorem 3.20.

In Fig. 3.2, we display the empirical convergence slope obtained by linear regression on

the logarithm of the empirical mean squared error and the associated lower-bound ω derived

in Theorem 3.20 for the BWGossip algorithm versus the number of sensors N . Different Ran-

dom Geometric Graphs with same radii r0 = 2 have been considered. We observe that the

slope of our proposed bound is very tight. Note that as we proposed an upper bound for a

54 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

0 200 400 600 800 1,000 1,200 1,400

10−2

10−1

100

Number of iterations

M
e
a
n

S
q
u

a
re

d
E

rr
o
r

Random Gossip

Broadcast Gossip

Francescelli

BWGossip

Figure 3.1: Mean squared error of the BWGossip and other algorithms of the literature versus

time.

exponentially decreasing quantity, the associated slope in log scale must be a lower bound of

the actual slope as in the displayed figures.

10 15 20 25 30 35 40 45 50
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

Number of Sensors

ω

Empirical convergence slope

Figure 3.2: Empirical convergence slope of the BWGossip and associated lower bound ω.

3.5.3 Adaptation to smart clock management

So far, the choice of the awaking sensor was done uniformly, i.e.all the coefficients of the

Poisson clocks were identical in our model (see Section 1.1.2). This way, all sensors were

3.5. Proposed algorithm and extensions 55

waking up uniformly and independently from their past actions. Intuitively, it would be more

logical for a sensor to talk less if it has been very active during the past iterations.

Another advantage of the Sum-Weight algorithms is the knowledge of how much a sensor

talks compared to the others, which is a useful information. Actually, each sensor knows

whether it talks frequently or not (without additional cost) through its own weight value

because when a sensor talks, its weight decreases and conversely when it receives information,

its weight increases. Therefore, our idea is to control the Poisson coefficient of each sensor

with respect to its weight.

We thus propose to consider the following rule for each Poisson coefficient

∀i ∈ V, λk
i = α+ (1−α)w

k
i (3.36)

where α ∈ (0,1) is a tuning coefficient.

Notice that the global clock remains unchanged since ∀k > 0,
∑N

i=1λ
k
i
= N . Keeping the

global message exchange rate unchanged, the clock rates of each sensor are improved. The

complexity of the algorithm is the same because the sensor whose weight changes has just to

launch a Poisson clock.

We see in Fig. 3.3 where we plot the empirical mean squared error for the BWGossip

algorithm versus time with different clock tuning coefficients that even if the convergence

and the convergence speed with clock improvement have not been formally established, it

seems the exponential convergence to the average consensus still holds, and the convergence

can be quicker if α is well chosen. Compared to the algorithm without clock management

(α = 1), the convergence is much faster at the beginning with α = 0 but the asymptotic rate

is lower; with α= 0.5, the performance is better than the standard BWGossip for every time.

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300

10−2

10−1

100

Number of Iterations

M
e
a
n

S
q
u

a
re

d
E

rr
o
r

BWGossip (α= 1)

BWGossip with α= 0.5

BWGossip with α= 0

Figure 3.3: Mean squared error of the BWGossip with clock management for different values

of α.

56 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

3.5.4 Distributed estimation of the sum

In some cases, distributively computing the sum of the initial values is very interesting. For

example, in the case of signal detection, the Log Likelihood Ratio (LLR) of a set of sensors

is separable into the sum of the LLRs of the sensors. Hence, in order to perform a signal

detection test based on the information of the whole network (using a Generalized LLR Test

for instance), every sensor needs to estimate the sum of the LLRs computed by the sensors

(see Section 3.7).

An estimate of the sum can be trivially obtained by multiplying the average estimate by

the number of sensors but this information may not be available at any sensor. Another

interest of the Sum-Weight scheme is that the initialization of the weights of the sensors

enables us to compute different functions related to the average. Intuitively, as the sum of

the sequences {sk}k>0 and {wk}k>0 is conserved through time and the convergence of their

ratio to a consensus is guaranteed by Assumption 3.7. Actually as seen in Section 3.3, {xk}k>0

converges to a consensus over
∑

i s0
i
/
∑

i w0
i
; which is obviously equal to xave = 1/N

∑

i x0
i
(0)

with the initialisation of Eq. (3.17).

Now, if a sensor wants to trigger a estimation of the sum through the network, it simply

sets its weight to 1 and sends a starting signal to the other nodes which set their weights to 0.

Mathematically, we then have the following initialization after sensor i triggers the algorithm
(

s0 = x0

w0 = ei

where ei is the i-th canonical vector. In this setting, all Sum-Weight like algorithms converge

exponentially to the sum of the initial value as our theorems hold with only minor modifica-

tions in the proofs.

Using this initialization, during the first iterations of the algorithm some of the sensors

weights are null and hence their estimate is undefined. This can be solved by setting xk
i
= sk

i

while wk
i
= 0. The time for the algorithm to be put on tracks is equal to the time for the

information of the initializing sensor to be spread to everyone and thus has been analyzed in

Chapter 2. More precisely, using Random Gossip, this time is equal to the convergence time of

Random Pairwise Max (see Section 2.4.2); and using BWGossip, it is equal to the convergence

time of Random Broadcast Max (see Section 2.4.3).

3.5.5 Convergence with i.i.d. failures in the communication graph

For some reasons as objects in the light of sight creating a fading in the wireless channel,

links in the communication graph can disappear temporarily. Looking at Assumption 3.7, we

see that only the expectation of the matrices has to support a strongly connected graph. Let

us assume in this section that the underlying graph represented by its adjacency matrix A

can suffer from i.i.d. link failures so that each link e of the graph can fail with probability

pe. Whenever pe < 1, the graph is still connected in mean (E[A] is primitive) and thus our

conditions are still verified and our analysis holds.

3.6. Comparison with existing works 57

Let us we inspect the influence of link failures in the underlying communication graph on

the BWGossip algorithm. We consider a connected 10-sensors network onto which i.i.d. link

failure events appear with probability pe (taken identical for each edge e).

In Fig. 3.4, we plot the empirical MSE of the BWGossip versus time for different values

of the edge failure probability pe. As expected, we observe that the higher pe the slower the

convergence but the MSE still exponentially decreases.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
−25

−20

−15

−10

−5

0

Number of Iterations

L
o
g
a
ri

th
m

o
f

th
e

m
e
a
n

sq
u

a
re

d
e
rr

o
r

pe

0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.4: Mean squared error of the BWGossip for different values of the edge failure prob-

ability pe.

Then, in Fig. 3.5, we plot the empirical convergence slope and the associated bound ω

for different link failure probabilities. Here, ω is computed according to a modified matrix

set taking into account the link failures through different update matrices. We remark a very

good fitting between our lower bound and the simulated results. Consequently, computing ω

on the matrix set including the link failures enables us to predict very well the convergence

speed in this context.

3.6 Comparison with existing works

In this section, we will show that our results extend the works done previously in the litera-

ture. In Subsection 3.6.1 and 3.6.2, we compare our results with existing papers dealing with

the design and the analysis of the Sum-Weight like algorithms. In Subsection 3.6.3, we will

observe that our results can even be applied to the traditional framework of single-variate

gossip algorithms.

58 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1 · 10−2

2 · 10−2

3 · 10−2

4 · 10−2

edge failure probability pe

ω

Simulation

Figure 3.5: Empirical convergence slope and associated bound ω for different values of the

edge failure probability pe.

3.6.1 Comparison with Kempe’s algorithm

In Kempe’s work [43], the setup is quite different since the sensors update synchronously, that

is, at each time k, all the sensors send and update their values. Another important difference

lies in the fact that the communication graph is assumed to be complete and to offer self-

loops, i.e.each sensor can communicate with any other one, including itself. The algorithm

introduced in [43] is described below.

Push-Sum Algorithm

At each time k, every sensor i activates:

◮ i chooses a neighbor (or itself) jk+1
i

uniformly in Ni ∪ {i} and sends it its pair of values.

◮ Let Rk+1
i

be the set of sensors that sent information to i, i updates:

sk+1
i
=

sk
i

2
+
∑

r∈Rk+1
i

sk
r

2

wk+1
i
=

wk
i

2
+
∑

r∈Rk+1
i

wk
r

2

Using a matric formalism, the iteration at step k is

(

sk+1 = K jk+1
1

,..., jk+1
N

sk

wk+1 = K jk+1
1

,..., jk+1
N

wk

3.6. Comparison with existing works 59

Consequently, at time k, the update matrix takes the following form

K jk+1
1

,..., jk+1
N
=

1

2
I+

1

2

N∑

i=1

e jk+1
i

eT
i . (3.37)

Notice that the first term of the right hand side corresponds to the information kept by

the sensor, while the second term corresponds to the information sent to the chosen sensor.

Moreover, as each sensor selects uniformly its neighbor7 (including itself), we immediately

obtain that

E[K] =
1

2
I+

1

2
J.

It is then easy to check that i) the update matrices are column-stochastic8 with a strictly

positive diagonal; and ii) that E[K] > 0, thus it is a primitive matrix. This proves that the

Kempe’s algorithm satisfies the Assumptions 3.7 and so that it converges almost surely to the

average consensus (which was also proven in [43]).

Let us now focus on the convergence speed of the Kempe’s algorithm. We remind that

the convergence speed is driven by {Ψk
2}k>0 (denoted by {Φt}t>0 in [43]). As this algorithm

is synchronous and only applies on a complete communication graph, it is simple to obtain

a recursion between E[Ψk+1
2 |Ψk

2] and Ψk
2 using the approach of Section 3.2.2-b, and more

precisely Eq. (3.25). Indeed, one has

E[(KJ⊥)T(KJ⊥)] =

�
1

2
−

1

4N

�

J⊥, (3.38)

(see Appendix B.1 for details). Then, we have that

E[Ψk+1
2 |Ψ

k
2] = Trace

�

J⊥(P1,k)TE[(KJ⊥)T(KJ⊥)]P1,kJ⊥
�

=

�
1

2
−

1

4N

�

Ψk
2. (3.39)

Moreover, from Eq. (3.38), we get that ρ((KJ⊥)T(KJ⊥)) = 1/2− 1/(4N)< 1 and thus the

inequality of Eq. (3.26) is replaced with an equality. Therefore, the true convergence speed

is provided by ρ(E[(KJ⊥)T(KJ⊥)]). Comparing this convergence speed9 (obtained very easily

in [43]) with the convergence speed bounds obtained previously is of great interest and will

be done below.

First of all, we remind that in the general case treated in this chapter, it is impossible

to find a recursion similar to Eq. (3.39) which justifies our alternative approach. Secondly,

following the general alternative approach developed previously, the matrix of interest is R=

E [K⊗K] (J⊥ ⊗ J⊥) (see Proposition 3.16). After some computations (a detailed proof is

available in Appendix B.2), we have that

R=
1

4
J⊥ ⊗ J⊥ +

N − 1

4N
vvT (3.40)

7as the graph is complete, this means, choosing one node uniformly in the graph.
8In Kempe’s article [43], the update matrix corresponds to the transpose of the matrix presented here, it is thus

row-stochastic in the paper.
9Note that there is a typo in Lemma 2.3 of [43]. Indeed, the coefficient is (1/2− 1/(2N)) in [43] instead of

(1/2− 1/(4N)).

60 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

with v = (1/
p

N − 1) (u− (1/N)1⊗1) and u=
∑N

i=1 ei ⊗ ei .

Consequently, R is a linear combination of two following orthogonal projections:

• the first projection, generated by J⊥ ⊗ J⊥, is of rank N2− 2N + 1,

• the second projection, generated by vvT, is of rank 1.

As J⊥⊗J⊥ and vvT are orthogonal projections, the vector space R
N2

(on which the matrix

R is operating) can be decomposed into a direct sum of four subspaces:

• S0 = Im(vvT)∩K er(J⊥ ⊗ J⊥)

• S1 = Im(vvT)∩Im(J⊥ ⊗ J⊥)

• S2 =K er(vvT)∩Im(J⊥⊗ J⊥)

• S3 =K er(vvT)∩K er(J⊥ ⊗ J⊥)

As J⊥⊗ J⊥v = v (see Appendix B.2), we have S0 = {0}.
Moreover, according to Eq. (3.40), we obtain that

Rx =

�
1

2
− 1

4N

�

x ∀x ∈ S1

1

4
x ∀x ∈ S2

0 ∀x ∈ S3

As a consequence, the non-null eigenvalues of R are 1/4 and (1/2− 1/(4N)) which implies

that ρ (R) = 1/2− 1/(4N). Hence, the convergence speed bound obtained by our general

alternative approach developed here provides the true convergence speed for the Kempe’s

algorithm [43].

3.6.2 Comparison with Bénézit’s algorithm

In [38], it has been shown that doing a multi-hop communication between sensors provides

significant performance gain. However, the proposed algorithm relied on a single-variate

algorithm. In order to ensure the convergence of this algorithm, the double-stochasticity of

the matrix update is necessary which implies a feedback along the route. The feedback can

suffer from link failure (due to high mobility in wireless networks). To counter-act this issue,

Bénézit proposed to get rid of the feedback by using the Sum-Weight approach [42]. In this

paper, the authors established a general convergence theorem close to ours. In contrast, they

did not provide any result about convergence speed. It is worth noting that our convergence

speed results can apply to the Bénézit’s algorithm.

3.6.3 Comparison with the single-variate algorithms

In our analysis of standard gossip algorithms for averaging in Section 3.2, we assumed that

the updates matrices were doubly-stochastic and showed that if they were only row-stochastic,

the derived algorithms converged to a random value centered on xave. As we only assumed

column-stochasticity in our analysis of Sum-Weight algorithms, let us see what our results tell

us when the updates matrices are also row-stochastic.

3.6. Comparison with existing works 61

Assumption 3.21. In addition to Assumption 3.7, the matrices of K are row-stochastic10.

If the previous additional assumption holds, one can easily show that the weight sequence

{wk}k>0 remain constant and equal to 1, i.e.,

∀k > 0, wk+1 = P1,k+1w0 = P1,k+1
1= 1

and so xk+1 = sk+1 = Kξk+1 xk.

Therefore, the single-variate algorithms with double-stochastic update matrices such as

the Random Gossip [11], the Geographic Gossip [37] can completely be cast into the Sum-

Weight framework. Moreover as ∀k > 0, Ψk
1 = ‖x0‖22 because all the weights stay equal to 1,

the proposed results about {Ψk
2}k>0 (that is Section 3.4.3) can be applied directly to the MSE

for these algorithms.

Let us re-interpret the work of Boyd et al. [6] (especially their Section II) in the light of

our results. In [6], it is stated that under doubly-stochastic update matrices, the MSE at time

k is dominated by ρ(E[KTK]− (1/N)11T)k using the same technique as in Section 3.2.2-b. In

addition, they prove that the Random Gossip algorithm converges to 0 when k goes to infinity

if

ρ

�

E[K]−
1

N
11

T

�

< 1 (3.41)

which is equivalent to Assumption 3.7c.

Furthermore, in [6, Section II-B], it is stated that the condition corresponding to Eq. (3.41)

is only a sufficient condition and that the necessary and sufficient condition is the following

one

ρ (E[K⊗K]− J)< 1 (3.42)

which is exactly the same expression as in Lemma 3.1411.

Moreover, according to [6, Eq. (19)] and Eq. (3.35), we know that the MSE at time k

is upper bounded by −ω′k with ω′ = − log(ρ(E[K ⊗ K] − (1/N)11T)) > 0. However, as

mentioned in Section 3.4.3-c the condition ω′ > 0 seems only sufficient whereas ω > 0 is a

necessary and sufficient condition; furthermore, ρ(E[K⊗ K] J⊥ ⊗ J⊥) (i.e. e−ω) is in general

smaller than ρ(E[K ⊗ K] − (1/N)11T) (i.e. e−ω
′
). This accounts for our approach when

analyzing convergence speed of gossip algorithms.

In Fig. 3.6, we display the empirical convergence slope, the associated lower-bound ω,

and the bound given in [6] for the Random Gossip algorithm versus the number of sensors N .

The proposed bound ω seems to fit much better than the one proposed in [6]. Actually, our

proposed bound matches well the empirical slope.

10as they were column-stochastic with Assumption 3.7, this additional condition makes them doubly-stochastic.
11Indeed, as the vector v used in our formulation can be replaced with the left eigenvector corresponding to

the eigenvalue 1 (see the proof of Lemma 3.14 for more details) which is proportional to 1 here due to the

double-stochasticity of the update matrices

62 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

10 15 20 25 30 35 40 45 50
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

Number of Sensors

Bound of Boyd et al.
ω

Empirical convergence slope

Figure 3.6: Empirical convergence slope of the Random Gossip, and associated lower bounds.

3.7 An application of averaging algorithms to cognitive radio

In this section, we will give an example of how averaging algorithms can be used in a cognitive

radio context.

3.7.1 The problem of distributed spectrum sensing in cognitive radio networks

In some applications, agents of a WSN have to detect quickly the presence or absence of a

signal of interest. For instance, one can mention the spectrum sensing in cognitive radio or

the intrusion detection in military mobile ad-hoc networks. In order to make an accurate

decision, these agents/nodes may have to cooperate with each other.

The traditional way to deal with a detection problem in a network consists in providing

hard or soft detection decisions to a fusion center which makes a decision with the aggregated

data and then transmits it to the agents of the network. This centralized approach is thus

clearly sensitive to fusion center failure. Moreover, in the ad-hoc networks context, a fusion

center election and a dedicated routing protocol have to be carried out which is costly in terms

of overhead and time. Therefore, designing fully distributed decision algorithms is of great

interest. Such algorithms rely on decision test functions and decision thresholds computed in

a distributed way, i.e.only exchanging local data with neighbors.

Cooperative detection has recently received a lot of attention (see [51] and references

therein). Nevertheless, most works assume the existence of a fusion center and finally focus

on the design of operations done at each node in order to help the fusion center make the

right decision. In the literature, only a few algorithms are fully distributed in the sense defined

3.7. An application of averaging algorithms to cognitive radio 63

above [52, 53, 54]. An important difference is that sensing and gossiping steps are alternated

in [52, 53] whereas sensing steps come before gossiping steps in [54].

These algorithms are well adapted to time-varying environments but they suffer from

difficulties in computing the threshold distributively. Indeed, in [52, 54], the threshold is

chosen in the asymptotic regime and performances (especially false alarm probability) are

not ensured in finite time. In [53], the threshold is chosen assuming the absence of diffu-

sion/gossiping step. Hence, the threshold distributed computation remains an open issue.

We thus propose a new fully distributed signal decision algorithm based on our proposed

algorithm, the BWGossip (see Section 3.5.1) where sensing steps are followed by gossiping

steps and where the threshold is chosen adequately even in finite time. In addition, thanks

to the separation of both steps, we are able to optimize their durations at the expense of less

adaptivity compared to [52, 53].

3.7.2 Model

We consider a network of N nodes collaborating to detect the presence or absence of a signal.

The received signal at time k on node i is yk
i
. We assume that the number of samples used

for sensing is the same for all nodes and equal to Ns so for any sensor i we will write yi =

[y1
i
, ..., y

Ns

i
]T the vector of received data and y = [y1, ..., yN]

T.

The signal to (potentially) detect is denoted by xk
i

at time k on node i and an additive

noise can disturb the detection and is denoted by nk
i

at node i. We will model this noise at

sensor i by a Gaussian random vector with zero mean and covariance matrix σ2
i I; formally,

we have ni ∼N (0,σ2
i I) where N (m,Σ) denote a Gaussian random vector with mean m and

covariance matrix Σ. We assume that the statistics of x i and ni are known at node i.

The binary hypothesis test of our problem can thus be written as follows

(

H0 : ∀i, yi = ni

H1 : ∀i, yi = x i + ni

(3.43)

and we want to build a test Λ(y) whose goal is to enable us to separate the hypotheses so that

if Λ(y) ≥ δ then we decide that hypothesis H1 is valid and H0 elsewhere. We introduce two

conditional probabilities that enable us to evaluate the performance of any binary test: i) the

probability of detection PD; and ii) the false alarm probability PFA defined as:

PD ¬ P[Λ(y)> δ|H1] and PFA ¬ P[Λ(y)> δ|H0]. (3.44)

In the context of cognitive radio, it seems natural to ensure a fixed probability of detection

as the secondary users may have non-disturbance requirements towards the primary users.

Moreover, a high false alarm probability only implies that the secondary users do not use the

white spaces while they could. Consequently, we want to minimize the false alarm probability

for a fixed probability of detection which is the opposite of the standard Neyman-Pearson

64 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

criterion12 (see [55, Chap. 2.2]).

Lemma 3.22. In the case of a binary decision test with a constrained PD, the optimal test is the

Log-Likelihood Ratio (LLR) defined as

Λ(y)¬ log

�
p(y |H1)

p(y |H0)

� H1

≷
H0

δ. (3.45)

where p(y |H) is the probability density of y given the tested hypothesis H and where δ is

chosen such that the target probability of detection, denoted by P
target

D , is ensured.

Proof. The proof follows the approach developed in [55, Chap. 2.2] in the case of the

Neyman-Pearson criterion.

Let us partition the received signal space Z into two subspaces : Z0 corresponding to

the signals for which Λ(y) < δ (so for which we will decide H0) and Z1 corresponding to

the signals for which Λ(y) ≥ δ (we will decide H1). Now, let us consider the optimization

problem

minimize
Z1

PFA

subject to P
target

D − PD ≤ 0

which we solve through the function F where λ is a Lagrange multiplier

F = PFA+λ(P
target

D − PD)

=

∫

Z1

p(y |H0)dy +λ

P
target

D −
∫

Z1

p(y |H1)dy

!

= λP
target

D +

∫

Z1

�
p(y |H0)−λp(y |H1)

�
dy.

Hence, for any λ ≥ 0, the behavior (i.e.the choice of the partition of Z into Z0 and Z1)

which minimizes F is “decidingH1 (i.e.being in Z1) if the term in the bracket is negative” i.e.

p(y |H0)

p(y |H1)
< δ.

As a conclusion, the optimal test is a Likelihood Ratio Test (LRT) as in the standard

Neyman-Pearson approach. For the sake of simplicity we will work only on the classical LLR

in the following.

3.7.3 Review on centralized cooperative spectrum sensing

Before going further, we remind some important results about centralized cooperative spec-

trum sensing. We focus, on the one hand, on an energy-based detector (when the sought

signal is unknown) and, on the other hand, on a training-based detector (when the sought

signal is known and thus corresponds to a training sequence [53]).

12In the standard Neyman-Pearson criterion, one wants to maximize the probability of detection given a target

false alarm probability.

3.7. An application of averaging algorithms to cognitive radio 65

3.7.3-a Energy-based detector

When the sought signal is unknown, it is usual to assume x i is a zero-mean Gaussian vector

with covariance matrix γ2
i I, i.e.x i ∼N (0,γ2

i I). Then, the Signal-to-Noise Ratio (SNR) at node

i is equal to SNRi ¬ γ
2
i /σ

2
i and is assumed to be known at node i.

Assuming independence of the received signals at different nodes (this assumption is rea-

sonable since even if the same signal is transmitted by the primary user, the random wireless

channel leads to independent received signals between nodes), the test given in Eq. (3.45)

can be decomposed as follows:

Λ(y) =

N∑

i=1

Λi(yi)

with Λi(yi) = log(p(yi|H1)/p(yi|H0)).

As x i ∼ N (0,γ2
i I) and ni ∼ N (0,σ2

i I), we obtain the following test by removing the

constant terms

T(y)¬
1

N

N∑

i=1

‖yi‖22
γ2

i
+σ2

i

SNRi

H1

≷
H0

η (3.46)

where η must be chosen such that P[T(y)> η|H1] = P
target

D .

In order to compute the threshold η, we need to exhibit the probability density of T under

hypothesis H1. Unfortunately, due to the unequal SNRs between the sensors, T is not χ2-

distributed as in the standard energy detector. In [56], it is advocated that the density of T

can be approximated with a Gamma distribution, denoted by Γ(κ,θ), whose the probability

density function is equal to gκ,θ defined by

gκ,θ (x) =
1

Γ(κ)θκ
xκ−1e−x/θ , x ≥ 0, (3.47)

and 0 otherwise. The mean of this distribution is κθ and its variance is κθ2, we thus choose κ

and θ so that the mean and variance of the approximating Gamma distribution are the same

as the ones of T. After some algebraic manipulations detailed in Appendix B.3, we obtain that

T≈ Γ(κT ,θT) under hypothesisH1 with

κT =
NNs

2
·

�
1

N

∑N

i=1 SNRi

�2

1

N

∑N

i=1 SNR2
i

and θT =
2

N
·

1

N

∑N

i=1 SNR2
i

1

N

∑N

i=1 SNRi

. (3.48)

One can then deduce that the optimal threshold η given the target probability of detection

P
target

D is such that

P
target

D = P[T(y)> η|H1]≈ 1− GκT,θT
(η)

which leads to

η = G
(−1)

κT,θT
(1− P

target

D)

where Gκ,θ is the cumulative distribution function (cdf) of a Gamma distribution with param-

eters (κ,θ) and G
(−1)

κ,θ
is its inverse.

66 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

Finally, we can derive the Receiver Operating Characteristic (ROC) of the test, that is the

relation between the false alarm probability and the probability of detection,

PFA = 1− Gκ′T,θ ′T

�

G
(−1)

κT,θT
(1− PD)

�

(3.49)

with

κ′T =
Ns

�∑N

i=1

SNRi

1+SNRi

�2

2
∑N

i=1

�
SNRi

1+SNRi

�2
and θ ′T =

2
∑N

i=1

�
SNRi

1+SNRi

�2

∑N

i=1

SNRi

1+SNRi

.

3.7.3-b Training-based detector

We now assume that each node i has the knowledge of the (possible) transmit signal x i .

Typically, the signal x i may decomposed as hi x where hi corresponds to the (known) channel

fading between the node i and the sought transmitter and x is a (common) training sequence

[53]. Here, the signal power is γ2
i = ‖x i‖2/Ns.

Then the test given in Eq. (3.45) takes the following form

T(y)¬
1

N

N∑

i=1

yT
i x i

σ2
i

H1

≷
H0

η. (3.50)

As x i is deterministic, T is Gaussian-distributed with mean mT and variance ς2
T under

hypothesisH1 given by

mT = Ns

1

N

N∑

i=1

SNRi

!

and ς2
T =

Ns

N

1

N

N∑

i=1

SNRi

!

.

As a consequence, the obtained threshold is

η = ςTQ(−1)
�

P
target

D

�

+mT

where Q(−1) is the inverse of the Gaussian tail function.

3.7.4 Fully distributed spectrum sensing algorithms

Obviously, the tests described in Eqs. (3.46)-(3.50) are not computable since a node may not

have the information from all the others. To overcome this problem, we propose to introduce

a gossiping step in order to compute the involved averages. Indeed both previously derived

tests can rewrite

T(y) =
1

N

N∑

i=1

t i(yi)

with

t i(yi) =

(

‖yi‖22SNRi/(γ
2
i +σ

2
i) in the case of energy detection

yT
i x i/σ

2
i in the case of training-based detection.

3.7. An application of averaging algorithms to cognitive radio 67

It is thus interesting to perform Ng gossipping steps after the Ns sensing steps in order

to obtain a test close to the centralized one. Using a matrix formalism (see Section 3.2 for

details), we have

T1(y)
...

TN (y)

¬ P1,Ng

t1(y1)
...

tN (yN)

where Ti(y) is the final test function at node i, and where P1,Ng corresponds to the considered

gossiping algorithm matrix after Ng iterations.

It is thus easy to design fully distributed algorithms that estimate the test T(y). Actually,

our main issue is to find a distributive way for computing a good threshold at any time,

ensuring that the common target probability of detection P
target

D is as close as possible at any

step of the algorithm. Indeed, the decision is made before the convergence of the gossip

algorithm and, assuming a primary user is present, Ti may be above the threshold whereas

the gossip has not still converged to the consensus.

3.7.4-a Energy-based detector

When an energy-based detection is carried out, the final test function at node i is

Ti(y) =

N∑

j=1

P
1,Ng

i, j

‖y j‖22
γ2

j
+σ2

j

SNR j

H1

≷
H0

ηi ,

where ηi is the threshold at node i.

Once again, by assuming that Ti is well approximated by a Gamma distribution, using the

same technique as in Appendix B.3 we obtain that underH1

ηi = G
(−1)

κi ,θi

�

1− P
target

D,i

�

(3.51)

where P
target

D,i
is the target detection probability at node i, and

κi =
Ns

2
·

�∑N

j=1 P
1,Ng

i, j
SNR j

�2

∑N

j=1

�

P
1,Ng

i, j

�2

SNR2
j

and θi = 2 ·

∑N

j=1

�

P
1,Ng

i, j

�2

SNR2
j

∑N

j=1 P
1,Ng

i, j
SNR j

. (3.52)

Then, we obtain that the ROC is equal to

PFA,i = 1− Gκ′
i
,θ ′

i

�

G
(−1)

κi ,θi

�

1− PD,i

��

(3.53)

with

κ′i =
Ns

2
·

�
∑N

j=1 P
1,Ng

i, j

SNR j

1+SNR j

�2

∑N

j=1

�

P
1,Ng

i, j

�2
�

SNR j

1+SNR j

�2
and θ ′i = 2 ·

∑N

j=1

�

P
1,Ng

i, j

�2
�

SNR j

1+SNR j

�2

∑N

j=1 P
1,Ng

i, j

SNR j

1+SNR j

.

68 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

We remark that our ROC curve depends on the gossip algorithm. Unfortunately, the terms

involving (P
1,Ng

i, j
)2 in κ′i prevent us from obtaining the threshold ηi in a distributed way at

node i for ensuring the probability of detection P
target

D,i
. To overcome this issue, we propose

hereafter two approaches.

Approach 1: distributed test with knowledge of N . Actually, in the centralized setup,

the threshold depends on the average of the SNR and the squared SNR through Eq.(3.48).

A simple idea is to replace these exact averages with the averages obtained thanks to the

considered gossip algorithm. It is clear that if Ng is large enough, the obtained thresholds

will be close to those of the centralized case and also to those described in Eq. (3.52). As a

consequence, the new threshold is

η
(1)

i
= G

(−1)

κ
(1)
i

,θ
(1)
i

�

1− P
target

D,i

�

(3.54)

with

κ
(1)

i
=

NNs

2
·

�∑N

j=1 P
1,Ng

i, j
SNR j

�2

∑N

j=1 P
1,Ng

i, j
SNR2

j

and θ
(1)

i
=

2

N
·
∑N

j=1 P
1,Ng

i, j
SNR2

j

∑N

j=1 P
1,Ng

i, j
SNR j

.

This algorithm is still not fully distributed since the knowledge of the number of nodes

is required but the threshold only depends on the cdf of a Gamma distribution (which can

be tabulated to avoid further complexity) with parameters depending only on terms that can

be computed by gossipping the vector of the SNRs vector and the squared SNRs vector along

with the individual tests.

Unfortunately, the target probability of detection is not ensured since the real probability

of detection, denoted by P
(1)

D,i
, is given by

P
(1)

D,i
= 1− Gκi ,θi

(G
(−1)

κ
(1)
i

,θ
(1)
i

(1− P
target

D,i
)).

In contrast, we prove that the ROC curve is the following one

P
(1)

FA,i
= 1− Gκ′

i
,θ ′

i
(G
(−1)

κi ,θi
(1− P

(1)

D,i
))

which is the same as in Eq. (3.53). Consequently, the ROC curve is not degraded due to our

approximate threshold. In addition, the operating point in the ROC curve can not fixed a

priori.

Approach 2: fully distributed test. In this approach, the knowledge of the number of

nodes will not be required anymore. As seen in Section 3.5.4, our proposed algorithm, the

BWGossip, is able to perform the estimation of the sum jointly with the estimation of the

average.

We define

M1,Ng ¬ diag

�
1

P1,Ng1

�

P1,Ng and S1,Ng ¬ diag

�

1

P1,Ng e1

�

P1,Ng (3.55)

3.7. An application of averaging algorithms to cognitive radio 69

so that M1,Ng x0 (resp. S1,Ng x0) is the estimate of the average (resp. the sum) of x0 obtained

by a Sum-Weight-based algorithm (as the BWGossip).

In this setup, before gossipping, the two auxiliary variables of each node must be initial-

ized to match 1 and e1 respectively. For the first auxiliary variable, each node is initialized

to 1. For the second one, only the first node is initialized to 1 whereas the others to 0. In

cognitive radio context, this means the first node is the secondary user launching the sensing,

i.e.which wants to access the medium.

Recalling Eq. (3.48), we see that eliminate the factor N in the coefficients κT and θT: i)

in κT, by replacing the SNRs averages by the sum of the SNRs; and ii) in θT, by replacing

the SNRs average in the denominator by the sum of the SNRs. Consequently, replacing the

involved sums and averages by estimates found through gossip, we find

η
(2)

i
= G

(−1)

κ
(2)
i

,θ
(2)
i

�

1− P
target

D,i

�

(3.56)

with

κ
(2)

i
=

Ns

2
·

�∑N

j=1 S
1,Ng

i, j
SNR j

�2

∑N

j=1 S
1,Ng

i, j
SNR2

j

and θ
(2)

i
= 2 ·

∑N

j=1 M
1,Ng

i, j
SNR2

j

∑N

j=1 S
1,Ng

i, j
SNR j

.

The algorithm is now fully distributed since even the number of nodes is not required.

Once again, the new threshold does not ensure the target probability of detection, and the

ROC curve is still described by Eq. (3.53) but P is replaced by M given by Eq. (3.55).

Finally, for both approaches, the ROC curves converge to the ROC curve related to the

centralized case when Ng is large enough since the parameters κi , κ
′
i , θi and θ ′i all converge

to those of the centralized case.

3.7.4-b Training-based detector

In the case of the training-based detector, the test function at node i after Ng gossiping itera-

tions is

Ti(y) =

N∑

j=1

P
1,Ng

i, j

yT
j x j

σ2
j

H1

≷
H0

ηi ,

As Ti is Gaussian distributed with mean mi and variance ς2
i underH1, we have

ηi = ςiQ
(−1)

�

P
target

D,i

�

+mi

and

mi = Ns

N∑

j=1

P
1,Ng

i, j
SNR j and ς2

i = Ns

N∑

j=1

�

P
1,Ng

i, j

�2

SNR j .

Once again, this algorithm can not be computed in a distributed way due to the presence of

the terms (P
1,Ng

i, j
)2 in the variance. To overcome this issue, the previous proposed approaches

can be applied straightforwardly.

70 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

3.7.5 Numerical illustrations

Except otherwise stated, an energy-based detector is carried out with Ns = Ng = 64 and

P
target

D,i
= 0.99 for all i, and performance are averaged over RGGs with N = 10 nodes. The

SNRs at each node are exponentially-distributed with mean SNR. Only performance for the

node exhibiting the smallest SNR realization will be plotted.

Hereafter, we test the four following algorithm configurations: i) the centralized one; ii)

the Random Gossip with centralized threshold (see Eq. (3.51)); iii) the Random Gossip with the

threshold of approach 1 (see Eq. 3.54); and iv) the BWGossip with the threshold of approach

2 (see Eq. (3.56)).

In Fig. 3.7, we plot the ROC curve for the above-mentioned algorithm configurations.

We remark that the ROC curves (which only depends on the gossipping) are very close to

each other. In addition, when the same gossip algorithm is used, the ROC curve is identical

regardless of the threshold technique computation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

PFA

P
D

Centralized Detector

Random Gossip with centralized threshold

Random Gossip with threshold of approach 1

BWGossip with threshold of approach 2

Figure 3.7: Receiver Operating Characteristic curve (PD vs. PFA).

In Figs. 3.8 and 3.9, we display empirical PFA and PD versus i) SNR for Ns = Ng = 64;

and ii) Ns for Nt = Ns + Ng = 128 fixed with mean SNR −5dB. The Random Gossip with

centralized threshold performs almost as well as the centralized detector which implies that

gossipping the personal tests instead of having a fusion center gathering and summing the

sensors data is not very costly, thus the losses in performance are mainly due to the threshold

computation. We remark that when the threshold is computed through approach one, the

false alarm probability is lower than in the centralized case however the target probability

of detection is not ensured especially when the number of gossipping steps is small (Ns close

to 128). In the case of BWGossip with approach 2, the loss in false alarm probability is

reasonable while its probability of detection is higher than the target one, it has thus very good

3.7. An application of averaging algorithms to cognitive radio 71

performances. We also remark the sensing-to-gossipping ratio that offers the best performance

is common and close to 1 for all algorithms.

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Mean SNR (dB)

P
FA

o
r

P
D

Centralized Detector - PD

Centralized Detector - PFA

Random Gossip w/ centr. thres. - PD

Random Gossip w/ centr. thres. - PFA

Random Gossip w/ thres. of appr. 1 - PD

Random Gossip w/ thres. of appr. 1 - PFA

BWGossip w/ thres. of appr. 2 - PD

BWGossip w/ thres. of appr. 2 - PFA

P
target

D = 0.99

Figure 3.8: PFA and PD versus SNR.

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.2

0.4

0.6

0.8

1

Ns

P
FA

o
r

P
D

Centralized Detector - PD

Centralized Detector - PFA

Random Gossip w/ centr. thres. - PD

Random Gossip w/ centr. thres. - PFA

Random Gossip w/ thres. of appr. 1 - PD

Random Gossip w/ thres. of appr. 1 - PFA

BWGossip w/ thres. of appr. 2 - PD

BWGossip w/ thres. of appr. 2 - PFA

P
target

D = 0.99

Figure 3.9: PFA and PD versus Ns.

Finally, in Fig. 3.10, we compare our training-based algorithms to the Diffusion LMS de-

scribed in [53]. Notice that the sensing and gossipping steps are mixed for the diffusion

LMS. We remark that our proposed algorithms outperform the diffusion LMS. Actually, our

block processing for the sensing step is much more efficient that the adaptive LMS one in

[53]. Moreover, unlike diffusion LMS, our algorithms are asynchronous which simplifies the

72 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

network management, and the threshold is chosen much more adequately.

−24 −22 −20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

Mean SNR

P
FA

o
r

P
D

Centralized Detector - PD

Centralized Detector - PFA

Random Gossip w/ thres. of appr. 1 - PD

Random Gossip w/ thres. of appr. 1 - PFA

BWGossip w/ thres. of appr. 2 - PD

BWGossip w/ thres. of appr. 2 - PFA

Diffusion LMS Detector - PD

Diffusion LMS Detector - PFA

P
target

D = 0.99

Figure 3.10: PFA and PD versus SNR for proposed algorithms and Diffusion LMS.

As mentioned before, one of the advantages of cooperation between secondary users is to

solve the so-called Hidden Terminal problem shown in Fig. 3.11. In this figure, we see a cog-

nitive radio network consisting of two Primary Users (PU) and five secondary users (SU). The

primary user PU1 may contact PU2 in which case secondary user must not interfere, the links

with associated long-term SNR are represented in dashed lines. In order to efficiently detect

a communication from PU1, the secondary users may communicate through dedicated links

represented by green lines. The Hidden Terminal problem problem occurs when a secondary

user (SU1 in our case) is not able to detect the emitting primary user (PU1) because of a bad

long-term SNR due to some obstacle or large distance; but can perturb another primary user

(PU2) if it emits.

In Fig. 3.12, the four proposed algorithms of the previous section have been evaluated on

the hidden terminal practical configuration described in Fig. 3.11. We represent the probabil-

ity of detection and false alarm probability of the secondary user #1 versus Nt = Ns+Ng with

Ns = Ng . The centralized detector is obviously very efficient as our user of interest then bene-

fits from the measurements of all the network and thus from the sensors close to the emitting

primary user. When gossipping, the hidden secondary user is in general poorly connected to

to the other as represented in Fig. 3.11. Thus, asynchronous gossip-based algorithms have

quit poor performance even in the centralized threshold case. As seen before, Approach 1

does not ensure the target probability of detection and thus cannot be used in a practical set-

ting. Approach 2 with BWGossip seems to ensure our target probability of detection in most

cases at the price of a higher false alarm probability. We can conclude that our most advanced

algorithm is enable to distributively detect the hidden terminal quite quickly.

3.8. Conclusion 73

−15dB

−5dB

10dB

8dB

4dB

PU1

PU2

SU1

SU2

SU3

SU4

SU5

Figure 3.11: Hidden terminal configuration

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.2

0.4

0.6

0.8

1

T

P
FA

o
r

P
D

Centralized Detector - PD

Centralized Detector - PFA

Random Gossip w/ centr. thres. - PD

Random Gossip w/ centr. thres. - PFA

Random Gossip w/ thres. of appr. 1 - PD

Random Gossip w/ thres. of appr. 1 - PFA

BWGossip w/ thres. of appr. 2 - PD

BWGossip w/ thres. of appr. 2 - PFA

P
target

D = 0.99

Figure 3.12: PFA and PD versus T for the hidden terminal problem of Fig. 3.11.

3.8 Conclusion

In this chapter, we proved very general results about convergence and convergence speed

of average gossip algorithms over WSNs. The Sum-Weight framework enabled us to prove

more general convergence properties and to derive a very efficient feedback-free broadcast

algorithm which significantly outperforms the existing ones. In addition, we showed that

our results applied to any standard averaging algorithm and that our derived speed bounds

74 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

were in general tighter than the ones in the literature. Finally, we applied our results to

the problem of distributed spectrum in cognitive radio networks and enabled us to design a

fully-distributed spectrum sensing algorithm.

In the next chapter, we will consider the problem of distributed optimization.

This work has led to the following publications:

J2 F. Iutzeler, P. Ciblat, and W. Hachem, “Analysis of Sum-Weight-like algorithms for av-

eraging in Wireless Sensor Networks,” IEEE Transactions on Signal Processing, vol. 61,

no. 11, pp. 2802–2814, June 2013.

C3 F. Iutzeler and P. Ciblat, “Fully-distributed spectrum sensing: application to cognitive

radio,” in European Signal Processing Conference (EUSIPCO), September 2013.

C2 F. Iutzeler, P. Ciblat, W. Hachem, and J. Jakubowicz, “New broadcast based distributed

averaging algorithm over wireless sensor networks,” in IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), March 2012.

N2 F. Iutzeler and P. Ciblat, “Sondage de spectre coopératif totalement distribué: applica-

tion à la radio cognitive,” in Colloque GRETSI, September 2013.

CHAPTER 4

DISTRIBUTED OPTIMIZATION

In this chapter, we focus on optimization algorithms over networks. After motivating our

choices, we design and prove the convergence of an asynchronous distributed optimization

algorithm.

4.1 Introduction

The recent years have seen a dramatic increase in the quantity of data available over the Web

and in the computational abilities of any electronic device. The classical model of statisti-

cal inference where a single computation unit has to infer behaviors on a small data set is

thus inadequate for such a setup. To take into account these recent developments [57], it is

interesting to consider a system where:

• a large quantity of data is spread over many (physically) distant machines;

• these machines can perform costly computations;

• they need to communicate to infer a global behavior as their own dataset (although

large) might not be representative;

• for evident congestion reasons, local, peer-to-peer communications must be preferred

over a centralized scheme.

A large majority of data processing algorithms rely on the minimization of a well-designed

cost function that takes into account the whole dataset. We will focus in this chapter on convex

optimization, that is when the cost function is convex. f : Rn→R∪{+∞} is a convex function

if and only if its epigraph

epi f = {(x , t) ∈Rn×R : f (x)≤ t}

is a convex set; in addition, f will be closed if its epigraph is. Also, the optimal points will

necessarily be in the effective domain of f

dom f = {x ∈Rn : f (x)<+∞}

76 CHAPTER 4. DISTRIBUTED OPTIMIZATION

epi f

dom f

+∞

Figure 4.1: The epigraph and domain of a convex function.

i.e. the set of points for which f takes on finite values as represented on Fig. 4.1; if dom f 6= ;,
f is proper.

The performance of these algorithms depend on i) the choice of the cost function, which

mostly depends on the problem; and ii) the optimization algorithm used for minimizing it,

that changes how the function is used in the iterations of the minimization.

In order to perform efficient data processing on big data networks, one has to design

distributed optimization algorithms. Mathematically, a network of agents represented by its

graph G = (V, E) is seeking to distributively solve the following optimization problem.

Problem 4.1.

min
x∈R

f (x)¬
∑

i∈V fi(x)

where fi is a convex real cost function known only by agent i.

Function fi can be interpreted as the price payed by agent i when the global network state

is x . In the most general case the optimization variable x lives in any Euclidian space but for

the sake of clarity we will work in R along this chapter. The goal of this chapter is thus to

design optimization solving Problem 4.1 with the following particularities:

• the agents may only perform local updates, i.e. they update their private estimate using

only their private cost function, indeed the global cost function is nowhere available;

• the agents can only communicate their variables locally using the edges of the underly-

ing communication graph.

For these reasons, each agent will update its own variable x i only according to its cost function

fi , it is thus useful to write Problem 4.1 making apparent the nodes variables and adding an

equality (or consensus) constraint.

4.1. Introduction 77

Problem 4.2.

min
x∈RN

F(x)¬
∑

i∈V fi(x i)

subject to x1 = x2 = · · ·= xN

A function that writes as a sum of functions over scalar components, as F , will be said

separable.

As each sensor cannot know all {x i}i=1,...,N and { fi}i=1,...,N , any distributed optimization

has to feature two steps: i) a local variable update where one or more sensors update their

local variables using their local cost function; and ii) a consensus step where some sensors

exchange scalars with their neighbors in order to reach a consensus. The problem of reaching

consensus with local exchanges (step ii) has been studied in details in Chapters 2 and 3. In

the literature, two main classes of optimization algorithms exist for solving Problem 4.1 (or

related ones). They differ from how a node makes use of its local function:

• the methods where the i-th node uses local properties of fi at x i as the gradient (or

subgradient) introduced as a classical distributed computing problem in [46, Chap. 7.5]

(based on [58, 59]) and refined in [60, 61, 62, 63]. One can also mention Nesterov-like

methods [64, 65], or Newton-like methods [66].

• the methods where the nodes use their whole individual function through an argmin

step for example. The most celebrated algorithm for distributed optimization is the Al-

ternating Direction Method of Multipliers (ADMM), popularized by the monograph [67],

which uses a regularized argmin of the functions at each iteration. It was demonstrated

to be particularly suited to graph-based (local) communications in [68, 69].

Standard algorithms are generally synchronous that is to say all agents are supposed to

complete their local computations synchronously at each tick of some global clock, and then

synchronously merge their local results. However, in many situations, one faces variable sizes

of the local data sets along with heterogeneous computational abilities of the machines. Syn-

chronism then becomes a burden as the global convergence rate is expected to depend on the

local computation times of the slowest agents. In addition, we saw that in the previous chap-

ters that synchronism in the communications can result in collisions and network congestions.

It is thus crucial to introduce asynchronous methods which allow the estimates to be updated

in a non-coordinated fashion, rather than all together or in some frozen order.

This chapter is organized as follows. First, Section 4.2 describes existing synchronous and

asynchronous first order methods for distributed optimization. These methods are ultimately

based on first-order derivatives of the cost functions and enable us to oversee some local

optimization methods. Then, in Section 4.3, we introduce proximal methods which constitute

a large majority of the optimization methods based on the whole functions. We put the focus

on the ADMM algorithm and show how it can be used to solve a distributed optimization

problem. Section 4.4 then recalls the basics of monotone operators theory which enables us

to elegantly analyze proximal algorithms in general and the ADMM in particular. Finally,

in Section 4.5 we introduce our new asynchronous ADMM-based algorithm for distributed

optimization, we prove its convergence using monotone operator theory, and illustrate its

78 CHAPTER 4. DISTRIBUTED OPTIMIZATION

performances in Section 4.6.

4.2 First order methods

In this section, we will review some simple algorithms that distributively solve Problem 4.2

using local properties of the cost functions. We consider the case where the nodes update their

value by computing a gradient of its cost function then exchange with each other in order to

reach the wanted consensus. We will focus here on the consequences of these exchanges (or

gossip) on the convergence properties of gradient algorithm.

These results are based on [58, 59, 61, 62] and [70].

4.2.1 Model

As previously mentioned, these algorithms are based on two steps: i) a gradient descent; then

ii) a gossip step. We will thus make explicit the two steps independently and then put them

together along with classical assumptions from the literature.

4.2.1-a Step 1: Gradient descent

In first order methods, every node i makes use of its individual function fi through a gradient

descent step. Assuming fi is differentiable, the update equation reads:

xk+1
i
= xk

i − γ
k∇ fi(x

k
i) (4.1)

where∇ fi(x i) is the gradient of fi at point x i and {γk}k>0 is a sequence of positive coefficients.

For notational simplicity, we shall assume that the { fi}i=1,...,M are R → R in which case the

gradients boil down to derivatives1. Fig. 4.2 gives a representation of a gradient step with

γk = 1.

If fi has a unique minimum, then f ′i is non-decreasing and null at the point x⋆i where

fi is minimal. Then, it is easy to see that if xk
i
> x⋆i , then xk+1

i
< xk

i
and conversely. The

sequence {xk
i
}k>0 produced by Eq. (4.1) then converges to x⋆i under some assumptions on fi

and {γk
i
}k>0 (see [71, Chap. 9] for details).

4.2.1-b Step 2: Gossipping

Let G = (V, E) be a network of nodes wanting to solve Problem 4.1 with first order methods.

They need to maintain a common value x ∈ R and compute f ′(x) =
∑

i∈V f ′i (x) which is

very difficult to implement without the presence of a fusion center. One way to overcome this

problem is to compute this gradient along an Hamiltonian cycle (a cycle that visits exactly

once every vertex) which leads to incremental gradient methods (see [72] and references

therein for details). However, this method needs the creation of an Hamiltonian cycle which

1This avoids the use of Kronecker products in the equations related with the gossipping.

4.2. First order methods 79

+∞

x k x k+1

−∇ f (xk)

Figure 4.2: Illustration of a gradient descent step.

can be costly and implies the presence of an acting fusion center; furthermore, the resulting

algorithm is quite sensitive to link failures.

We will thus consider a more distributed approach based on Problem 4.2 where the net-

work performs a gradient descent on F (i.e. each sensor i performs a gradient descent on fi)

and the sensors exchange their estimates with their neighbors by an average gossip step as in

Eq. (3.1):

xk+1 = Kξk+1 xk

where the process {Kξk}k>0, valued in the set K = {Ki}i=1,...,M , is i.i.d..

4.2.1-c Distributed gradient algorithms

Combining these two steps, we get the following algorithm where the word asynchronous

means here that the communications between the agents are asynchronous as in the previous

chapter; the gradient steps of the agents still have to be performed synchronously. As in

Section 3.2, the process {Kξk}k>0 of the communication matrices, valued in the set K =

{Ki}i=1,...,M , is i.i.d..

Recalling the definition of F in Prob. 4.2, the two steps can be merged into a single equa-

tion as

xk+1 = Kξk+1

�

xk − γk∇F(xk)
�

(4.2)

or with matrices products

xk = KξkKξk−1 ...Kξ1 x0−
k−1∑

ℓ=1

γℓKξkKξk−1 ...Kξℓ+1∇F(xℓ). (4.3)

In the next sections, we will see how gossipping enables this algorithm to converge to

a consensus minimizing the function f . For the sake of clarity, we shall assume first that

80 CHAPTER 4. DISTRIBUTED OPTIMIZATION

Asynchronous distributed gradient algorithm

At each clock tick k:

◮ every sensor i performs a gradient descent on its cost function fi:

x̃k+1
i
= xk

i − γ
k f ′i (x

k
i)

◮ the sensors average their value using matrix Kξk :

xk+1 = Kξk+1 x̃k+1

all the matrices {Kξk}k>0 are equal to a given matrix K. This corresponds in practice to a

synchronous gossipping scheme as in Section 3.2.2-a. The asynchronous scheme where the

process {Kξk}k>0 is i.i.d. will be considered as a second step.

Let us start by putting some general assumptions on the cost functions { fi}i=1,...,N , the

stepsizes and the matrix K.

Assumption 4.3. The functions { fi}i=1,...,N verify:

i) The functions { fi}i=1,...,N are convex and differentiable;

ii) The function f attains its infimum and the set of its minimizersM is compact;

iii) Their derivatives { f ′i }i=1,...,N are L-Lipschitz continuous and ∀x , | f ′i (x)| ≤ C.

Assumption 4.4. The positive sequence of stepsizes {γk}k>0 verifies:

i)
∑

k>0 γ
k =+∞;

ii)
∑

k>0(γ
k)2 <∞;

iii) γk+1/γk −→k→∞ 1.

Assumption 4.5. The matrix K is doubly stochastic with a positive diagonal and primitive.

4.2.2 Convergence of the Synchronous Distributed gradient algorithm

As in Section 3.2.2-a, let us first review synchronous distributed gradient algorithms. Let K

be the gossip matrix that models the exchanges at each iteration, the associated distributed

gradient algorithm is presented below.

As before, the two steps can be rewritten in a single equation:

xk+1 = K
�

xk − γk∇F(xk)
�

. (4.4)

We also have

xk = (K)k x0−
k−1∑

ℓ=1

γℓ(K)k−ℓ∇F(xℓ). (4.5)

We will prove the convergence of this algorithm under the above stated conditions. The

convergence proof will follow two main steps: i) we will prove that this sequence converges to

a consensus; and ii) we will show that the value of the consensus is x⋆ such that ∇ f (x⋆) = 0.

4.2. First order methods 81

Synchronous Distributed gradient algorithm

At each clock tick k:

◮ every sensor i performs a gradient descent on its cost function fi:

x̃k+1
i
= xk

i − γ
k f ′i (x

k
i)

◮ the sensors average their value using matrix K:

xk+1 = K x̃k+1

4.2.2-a Convergence to a consensus

Recalling Eq. (4.5), we have

J⊥xk+1

2
=

J⊥

(K)k+1 x0−
k∑

ℓ=1

γℓ(K)k+1−ℓ∇F(xℓ)

!

2

=

�

J⊥KJ⊥
�k+1

x0−
k∑

ℓ=1

γℓ(J⊥KJ⊥)k+1−ℓ∇F(xℓ)

2

≤

�

J⊥KJ⊥
�k+1

x0

2
+

k∑

ℓ=1

γℓ

(J⊥KJ⊥)k+1−ℓ∇F(xℓ)

2

≤ ‖|J⊥KJ⊥‖|k+1
2 ‖x

0‖2+
k∑

ℓ=1

γℓ‖|J⊥KJ⊥‖|k+1−l
2 ‖∇F(xℓ)‖2

where the first equality comes from the fact that J⊥K = J⊥KJ⊥ as K is row-stochastic from

Assumption 4.5. The second inequality comes from the induced norm inequality for matrices.

Furthermore, the conditions of Theorem 3.4 are satisfied so σ ¬ ‖|J⊥KJ⊥‖|2 < 1. We thus

have

J⊥xk+1

2
≤ (σ)k+1‖x0‖2+ γk

p
NC

k∑

ℓ=1

γℓ

γk
(σ)k+1−ℓ

where the first term of the RHS goes to zero as k→∞; the second term is the product of γk

and
p

NC
∑k

ℓ=1 γ
ℓ/γk(σ)k+1−ℓ. One can find in [73, Part 1, Pb. 178] that as i) γk+1/γk → 1

from Assumption 4.4; and ii) σ < 1 as seen above;
∑k

ℓ=1 γ
ℓ/γk(σ)k+1−ℓ converges. Hence,

we have proved that

J⊥xk+1

2
= O

�

γk
�

. (4.6)

This implies that {

J⊥xk+1

2
}k>0 decreases to zero at the same speed as { γk}k>0 hence

the sensors variables go to a consensus. We will now study the value of this consensus.

82 CHAPTER 4. DISTRIBUTED OPTIMIZATION

4.2.2-b Consensus value

First, recalling Eq. (4.4) and using the identity JK= J for any column-stochastic matrix K, we

observe that

Jxk+1 = Jxk − γkJ∇F(xk) (4.7)

is almost a gradient descent of the sequence { x̄k}k>0 ¬ {1/N1
T xk}k>0 (it would have been a

gradient descent if the sequence x̄k were described by the iterations x̄k+1 = x̄k − γk f ′(x̄k) =

x̄k − γkN(1/N1
T∇F(x̄k

1))). Equation (4.7) can be rewritten as

x̄k+1 = x̄k − γk
�

1/N1
T∇F

�

xk
��

. (4.8)

Let us take x ≤ x ′, as f is differentiable, the mean value theorem states that there is

x ≤ c ≤ x ′ such that

f (x ′)− f (x) = f ′(c)(x ′− x)

and as f is convex, f ′ is non-decreasing so

f ′(x)(x ′− x)≤ f (x ′)− f (x)≤ f ′(x ′)(x ′− x)

⇔ f (x)≤ f (x ′) + f ′(x)(x − x ′) and f (x ′)≤ f (x) + f ′(x ′)(x ′− x).

Thus, working on { f (x̄k)}k>0, the above result tells us that

f (x̄k+1) ≤ f (x̄k) + f ′(x̄k+1)(x̄k+1− x̄k)

≤ f (x̄k) + f ′(x̄k)(x̄k+1− x̄k) + LN(x̄k+1− x̄k)2.

where the second inequality comes from the fact that f ′ is LN -Lipschitz by a straightfor-

ward derivation based on Assumption 4.3. Then, using Eq. (4.8), we replace x̄k+1 − x̄k by

−γk(1/N1
T∇F(xk)):

f (x̄k+1) ≤ f (x̄k)−
γk

N
f ′(x̄k)(1T∇F(xk)) +

L(γk)2

N
(1T∇F(xk))2

≤ f (x̄k)−
γk

N
(f ′(x̄k))2+

γk L

N
| f ′(x̄k)| ‖ J⊥xk‖2+

L(γk)2

N
(1T∇F(xk))2

where the inequality is due to the identity 1
T∇F(x̄k

1) = f ′(x̄k) and the fact that 1T∇F is

L-Lipschitz continuous from Assumption 4.3. Since the derivatives of the functions { fi}i=1,...,N

are bounded by Assumption 4.3, we get

f (x̄k+1)≤ f (x̄k)−
γk

N
(f ′(x̄k))2+ C1γ

k‖ J⊥xk‖2+ C2(γ
k)2 (4.9)

where C1 and C2 are finite constants.

Recalling that ‖ J⊥xk‖2 is of the same order as γk from Eq. (4.6), we see that the two last

terms are of the same order as (γk)2. Thus,

f (x̄k+1)≤ f (x̄k)−
γk

N
(f ′(x̄k))2+ C3(γ

k)2

4.2. First order methods 83

where C3 is a finite constant. Iterating this inequality, and using the summability of (γk)2

(Assumption 4.4), we get that
∞∑

k=1

γk(f ′(x̄k))2 <∞.

As
∑

k>0 γ
k = +∞, we have f ′(x̄k)−→ 0 as k→∞.

Conclusion: The fact that f ′(x̄k) −→ 0 implies that { x̄k}k>0 does not diverge. In-

deed, since f ′ is non-decreasing and the set M of its zeros is compact (Assumption 4.3),

lim inf|x |→∞ | f ′(x)| > 0 which is in contradiction with our result. Thus, the sequence { x̄k}k>0

belongs to a compact set, and its accumulation points belong to M . We have shown the

following theorem.

Theorem 4.6. Let Assumptions 4.3, 4.4 and 4.5 hold. Then, the sequence {xk}k>0 defined in

Eq. (4.4) satisfies J⊥xk→ 0 and x̄k→M .

4.2.3 Convergence of the Asynchronous distributed gradient algorithm

As in Section 3.2.2-b, we will now allow the sensors to communicate asynchronously with

their neighbors, mathematically this sums up to having the gossip matrix chosen randomly in

a set K through an i.i.d. process as previously described in Section 4.2.1-c. We thus put the

following assumptions in place of Assumption 4.5.

Assumption 4.7. The matrices of K are non-negative, doubly-stochastic with positive diagonal

elements.

Assumption 4.8. The gossip matrices sequence {Kξk}k>0 forms an i.i.d. process valued inK and

E[K] is primitive.

The sketch of the proof is quite similar to the synchronous case up to some modifications

in order to take into account the randomness of the gossip matrices. Indeed:

• combining the derivations of Section 3.2.2-b and 4.2.2-a, one can prove that

E[‖J⊥xk‖2| Fk−1] = O (γk) and that ‖J⊥xk‖2 converges almost surely to 0;

• remarking that as all the update matrices are column stochastic from Assumption 4.7,

Eq. (4.7) holds and thus Eq. (4.9) also holds under Assumption 4.3. Taking the con-

ditional expectation over this inequality and applying Robbins-Siegmund theorem (see

[74, Chap 1.3.3] or the original paper [75]) enables to give almost sure convergence

results.

Finally, one can find in [70] the following result.

Theorem 4.9. Let Assumptions 4.3, 4.4, 4.7 and 4.8 hold. Then, the sequence {xk}k>0 defined

in Eq. (4.2) satisfies J⊥xk→ 0 and x̄k→M with probability one.

84 CHAPTER 4. DISTRIBUTED OPTIMIZATION

4.2.4 Extensions

In the previous sections, we gave assumptions and proofs for the convergence of synchronous

and asynchronous distributed gradient algorithms. In particular, we assumed that every agent

could compute exactly the gradient of its cost function at any point. The case where the

gradient can only be obtained up to an additional noise leads to the well-studied domain of

distributed stochastic gradient algorithms [62, 63, 70].

In addition, the considered gossip matrices suffer from the same limitations as in Sec-

tion 3.2; as they are doubly-stochastic, there is a need for a feedback. Now, if the matrices of

K are i) only row-stochastic; ii) column-stochastic in mean; and iii) E[K] is primitive (which

was studied in Section 3.2.3 and can represent the Broadcast Gossip [7]), the almost sure

convergence still holds. Detailed proof and further considerations can be found in [76].

Finally, the algorithms ultimately based on a gradient step followed by a gossipping step

(as described in Section 4.2.1-c) can be improved in terms of convergence speed by i) im-

proving the gossip; and/or ii) improving the gradient descent. Unfortunately, improving the

convergence speed by improving the average gossip (see Chapter 3) seems to bring only little

gains by simulation. Enhancements of the gradient descent through, for example, Nesterov ac-

celeration have been provided in the literature (see [64] and references therein) and showed

to offer a significant gain in performances.

Still, first order methods only use local information of the cost functions while the op-

timum computation can be made more efficient by exploiting the knowledge of the whole

functions when available. That is what the next section deals with.

4.3 Distributed Optimization with the ADMM

In this section, we focus on solving Problem 4.2 using a celebrated proximal algorithm: the

Alternating Direction Method of Multipliers (ADMM). This implies a modification in the net-

work setup: in the previous section the agents were required to compute a gradient whereas

now the agents have to evaluate the proximal operator of their cost function (denoted by

prox f) which involves a small optimization by itself. After introducing the proximal methods,

we will focus on the dual methods of which the ADMM is a variant. Finally, we will explicit

the algorithm and see how it applies to our distributed optimization problem.

In the whole section, we will focus on the construction of a distributed optimization algorithm

using the ADMM. The reader can refer to [67] and [77] for proofs and further considerations.

4.3.1 Proximal methods

4.3.1-a The proximal operator

Before focusing on the ADMM, let us present the proximal operator which is the core of proxi-

mal methods (see [77] for a detailed overview) to which the ADMM belongs.

4.3. Distributed Optimization with the ADMM 85

Let f : Rn→R∪{+∞} be a closed proper convex function, the proximal operator prox f :

R
n→R

n of f is defined as

prox
f

(x) = argmin
u

�

f (u) +
1

2
‖x − u‖22

�

(4.10)

and is unique for all x under the above assumptions as the function in the argmin is not

everywhere infinite and is strongly convex. In most cases, it will be useful to work on the

proximal operator of the scaled function ρ−1 f with ρ > 0 i.e.

prox
ρ−1 f

(x) = argmin
u

§

f (u) +
ρ

2
‖x − u‖22

ª

. (4.11)

It is interesting in the case of distributed/parallel computing to remark that, for F separa-

ble as defined in Problem 4.2, proxF is also separable:

prox
F

(x) =

prox f1
(x1)

...

prox fN
(xN)

.

It is worth to remark that the proximal operator of the indicator function of a set C

ιC(x) =

(

0 x ∈ C

+∞ x /∈ C

is simply the (Euclidian) orthogonal projector to C that we denote as ΠC :

prox
ιC

(x) = argmin
u

�

ιC(u) +
1

2
‖x − u‖22

�

= ΠC(x). (4.12)

4.3.1-b The proximal point algorithm

Now that we have an idea of the behavior of a proximal operator let us focus on the proximal

point algorithm:

xk+1 = prox
ρ−1 f

(xk) (4.13)

with ρ a positive coefficient. Under suitable assumptions, this algorithm converges to a fixed

point of proxρ−1 f , that is a point x⋆ such that x⋆ = proxρ−1 f (x
⋆); recalling Eq. (4.11) it is

easy to see that this point minimizes f . Fig. 4.3 illustrates an iteration of the proximal point

algorithm with ρ = 1 by making appear the quadratic term in the argmin.

Interestingly, when f is differentiable, by differentiating the function inside the argmin

and using the fact that xk+1 minimizes this function, we have

∇ f (xk+1) +ρ(xk+1− xk) = 0⇔ xk+1 = xk −
1

ρ
∇ f (xk+1)

so an iteration of the proximal point algorithm can be seen as a gradient descent but the

gradient is not taken at the current point but at the arrival point (which is proxρ−1 f (x
k)). That

86 CHAPTER 4. DISTRIBUTED OPTIMIZATION

+∞

x k x k+1

1
2
‖x − xk‖2

Φ

1
2
‖x − xk‖2 +Φ

Figure 4.3: Illustration of a proximal iteration on a convex function.

+∞

x k x k+1

∇ f (xk+1)

Figure 4.4: Illustration of a proximal iteration with the implicit gradient on a convex function.

is why proximal algorithms are sometimes called implicit gradient methods, as represented by

Fig. 4.4.

An useful property is that, contrary to the gradient algorithm, the iterates {xk}k>0 gener-

ated by the proximal point algorithm are always on the same side of x⋆, as

〈xk − x⋆; xk+1− x⋆〉 = 〈xk+1− x⋆; xk+1− x⋆〉+ 〈
1

ρ
∇ f (xk+1); xk+1− x⋆〉

= ‖xk+1− x⋆‖22+
1

ρ
〈∇ f (xk+1); xk+1− x⋆〉 ≥ 0

4.3. Distributed Optimization with the ADMM 87

where 〈∇ f (xk+1); xk+1 − x⋆〉 ≥ 0 as f is convex. By Cauchy-Schwartz inequality, this also

implies that ‖xk+1− x⋆‖2 ≤ ‖xk − x⋆‖2.

In fact, except in some particular cases, computing a proximal operator is about as hard

as minimizing the function itself so the proximal point algorithm has not many direct ap-

plications but is often used combined to other optimization techniques. For example, let us

consider the problem

Problem 4.10.

min
x∈R

f (x) + g(x)

where i) f is a smooth convex function, suited for gradient methods; and ii) g is a convex function

adapted to proximal operator computation (not necessarily smooth).

A well-known algorithm solving this problem is called Forward-Backward splitting where

a forward (explicit) gradient descent is followed by a backward (implicit) gradient, that is to

say a proximal step.

Forward-Backward splitting

At each clock tick k:

◮ Forward step, on f :

zk+1 = xk − γk∇ f (xk)

◮ Backward step, on g:

xk+1 = prox
ρ−1 g

(zk+1)

This algorithm which combines the proximal point algorithm with a gradient is useful in

many case, for instance:

• If one wants to minimize f on a constraint convex set C , the gradient algorithm is not

adapted as it can result in point outside the constraints set. Taking g = ιC , one can

remark that forward-backward sums up to a projected gradient as the backward step

becomes a projection onto C .

• If one wants to find a sparse vector minimize f , it is usual to minimize the sum of f

and a penalty function g(x) = ‖x‖1 (when f is the Euclidian distance to some vector,

this technique is called least absolute shrinkage and selection operator (lasso) [78]).

The l1-norm penalty is non-smooth and thus unsuited to gradient methods (one can use

subgradients but the convergence is quite slow).

4.3.2 Constrained problems and Method of Lagrange multipliers

From now on, we will consider constrained problems, that is problems where in addition

to minimizing a function, the solution must verify a constraint. We will particularly work

88 CHAPTER 4. DISTRIBUTED OPTIMIZATION

on linear equality constraints as they are most commonly used. To treat this kind of opti-

mization problems, it is common to transform the original constrained problem into a new

unconstrained problem called the dual problem.

4.3.2-a Dual problem

Let us consider a linearly constrained problem as

Problem 4.11.

min
x∈RN

f (x)

subject to Mx = 0

with M ∈RM×N the constraint matrix.

The Lagrangian for this problem writes

L (x;λ)¬ f (x) + 〈λ;Mx〉 (4.14)

and the dual function is

D(λ)¬ inf
x
L (x;λ) =− f ∗(−MTλ) (4.15)

where λ is named the dual variable or Lagrange multiplier and f ∗ denotes the convex conjugate

(sometimes named Fenchel-Legendre transformation) of f (See [11, Chap 3.3] for details about

duality).

The dual problem of Problem 4.11 (which is called primal in opposition) is then

Problem 4.12.

sup
λ∈RM

D(λ)

where D is defined in Eq. (4.15).

If the respective solutions x⋆ and λ⋆ of Problems 4.11 and 4.12 are such that

sup
λ

L (x⋆;λ) = inf
x
L (x;λ⋆)

we say that L has a saddle point. Then, strong duality holds and one can recover a solution of

the primal problem from a solution of the dual one if it is unique:

x⋆ = argmin
x
L (x;λ⋆).

Solving Problem 4.12 using a basic gradient ascent leads to the dual ascent method:

where {γk}k>0 is a positive sequence. We remark that this algorithm involves both the primal

and dual variables, it is thus a primal-dual algorithm. This algorithm converges under i)

strong duality (which imply strict convexity of f); and ii) convergence of the dual ascent (see

Section 4.2.1-c) (which imply finiteness of f).

4.3. Distributed Optimization with the ADMM 89

Dual ascent

At each clock tick k:

◮ Primal optimum computation:

xk+1 = argmin
x
L (x;λk)

◮ Dual ascent:

λk+1 = λk + γk
∂L (xk+1;λ)

∂ λ
= λk + γk(Mxk+1)

It is interesting to remark that the first step of the algorithm is separable if f is. Explicitly,

if we replace f (x) by
∑N

i=1 fi(x i), and define the submatrices {Mi}i=1,...,N as Mx =
∑N

i=1 Mi x i ,

the first step becomes

∀i, xk+1
i
= argmin

x i

fi(x i) + 〈λk;Mi x i〉

which can be computed in parallel. However, the algorithm still needs a fusion center to

compute and spread the result of the second step.

4.3.2-b The Method of Multipliers

In order to bring robustness to the above dual ascent algorithm, it is common to consider the

augmented Lagrangian defined for Problem 4.11 as

Lρ(x;λ)¬ f (x) + 〈λ;Mx〉+
ρ

2
‖Mx‖22 (4.16)

where ρ > 0 is a penalty parameter. This augmented Lagrangian can be seen as the standard

Lagrangian for the following problem which is clearly equivalent to Problem 4.11.

Problem 4.13.

min
x∈RN

f (x) +
ρ

2
‖Mx‖22

subject to Mx = 0

with M ∈RM×N the constraint matrix.

From this augmented Lagrangian, one can derive an (augmented) dual function and solv-

ing our problem using a dual ascent on this function leads to the Method of Multipliers.

In this algorithm, one must note that the stepsize of the dual gradient ascent is the same

as the penalty parameter of the augmented Lagrangian (hence it does not change through

time). This method converges under far more general conditions that the simple dual ascent.

Unfortunately, even if f is separable, the primal step is not separable anymore in the general

case due the quadratic penalty and the matrix M.

90 CHAPTER 4. DISTRIBUTED OPTIMIZATION

Method of Multipliers

At each clock tick k:

◮ Primal optimum computation:

xk+1 = argmin
x
Lρ(x;λk)

◮ Dual ascent:

λk+1 = λk +ρ(Mxk+1)

4.3.3 Alternating Direction Method of Multipliers

Let us now derive the ADMM which combines the separability of the (simple) dual ascent

and the good convergence properties of the method of multipliers. We consider the following

split2 problem and denote by Lρ(x , z;λ) its augmented Lagrangian.

Problem 4.14.

min
x∈RN ,z∈RM

f (x) + g(z)

subject to Mx = z

with M ∈RM×N the constraint matrix.

The ADMM is a modified version of the method of multipliers where the primal variables

are updated in a sequential order3 instead of being jointly optimized.

Alternating Direction Method of Multipliers

At each clock tick k:

◮ Alternating primal optimum computation:

xk+1 = argmin
x
Lρ(x , zk;λk)

zk+1 = argmin
z
Lρ(xk+1, z;λk)

◮ Dual ascent:

λk+1 = λk +ρ(Mxk+1− zk+1)

The iterates {xk}k>0 converge to a solution of Problem 4.14 and thus of Problem 4.1 if

the function f is closed, proper and convex and if the unaugmented Lagrangian has a saddle

point. A convergence proof can be found in [67, Chap. 3.3], but it is quite tedious and not

very intuitive. In Section 4.4, we will recall monotone operators that will allow us to give a

short and comprehensive proof for the ADMM.

2the term split comes from the fact that we split the optimization problem into two parts solved by two different

variables which must verify a linear constraint.
3this is sometimes called a Gauss-Seidel pass.

4.3. Distributed Optimization with the ADMM 91

Furthermore, by combining the linear and quadratic terms in the argmin step, one can

make the proximal operators of f and g appear.

Alternating Direction Method of Multipliers (with explicit argmin steps)

At each clock tick k:

◮ Alternating primal optimum computation:

xk+1 = argmin
x

(

f (x) +
ρ

2

Mx − zk +

1

ρ
λk

2

2

)

= prox
ρ−1 f ◦M#

�

zk −
1

ρ
λk

�

zk+1 = argmin
z

(

g(z) +
ρ

2

Mxk+1− z +

1

ρ
λk

2

2

)

= prox
ρ−1 g

�

Mxk+1+
1

ρ
λk

�

◮ Dual gradient ascent:

λk+1 = λk +ρ(Mxk+1− zk+1)

where M# = (MTM)−1M is the pseudo-inverse of M.

4.3.4 Distributed optimization using the ADMM

Let us now apply the ADMM to our distributed optimization problem. We will first cast our

distributed optimization problem 4.1 into the splitting Problem 4.14 by choosing naively M=

I.

4.3.4-a A naive algorithm for optimization

Let us rewrite Problem 4.2 as

Problem 4.15.

min
x∈RN ,z∈RN

F(x) + ιSp(1)(z)

subject to x = z

where F(x) =
∑N

i=1 fi(x i) and ιSp(1) is the indicator function of the span of 1.

Now, applying the ADMM to this problem, we get the three steps are:

xk+1 = proxρ−1F

�

zk − 1

ρ
λk
�

zk+1 = proxρ−1ιSp(1)

�

xk+1+ 1

ρ
λk
�

= ΠSp(1)

�

xk+1+ 1

ρ
λk
�

λk+1 = λk +ρ(xk+1− zk+1)

where the identity for the second proximal operator comes from Eq. 4.12.

We can remark that i) the first step is separable as F is; and ii) xk+1 + 1/ρλk = zk+1 +

1/ρλk+1 from the third step which implies that ΠSp(1)λ
k+1 = 0 by injecting in the second

equation, and finally, we have from the third equation again that ΠSp(1)λ
k = 0 for all k > 0.

92 CHAPTER 4. DISTRIBUTED OPTIMIZATION

Thus, defining { x̄k}k>0 as the sequence of the averages of the {xk}k>0, the iterations rewrite

more simply by replacing the auxiliary variable z with its value.

xk+1 = proxρ−1F

�

x̄k − 1

ρ
λk
�

λk+1 = λk +ρ(xk+1− x̄k+1)

Finally, we see that these two steps can be performed in parallel by each sensor if the

average the primal variables are computed and spread by a fusion center at each iteration.

This algorithm can be thus be seen as parallel algorithm using a fusion center. Thus, this is

unfortunately not a distributed algorithm.

Parallel optimization with the ADMM

At each clock tick k:

◮ Primal update:

∀i, xk+1
i
= prox
ρ−1 fi

�

x̄k −
1

ρ
λk

i

�

◮ Average computation (by a fusion center):

x̄k+1 =
1

N
1

T
N xk+1

◮ Dual gradient ascent:

∀i, λk+1
i
= λk

i +ρ(x
k+1
i
− x̄k+1)

This algorithm is very interesting even if it is not distributed as one can see that the step

that requires a fusion comes directly from the indicator function. Indeed, this function, along

with the constraint, enforces the sensors primal variables to be equal with no consideration for

the communication graphs and thus the information that the nodes can gather locally. That is

why a fusion center is needed when considering Problem 4.15. In Section 4.3.4-b, following

the idea of [68], we will design an indicator function and a constraint matrix M that enforce

consensus while only requiring local data gathering.

4.3.4-b A distributed algorithm for optimization

To overcome the need for a global average computation (and thus for a fusion center), [68]

proposed to ensure consensus on overlapping subgraphs instead of the whole graph.

From the whole graph G = (V, E), we construct L subgraphs {Gℓ = (Vℓ, Eℓ)}ℓ=1,...,L so that

for any subgraph Gℓ, Vℓ and Eℓ are a subset of V and E respectively, Eℓ only links edges of

Vℓ, and Gℓ is connected. It is straightforward to see that ensuring the consensus on all the

subgraphs imply a consensus on the whole network if

• ∪L
ℓ=1

Vℓ = V ,

• (V,∪L
ℓ=

Eℓ) is strongly connected.

4.3. Distributed Optimization with the ADMM 93

Along with every subgraph Gℓ, we define a matrix Mℓ ∈ R
|Vℓ|×N with zeros everywhere

except at one entry per line which is 1, the i-th line non null entry corresponds to the number

of the node in i-th position in Vℓ in V . Let M =
∑L

ℓ=1 |Vi |, we define the matrix M that will

transcribe our partition of the graph as the R
M×N matrix equal to the column stacking of the

submatrices {Mℓ}ℓ=1,...,L .

It will be useful to introduce the following notations: let z be vector of size M , we split it

in blocks of size |V1|, ..., |VL | so that z = (z|1, ..., z|L) ∈ R|V1| × ...×R
|VL |. This way, if z = Mx ,

we have for all ℓ = 1, ..., L z|ℓ = Mℓx . For all i ∈ V we also define σi the set of the indexes

of the subgraphs in which i is a node and for all ℓ ∈ σi , we define zi,|ℓ as the coefficient of z|l
linked to the i-th node.

With these conditions and notations, we formulate the following problem.

Problem 4.16.

min
x∈RN ,z∈RM

F(x) + G(z)

subject to Mx = z

where F(x) ¬
∑N

i=1 fi(x i), G(z) ¬
∑L

ℓ=1 ιSp(1|Vℓ |)
(z|ℓ) with ιSp(1|Vℓ |)

is the indicator function of

the span of 1|Vℓ|.

Applying the ADMM on this problem gives us the following iterations

xk+1 = argminx

�

F(x) +
ρ

2

Mx − zk + 1

ρ
λk

2

2

�

zk+1 = prox
ρ−1

∑L

ℓ=1 ιSp(1|Vℓ |)
(·ℓ)

�

Mxk+1+ 1

ρ
λk
�

λk+1 = λk +ρ(Mxk+1− zk+1)

where the second step is again a projection ΠS to S = Sp(1|V1|)× ...×Sp(1|VL |) and combining

it with the last equation, we get that for all k > 0, ΠSλ
k = 0. The second step is separable

and thus rewrites

∀ℓ= 1, ..., L zk+1
|ℓ = z̄k+1

|ℓ 1|Vℓ| =
1

|Vℓ|
∑

i∈Vℓ

xk+1
i

1|Vℓ|

with z̄k+1
|ℓ the mean of the ℓ-th block of zk+1. This way, by separating the updates of x and λ

we get a distributed algorithm.

This algorithm is distributed at each step: i) in the second step, the average is computed

only over the subgraphs whereas it was on the whole graph in the parallel version; ii) the first

and third steps are computer locally at each sensor with the knowledge of the averages of the

subgraphs in which it is present.

Still, these steps must be performed in the right order which imply that every sensor must

have completed its proximal step before computing the subgraph average of next iteration.

This can be costly in terms of convergence time as the proximal operators computational costs

can be very different from a sensor to another (e.g. if the cost functions rely on datasets of

very different sizes). Also, the subgraphs average must be computed at the same time which

94 CHAPTER 4. DISTRIBUTED OPTIMIZATION

(Synchronous) Distributed optimization with the ADMM

At each clock tick k:

◮ Primal update:

∀i, xk+1
i
= prox
ρ−1 fi

∑

ℓ∈σi

z̄k
|ℓ −

1

ρ
λk

i,|ℓ

◮ Blockwise average computation :

∀ℓ, z̄k+1
|ℓ =

1

|Vℓ|
∑

i∈Vℓ

xk+1
i

◮ Dual gradient ascent:

∀i,ℓ ∈ σi , λ
k+1
i,|ℓ = λ

k
i,|ℓ +ρ(x

k+1
i
− z̄k+1
|ℓ)

can result in collisions in networks and thus an increase in the iteration time. This advocates

for an asynchronous scheme where a randomly chosen block would perform the three above

steps and then pass the token to another block. This will be the topic of a next section after

having introduced a useful formalism.

Remark 4.17. To overcome the synchronism related issues, it was proposed in [69] to update

the blocks one by one in a Gauss-Siedel pass instead of altogether. This partially overcome this

problem but at the expense of the introduction of a global coordinator.

4.4 Review on Monotone operators

In this section, we will see that the monotone operators are well suited for describing convex

optimization problems and encompasses the ADMM in a simple way.

The results of this section are based on [79, 80] and [81].

4.4.1 Monotone operators

An operator T on a Euclidian space4
R

N is a set-valued mapping:

T : R
N → 2R

N

x 7→ T(x)⊂R
N .

It can equivalently identified to a subset of R
N × R

N and we write (x , y) ∈ T when

y ∈ T(x). We define the domain of T as domT = {x ∈ RN : T(x) 6= ;} and we will say that

T is single-valued if for all x ∈RN , |T(x)| ≤ 1 (the notation | · | represents here the cardinality

4this definition and most properties are actually true for any Hilbert space however working in R
N clarifies the

speech.

4.4. Review on Monotone operators 95

of a set). The identity operator is I defined as {(x , x) : x ∈ RN} . We give basic properties for

some operators T and U:

• ∀ρ ∈R, ρT= {(x ,ρ y) : (x , y) ∈ T};
• T+U= {(x , y + z) : (x , y) ∈ T, (x , z) ∈ U};
• T ◦U= {(x , z) : (x , y) ∈ T, (y, z) ∈ U};
• T−1 = {(y, x) : (x , y) ∈ T}.
An operator T is said to be monotone if

∀(x , y), (x ′, y ′) ∈ T, 〈x − x ′; y − y ′〉 ≥ 0

and such an operator is maximal if it is not strictly contained in any other monotone operator

as a subset of RN ×R
N . We now define two different contraction properties:

• T is said to be non-expansive (NE) if

∀(x , y), (x ′, y ′) ∈ T, ‖x − x ′‖ ≥ ‖y − y ′‖

• T is said to be firmly non-expansive (FNE) if

∀(x , y), (x ′, y ′) ∈ T, 〈x − x ′; y − y ′〉 ≥ ‖y − y ′‖2

where the norm ‖ · ‖ is the Euclidian norm. Obviously, a firmly non-expansive operator is

non-expansive by Cauchy-Schwartz inequality. Furthermore, both properties imply that the

operator is single-valued. Figure 4.5 (which is a reproduction of [80, Fig. 1]) illustrates the

above properties by representing the behavior of the vector y − y ′ with respect to x − x ′.

x − x ′

y − y ′

monotone
NE

FNE

Figure 4.5: Representation of the monotonicity, non-expansiveness and firm non-

expansiveness of an operator.

We add the following properties about firmly non-expansive operators:

96 CHAPTER 4. DISTRIBUTED OPTIMIZATION

• T is FNE if and only if I−T is FNE;

• T is FNE if and only if 2T− I is NE;

• T is FNE if and only if T= 1/2(C+ I) with C NE.

We now define the zeros of an operator as

zerT= {x : (x , 0) ∈ T}= T
−1(0)

which will be fundamental in the following.

Remark 4.18. Let f : RN →R be a convex function, then its (sub)differential ∂ f is a monotone

operator and is maximal if f is finite everywhere. Furthermore, finding a zero of ∂ f is equivalent

to minimizing f .

4.4.2 The resolvent and the proximal point algorithm

4.4.2-a Definition and properties

We will now see how to find a zero of a monotone operator T. Let us define the resolvent of

operator T as

JT ¬ (I+T)−1

and let us give a fundamental property from [80, 79].

Lemma 4.19. Let ρ > 0. An operator T is monotone if and only if JρT is firmly non-expansive.

Furthermore, T is maximal monotone if and only if JρT is firmly non-expansive and domJρT =

R
N .

Proof. T is monotone if and only if

∀(x , y), (x ′, y ′) ∈ T, 〈x − x ′; y − y ′〉 ≥ 0

⇔ ∀(x , y), (x ′, y ′) ∈ T, 〈x − x ′;ρ y −ρ y ′〉 ≥ 0

⇔ ∀(x , y), (x ′, y ′) ∈ T, 〈x − x ′; x − x ′+ρ y −ρ y ′〉 ≥ ‖x − x ′‖2

⇔ ∀(x , x ′), 〈JρT(x)− JρT(x ′); x − x ′〉 ≥ ‖JρT(x)− JρT(x ′)‖2

which proves the first part of the theorem. The second part is due to Minty’s theorem [82]

which states that T is maximal monotone if and only if im(I+ρT) =R
N , which is equivalent

to dom(I+ρT)−1 =R
N .

Another important corollary of the previous result is the so-called representation lemma.

Lemma 4.20 (Representation Lemma). Let ρ > 0 and let T be a monotone operator of RN .

Then, every element ζ of RN can be written in at most one way as x + ρ y where (x , y) ∈ T.

Furthermore, if T is maximal then every element ζ of RN can be written in exactly one way as

x +ρ y where (x , y) ∈ T.

4.4. Review on Monotone operators 97

Proof. If T is monotone, its resolvent is firmly non-expansive and thus single valued so if

ζ ∈ domJρT, then there is a unique x such that JρT(ζ) = x⇔ ζ = x +ρ y with (x , y) ∈ T;

if ζ /∈ domJρT there is no way to write ζ in such a way. If T is also maximal, its resolvent has

full-domain and thus the above reasoning is true for all ζ.

Additionally, for a monotone operator T let us remark that the fixed points of JT

fix JT = {x : (x , x) ∈ JT}

are such that x = (I+T)−1(x) which is equivalent to x +T(x) = x ⇒ T(x) = 0. So, the fixed

points of JT are the zeros of T, we are thus interested in finding fixed points of JT.

Remark 4.21. From the resolvent JT of an operator T, one can define the Cayley transform of

T as

CT ¬ 2JT− I.

From the properties of the resolvent, one can see that the Cayley transform is non-expansive

whenever the resolvent is firmly non-expansive. Furthermore, it is easy to check that the fixed

points of the resolvent and the Cayley transform are the same.

4.4.2-b Iterating the resolvent

Finding a fixed point of a function (i.e. a single-valued operator) f by fixed point-iterations

xk+1 = f (xk) (4.17)

is a well-known problem. The most fundamental result is Banach fixed point theorem [83]

which states that if f is a contraction, that is if there is 0 ≤ α < 1 such that for all x , x ′,

α‖x − x ′‖ ≥ ‖ f (x)− f (x ′)‖, then f has a unique fixed point x⋆ and the sequence {xk}k>0

defined by Eq. (4.17) converges to x⋆.

Let us now focus on iterating the resolvent of a maximally monotone operator T

ζk+1 = JρT(ζ
k) (4.18)

with ρ > 0. Unfortunately, this resolvent is not a contraction but Lemma 4.19 tells us that

it is firmly non-expansive. The two properties are quite different (see Fig. 4.6) as firm non-

expansiveness only imply that the operator is 1-Lipschitz (non-expansive) but gives additional

monotonicity information. However, one can remark that only one point attain the equality

point in the Lipschitz inequality and thus prevents the operator to be a contraction. This

point is such that ζ− ζ′ = JρT(ζ)− JρT(ζ
′), taking ζ′ = ζ⋆ ∈ fix T implies that ζ− ζ⋆ =

JρT(ζ)−ζ⋆⇒ ζ = JρT(ζ)⇒ ζ ∈ fix T. Thus, the only points that do not verify a contraction

inequality are the ones we are interested in: the fixed points of T.

The next result will now give a fixed point theorem for the iterations of firmly non-

expansive operators due to Rockafellar [79].

98 CHAPTER 4. DISTRIBUTED OPTIMIZATION

x − x ′

y − y ′

NE

FNE

contraction

Figure 4.6: Representation of the non-expansiveness, contraction and firm non-expansiveness

of an operator.

Theorem 4.22. Let ρ > 0. If T is a maximally monotone operator such that zer T 6= ;, then

the sequence {ζk}k>0 generated by the iteration

ζk+1 = JρT(ζ
k)

started at any point converges to a point of fix JρT.

Proof. As zer T 6= ;, fix JρT 6= ; so let us take ζ⋆ ∈ fix JρT. Then, for all k > 0, one has

ζk+1− ζ⋆

2
=

JρT(ζ

k)− ζk + ζk − ζ⋆

2

=

JρT(ζ

k)− ζk

2
+

ζk − ζ⋆

2
+ 2
¬

JρT(ζ
k)− ζk;ζk − ζ⋆

¶

=

JρT(ζ

k)− ζk

2
+

ζk − ζ⋆

2− 2
¬�

I− JρT
�

(ζk);ζk − ζ⋆
¶

Now, let us remember that as T is a maximally monotone, JρT is firmly non-expansive from

Lemma 4.19 and so is I− JρT. Furthermore, as JρT(ζ
⋆) = ζ⋆, (I− JρT)(ζ⋆) = 0 and so,

ζk+1− ζ⋆

2
=

JρT(ζ

k)− ζk

2
+

ζk − ζ⋆

2

−2
¬�

I− JρT
�

(ζk)−
�

I− JρT
�

(ζ⋆);ζk − ζ⋆
¶

≤

JρT(ζ

k)− ζk

2
+

ζk − ζ⋆

2− 2

�

I− JρT
�

(ζk)−
�

I− JρT
�

(ζ⋆)

2

=

ζk − ζ⋆

2−

JρT(ζ

k)− ζk

2

which implies that

ζk − ζ⋆

2
converges as it is a non-increasing positive sequence. Also, by

iterating we get

0≤

ζ0− ζ⋆

2−
∞∑

k=0

JρT(ζ

k)− ζk

2

4.4. Review on Monotone operators 99

which implies that

JρT(ζ

k)− ζk

2
converges to zero. We can thus conclude that i) {ζk}k>0

is a bounded sequence so it has a least one accumulation point; and ii) any accumulation

point ζl is such that JρT(ζ
l) = ζl i.e.ζl ∈ fix JρT. Taking ζ⋆ = ζl an accumulation point, then

ζk+1− ζ⋆

2
goes to zero, so the sequence {ζk}k>0 converges to a point ζ⋆ ∈ fix JρT.

4.4.2-c Link to the proximal point algorithm of Section 4.3.1

Now, let us make the connection between the iterations of the resolvent and of the prox f

operator defined in 4.3.1-a.

For this, we need to put a fundamental assumption on f that we will use extensively in

the following. We will say that f ∈ Γ0(R
N) if it is a convex, proper and lower semi-continuous

(see [81, Def. 1.21]) RN →R function. This property will enable to state the following result.

Lemma 4.23. Let f ∈ Γ0(R
N) and ρ > 0. Then,

Jρ∂ f = prox
ρ f

.

Proof. For all x we have,

y = Jρ∂ f (x)

⇔ y +ρ∂ f (y) = x

⇔ ∂ f (y) +
1

ρ

�
y − x

�
= 0

⇔ y = argmin
u

�

f (u) +
1

ρ
‖u− x‖2

�

⇔ y = prox
ρ f

(x).

Hence, the resolvent iterations of the proximal point algorithm generalizes the proximal

operator iterations.

4.4.3 From the proximal point algorithm to the ADMM

The resolvent iterations generalize the proximal operator iterations, thus we should be able

to retrieve the above mentioned proximal algorithms and ultimately the ADMM.

4.4.3-a The Method of Multipliers as a proximal point algorithm

Let f ∈ Γ0(R
N). We will now consider Problem 4.11 and solve it by solving Problem 4.13.

MaximizingD is the same as minimizing−D or finding λ such that ∂D(λ) =−M∂ f ∗(−MTλ) =

0 (see the definition of D in Eq. (4.15)). Using the monotone operators, this sums up to solv-

ing the following problem.

100 CHAPTER 4. DISTRIBUTED OPTIMIZATION

Problem 4.24.

Find ζ such that T(ζ) = 0

where T=−∂D =−M∂ f ∗ ◦ (−MT) is a monotone operator.

We will now see how the proximal point algorithm translates practically. First let us rewrite

JρT in order to make explicitly appear the subdifferential of f .

T = −M∂ f ∗ ◦ (−MT)

=
¦

(u, a) : (u, a) ∈RM ×R
M , (u, a) ∈ T

©

=
¦

(u,−Mx) : (u, x) ∈RM ×R
N , (−MTu, x) ∈ ∂ f ∗

©

=
¦

(u,−Mx) : (u, x) ∈RM ×R
N , (x ,−MTu) ∈ ∂ f

©

�
I+ρT

�
=

¦

(u,u−ρMx) : (u, x) ∈RM ×R
N , (x ,−MTu) ∈ ∂ f

©

JρT =
¦

(u−ρMx ,u) : (u, x) ∈RM ×R
N , (x ,−MTu) ∈ ∂ f

©

(4.19)

where we used the fact that the output of T is necessarily proportional to −M; and the fact

that ∂ f ∗ = (∂ f)−1 as f ∈ Γ0(R
N) (see [81, Cor. 16.24] for details).

The following approach is fundamental as it enable us to derive algorithms from iterations

of resolvent. It consists in three main steps: i) the representation step; ii) the mapping step;

and iii) the re-representation step. Let us consider iteration k:

ζk+1 = JρT(ζ
k)

Representation step: we see from above that the input of JρT writes as u − ρMx with

(x ,−MTu) ∈ ∂ f . The first step is thus to state that the input, ζk, writes uniquely as uk−ρMxk

from the representation lemma (Lemma 4.20):

ζk = uk −ρMxk. (4.20)

Mapping step: from the definition of JρT and the previous definition of uk and xk we see

that its output is:

ζk+1 = uk. (4.21)

Re-representation step: as in the representation step, we need to find the values of uk+1 and

xk+1 with (xk+1,−MTuk+1) ∈ ∂ f , such that ζk+1 writes uniquely as:

ζk+1 = uk+1−ρMxk+1. (4.22)

4.4. Review on Monotone operators 101

Putting together the three equations above, we get that

uk+1−ρMxk+1 = uk with (xk+1,−MTuk+1) ∈ ∂ f

⇒ uk +ρMxk+1 = uk+1 with (xk+1,−MTuk+1) ∈ ∂ f

⇒ −MTuk −ρMTMxk+1 = −MTuk+1 ∈ ∂ f (xk+1)

⇒ 0 ∈ ∂ f (xk+1) +ρMT(Mxk+1+
uk

ρ
)

⇒ xk+1 = argmin
x

f (x) +

ρ

2

Mx +

uk

ρ

2

= argmin

x
Lρ(x; uk)

and the first line also tells us that

uk+1 = uk +ρMxk+1.

So, we get the following couple of iterations,

xk+1 = argminx

�

f (x) +
ρ

2

Mx + uk

ρ

2
�

= argminxLρ(x; uk)

uk+1 = uk +ρMxk+1
(4.23)

where the first corresponds to a primal variable as it only depends on the primal function

minimization and the second corresponds to a dual variable. The obtained algorithm is exactly

the Method of multipliers (see Section 4.3.2-b).

Lemma 4.25. Let f ∈ Γ0(R
N) and ρ > 0. The proximal point algorithm using the resolvent

JρT of operator T¬ −M∂ f ∗ ◦ (−MT) (so that T=−∂D) leads to the Method of Multipliers.

Theorem 4.26. Let f ∈ Γ0(R
N) such that 0 ∈ core(Mdom f) and ρ > 0. Then, T = −∂D =

−M∂ f ∗ ◦ (−MT) is maximal monotone with zerT 6= ; and the proximal point algorithm

ζk+1 = JρT(ζ
k)

converges to a point of ζ⋆ ∈ zerT which is dual optimal for Problem 4.11. Furthermore, the

intermediate variables {xk}k>0 = {1/ρM#(JρT − I)(ζk)}k>0 converge to a point x⋆ which is

primal optimal for Problem 4.11.

Proof. Let f ∈ Γ0(R
N), then f ∗ ∈ Γ0(R

N) by [81, Cor. 13.33] and ∂ f ∗ is maximally monotone

from [81, Th. 21.2]. This clearly imply that T which is a linear map of a maximally monotone

operator is also maximally monotone. If 0 ∈ core(Mdom f) then strong duality holds from

Slater condition (see [81, Prop. 26.18] for example) and zer T 6= ; (see [81, Def. 6.9] for

the definition of core).

Then, Theorem 4.22 states that ζk+1 → ζ⋆ ∈ zerT as k → ∞ and ζ⋆ is obviously

dual optimal for Problem 4.11. The representation lemma imply that the intermediate se-

quences {xk}k>0 and {uk}k>0 both converge and recalling Eq. (4.19), we have the accumu-

lation point is such that ζ⋆ = u⋆ and Mx⋆ = 0. Finally, looking at Eq. (4.23), we see that

x⋆ = argminxLρ(x; u⋆) and is thus primal optimal thanks to strong duality.

102 CHAPTER 4. DISTRIBUTED OPTIMIZATION

Putting together Theorem 4.26 and Lemma 4.25 proves the convergence of the Method

of Multipliers. The design of the Method of Multipliers in Section 4.3.2-b may seem artificial

or tinkered from the Dual Ascent while it is simply a proximal point algorithm applied to the

subdifferential of the dual function. In particular, the equality between the penalty parameter

of the augmented Lagrangian and the stepsize of the dual ascent is in fact essential.

4.4.3-b Douglas-Rachford splitting and Lions-Mercier operator

We have seen that the Method of Multipliers efficiently solves a minimization problem with

a linear equality contraint (Problem 4.11). Applying this method for solving a minimization

problem engaging two functions and a linear equality constraint (Problem 4.14) lead to the

following iterations:

(xk+1, zk+1) = argmin(x ,z)

�

f (x) + g(z) +
ρ

2

Mx − z + uk

ρ

2
�

= argmin(x ,z)Lρ(x , z; uk)

uk+1 = uk +ρ
�

Mxk+1− zk+1
�

but unfortunately, the first step is in general quite hard to compute. Hence, most optimization

algorithms solve this problem by splitting the argmin between the different functions [84].

In terms of operators, the opposite of the gradient of the dual function writes as

− ∂D =−M∂ f ∗ ◦ (−MT)
︸ ︷︷ ︸

¬T

+ ∂ g∗
︸︷︷︸

¬U

(4.24)

and, whereas Jρ(T+U) is hard to compute (see the above paragraph), JρT and JρU are indi-

vidually easier to compute. A splitting proximal algorithm thus employs only the resolvents

JρT and JρU of T and U and not Jρ(T+U).

Many splitting methods exist in the literature (e.g. Peaceman-Rachford) but Douglas-

Rachford splitting is the most celebrated one [85]. From this splitting technique, Lions and

Mercier [86] derived an operator Sρ,T,U so that JSρ,T,U
corresponds to Douglas-Rachford split-

ting of Jρ(T+U). This operator writes

Sρ,T,U =
��

u+ρb, v − u
�

: (u, a) ∈ T, (v, b) ∈ U,u+ρa = v −ρb
	

(4.25)

and thus one has

JSρ,T,U
= JρT ◦

�

2JρU− I
�

+
�

I− JρT
�

(4.26)

or, equivalently

JSρ,T,U
=

1

2

�

I+CρT ◦CρU
�

(4.27)

⇔ CSρ,T,U
= CρT ◦CρU (4.28)

where CρT, CρU, and CSρ,T,U
are the Cayley transforms of T, U, and Sρ,T,U respectively (see

Remark 4.21).

Let us now give a fundamental result by Lions and Mercier [86] about the monotonicity

of this operator.

4.4. Review on Monotone operators 103

Theorem 4.27. Let ρ > 0. If T and U are monotone, then Sρ,T,U is monotone; furthermore,

JSρ,T,U
is firmly non-expansive. If T and U are maximal monotone, then Sρ,T,U is maximal

monotone; furthermore, JSρ,T,U
is firmly non-expansive and has full domain.

Proof. Let (u, a), (u′, a′) ∈ T , (v, b), (v′, b′) ∈ U such that u+ ρa = v − ρb and u′ + ρa′ =

v′−ρb′. Then,

(u′+ρb′)− (u+ρb); (v′− u′)− (v − u)

�

= ρ

�

(u′+ρb′)− (u+ρb);
1

ρ
(v′− u′)− b′−

1

ρ
(v − u) + b

�

+ρ

(u′+ρb′)− (u+ρb); b′− b

�

= ρ

u′− u; a′ − a

�
+ρ2

b′− b; a′− a

�

+ρ

(v′−ρa′)− (v −ρa); b′− b

�

= ρ

u′− u; a′ − a

�
+ρ2

b′− b; a′− a

�

+ρ

v′− v; b′ − b
�
−ρ2

a′− a; b′− b

�

= ρ

u′− u; a′ − a

�
+ρ

v′− v; b′− b

�

and so, as long as ρ > 0 and both T and U are monotone, Sρ,T,U is monotone. The firm

non-expansiveness of JSρ,T,U
comes directly from Lemma 4.19. Finally, using Minty’s theorem

[82] and considering Eq. (4.26), one can see that if T and U are maximal monotone, JρT and

JρU have full domain and so does JSρ,T,U
which concludes the proof.

This result along with Theorem 4.22 tells us that under standard monotonicity assump-

tions on T and U, the proximal point algorithm with JSρ,T,U
goes to a fixed point of this

resolvent if any. It is thus interesting to characterize the fixed points of JSρ,T,U
i.e. the zeros

of Sρ,T,U.

Theorem 4.28. Let ρ > 0. If T and U are monotone then ζ ∈ fixJSρ,T,U
⇔ x ∈ zer(T+U)

where x = JρU(ζ).

Proof. First, from Eq. (4.27), we get that fixJSρ,T,U
= fixCρT ◦ CρU. Then, we get from [81,

Prop. 25.1(ii)] that JρU(fixCρT ◦ CρU) = zer(T+U) which (along with the representation

lemma) concludes the proof.

Remark 4.29. From the two above theorems, we see that if ρ > 0 and both T and U are

maximal monotone with zer(T + U) 6= ;, then JSρ,T,U
is firmly non expansive and thus the

induced proximal point algorithm converges to ζ⋆ such that JρU(ζ
⋆) ∈ zer(T+U). The resolvent

of the Lions-Mercier operator has thus the same properties as the resolvent of T+U while only

depending on the individual resolvents JρT and JρU.

104 CHAPTER 4. DISTRIBUTED OPTIMIZATION

4.4.3-c The ADMM as a proximal point algorithm

Let f , g ∈ Γ0(R
N). We now solve Problem 4.14 using Douglas-Rachford splitting. For this, we

consider the two following operators

T¬−M∂ f ∗(−MT) and U= ∂ g∗ (4.29)

so that T+U=−D and apply the proximal point algorithm with the resolvent of Lions-Mercier

operator. We now write explicitly this resolvent as in Section 4.4.3-a.

Sρ,T,U =
¦�

u+ρb, v − u
�

: (u, a) ∈ −M∂ f ∗(−MT), (v, b) ∈ ∂ g∗,u+ρa = v −ρb
©

=
¦�

u+ρb, v − u
�

: (−MTu,−Mx) ∈ ∂ f ∗, (v, b) ∈ ∂ g∗,u−ρMx = v −ρb
©

=
¦�

u+ρb, v − u
�

: (−Mx ,−MTu) ∈ ∂ f , (b, v) ∈ ∂ g,u−ρMx = v −ρb
©

I+ Sρ,T,U =
¦�

u+ρb, v +ρb
�

: (−Mx ,−MTu) ∈ ∂ f , (b, v) ∈ ∂ g,u−ρMx = v −ρb
©

JSρ,T,U
=

¦�
v +ρb,u+ρb

�
: (−Mx ,−MTu) ∈ ∂ f , (b, v) ∈ ∂ g,u−ρMx = v −ρb

©

We now use the same approach as in Section 4.4.3-a to derive explicit iterations from the

proximal point algorithm i.e. i) the representation step; ii) the mapping step; and iii) the

re-representation step. Let us consider iteration k:

ζk+1 = JSρ,T,U
(ζk)

Representation step: we see from above that the input of JSρ,T,U
writes as v + ρb with

(v, b) ∈ U= ∂ g∗. The first step is thus to state that the input, ζk, writes uniquely as vk +ρbk

from the representation lemma (Lemma 4.20):

ζk = vk +ρbk. (4.30)

Mapping step: from the definition of JSρ,T,U
we derive two equalities. First, the equality inside

the operator along with the representation lemma and the previous definition of vk and bk

implies that vk −ρbk writes uniquely5 as u−ρMx with (u,−Mx) ∈ T :

uk+1−ρMxk+1 = vk −ρbk. (4.31)

Secondly, we get that the output of the resolvent is:

ζk+1 = uk+1+ρbk. (4.32)

Re-representation step: as in the representation step and in order to find the values of vk+1

and bk+1 with (vk+1, bk+1) ∈ U= ∂ g∗, so that ζk+1 writes uniquely as:

ζk+1 = vk+1+ρbk+1. (4.33)

5as they use some properties of the operator, we see them as variables of time k+ 1.

4.4. Review on Monotone operators 105

Now, writing Eq. (4.31) of the mapping step, we get that

uk+1−ρMxk+1 = vk −ρbk with (xk+1,−MTuk+1) ∈ ∂ f

⇒ −ρMTMxk+1−MTvk +ρMT bk =−MTuk+1 ∈ ∂ f (xk+1)

⇒ 0 ∈ ∂ f (xk+1) +ρMT

�

Mxk+1− bk +
vk

ρ

�

⇒ xk+1 = argmin
x

f (x) +

ρ

2

Mx − bk +

vk

ρ

2

= argmin

x
Lρ(x , bk; uk).

Now combining Eqs. (4.31), (4.32) and (4.33), we have

vk+1+ρbk+1 = uk+1+ρbk = vk +ρMxk+1 with (bk+1, vk+1) ∈ ∂ g

⇒ vk +ρMxk+1−ρbk+1 = vk+1 ∈ ∂ g(bk+1)

⇒ 0 ∈ ∂ g(bk+1)−ρ
�

Mxk+1− bk+1+
vk

ρ

�

⇒ bk+1 = argmin
b

g(b) +

ρ

2

Mxk+1− b+

vk

ρ

2

= argmin

b

Lρ(xk+1, b; uk)

and the first line also tells us that

vk+1 = vk +ρ
�

Mxk+1− bk+1
�

.

So, we get the following iterations,

xk+1 = argminx

�

f (x) +
ρ

2

Mx − bk + vk

ρ

2
�

= argminxLρ(x , bk; uk)

bk+1 = argminb

�

g(b) +
ρ

2

Mxk+1− b+ vk

ρ

2
�

= argminbLρ(xk+1, b; uk)

vk+1 = vk +ρ
�

Mxk+1− bk+1
�

(4.34)

and as before, x and b are primal variables and v is a dual variable. The obtained algorithm

is now exactly the Alternating Direction Method of Multipliers (see Section 4.3.3).

Lemma 4.30. Let f , g ∈ Γ0(R
N) and ρ > 0. The proximal point algorithm using the re-

solvent JSρ,T,U
of the Lions-Mercier operator associated with the coefficient ρ and operators

T ¬ −M∂ f ∗(−MT) and U = ∂ g∗ (so that T+ U = −∂D) leads to the Alternating Direction

Method of Multipliers.

Theorem 4.31. Let f , g ∈ Γ0(R
N) such that 0 ∈ core(dom g −Mdom f) and ρ > 0. Then,

T = −M∂ f ∗ ◦ (−MT) and U = ∂ g∗ are maximal monotone with zer(T + U) 6= ; and the

proximal point algorithm

ζk+1 = JSρ,T,U
(ζk)

106 CHAPTER 4. DISTRIBUTED OPTIMIZATION

where Sρ,T,U is the Lions-Mercier operator (see Eq. (4.25)) converges to a point ζ⋆ such that

v⋆ = JρU(ζ
⋆) ∈ zer(T+ U) is dual optimal for Problem 4.14. Furthermore, the intermediate

variables {xk}k>0 = {1/ρM#(JρT − I)(ζk)}k>0 converge to a point x⋆ which is primal optimal

for Problem 4.14.

Proof. Let f , g ∈ Γ0(R
N), then f ∗, g∗ ∈ Γ0(R

N) by [81, Cor. 13.33] and ∂ f ∗ , ∂ g∗ are

maximally monotone from [81, Th. 21.2]. This clearly implies that T and U are maximal

monotone. Let us consider Problem 4.14 (which is equivalent to the problem of [81, Def.

15.19]); if 0 ∈ core(dom g −Mdom f), strong duality holds from [81, Prop. 15.22] and

zer(T+U) 6= ;.
Then, Theorem 4.22 states that ζk+1 → ζ⋆ ∈ zerSρ,T,U = as k → ∞ and Theorem 4.28

tells us that v⋆ = JρU(ζ
⋆) ∈ zer(T+ U) is dual optimal. Using the fact that v⋆ is a zero of

T+ U, we get that T+ U ∋ (v⋆,−Mx⋆ + b⋆) = (v⋆, 0) so Mx⋆ = b⋆ which implies that the

found zero is feasible. Finally, looking at Eq. (4.34), we see that x⋆ = argminxLρ(x , b⋆; u⋆)

and is thus primal optimal thanks to strong duality.

Putting together Theorem 4.31 and Lemma 4.30 prove the convergence of the Alternating

Direction Method of Multipliers. The formalism of monotone operators enabled us to derive

easily proximal algorithms and give precise and flexible proofs for their convergence. In the

next section, we will build a asynchronous optimization algorithm based on the ADMM from

a randomized proximal point algorithm.

4.5 Asynchronous Distributed Optimization using random ADMM

In this section we develop our main results about the design and convergence of an asyn-

chronous distributed optimization algorithm based on the ADMM. For this purpose, we prove

a general result about the convergence of a random version of the proximal point algorithm.

4.5.1 Motivation

Recalling Section 4.3.4-b, an efficient technique to perform distributed optimization on a net-

work is to partition the underlying graph into subgraphs and then solve Problem 4.16 which

is equivalent to Problem 4.2 under some conditions about the subgraphs. We saw that using

standard ADMM to solve this problem leads to a distributed algorithm where the computa-

tions are done locally and the communications only involve neighbors. However, the three

steps must be performed in the right order, one after another which is unfortunate as the prox-

imal step which is performed individually at each node may take very different computation

times between the sensors; for example, in the case of learning with heterogeneous datasets.

Hence, it would be pertinent to update only one subgraph at a time randomly.

Looking at the distributed algorithm, it is clear that the M -sized variables (namely z and λ)

are updated block by block, where a block represent a subgraph. Thus, recalling the previous

4.5. Asynchronous Distributed Optimization using random ADMM 107

section, updating only one block seems similar to operating a Lions-Mercier resolvent where

only the components of the block are kept while the others stay the same.

We will first formalize the notion of block operators and prove a new convergence result

about a block-random proximal point algorithm. Then, we will derive a new asynchronous

optimization algorithm based on block-random iterations of the resolvent of Lions-Mercier

operator.

4.5.2 Subgraphs and block-variables

As in Section 4.3.4-b, we divide the underlying graph G = (V, E) into L subgraphs {Gℓ =
(Vℓ, Eℓ)}ℓ=1,...,L . For any variable ζ of size M ¬

∑L

ℓ=1 |Vℓ|, we define the ℓ-th block-variable (of

size |Vℓ|) by ζ|ℓ so that

ζ =

ζ|1
...

ζ|L

where ∀ℓ, ζ|ℓ =
�

ζi,|ℓ
�

i∈Vℓ
.

The matrix linking the nodes of the graph V to the subgraphs nodes V1× ...×VL is denoted

by M ∈RM×N . As with the variables, we divide this matrix into L blocks so that

M=

M1

...

ML

where ∀ℓ, Mℓ ∈R|Vℓ|×N .

where each Mℓ has only one non-null coefficient per line which is 1 so that if Vℓ = (i1, ..., i|Vℓ|) ∈
V |Vℓ|, (Mℓ)1,i1

= 1 and so on... For any node i ∈ V , we define the set of blocks (i.e.subgraphs)

to which it belongs by σi = {ℓ ∈ {1, ..., L} : i ∈ Vℓ}. With this notation, if z = Mx , we have

that for all i ∈ V and all ℓ ∈ σi that zi,|ℓ = x i .

In terms of problem reformulation, we replace the consensus indicator ιSp(1N)
(z) of Prob-

lem 4.15 with G(z)¬
∑L

ℓ=1 ιSp(1|Vℓ |)
(z|ℓ) where ιSp(1|Vℓ |)

is the indicator function of the span of

1|Vℓ| to obtain Problem 4.16. The two problems are equivalent under the following assump-

tion.

Assumption 4.32. In order to have G(z)¬
∑L

ℓ=1 ιSp(1|Vℓ |)
(z|ℓ) = ιSp(1M)

(z), we assume that

• ∪L
ℓ=1

Vℓ = V;

• (V,∪L
ℓ=

Eℓ) is strongly connected.

This way, we obtained a problem fully separable between the blocks of the variables.

Now, let us see how the proximal point algorithm behaves when it is updated block per block

randomly.

108 CHAPTER 4. DISTRIBUTED OPTIMIZATION

4.5.3 Random Gauss-Seidel iterations on the proximal point algorithm

From a single valued operator T of RM we define for all ℓ = 1, .., L the block-mapping Ť|ℓ :

R
M →R

|Vℓ| so that for all ζ ∈RM ,

T(ζ) =

Ť|1(ζ)
...

Ť|L(ζ)

and additionally we define for all ℓ= 1, .., L the block-operator T|ℓ : RM →R
M verifying

T
|ℓ(ζ) =

ζ|1
...

Ť|ℓ(ζ)
...

ζ|L

.

Let T be a firmly non-expansive operator, and considering the proximal point algorithm

iterations

ζk+1 = T(ζk)

its block Gauss-Seidel version then writes

ζk+1 = T
|L ◦ · · · ◦T|1(ζk).

As mentioned before, we are interested in a randomized version of this block Gauss-Seidel

pass; namely, let us define the block-selection process {ξk}k>0 and let us put the following

assumption.

Assumption 4.33. The process {ξk}k>0 is independent and identically distributed on {1, ..., L}
with P[ξ1 = ℓ] = pℓ > 0 for all ℓ= 1, ..., L.

We now state our main contribution.

Theorem 4.34. Let Assumptions 4.32 and 4.33 hold. Let T be a firmly non-expansive operator

with full domain such that fixT 6= ;. Then, for any initial value, the sequence {ζk}k>0 produced

by iterations

ζk+1 = T
|ξk+1

(ζk)

converges almost surely to a point of fixT.

Proof. Let us define the diagonal matrix P ∈RM×M such that the entries of the ℓ-th block are

p
−1/2

ℓ
. We denote by ‖·‖P the vector norm weighted by matrix P so that ‖ζ‖2P =

∑L

ℓ=1 p−1
ℓ
‖ζ|ℓ‖2.

4.5. Asynchronous Distributed Optimization using random ADMM 109

Fix ζ⋆ ∈ fixT. Conditionally to the sigma-field of the past selections Fk = σ(ξ
1, ...,ξk), we

get

E
�

ζk+1− ζ⋆

2

P

�
�
�Fk

�

=

L∑

ℓ=1

pℓ

T
|ℓ(ζk)− ζ⋆

2

P

=

L∑

ℓ=1

pℓ

1

pℓ

Ť
|ℓ(ζk)− ζ⋆|ℓ

2

+

L∑

ℓ′=1
ℓ′ 6=ℓ

1

pℓ′

ζk
ℓ′ − ζ

⋆
|ℓ′

2

=

T(ζk)− ζ⋆

2
+

L∑

ℓ=1

1− pℓ

pℓ

ζk
|ℓ − ζ

⋆
|ℓ

2

=

ζk − ζ⋆

2

P
+

T(ζk)− ζ⋆

2−

ζk − ζ⋆

2

Now, using the fact that for a firmly non-expansive operator (see the proof of Theo-

rem 4.22),

T(ζk)− ζ⋆

2−

ζk − ζ⋆

2 ≤−

T(ζk)− ζk

2

we get a fundamental inequality

E
�

ζk+1− ζ⋆

2

P

�
�
�Fk

�

≤

ζk − ζ⋆

2

P
−

T(ζk)− ζk

2
(4.35)

which shows that {‖ζk − ζ⋆‖2P}k>0 is a non-negative super-martingale with respect to the

filtration {Fk}k>0. Hence, it converges to a non-negative random variable Xζ⋆ with probability

one.

Given a countable dense subset F of fixT, we have that ‖ζk − ζ‖P→ Xζ for all ζ ∈ F with

probability one. Let ζ⋆ ∈ fixT and let ǫ > 0, as F is dense one can choose ζ ∈ F such that

‖ζ− ζ⋆‖P < ǫ. Putting together these two assertion, we get that with probability one,

‖ζk − ζ⋆‖P ≤ ‖ζk − ζ‖P+ ‖ζ− ζ⋆‖P ≤ Xζ + 2ǫ

for k large enough. Similarly, one has

‖ζk − ζ⋆‖P ≥ ‖ζk − ζ‖P−‖ζ− ζ⋆‖P ≥ Xζ − 2ǫ

which implies that

C1: There is a probability one set onto which ‖ζk − ζ⋆‖P converges for all ζ⋆ ∈ fixT.

Taking the expectation onto Eq. (4.35) and iterating over k, we get

∞∑

k=0

E
h
T(ζk)− ζk

2
i

≤

ζ0− ζ⋆

2

P
(4.36)

which implies by Markov’s inequality and Borel-Cantelli lemma that

C2:

T(ζk)− ζk

2→ 0 almost surely.

110 CHAPTER 4. DISTRIBUTED OPTIMIZATION

We now consider an elementary event in the probability one set where C1 and C2 hold.

On this event, C1 implies that {ξk}k>0 is bounded and thus has accumulation points from

Bolzano-Weierstrass theorem; C2 imply that the accumulation points are in fixT. Assume

that ζ⋆a ∈ fixT is an accumulation point, then ‖ζk − ζ⋆a‖P converges and lim‖ζk − ζ⋆a‖P =
lim inf‖ζk − ζ⋆a‖P = 0 which shows that ξ⋆a is unique.

We just proved that the proximal point algorithm can be performed randomly per block

without loss in the convergence properties.

4.5.4 Asynchronous Distributed Optimization with the ADMM

Let f , g ∈ Γ0(R
N). Recalling the computations of Section 4.4.3, the block random iterations

of the proximal point algorithm with the resolvent of Lions-Mercier operator writes

ζk+1 = J
|ξk+1

Sρ,T,U
(ζk)

which is the same as

ζ̃k+1 = J
|ξk+1

Sρ,A,B
(ζk)

ζk+1

|ξk+1 = ζ̃
k+1

|ξk+1 and ∀ℓ 6= ξk+1, ζk+1
|ℓ = ζk

|ℓ

so at time k the update of the ξk+1-th block of ζ is the same as in Section 4.4.3 whereas the

others keep their previous value.

Following the proof of Theorem 4.31 except for the convergence of the proximal point

algorithm which is now provided by Theorem 4.34, we get the following theorem.

Theorem 4.35. Let f , g ∈ Γ0(R
N) such that 0 ∈ core(dom g −Mdom f) and ρ > 0. Let

Assumptions 4.32 and 4.33 hold. Then, T = −M∂ f ∗ ◦ (−MT) and U = ∂ g∗ are maximal

monotone with zer(T+U) 6= ; and the randomized Gauss-Seidel proximal point algorithm

ζk+1 = J
|ξk+1

Sρ,T,U
(ζk)

where Sρ,T,U is the Lions-Mercier operator (see Eq. (4.25)) converges almost surely to a point

ζ⋆ such that v⋆ = JρU(ζ
⋆) ∈ zer(T+ U) is dual optimal for Problem 4.14. Furthermore, the

intermediate variables {xk}k>0 = {1/ρM#(JρT − I)(ζk)}k>0 converge almost surely to a point

x⋆ which is primal optimal for Problem 4.14.

Derivation of our asynchronous optimization algorithm based on the ADMM: using

the representation steps of Eqs. (4.30) and (4.33), one can see that only the ξk+1-th block of

variables v and b need to be updated. Then, looking at Eq. (4.34) we see that these update

need implicitly the update of the variable x; more precisely, only the update of the ξk+1-

th block of Mx is needed, which corresponds to the {x i}i∈V
ξk+1

. The iterations of this new

4.5. Asynchronous Distributed Optimization using random ADMM 111

algorithm thus write

Mξk+1 x = argminx

(

f|ξk+1(x) +
ρ

2

Mξk+1 x − bk

|ξk+1 +
vk

|ξk+1

ρ

2
)

bk+1

|ξk+1 = argminb

(

g|ξk+1(b) +
ρ

2

Mξk+1 xk+1− b+

vk

|ξk+1

ρ

2
)

vk+1

|ξk+1 = vk

|ξk+1 +ρ
�

Mξk+1 xk+1− bk+1

|ξk+1

�

(4.37)

where f|ξk+1 and g|ξk+1 are the functions f and g restricted in their operands to the ξk+1-th

block. The entries that are not linked to the current block stay the same. Finally, com-

bining these randomized iterations of the ADMM with the separable functions defined in

Problem 4.16, we are able to derive a fully-distributed optimization algorithm based on the

ADMM.

Asynchronous distributed optimization with the ADMM

At each clock tick k, let ξk+1 be the index of the activating subgraph:

◮ Primal update in the block:

∀i ∈ V|ξk+1 , xk+1
i

= argmin
x

fi(x) +

ρσi

2

x −
1

σi

∑

ℓ∈σi

z̄k
|ℓ −

1

ρ
λk+1

i,|ℓ

2

= prox
σ−1

i
ρ−1 fi

1

σi

∑

ℓ∈σi

z̄k
|ℓ −

1

ρ
λk+1

i,|ℓ

◮ Block average computation :

z̄k+1

|ξk+1 =
1

|V|ξk+1 |
∑

i∈V|ξk+1

xk+1
i

◮ Dual ascent in the subgraph:

λk+1

i,|ξk+1 = λ
k

i,|ξk+1 +ρ(x
k+1
i
− z̄k+1

|ξk+1)

◮ The other blocks do not change their values:

∀i /∈ Vξk+1 , xk+1
i
= xk

i ∀ℓ 6= ξk+1, zk+1
|ℓ = zk

|ℓ,λ
k+1
|ℓ = λk

|ℓ

Lemma 4.36. Let f ∈ Γ0(R
N) be separable, g ∈ Γ0(R

M) be defined as in Problem 4.16, and

ρ > 0. The randomized Gauss-Seidel proximal point algorithm of Theorem 4.34 using the

resolvent JSρ,T,U
of the Lions-Mercier operator associated with the coefficient ρ and operators

T¬ −M∂ f ∗(−MT) and U= ∂ g∗ (so that T+U=−∂D) leads to the Asynchronous distributed

optimization with the Alternating Direction Method of Multipliers.

112 CHAPTER 4. DISTRIBUTED OPTIMIZATION

Hence, our proposed algorithm converges using Theorem 4.35.

We can see that this algorithm is well suited for a fully-distributed implementation as at

each time only one subgraph needs to compute and exchange information while the other stay

completely idle. Each sensor i has to know: i) its own function fi , the common parameter ρ

and how to perform a proximal operator; and ii) the variables z|ℓ and λ|ℓ for all ℓ ∈ σi and

at each time (this is not limiting as, at each iteration, a new version of these variables are

computed, it must take part to the computation). Then, the nodes only exchange their values

locally in the subgraphs without any fusion center.

Remark 4.37. Taking only one subgraph equal to the original graph gives the original Distributed

optimization with the ADMM. Furthermore, if we choose as subgraphs each edges of the original

graph with the two ends (Ge = ((i, j), {i, j}), e = {i, j} ∈ E), then the block average computation

is similar to the Random Gossip algorithm (see Section 3.2.2-b).

4.6 Numerical Illustrations

Let us consider the 5-agents network depicted in Fig. 4.7 and divide it into subgraphs so that

each subgraph contains one edge of the original graph and thus two nodes; this gives us 5

subgraphs as seen in Fig. 4.8. All simulations presented in this section will use these graph

and subdivisions.

Figure 4.7: Considered underlying network.

We choose to illustrate the performance of the algorithms mentioned in this chapter using

quadratic functions as represented in Fig. 4.9. This comes from two main reasons: i) for a fair

use of the gradient, the functions have to be smooth; and ii) quadratic (norms) functions are

often used in estimation (without a penalty term) and thus can be met in practice.

In Fig. 4.10, we plot the Squared Error versus the number of iterations for a realiza-

tion of various distributed optimization algorithm. We compared two first-order algorithms

and two ADMM-based ones; for each couple, we took a synchronous and an asynchronous

algorithm. Namely, we plot i) the Synchronous Distributed gradient descent with γk = 1/k

4.6. Numerical Illustrations 113

(a) G1 (b) G2 (c) G3

(d) G4 (e) G5

Figure 4.8: Subgraphs obtained by pairwise division.

Global cost function

Global minimum

Sensors cost functions

Local minima

Figure 4.9: Local and global cost functions.

(see Section 4.2.2); ii) the Asynchronous Distributed gradient descent with γk = 1/k (see Sec-

tion 4.2.3); iii) the Synchronous Distributed optimization with the ADMM with ρ = 1 (see

Section 4.3.4-b); and iv) the proposed Asynchronous Distributed optimization with the ADMM

with ρ = 1 (see Section 4.5.4). As expected, the gradient-based algorithms both converge

rather slowly compared to the ADMM-based ones whose convergence is clearly exponential.

It is very interesting to remark that the asynchronous gradient fluctuates quite a lot which

prevents to use a stopping criterion based on the iterations convergence (for instance, in prac-

tical systems it is often interesting to stop the algorithm when ‖xk+1− xk‖ ≤ ǫ for some ǫ > 0

in order not to waste computational time to acquire an unnecessary precision). Finally, we

remark that even if less quick, our proposed asynchronous ADMM has the same linear con-

vergence as the synchronous distributed ADMM; furthermore, it does not fluctuate a lot while

114 CHAPTER 4. DISTRIBUTED OPTIMIZATION

decreasing, thus, it is perfectly compatible with any iterations-based stopping criterion.

0 200 400 600 800 1,000 1,200 1,400

10−5

10−4

10−3

10−2

10−1

100

Number of iterations

S
q
u

a
re

d
E

rr
o
r

Synchronous Distributed Gradient descent

Asynchronous Distributed Gradient descent

Synchronous Distributed Optimization with the ADMM

Asynchronous Distributed Optimization with the ADMM

Figure 4.10: Squared Error versus the number iteration for various distributed optimization

algorithms.

In Figs. 4.11 and 4.12, we plot the Squared Error versus the number of proximal opera-

tor computations and versus the number of communications for the two ADMM-based algo-

rithms. The synchronous version requires 5 proximal operations and 10 communications per

iteration while the asynchronous version uses 2 proximal operations and 3 communications.

This enables us to see that when considering the computational time (of which the number of

proximal operator computations is a fair approximation) or the network usage (represented

by the number of local communications), then the difference between the synchronous and

the asynchronous version is less important. Furthermore, if one adds the congestion of the

network on the parts where the subgraphs overlap and the differences in the computation

times of the different proximal operators, the asynchronous version seems to be better suited

to a decentralized network. In order to compare more precisely these two version, a general

model for a network of agents including computation times, network congestion and so on

would be useful. Designing such a model and analyzing the benefits of asynchronism is a very

interesting perspective.

4.7 Conclusion

In this chapter, we introduced a formalism that enabled us to derive a new asynchronous

optimization algorithm based of the well-known Alternating Direction Method of Multipliers

and proved its convergence using a new randomized version of the proximal point algorithm.

In a sensor network, this algorithm permits to obtain efficiently the wanted optimum by only

using local data and asynchronous communications.

4.7. Conclusion 115

0 50 100 150 200 250 300 350 400 450 500 550 600

10−4

10−3

10−2

10−1

100

Number of proximal operations

S
q
u

a
re

d
E

rr
o
r

Synchronous Distributed Optimization with the ADMM

Asynchronous Distributed Optimization with the ADMM

Figure 4.11: Squared error versus the number of proximal operator computations for ADMM-

based algorithms.

0 50 100 150 200 250 300 350 400 450 500 550 600

10−4

10−3

10−2

10−1

100

Number of communications

S
q
u

a
re

d
E

rr
o
r

Synchronous Distributed Optimization with the ADMM

Asynchronous Distributed Optimization with the ADMM

Figure 4.12: Squared error versus the number of communications for ADMM-based algo-

rithms.

This topic is flourishing and has a major importance in the signal processing for Big Data

and Social Networks; it is thus at the core of our research perspectives. For instance, finding

tight speed bounds for ADMM-based algorithm is still an issue along with the hyper-parameter

choice. Another promising axis of research is the study of the benefits of an asynchronous,

local algorithm as the one we proposed in the case of an server network subject to congestion,

limited computational times, which thus implies the definition of a global network metric.

Finally, we are often more interested to the optimal solution up to a small (freely se-

116 CHAPTER 4. DISTRIBUTED OPTIMIZATION

lectable) error and the quicker an algorithm can ensure to be this close to the solution, the

better it is. The costly step in our proposed algorithm is the computation of the proximal

operator as it implies a small optimization subproblem. While it is known (from [80]) that

one can compute the proximal operator up to a summable error over time without affecting

the convergence, recent works [87, 88] seem to indicate that allowing a constant (possibly

random) error at each step enable a faster convergence to a approximate solution.

This work has led to the following publications:

C4 F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous Distributed Optimization

using a Randomized Alternating Direction Method of Multipliers,” in IEEE Conference on

Decision and Control (CDC), December 2013.

CONCLUSION AND PERSPECTIVES

The work carried out in this thesis dealt with the analysis of distributed asynchronous al-

gorithms that enabled the network to reach consensus over a value of interest. Depending

on the objective value (maximum, average, or solution of an optimization problem), various

algorithms have been proposed and analyzed.

In Chapter 2, we focused on the problem of finding and spreading the maximum between

the initial values of the sensors; this problem can be cast into the rumor spreading frame-

work. For this problem, we designed and analyzed three different algorithms: one based on

a random walk, one based on pairwise communications, and one based on broadcast com-

munications. We reminded the convergence speed results of literature for the first one and

performed a new analysis of the convergence speed for the last two ones. The conclusions

of this chapter are twofold: i) broadcasting significantly increases the speed of information

spreading; and ii) we roughly pay a factor of about the size of the network in the mean

convergence speed for not knowing which nodes have the information (maximum value or

rumor).

In Chapter 3, we concentrated on the well-known problem of computing the average of

the initial values of a sensor network. Although extensively studied, broadcast communi-

cations are allowed by only a few algorithms of the literature, especially, algorithms based

on the so-called Sum-Weight framework. We proved very general convergence and conver-

gence speed results for Sum-Weight based averaging algorithms; this enabled us to derive a

new broadcast-based averaging algorithm which outperforms existing ones. Furthermore, our

convergence results enabled us to revisit the literature and derived tighter speed bounds for

existing algorithms. Finally, we used our new algorithm in the context of distributed spectrum

sensing for cognitive radio.

In Chapter 4, we studied the problem of distributed asynchronous optimization using

proximal algorithms. Thanks to the monotone operators framework, we designed a new

distributed asynchronous optimization algorithm based on the Alternating Direction Method

of Multipliers, and proved its convergence.

118 CONCLUSION

Perspectives

Chapters 2 and 3 have been very important for the comprehension of information spreading

in radio networks and distributed estimation but even though there is some work left (finding

tighter speed bounds for maximum value spreading, analyzing the behavior of averaging al-

gorithms in finite time with some error tolerance), it is not a priority for our future researches.

In contrast, Chapter 4 gave a very powerful analysis tool and our asynchronous proximal

point algorithm has showed to perform remarkably well. Now, looking at the applications

of algorithms such as our asynchronous distributed version of the ADMM, two very different

setups arise depending if the datasets (and thus the cost functions) of the different nodes are

similar or not: i) if they are similar (for example if each set contains samples from the same

i.i.d. process), then the objective is to go to the better precision as fast as possible as a quick

approximate result can be obtained at each node by analyzing only its own dataset; ii) if they

are different (each set represent a different mixture of the same random variables) the goal of

the network may be to obtain a snapshot of the global (mean) optimum as quickly as possible.

These problems are very different and lead to different perspectives:

• In case of similar data, where we are interested in the asymptotic speed, a interesting

perspective is to give mild conditions for the linear convergence of the ADMM; condi-

tions for the linear convergence and speed bounds exist in the literature but for par-

allel (not distributed nor asynchronous) ADMM. Furthermore, the conditions are quite

strong and the speed bounds are not tight. The choice of the hyper-parameter giving

the best speed is also an open subject even if the convergence is linear as the speed

bounds are not tight enough to deduce an optimal parameter; finding an efficient way

to distributively select a good parameter is a very interesting perspective too. Also, the

convergence speed could benefit from allowing the proximal operators to be computed

up to some error (that would decrease over time) as it is in general quicker to compute

the proximal operator up to some error. Finally, using the formalism depicted in Chapter

4 to analyze other proximal algorithms of the literature (PPXA, PPXA+) and compare

their speed could lead to even more efficient and distributed algorithms.

• In case of heterogeneous data, we are interested in going to a neighborhood of the ob-

jective value as soon as possible. As the proximal operator can be very costly in term

of computation time, it is interesting to look at the error to which a node can compute

its proximal operator up to some error which still enable the network to converge to

the wanted solution neighborhood. Indeed, computing a proximal operator is an opti-

mization problem in itself and allowing an error in its computation reduces greatly the

convergence time in general [87, 88].

These perspectives are mainly based on the number of iterations and the computational

cost of the proximal operators to evaluate the speed of an algorithm. In particular, they do

not take into account the effects of the network (congestion, failures, etc.). It would thus be

very interesting to implement various synchronous and asynchronous distributed optimization

119

algorithms over a real data network to perform inference through local computations. It

would enable us to evaluate the influence of the asynchronism on the network congestion. In

addition, it might guide us to define a global network metric including the computation times

of the machines along with the network communications, routing and eventual congestion.

120 CONCLUSION

Appendices

APPENDIX A

PROOFS RELATED TO CHAPTER 2

A.1 Proof of Eq. (2.3)

This proof follows the argument of [2].

Let G = (V, E) be an undirected graph of N nodes with Laplacian L and S a subset of V .

We want to prove a relation between the second smallest eigenvalue of the Laplacian λL
2 and

the vertex expansion of S, |∂ S|, where ∂ S = {{i, j} ∈ E : i ∈ S, j /∈ S} is the set of edges with

one end in S and the other end in V \ S.

First, let us remark that when we compute Lx for any x ∈ R
N , we get that the i-th

coefficient is

(Lx)i = |Ni |x i −
∑

j∈Ni

x j =
∑

j∈Ni

(x i − x j),

so we get that for any x ∈RN

xTLx =
∑

i∈V

x i

∑

j∈Ni

(x i − x j)

=
∑

{i, j}∈E

x i(x i − x j) + x j(x j − x i)

=
∑

{i, j}∈E

(x i − x j)
2.

Now, let us consider χS the size-N vector with ones at the index of the sensors of S and

zeros elsewhere, we get that

χS
TLχS =

∑

{i, j}∈E

(χS i −χS j)
2 = |∂ S|.

We also know that the second smallest eigenvalue of L is (see Section 1.1.1)

λL
2 = min

x∈Sp(1)⊥

xTLx

xT x
.

124 APPENDIX A. PROOFS RELATED TO CHAPTER 2

As χS /∈ Sp(1)⊥, we define χS = χS−|S|/N1, the orthogonal projection of χS onto Sp(1)⊥,

we obviously have χS
TLχS = χS

TLχS = |∂ S| and

χS
TχS =

�

χS −
|S|
N

1

�T�

χS −
|S|
N

1

�

= χT
SχS −

|S|
N

1
TχS −

|S|
N
χT

S1+
|S|2

N2
1

T
1

= |S| − 2
|S|
N
|S|+
|S|2

N
= |S|

�

1−
|S|
N

�

Hence,

λL
2 ≤
χS

TLχS

χS
TχS

=
|∂ S|

|S|
�

1− |S|
N

�

and thus
|∂ S|
|S| ≥ λ

L
2

�

1−
|S|
N

�

.

A.2 Proof of Theorem 2.4

As in the proof of Theorem 2.1, we define X k = |M k| as the cardinal of M k = {i ∈ V : xk
i
=

xmax} (the set of nodes sharing the maximum at time k).

In the context of Random-Pairwise-Max, the only possibility for node to be informed is to

exchange with an informed neighbor, so at each iteration one has X k ≤ X k+1 ≤ X k + 1. Here,

our objective is to exhibit a tight evaluation of the probability that the sequence X k is strictly

increasing at time k. Let i and j be the selected (connected) sensors exchanging at iteration

k of the algorithm, the size of M k increases if i is informed but not j (or vice-versa),

P[X k+1 = X k + 1 | M k] = P[{i, j} ∈ ∂M k|M k]. (A.1)

The choice of the exchanging sensors is done as follows: choose i uniformly in V then j

uniformly in Ni , all this is independent of the time so we drop the time superscript when un-

necessary in the following. Therefore, for any (undirected) edge {i, j}, we have P[{i, j} are chosen]≥
2/(Ndmax) which implies that if i and j are the selected nodes at time k,

P[{i, j} ∈ ∂M k | M k]≥ 2
|∂M k|
Ndmax

. (A.2)

Now, using Eq. (2.3) and combining Eqs. (A.1) and (A.2), we get

P[X k+1 = X k + 1 | M k]≥ 2
λL

2

Ndmax

X k(1−
X k

N
). (A.3)

For the sake of simplicity, we assume that a single node has the maximum value at time

0 without loss of generality. Consider the stopping times: τi = inf{k ∈ N : X k = i}, so that

A.3. Proof of Theorem 2.6 125

τ1 = 0 and τ =
∑N−1

i=1 (τi+1 − τi) (if more than one node has the maximum value at time 0,

one just has to start the sum at the number of initially informed nodes).

Let Y k be the random variable equal to X k+1 − X k given X k. Y k is Bernoulli distributed

and its parameter is lower bounded by 2λL
2/(N

2dmax)X
k(N − X k) by Eq. (A.3).

(τi+1 − τi) is the number of iterations needed to have Xτi+1 = Xτi + 1 when Xτi = i,

or equivalently, the number of trials on Y τi to obtain a success when Xτi = i. The random

variable (τi+1 − τi) is thus bounded below by the geometrically distributed random variable

Y τi . As a consequence,

E[τi+1−τi]≤
N2dmax

2λL
2

1

i(N − i)
.

Finally, using the fact that 2/N
∑N−1

i=1 1/i =
∑N−1

i=1 1/(i(N − i)), we have

E[τ]≤
Ndmax

λL
2

N−1∑

i=1

1

i
.

A.3 Proof of Theorem 2.6

We use the same notations as in Appendix A.2. We have seen that the random variable τi+1−
τi is bounded below by a geometrically distributed of parameter πi = 2λL

2/(N
2dmax)i(N − i).

As a consequence, τi+1 − τi is stochastically dominated by a geometric distribution with

parameter πi denoted by Zi , which means that the cdf of τi+1 − τi is smaller than the cdf of

Yi at any point:

P

�

τi+1−τi ≥ (1+δ)
1

πi

�

≤ P
�

Zi ≥ (1+δ)
1

πi

�

.

Now, as Zi is geometrically distributed, it can be seen as the first occurrence of a success

in a process of i.i.d. Bernoulli variables {B j} j>0 of parameter πi , thus we have, for any δ > 0,

P

�

Zi ≥ (1+δ)
1

πi

�

≤ P

⌈(1+δ) 1

πi
−1⌉

∑

j=0

B j = 0

=
�
1−πi

�⌈(1+δ) 1

πi
−1⌉

≤ exp

�

−πi⌈(1+δ)
1

πi

− 1⌉
�

≤ exp
�
−(1+ δ) +πi

�

≤ exp (−δ)

where the second inequality comes from the fact that ∀x ∈ R, 1+ x ≤ exp(x) and the last

inequality just uses that πi − 1≤ 0.

Let ǫ > 0, we now choose δǫ as the smallest number such that

exp
�
−δǫ

�
≤
ǫ

N

126 APPENDIX A. PROOFS RELATED TO CHAPTER 2

which leads to

δǫ = log

�
N

ǫ

�

.

So, we have P[τi+1−τi ≥ (1+δǫ)/πi]≤ ǫ/N . Then, by using the Union bound, we have

P
�
τ≥ (1+δǫ)E[τ]

�
≤ ǫ

which concludes the proof.

A.4 Proof of Theorem 2.7

Let i(0) be the sensor with the maximum at time 0. We build a spanning tree subgraph of G
rooted on i(0). Let us partition the set V in layers according to nodes distances from i(0):

Ln = {i ∈ V : lG (i(0), i) = n}, n ∈ N

where lG (i(0), i) is the distance between i(0) and i (the minimal number of edges to connect

them). One has V = ∪∆Gn=0 Ln and Ln ∩ Lm = ; for n 6= m. In the spanning tree subgraph,

there are edges only between consecutive layers, never between sensors of a same layer nor

between more distant layers. Furthermore, all the sensors of layer Ln have to broadcast in

order to inform the whole layer Ln+1.

We define the following stopping times: τ0 = 0, and τn = inf{k ≥ τn−1 : ∀i ∈ Ln, xk
i
=

xmax}. We denote by Fk the σ-algebra spanned by the nodes sharing the maximum values

at time k. Using the same proof framework as in the standard coupon collector problem

(see [34]), it is easy to show that E[τn+1 − τn|Fτn
] ≤ Nh|Ln|. More precisely, we want the

expected time for L sensors/coupons to be chosen/collected knowing that any sensor/coupon

is selected independently with probability 1/N . The probability of selecting a new coupon

knowing that L − ℓ (ℓ = 1, ..., L) were already selected is ℓ/N , hence time for tis event to

happen follow a geometric distribution of mean N/ℓ. Iterating this for ℓ= 1, ..., L, we get that

the expected time to select L coupons uniformly in a batch of size N is N
∑L

ℓ=1 1/ℓ.

The term E[τn+1 − τn|Fτn
] corresponds to the average time needed to completely fill up

layer (n+ 1) given the nodes sharing the maximum value at time τn, i.e. given that layer n

was already filled up. Therefore we have

E[τ]≤
∆G−1∑

n=0

E[τn+1−τn|Fτn
]≤

∆G−1∑

n=0

Nh|Ln| .

By using the inequality hn ≤ log(n) + 1 and the fact |L0|= 1, we obtain

E[τ]≤ N

∆G +
∆G−1∑

n=1

log |Ln|
!

.

Finally, using the concavity of the log, we get
∑n−1

i=1 log x i ≤ (n− 1) log(1

n−1

∑n−1

i=1 x i), and

remarking that
∑∆G−1

n=1 |Ln| ≤ N − 1 (we dropped the sensor of the first layer in the previous

A.5. Proof of Theorem 2.8 127

equation as log(1) = 0), we get

E[τ]≤ N∆G + N(∆G − 1) log

�
N − 1

∆G − 1

�

.

A.5 Proof of Theorem 2.8

Let Ak
i,n be the event “the node i belonging to layer Ln is not chosen for k iterations”. Obviously,

P[Ak
i,n] =

�

1− 1

N

�k
. When the event τn+1 − τn ≥ k occurs, the event ∪i∈Ln Ak

i,n also occurs.

Therefore P[τn+1 − τn ≥ k] ≤ P[∪i∈Ln Ak
i,n]. Using the Union bound and the fact that 0 ≤

1− y ≤ exp(−y) for y ∈ [0,1], one can bound the probability that, after k iterations, some

of the nodes of Ln still have not talked as follows

P[τn+1−τn ≥ k]≤ P[∪i∈Ln Ak
i,n]≤

∑

i∈Ln

�

1−
1

N

�k

≤ |Ln|exp

�

−
k

N

�

.

For any ǫ > 0, by choosing kǫ,n = N log |Ln|+ N log(∆G/ǫ), we get

P

�

τn+1−τn ≥ N log |Ln|+ N log

�
∆G
ǫ

��

≤
ǫ

∆G
.

By considering the union of the events for n = 0, ...,∆G − 1 and using once again the Union

bound, we find

P

�

τn+1−τn ≥ N(∆G − 1) log

�
N − 1

∆G − 1

�

+ N∆G log

�
∆G
ǫ

��

≤ ǫ

which boils down to the claimed result.

128 APPENDIX A. PROOFS RELATED TO CHAPTER 2

APPENDIX B

PROOFS RELATED TO CHAPTER 3

B.1 Derivations for Eq. (3.38)

According to Eq. (3.37), we have easily that

KT

jk+1
1

,..., jk+1
N

K jk+1
1

,..., jk+1
N

=
1

4
I+

1

4

N∑

i=1

eie
T

jk+1
i

+
1

4

N∑

i=1

e jk+1
i

eT
i +

1

4

N∑

i=1

N∑

i′=1

eie
T

jk+1
i

e jk+1

i′
eT

i′

=
1

2
I+

1

4

N∑

i=1

eie
T

jk+1
i

+
1

4

N∑

i=1

e jk+1
i

eT
i +

1

4

N∑

i=1

N∑

i′=1
i′ 6=i

eie
T

jk+1
i

e jk+1

i′
eT

i′

where we remarked that the case i = i′ in the first equality leads to 1/4I in the last right

hand term. Now, using the fact that the { jk
i
}i=1,...,N ;k>0 are i.i.d. uniformly distributed over

{1, ..., N} we have

E
�

KTK
�

=
1

4
I+

1

4

N∑

i=1

ei

1

N

N∑

ℓ=1

eT
ℓ

!

+
1

4

N∑

i=1

1

N

N∑

ℓ=1

eℓ

!

eT
i

+
1

4

N∑

i=1

N∑

i′=1
i′ 6=i

ei

1

N2

N∑

ℓ,ℓ′=1

eT
ℓ eℓ

 eT

i′

By remarking that eT
k
ek′ = 0 as soon as k 6= k′, we have

∑N

k,k′=1 eT
k
ek′ = N . Furthermore,

as

N∑

k=1

ek = 1 and

N∑

i=1

N∑

i′=1
i′ 6=i

eie
T
i′ = 11

T− I

we obtain E
�

KTK
�

=

�
1

2
−

1

4N

�

I+
3

4
J

It is then straightforward to obtain Eq. (3.38).

130 APPENDIX B. PROOFS RELATED TO CHAPTER 3

B.2 Derivations for Eq. (3.40)

Once again, according to Eq. (3.37), we have directly that

K jk+1
1 ,..., jk+1

N
⊗K jk+1

1 ,..., jk+1
N

=
1

4
I⊗ I+

1

4

N∑

i=1

e jk+1
i

eT
i

!

⊗ I+
1

4
I⊗

N∑

i=1

e jk+1
i

eT
i

!

+
1

4

N∑

i=1

e jk+1
i

eT
i

!

⊗

N∑

i′=1

e jk+1

i′
eT

i′

!

︸ ︷︷ ︸

¬ ς

(B.1)

Using the same technique as in Appendix B.1 , we obtain that

E

N∑

i=1

e jk+1
i

eT
i

 = J (B.2)

Thus, it just remains to evaluate E[ς]. Let us first remark that

ς=

N∑

i=1

N∑

i′=1
i′ 6=i

e jk+1
i

eT
i ⊗ e jk+1

i′
eT

i′ +

N∑

i=1

e jk+1
i

eT
i ⊗ e jk+1

i
eT

i .

As a consequence, we have

E[ς] =
1

N2

N∑

i=1

N∑

i′=1
i′ 6=i

N∑

ℓ=1

N∑

ℓ′=1

eℓe
T
i ⊗ eℓ′e

T
i′ +

1

N

N∑

i=1

N∑

ℓ=1

eℓe
T
i ⊗ eℓe

T
i

=
1

N2

N∑

i=1

N∑

i′=1

N∑

ℓ=1

N∑

ℓ′=1

eℓe
T
i ⊗ eℓ′e

T
i′ −

1

N2

N∑

i=1

N∑

ℓ=1

N∑

ℓ′=1

eℓe
T
i ⊗ eℓ′e

T
i +

1

N

N∑

i=1

N∑

ℓ=1

eℓe
T
i ⊗ eℓe

T
i

Using the well-known result on Kronecker product ((AB)⊗ (CD) = (A⊗ C)(B⊗ D) for four

matrices A, B, C, and D with appropriate sizes), we have

E[ς] = J⊗ J−
1

N2
(1⊗1)uT+

1

N
uuT (B.3)

with u=
∑N

i=1 ei ⊗ ei . Putting Eqs. (B.2) and (B.3) into Eq. (B.1), we get

E [K⊗K] =
1

4
I⊗ I+

1

4
J⊗ I+

1

4
I⊗ J+

1

4
J⊗ J−

1

4N2
(1⊗1)uT+

1

4N
uuT.

Before going further, let us remark that

uT(J⊥⊗ J⊥) =
N∑

i=1

(eT
i −

1

N
eT

i 11
T)⊗ (eT

i −
1

N
eT

i 11
T) =

N∑

i=1

(eT
i −

1

N
1

T)⊗ (eT
i −

1

N
1

T)

=

N∑

i=1

eT
i ⊗ eT

i −
1

N

N∑

i=1

(eT
i ⊗1

T)−
1

N

N∑

i=1

(1T⊗ eT
i) +

1

N2

N∑

i=1

1
T⊗1

T

= uT−
1

N
(1⊗1)T. (B.4)

B.3. Computations related to Section 3.7.3-a 131

As a consequence, we have

R = E [K⊗K] (J⊥⊗ J⊥)

=
1

4
J⊥ ⊗ J⊥ −

1

4N2
(1⊗1)uT(J⊥⊗ J⊥) +

1

4N
uuT(J⊥⊗ J⊥)

=
1

4
J⊥ ⊗ J⊥ −

1

4N2
(1⊗1)(uT−

1

N
(1⊗1)T) +

1

4N
u(uT−

1

N
(1⊗1)T)

=
1

4
J⊥ ⊗ J⊥ +

1

4N
uuT−

1

4N2
(1⊗1)uT−

1

4N2
u(1⊗1)T+

1

4N
J⊗ J

Using Eq. (B.4), we define v = 1/
p

N − 1(u− 1/N1⊗1) so that

vvT =
1

N − 1

�

uuT−
1

N
(1⊗1)uT−

1

N
u(1⊗1)T+ J⊗ J

�

which straightforwardly leads to Eq. (3.40).

In addition, note that using Eq. (B.4), we have J⊥ ⊗ J⊥v = v.

B.3 Computations related to Section 3.7.3-a

In order to fit a Gamma distribution onto it, one has to compute the mean and variance of

T(y)¬
1

N

N∑

i=1

‖yi‖22
γ2

i
+σ2

i

SNRi

H1

≷
H0

η

with x i ∼N (0,γ2
i I) and ni ∼N (0,σ2

i I).

E[T(y)] = E

1

N

N∑

i=1

‖x i + ni‖22
γ2

i
+σ2

i

.SNRi

 =
1

N

N∑

i=1

E

�
‖x i + ni‖22
γ2

i
+σ2

i

�

SNRi

=
Ns

N

N∑

i=1

SNRi

132 APPENDIX B. PROOFS RELATED TO CHAPTER 3

Var[T(y)] = E

N∑

i=1

1

N

‖x i + ni‖22
γ2

i
+σ2

i

.SNRi

!2

−

Ns

N

N∑

i=1

SNRi

!2

=
1

N2
E

N∑

i=1

N∑

j=1

‖x i + ni‖22
γ2

i
+σ2

i

‖x j + n j‖22
γ2

j
+σ2

j

.SNRiSNR j

−

Ns

N

N∑

i=1

SNRi

!2

=
1

N2

N∑

i=1

N∑

j=1
j 6=i

E

�
‖x i + ni‖22
γ2

i
+σ2

i

�

E

‖x j + n j‖22
γ2

j
+σ2

j

 .SNRiSNR j

+
1

N2

N∑

i=1

E

�
‖x i + ni‖22
γ2

i
+σ2

i

�2

SNR2
i −

Ns

N

N∑

i=1

SNRi

!2

=
N2

s

N2

N∑

i=1

N∑

j=1
j 6=i

SNRiSNR j +
2Ns + N2

s

N2

N∑

i=1

SNR2
i −

N2
s

N2

N∑

i=1

SNRi

!2

=
N2

s

N2

N∑

i=1

N∑

j=1

SNRiSNR j + 2
Ns

N2

N∑

i=1

SNR2
i −

N2
s

N2

N∑

i=1

SNRi

!2

=
N2

s

N2

N∑

i=1

SNRi

!2

+ 2
Ns

N2

N∑

i=1

SNR2
i −

N2
s

N2

N∑

i=1

SNRi

!2

=
2Ns

N2

N∑

i=1

SNR2
i

The gamma distribution Γ(κ,θ) has mean κθ and variance κθ2. Hence, by identifying

the first two moments of T(y), we get that T(y)≈ Γ(κT,θT) with

κT =
NNs

2
·

�
1

N

∑N

i=1 SNRi

�2

1

N

∑N

i=1 SNR2
i

and θT =
2

N
·

1

N

∑N

i=1 SNR2
i

1

N

∑N

i=1 SNRi

.

BIBLIOGRAPHY

[1] F. R. K. Chung, Spectral Graph Theory. American Mathematical Society, 1997.

[2] D. Spielman, “Spectral Graph Theory.” Lecture Notes, 2009.

[3] R. Horn and C. Johnson, Matrix analysis. Cambridge university press, 2005.

[4] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathematical Journal,

vol. 23, no. 2, pp. 298–305, 1973.

[5] F. Chung, “Laplacians and the Cheeger inequality for directed graphs,” Annals of Combi-

natorics, vol. 9, no. 1, pp. 1–19, 2005.

[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE

Transactions on Information Theory, vol. 52, no. 6, pp. 2508–2530, 2006.

[7] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast Gossip Algorithms

for Consensus,” IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2748–2761,

2009.

[8] P. Brémaud, Markov chains: Gibbs fields, Monte Carlo simulation, and queues. Springer,

1999.

[9] S. Chatterjee and E. Seneta, “Towards consensus: some convergence theorems on re-

peated averaging,” Journal of Applied Probability, vol. 14, pp. 89–97, 1977.

[10] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swine-

hart, and D. Terry, “Epidemic algorithms for replicated database maintenance,” in ACM

Symposium on Principles of Distributed Computing (PODC), pp. 1–12, 1987.

[11] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Analysis and optimization of randomized

gossip algorithms,” in IEEE Conference on Decision and Control (CDC), pp. 5310–5315,

2004.

[12] P. Slater, E. Cockayne, and S. Hedetniemi, “Information dissemination in trees,” SIAM

Journal on Computing, vol. 10, no. 4, pp. 692–701, 1981.

134 BIBLIOGRAPHY

[13] B. Pittel, “On spreading a rumor,” SIAM Journal on Applied Mathematics, vol. 47, no. 1,

pp. 213–223, 1987.

[14] U. Feige, D. Peleg, P. Raghavan, and E. Upfal, “Randomized broadcast in networks,”

Random Structures and Algorithms, vol. 1, no. 4, pp. 447–460, 1990.

[15] W. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols for information dis-

semination in wireless sensor networks,” in ACM-IEEE International Conference on Mobile

Computing and Networking (SIGMOBILE), pp. 174–185, 1999.

[16] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, “Randomized rumor spreading,”

in IEEE Symposium on Foundations of Computer Science (FOCS), pp. 565–574, 2000.

[17] S. Kashyap, S. Deb, K. Naidu, R. Rastogi, and A. Srinivasan, “Efficient gossip-based

aggregate computation,” in ACM Symposium on Principles of Database Systems (PODS),

pp. 308–317, 2006.

[18] B. Doerr, T. Friedrich, and T. Sauerwald, “Quasirandom rumor spreading: Expanders,

push vs. pull, and robustness,” Automata, Languages and Programming, pp. 366–377,

2009.

[19] N. Fountoulakis, A. Huber, and K. Panagiotou, “Reliable Broadcasting in Random Net-

works and the Effect of Density,” in IEEE Conference on Computer Communications (IN-

FOCOM), pp. 1–9, 2010.

[20] I. Chlamtac and S. Kutten, “On Broadcasting in Radio Networks–Problem Analysis and

Protocol Design,” IEEE Transactions on Communications, vol. 33, no. 12, pp. 1240–1246,

1985.

[21] O. Bar-Yehuda, R. Goldreich and A. Itai, “On the time-complexity of broadcast in radio

networks: an exponential gap between determinism randomization,” Journal of Com-

puter and System Sciences, vol. 45, no. 1, pp. 104–126, 1992.

[22] E. Kushilevitz and Y. Mansour, “An Ω(D log(N/D)) lower bound for broadcast in radio

networks,” SIAM Journal on Computing, vol. 27, no. 3, pp. 702–712, 1998.

[23] L. Chrobak, M. Gasieniec and W. Rytter, “Fast broadcasting and gossiping in radio net-

works,” Journal of Algorithms, vol. 43, no. 2, pp. 177–189, 2002.

[24] A. Czumaj and W. Rytter, “Broadcasting algorithms in radio networks with unknown

topology,” in IEEE Symposium on Foundations of Computer Science (FOCS), pp. 492–501,

2003.

[25] J. Cortés, “Distributed algorithms for reaching consensus on general functions,” Auto-

matica, vol. 44, no. 3, pp. 726–737, 2008.

135

[26] U. Feige, “A tight upper bound on the cover time for random walks on graphs,” Random

Structures and Algorithms, vol. 6, pp. 51–54, 1995.

[27] C. Cooper and A. Frieze, “The cover time of random geometric graphs,” in ACM-SIAM

Symposium on Discrete Algorithms (SODA), pp. 48–57, 2009.

[28] T. Sauerwald and A. Stauffer, “Rumor spreading and vertex expansion on regular

graphs,” in ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 462–475, 2011.

[29] D. Aldous and J. Fill, “Reversible Markov Chains and Random Walks on Graphs.” Draft

available online: http://www.stat.berkeley.edu/ aldous/RWG/book.html.

[30] C. Avin and G. Ercal, “On the cover time and mixing time of random geometric graphs,”

Theoretical Computer Science, vol. 380, no. 1-2, pp. 2–22, 2007.

[31] D. Gillman, “A Chernoff Bound for Random Walks on Expander Graphs,” SIAM Journal

on Computing, vol. 27, no. 4, pp. 1203–1220, 1998.

[32] A. Frieze and G. Grimmett, “The shortest-path problem for graphs with random arc-

lengths,” Discrete Applied Mathematics, vol. 10, no. 1, pp. 57–77, 1985.

[33] G. Giakkoupis and T. Sauerwald, “Rumor spreading and vertex expansion,” in ACM-SIAM

Symposium on Discrete Algorithms (SODA), pp. 1623–1641, 2012.

[34] R. Motwani and P. Raghavan, Randomized algorithms. Cambridge University Press, 1995.

[35] M. Penrose, Random geometric graphs. Oxford University Press, USA, 2003.

[36] F. Bénézit, Distributed Average Consensus for Wireless Sensor Networks. PhD thesis, EPFL,

2009.

[37] A. D. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, “Geographic Gossip: Efficient

Averaging for Sensor Networks,” IEEE Transactions on Signal Processing, vol. 56, no. 3,

pp. 1205–1216, 2008.

[38] F. Benezit, A. G. Dimakis, P. Thiran, and M. Vetterli, “Order-Optimal Consensus Through

Randomized Path Averaging,” IEEE Transactions on Information Theory, vol. 56, no. 10,

pp. 5150–5167, 2010.

[39] B. Nazer, A. G. Dimakis, and M. Gastpar, “Neighborhood gossip: Concurrent averaging

through local interference,” in IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 3657–3660, 2009.

[40] D. Ustebay, B. N. Oreshkin, M. J. Coates, and M. G. Rabbat, “Greedy Gossip With Eaves-

dropping,” IEEE Transactions on Signal Processing, vol. 58, no. 7, pp. 3765–3776, 2010.

136 BIBLIOGRAPHY

[41] S. Wu and M. G. Rabbat, “Broadcast Gossip Algorithms for Consensus on Strongly Con-

nected Digraphs,” IEEE Transactions on Signal Processing, vol. 61, no. 16, pp. 3959–3971,

2013.

[42] F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, “Weighted Gossip: Dis-

tributed Averaging using non-doubly stochastic matrices,” in IEEE International Sympo-

sium on Information Theory (ISIT), pp. 1753–1757, 2010.

[43] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate informa-

tion,” in IEEE Symposium on Foundations of Computer Science (FOCS), pp. 482–491,

2003.

[44] L. Xiao, S. Boyd, and S. Lall, “Distributed Average Consensus with Time-Varying

Metropolis Weights.” Unpublished, 2006.

[45] P. Denantes, F. Bénézit, P. Thiran, and M. Vetterli, “Which distributed averaging algorithm

should i choose for my sensor network?,” in IEEE Conference on Computer Communica-

tions (INFOCOM), pp. 986–994, 2008.

[46] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation. Old Tappan, NJ

(USA); Prentice Hall Inc., 1989.

[47] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equa-

tion of state calculations by fast computing machines,” The journal of chemical physics,

vol. 21, no. 6, pp. 1087–1092, 1953.

[48] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applica-

tions,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[49] A. Tahbaz-Salehi and A. Jadbabaie, “A Necessary and Sufficient Condition for Consen-

sus Over Random Networks,” IEEE Transactions on Automatic Control, vol. 53, no. 3,

pp. 791–795, 2008.

[50] M. Franceschelli, A. Giua, and C. Seatzu, “Distributed Averaging in Sensor Networks

Based on Broadcast Gossip Algorithms,” IEEE Sensors Journal, vol. 11, no. 3, pp. 808–

817, 2011.

[51] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, “Spectrum Sensing for Cognitive Radio :

State-of-the-Art and Recent Advances,” IEEE Signal Processing Magazine, vol. 29, no. 3,

pp. 101–116, 2012.

[52] P. Braca, S. Marano, V. Matta, and P. Willett, “Asymptotic Optimality of Running Consen-

sus in Testing Binary Hypotheses,” IEEE Transactions on Signal Processing, vol. 58, no. 2,

pp. 814–825, 2010.

137

[53] F. S. Cattivelli and A. H. Sayed, “Distributed Detection Over Adaptive Networks Using

Diffusion Adaptation,” IEEE Transactions on Signal Processing, vol. 59, no. 5, pp. 1917–

1932, 2011.

[54] W. Zhang, Z. Wang, Y. Guo, H. Liu, Y. Chen, and J. Mitola, “Distributed Cooperative

Spectrum Sensing Based on Weighted Average Consensus,” in IEEE Global Telecommu-

nications Conference (GLOBECOM), pp. 1–6, 2011.

[55] H. L. Van Trees, Detection, estimation, and modulation theory. Wiley, 2004.

[56] P. Ciblat, P. Bianchi, and M. Ghogho, “Training Sequence Optimization for Joint Channel

and Frequency Offset Estimation,” IEEE Transactions on Signal Processing, vol. 56, no. 8,

pp. 3424–3436, 2008.

[57] P. A. Forero, A. Cano, and G. B. Giannakis, “Distributed Clustering Using Wireless Sensor

Networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 4, pp. 707–724,

2011.

[58] J. Tsitsiklis, Problems in decentralized decision making and computation. PhD thesis, M.

I. T., Dept. of Electrical Engineering and Computer Science, 1984.

[59] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asynchronous deterministic

and stochastic gradient optimization algorithms,” IEEE Transactions on Automatic Con-

trol, vol. 31, no. 9, pp. 803–812, 1986.

[60] A. Nedić, D. Bertsekas, and V. Borkar, “Distributed Asynchronous Incremental subgradi-

ent methods,” in Studies in Computational Mathematics, vol. 8, pp. 381–407, Elsevier,

2001.

[61] A. Nedić and A. Ozdaglar, “Distributed Subgradient Methods for Multi-Agent Optimiza-

tion,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.

[62] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic subgradient projection

algorithms for convex optimization,” Journal of optimization theory and applications,

vol. 147, no. 3, pp. 516–545, 2010.

[63] P. Bianchi and J. Jakubowicz, “Convergence of a Multi-Agent Projected Stochastic Gra-

dient Algorithm for Non Convex Optimization,” IEEE Transactions on Automatic Control,

vol. 58, no. 2, pp. 391 – 405, 2013.

[64] D. Jakovetić, J. M. F. Moura, and X. Joao, “Distributed Nesterov-like gradient algo-

rithms,” in IEEE Conference on Decision and Control (CDC), pp. 5459–5464, 2012.

[65] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual Averaging for Distributed Opti-

mization: Convergence Analysis and Network Scaling,” IEEE Transactions on Automatic

Control, vol. 57, no. 3, pp. 592–606, 2012.

138 BIBLIOGRAPHY

[66] A. Jadbabaie, A. Ozdaglar, and M. Zargham, “A distributed Newton method for network

optimization,” in IEEE Conference on Decision and Control (CDC), pp. 2736–2741, 2009.

[67] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and

statistical learning via the alternating direction method of multipliers,” Foundations and

Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[68] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus in Ad Hoc WSNs With Noisy Links

– Part I: Distributed Estimation of Deterministic Signals,” IEEE Transactions on Signal

Processing, vol. 56, pp. 350 –364, jan. 2008.

[69] E. Wei and A. Ozdaglar, “Distributed Alternating Direction Method of Multipliers,” in

IEEE Conference on Decision and Control (CDC), pp. 5445–5450, 2012.

[70] P. Bianchi, G. Fort, and W. Hachem, “Performance of a Distributed Stochastic Approxi-

mation Algorithm,” IEEE Transactions on Information Theory, vol. PP, no. 99, 2013.

[71] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[72] A. Nedić and D. P. Bertsekas, “Incremental subgradient methods for nondifferentiable

optimization,” SIAM Journal on Optimization, vol. 12, no. 1, pp. 109–138, 2001.

[73] G. Pólya and G. Szegö, Problems and Theorems in Analysis I: Series Integral Calculus

Theory of Functions. Classics in mathematics, Springer, 1998.

[74] M. Duflo, Random Iterative Models. Springer-Verlag Berlin Heidelberg, 1997. Translated

from original French edition “Méthodes Récursives Aléatoires” published by Masson,

Paris, 1990.

[75] H. Robbins and D. Siegmund, “A convergence theorem for non negative almost super-

martingales and some applications.,” in Optimization Methods in Statistics (J. Rustagi,

ed.), pp. 233–257, Academic Press, New York, 1971.

[76] G. Morral, P. Bianchi, G. Fort, and J. Jakubowicz, “Distributed stochastic approximation:

The price of non-double stochasticity,” in Asilomar Conference on Signals, Systems and

Computers, pp. 1473–1477, 2012.

[77] N. Parikh and S. Boyd, “Proximal Algorithms,” Foundations and Trends in Optimization,

vol. 1, no. 3, pp. 123–231, 2013.

[78] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal

Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[79] R. T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM Journal

on Control and Optimization, vol. 14, no. 5, pp. 877–898, 1976.

139

[80] J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting method and the prox-

imal point algorithm for maximal monotone operators,” Mathematical Programming,

vol. 55, pp. 293–318, 1992.

[81] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in

Hilbert spaces. Springer, 2011.

[82] G. J. Minty, “On the maximal domain of a “monotone” function.,” The Michigan Mathe-

matical Journal, vol. 8, no. 2, pp. 135–137, 1961.

[83] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équa-

tions intégrales,” Fundamenta Mathematicae, vol. 3, no. 1, pp. 133–181, 1922.

[84] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal processing,”

in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212,

Springer, 2011.

[85] J. Douglas and H. Rachford, “On the numerical solution of heat conduction problems

in two and three space variables,” Transactions of the American Mathematical Society,

vol. 82, pp. 421–439, 1956.

[86] P. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear operators,”

SIAM Journal on Numerical Analysis, vol. 16, no. 6, pp. 964–979, 1979.

[87] M. Schmidt, N. L. Roux, and F. Bach, “Convergence rates of inexact proximal-gradient

methods for convex optimization.” arXiv preprint 1109.2415, 2011.

[88] P. Machart, S. Anthoine, and L. Baldassarre, “Optimal computational trade-off of inexact

proximal methods.” arXiv preprint 1210.5034, 2012.

	List of Acronyms
	General rules for notation
	Introduction
	General model and Technical preliminaries
	Network Model
	Graph-based network
	Nodes activations
	Nodes measurements

	Non-negative matrices
	Definitions
	Irreducible (non-negative) matrices
	Primitive (non-negative) matrices
	Stochastic (non-negative) matrices
	Stochastic matrices and Markov Chain

	Norms

	Maximal value spreading
	Introduction
	The maximum value diffusion seen as a Rumor Spreading problem
	The rumor spreading problem
	Rumor spreading algorithms
	Maximum value gossipping algorithms

	Setup
	Precisions about the setup
	The convergence time

	Performance Analysis
	Random-Walk
	Random-Pairwise-Max
	Random-Broadcast-Max

	Numerical illustrations
	About RGGs
	About the tightness of the derived bounds

	Conclusion

	Distributed Average Consensus
	Introduction
	Standard (single-variate) framework
	Model
	Case of doubly-stochastic matrices
	Case of non-doubly-stochastic matrices

	Sum-Weight framework
	Convergence of Sum-Weight-based averaging algorithms
	Preliminary results
	Analysis of 1(t)
	Analysis of 2(t)
	Final results

	Proposed algorithm and extensions
	BWGossip algorithm
	Performance of the BWGossip
	Adaptation to smart clock management
	Distributed estimation of the sum
	Convergence with i.i.d. failures in the communication graph

	Comparison with existing works
	Comparison with Kempe's algorithm
	Comparison with Bénézit's algorithm
	Comparison with the single-variate algorithms

	An application of averaging algorithms to cognitive radio
	The problem of distributed spectrum sensing in cognitive radio networks
	Model
	Review on centralized cooperative spectrum sensing
	Fully distributed spectrum sensing algorithms
	Numerical illustrations

	Conclusion

	Distributed Optimization
	Introduction
	First order methods
	Model
	Convergence of the Synchronous Distributed gradient algorithm
	Convergence of the Asynchronous distributed gradient algorithm
	Extensions

	Distributed Optimization with the ADMM
	Proximal methods
	Constrained problems and Method of Lagrange multipliers
	ADMM
	Distributed optimization using the ADMM

	Review on Monotone operators
	Monotone operators
	The resolvent and the proximal point algorithm
	From the proximal point algorithm to the ADMM

	Asynchronous Distributed Optimization using random ADMM
	Motivation
	Subgraphs and block-variables
	Random Gauss-Seidel iterations on the proximal point algorithm
	Asynchronous Distributed Optimization with the ADMM

	Numerical Illustrations
	Conclusion

	Conclusion and Perspectives
	Appendices
	Appendix Proofs related to Chapter 2
	Proof of Eq. (2.3)
	Proof of Theorem 2.4
	Proof of Theorem 2.6
	Proof of Theorem 2.7
	Proof of Theorem 2.8

	Appendix Proofs related to Chapter 3
	Derivations for Eq. (3.38)
	Derivations for Eq. (3.40)
	Computations related to Section 3.7.3-a

	Bibliography

