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GENERAL RULES FOR NOTATION

vector (generally in R" and potentially scalar)

i-th coefficient of vector x

vector x at time k

the vector of ones, ” of size N

matrix

elementwise nonnegative matrix , elementwise positive matrix
positive semidefinite matrix , positive definite matrix
operator

a graph seen as vertex set V and an edge set E

a vertices/agents set

an edge/link set

a directed edge/link from i to j

an undireted edge/link between i and j
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INTRODUCTION

The work presented in this thesis was produced within the Digital Communications group,
COMmunications and ELECtronics (COMELEC) department of TELECOM ParisTech between
October 2010 and October 2013. It was partially funded by the French Defense Agency (DGA)
and Télécom/FEurécom Carnot Institute.

Problem statement

During the past decade, the distributed estimation/computation/detection/optimization issue
has received a lot of attention. The reasons are manifold since such topics occur in many
different applications from cloud computing to wireless sensor networks via machine learning.

Let us focus on two examples in order to be convinced by the importance of this topic. The
first example deals with big data. Assume that we have to treat a large amount of data. No
device can handle data this big so the processing has to be split in many subtasks for which
the computational load is reasonable. In order to find the global result, the subtasks have
to exchange partial outputs and so the decentralized devices (called agents/nodes/sensors,
in the following) have to communicate their own results often. In order to avoid network
congestion and overhead due to routing algorithm, a fusion center approach is prohibitive
and the decentralized devices have to talk locally and in a distributive way. In addition, as
each device has its own computational ability (due to the processor, the load, etc.), the local
outputs are not available synchronously. So, we need to develop asynchronous distributed
algorithms. The second example deals with Wireless Sensor Networks which are mainly con-
sider to sensing and inferring in hostile large-scale environments (mountains, deserts, etc.).
Assume that we would like to monitor the temperature (max or mean) of an area. Once again
in order to avoid network congestion and overhead due to routing algorithm, no fusion center
is available. So the value of interest has to be available at each sensor in a distributive way.
Once again, an asynchronous communication scheme is considered since it avoids the use of
complicated communications coordination (in time and/or frequency).

Therefore, in this thesis, we will focus on the computation/optimization of a global
value of interest using only local and asynchronous (sometimes wireless) communica-
tions, thus when no fusion center is available. Obviously, the methods dealing with such a
problem greatly depend on the value of interest of the network which ranges from a particular
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sensor measurement (the problem then simply consists in spreading this value) to the output
of a complex optimization problem. Therefore we address in this thesis three very different
problems.

e Problem 1: how to find and spread the maximal initial value of the sensors throughout
the network; this problem will enable us to understand how a piece of information
spreads over in a network.

e Problem 2: how to compute the average of the initial values of the sensors; this problem
will enable us to understand how to merge local information in a linear way.

e Problem 3: how to optimize a global function when each sensor can only compute
optimization of its own local cost function. To do so, we assume that the global function
is the sum of the local cost functions.

Outline and Contributions

Before focusing on the above-mentioned problems, in Chapter 1, we introduce, on the one
hand, the considered model for Wireless Sensor Networks where the network of agents and
their link are seen as a graph and, on the other hand, we provide some essential properties
about non-negative matrices and their relations with graphs. Notice that one of the main
important assumption done throughout the thesis is the asynchronism between the nodes
communications.

In Chapter 2, we will study the problem of finding the maximal value in a wireless net-
work. More precisely, take a sensor network where every agent owns a scalar measurement,
we want the network to exchange through their wireless links (which ultimately means that
they can broadcast) in order to make the maximum value known everywhere in the network.
This problem seems artificial but it is very useful to understand the propagation of a infor-
mation across the network. Actually, our problem is quite close to the well-known rumor
spreading problem in an asynchronous radio network; however, a major difference exists as
in the rumor spreading problem the nodes of the network know if they have the wanted value
or not, which is not the case for us. We will analyze this problem through three very different
algorithms: a simple random walk, a random algorithm based on pairwise communications,
and a random algorithm based on broadcasting. Whereas the random walk which has been
studied extensively in the literature, the two other algorithms remain untreated. Our contri-
bution to this problem is thus to analyze the performance of these two algorithms by deriving
bounds on their mean convergence time and their convergence time dispersion. These new
results enable us to compare with similar algorithms from the rumor spreading literature and
give considerations about the performance gain due to the use of broadcast communications.

In Chapter 3, we will focus on distributed averaging algorithms. Given initial nodes mea-
surements, these algorithm aim at making every sensor learn the average of the initial mea-
surements in a distributive way. So each sensor performs local, cleverly weighted averages
and exchanges the results of these averages with their neighbors. This topic has received a



lot of interest in the past ten years; one of the first and most famous algorithms is called
random gossip and simply consists in selecting a random pair of neighbors which will average
their values. Broadcast-based algorithms have also been developed but they suffer either from
collision-related issues due the need of feedback, or from convergence issues. Thanks to the
results reminded in Chapter 1, we will review the convergence (or non-convergence) results
of the literature. As we exhibited the benefits of broadcast communications on information
spreading in Chapter 2, we then focused on the class of averaging algorithm where feedback
links were not mandatory (broadcast communications are a special case). Recently, Bénézit et
al. proved that by updating identically two variables per sensor, one initialized to the sensor
measurement and the other to 1, one could design feedback-free algorithm such that the ratio
of these two values converged to the wanted average for every sensor. Actually, this setup
based on two variables is called Sum-Weight and was introduced by Kempe in 2003. The main
contributions of this Chapter are twofold: i) we design a new broadcast-based averaging al-
gorithm called Broadcast Weight Gossip (BWGossip) which outperforms existing algorithms.
And, ii) we prove that algorithms based on Sum-Weight set-up converges with an exponential
rate (and a bound on the slope is also characterized) under mild assumptions. Notice that
our results apply to existing gossip algorithms (with feedback and a single variable per sen-
sor). We show by numerical simulations that the obtained bound is very tight for both our
algorithm and existing ones. Finally, we remark that the Sum-Weight scheme enables us to
distributively compute the sum without any information about the number of nodes in the
network too. As an application example, we consider the problem of signal detection in a
cognitive radio network; the secondary users have great interest in collaborating as some may
have much more information about the primary transmitters than others. We show that this
distributed detection problem ultimately relies on the computation of the average and the
sum of the test result of the secondary users. Thanks to our previous considerations we are
thus able to design a new fully distributed signal detection algorithm.

In Chapter 4, we will consider the problem of solving a distributed optimization problem,
that is a problem where the network wants to know the minimum of the sum of its agents cost
functions. This situation often arises while performing data processing over big data network;
indeed, the quantity of information stored in physically distant servers has grown to become
way too large to be transmitted to a fusion node. Hence, in order to process this whole
information, the agents of the network have to cleverly process their own information and
exchange some information (a few scalars at most) asynchronously with conveniently close
nodes (in order not to flood the network with information). Let f be the convex function,
depending on all the data of the network, that we want to know a minimum; we will assume
that f can be written as ) ;. f; where f; is a convex function depending only on the data of the
i-th node. The considered problem is to minimize f over a network where each node i only
knows its function f;. We will first review first order algorithms where each node performs a
gradient on its cost function and then the network performs an average gossip step (as studied
in the previous chapter). These algorithms use low computational power but they are quite
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slow and only use a portion of the information of their cost function (the gradient at a given
point); with the increase in the computational abilities, it is pertinent to design algorithms
that use a greater part of the sensors information at the expense of a increased computational
cost. Recently, the Alternation Direction Method of Multipliers (ADMM) has been proved
to perform very well for distributed optimization over networks but in a synchronous setup.
Our main contributions here are twofold: i) we develop an new ADMM-based distributed
optimization algorithm in the asynchronous setup. And, ii) we obtain the convergence of this

algorithm by using the monotone operators framework.
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CHAPTER 1

(GGENERAL MODEL AND

TECHNICAL PRELIMINARIES

In this chapter, we will present the mathematical framework used throughout the thesis (e.g.,

graph theory, nonnegative matrices) as well as some very useful mathematical preliminaries.

1.1 Network Model

1.1.1 Graph-based network

Consider a network of N sensors — often called agents — modeled as a graph ¢ = (V, E) where
V is the set of agents — the vertices of the graph, identified by their indexes — and E is the set
of links between agents — the edges of the graph represented as an ordered pair (i, j) if there
is a link from i to j. We assume that each link is error-free. The set of neighbors of agent i —
the nodes to which it can send information — is denoted A, = {j € V : (i, j) € E}. For any set
S, we denote its cardinality by |S|. Obviously, we have |V| = N.

When a graph only has bidirectional edges (mathematically, (i,j) € E = (j,i) € E), it
is called undirected and we will note the edges {i, j} = (i,j) U (j, i), whereas in the general
case it is directed. This has an impact on the reachability of the nodes from one another: in
directed graphs, if there is a path (i.e.a succession of edges) from i to j (i # j), there may not
be one from j to i; in undirected graphs, there is always one. In directed graphs, we will call
weakly connected a graph such that for any i, j € V (i # j), there is either a path from i to j or
a path from j to i; and we will call strongly connected a graph such that for any i, j € V (i # j),
there is both a path from i to j and a path from j to i. Obviously, in undirected graphs the
two notions are equivalent and we just use the term connected. When a node i is connected
with itself ((i,1) € E), we say that i has a self-loop. Finally, we assign a weight w(; jy > 0 to
any edge (i, j) € E; by default all the weights are set to 1, if it is not the case the graph is said
to be weighted. One can easily remark that the values of the edges non-null weights do not
change anything in the connectivity properties of the graph. In addition, one can define the
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adjacency matrix of the graph A as the matrix such that A; ; = w(; j) if there is an edge from i
to j and zeros elsewhere. Consequently, if the graph is self-loop-free, then each diagonal term
of the adjacency matrix is zero. In contrast, if the graph has self-loop, the adjacency matrix
has some non-null diagonal terms. Once again, one can easily prove that removing self-loop
in a graph does not modify its connectivity property. One can define the support of the graph
associated with the adjacency matrix A as the matrix S = Supp(A) such that S; ; = 1if A; ; #0
and zeros elsewhere. Notice that the connectivity of the graph can be checked either on A or
S equivalently. Moreover, if the graph is unweighted, the adjacency matrix is identical to its
support.

Let ¥ = (V,E) be a N-vertices undirected graph. We also define the degree matrix D as
the N X N diagonal matrix such that D; ; = d; with d; = > jev Aijs if the graph is unweighted
then d; = |.4;| the degree of i. Finally, we define the Laplacian matrix of the graph L=D — A.
The eigenvalues of this matrix play a fundamental role in algebraic graph theory, indeed L
is i) positive semidefinite (see for example [[1, Section 1.2] or [2]]); and ii) its row sum is
null so 1 is an eigenvector associated with eigenvalue 0. Hence, the eigenvalues of L satisfy
0=A} <AL <. <Ay (see [3, Th. 7.2.1]). Furthermore, if ¢ is connected, then the second
smallest eigenvalue of the Laplacian! AIZ‘ is strictly positive (see [1, Lemma 1.7]). One can
see that the Laplacian matrix is insensitive to the presence or absence of self-loops in the
considered graph. These definitions (adjacency matrix, degree matrix, and Laplacian one)
can be extended to the case of directed graph. Since these tools for directed graphs will not
be used in the thesis, we omit them (see [[5]] for more details).

1.1.2 Nodes activations

The network is assumed asynchronous, meaning that no common clock is available for the
agents. Instead, each agent has its own clock and can only initiate a communication at its
clock ticks. Assuming that the communication time is small compared to the time between
clock ticks, it makes sense (as usually done for other consensus-like algorithms [6, [7]]) to
assume the absence of collisions between communicating nodes. In addition, we can consider
that the agents clocks are modeled by independent Poisson processes with intensity A; for
each agent i. It is then equivalent to having a global Poisson clock with intensity A = Zi A;
and to attribute each clock tick to an agent. More precisely, the process, indexed by the
number of global clock ticks, of the sensors to which the global clock ticks are attributed is
thus independent and identically distributed and the probability that node i becomes
active at time k is equal to p; = A;/A. This newly active sensor will then communicate with
some of its neighbors. Given that node i is the activating sensor, the probability that i sends
information to j will be denoted by q; jy-

Let us consider the N x N matrix Q whose (i, j)-th entry is equal to q(; ;) which we will
call the communication matrix of the network. As we want information to spread using the

loften called the Fiedler value in dedication to its pioneering work [[4]], or the spectral gap.
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available links, we will make the following assumption throughout the thesis.

Assumption 1.1. The communication matrix Q is adapted to the graph ¥, i.e. Q and A have

the same support.

1.1.3 Nodes measurements

In Wireless Sensor Networks (WSNE), the sensors often have measurements that we will call
initial values and the goal of the WSN|will then be to cooperate in order to compute distribu-
tively a function of these initial values (the average, the maximum, etc.). Formally, the initial
value of sensor i is denoted by x? and we define x° = [x{,...,x3]". After sending or receiving
information, a sensor may update its value so we denote by xf the value of sensor i at the
k-th global clock tick and x* = [x¥, ..., xkT.

1.2 Non-negative matrices

In this thesis, the matrices with non-negative entries will play a great role (see matrices A
and Q defined in the previous sections). Any non-negative matrices can be actually associated
with a graph. In the following, we will remind some properties of the non-negative matrices
and their associated graphs. All below-mentioned results can be found in Chapters 6.2 and 8 of

[3].

1.2.1 Definitions

Let Abe a N x N matrix. We say that A > 0 (A is non-negative) if Vi, j, A; ; = 0. Similarly, we
say that A > 0 (A is positive) if Vi, j, A; ; > 0.

For any N X N non-negative matrix A, we define its induced graph %(A) as the (directed
and weighted) graph of N nodes such that there is a directed edge from i to j if and only if
A;j > 0, its weight of this edge is then w(; jy = A; ;. Consequently, the adjacency matrix of
the graph ¢(A) is A. So, there is a one-to-one mapping between the set of graphs (and its
associated adjacency matrix) and the non-negative matrices.

In Section [I.1.1] we said that the graph is connected if it exists a path from i to j for
any i and j. Actually, there exists a path of length m; ; > 0 in ¥(A) from i to j if and only
if (Af");; > 0. Therefore, it is of great interest to inspect the powers of A and its possible

)
positivity.

1.2.2 Irreducible (non-negative) matrices

Let A be a N x N non-negative matrix. We say that A is irreducible if and only if (I+A)N ™1 > 0.
Since (I+A)N~1 = Z?]:_Ol Ni_l)Ai, we see that if A is irreducible, then for any i, j (with i # i)
at least one of the matrices A,A2,...,AN ! has a positive (i, j)-th entry. This means that, for
any i,j (with i # i), there is a path from i to j in ¢(A); in other words, ¥4(A) is strongly

connected. Let us summarize:
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Proposition 1.2. Let A be a N X N non-negative matrix. The following are equivalent:
i) Ais irreducible;
i) (I+A)N"1>0;
iii) %(A) is strongly connected.

Thanks to Proposition [I.2] one can remark that if A is irreducible, then Supp(A) is irre-
ducible too.

A very interesting result about irreducible matrices is Perron-Frobenius theorem which
states that if A is irreducible, then its spectral radius p(A) = maxi{lkﬁ} is a simple eigen-
value of A associated with a positive vector.

Theorem 1.3 (Perron-Frobenius theorem for irreducible non-negative matrices). Let A be a
N x N non-negative matrix and suppose that A is irreducible. Then

i) p(A) > 0 is a simple eigenvalue of A;

ii) there is a positive vector x such that Ax = p(A)x.

1.2.3 Primitive (non-negative) matrices

Let A be a N X N non-negative matrix. We say that A is primitive if and only if it exists m > 1
such that A™ > 0. First of all, since (I+A)N"! = Z]ivz_ol Ni_l)Ai and any A™ with m > N
is a linear combination of {A"},_, y_; (see Cayley-Hamilton polynomial), we obtain that a
primitive matrix is irreducible which implies that ¢(A) is strongly connected. Consequently
the primitivity property is stronger than the irreductibility one. So there are some fundamental
differences between irreducible and primitive matrices and their associated graphs. The main
difference is as follows: one can prove that, if A is primitive (related to the power m), then
Ak > 0 for any k > m. Consequently, for any k > m, and any i, j, there is a path from i to j
of length k in ¢(A). It is not the case for graphs induced by irreducible matrices. Notice also
that a self-loop-free graph associated with a irreducible matrix can induced a primitive matrix
very easily since its self-loop related graph (a self-loop is added for each node) has a primitive

adjacency matrix. The next proposition will be very useful in the remainder of the thesis.

Proposition 1.4. Let A be a N X N non-negative matrix. If A is irreducible and has positive
diagonal entries, then A is primitive.

Once again, one can see that if A is primitive, then Supp(A) is primitive too.

Perron-Frobenius theorem can be slightly improved for primitive matrices. Indeed, a use-
ful property can be added compared to the case of irreducible matrices: the eigenvalue p(A)
is the only eigenvalue of maximal modulus.

Theorem 1.5 (Perron-Frobenius theorem for primitive matrices). Let A be a N X N non-
negative matrix and suppose that A is primitive. Then

i) p(A) > 0is a simple eigenvalue of A;

ii) there is a positive vector x such that Ax = p(A)x;
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iii) p(A) is the only eigenvalue of maximal modulus.

Actually, a more stronger result holds: if A is irreducible but not primitive, then there exists
a integer k, strictly greater than one, such that the matrix A has k, eigenvalues of maximal
modulus. This property will be a major role in the following and explain why the primitivity
property will be often required.

1.2.4 Stochastic (non-negative) matrices

A non-negative N X N matrix is said to be row-stochastic if the sum of each row is equal to
one, i.e.,
Al =1 (row-stochastic).

A non-negative N x N matrix is said to be column-stochastic if the sum of each column is
equal to one, i.e.,

1TA=1T (column-stochastic).

A non-negative N x N matrix is said to be doubly-stochastic if it is row-stochastic as well
as column-stochastic.

In the following, we remind that very useful results about such matrices. First of all, the
spectral radius of a row-stochastic or column stochastic matrix is equal to one which means
that any eigenvalue has a magnitude (non-strictly) smaller that one. The proof is given in [3]

Lemma 8.1.21]. This property will also play a major role in our derivations.

Theorem 1.6. Let A be a either row-stochastic or column-stochastic matrix. Then, we have

p(A)=1.

Consequently, the vector 1 is a (left or right)-eigenvector associated with the largest eigen-
value. In the remainder of the thesis, the orthogonal projection on the span of 1 will be often

used. Let J be this projection matrix. Then we have
1

J=—11"
N

In addition, let J* be the projection matrix on the orthogonal of span(1). We easily have that

Proposition 1.7. Let A be a row-stochastic matrix. We have
JEAJt =JtA.
Proposition 1.8. Let A be a column-stochastic matrix. We have

JA=J and J*A=A-J.
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1.2.5 Stochastic matrices and Markov Chain

First of all, any N x N row-stochastic matrix can be viewed as a transition probability matrix
of a discrete-time Markov Chain with N states and conversely.

Let Wy be the transition probability matrix of a discrete-time non-homogeneous Markov
Chain at time k. If t* is the distribution over the states at time k, then, at time k + 1, the new

distribution over the states is denoted by t**! and is given by
T T
thH =t wy, (1.1

Since t* corresponds to a distribution, t¥ is a non-negative column-vector such that 17¢% = 1.
Obviously, for analyzing the evolution in time of the states distribution, the aggregate of
the row-stochastic matrices W, has to be done as follows

PN = W W, W

We thus have to operate right matrix multiplications, and this direction is called forward.
Obviously, the analysis of the matrix P}’k is of great interest in order to inspect the asymptotic
behavior of the associated Markov Chain.

1.2.5-a Forward direction

To handle the analysis of the forward matrix Pl’k, the notion of (weak or strong) ergodicity
has to be introduced.

Definition 1.9. A sequence of N X N row-stochastic matrices {W;}isq is said to be weakly
ergodic if foralli,j,f € {1,...,N}and all s > 0

k—o0
Ps,s-i—k) _ (Ps,s+k) j| 0
[( f il f it
where

Stk _
ijs - WsWs+1 Tt Ws+k'

In other words, weak ergodicity means that the rows of the aggregative matrix tend to be
identical, but may vary with k. By abuse of notations, we write that weak ergodicity implies
that it exists a sequence of non-negative column vector vk (with 1Tvk = 1) such that

1,k k—oo

f

P kT

1v (1.2)
. k— . .
where the notation " ~ . stands for two terms are equivalent for k large enough. As conclusion,
when we will apply such a result to our consensus algorithms, we will obtain that the nodes
agree but do not reach a consensus since the agreement value changes at each iteration.
A stronger definition of the ergodicity exists in the literature. If this type of ergodicity

holds, then the nodes reach a consensus.
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Definition 1.10. A sequence of N x N row-stochastic matrices {Wy} ¢ is said to be strongly
ergodic if there is a non-negative column vector v (with 1"v = 1) such that for all s > 0

k—
Pj;”k X1y, (1.3)

In other words, strong ergodicity means that the rows of the aggregative matrix tend to
the same vector v! which represents actually a distribution. Clearly strong ergodicity implies
weak ergodicity (see [8, Chap. 6.8]).

Remark 1.11. If the considered matrices {W };~( are column-stochastic (and not row-stochastic),
then all the above-mentioned results still hold by replacing W with W{ since W{ is a row-

stochastic matrix.

Remark 1.12. If the considered matrices {W;},~o are doubly-stochastic, then all the above-
mentioned results still hold. In addition, we have v = (1/N)1 in Definition [L. 10l

1.2.5-b Backward direction

As we will see later in the thesis (in Chapter B), we also have to work with the so-called
backward direction defined as follows

1,k
Pb’ = Wkwk—l PN W1

where {W; };~( are a set of N x N row-stochastic matrices.

Obviously, the weak ergodicity and the strong one can defined similarly to previous Sub-

Pgs+k

section by replacing £ with Psb’s+k

. In that case, it has been surprisingly proven that the
weak ergodicity is equivalent to the strong one [[9]].

1.2.5-c Particular case: homogeneous Markov Chain

A Markov Chain is said homogeneous when the transition probability matrix is independent

of time k. So, we then can work with an unique row-stochastic matrix, denoted here by W.

s,s+k
b

backward one. In addition, the weak ergodicity is equivalent to the strong one by applying

In that case, we have Pj;5+k =P = WK*1 and the forward direction is equivalent to the

the result given in Subsection Therefore, in homogeneous case, the adjectives weak,
strong, forward, and backward are omitted.

In homogeneous case, if a non-negative column-vector 7 (with 177 = 1) is a left-eigenvector
of W associated with the eigenvalue equal to 1, i.e.,

mTW = nT,

then the vector represents a stable distribution of the associated Markov Chain.
In addition if the Markov Chain is ergodic, then

T=vV (1.4

where v is defined as in Definition
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1.3 Norms

Here, we just recall the definitions of two norms associated with matrices (see [3, Chapter 5]

for details).
Let x = [xq,--+,xy]T be a N x 1 vector. The Euclidian (or I,) norm is defined as

N
lxlly = 4 D 1l
n=1

Let A be any N x N matrix. The spectral (or l,-induced) norm of this matrix, denoted by

Il - lll5, is defined as follows

Ax
Il|All|, = max IAx = {ﬁ : A is an eigenvalue ofATA}.
xecV [|xlly

The Frobenius norm, denoted by || - ||, is defined as

lAl|z = 4/ Trace (ATA) =




CHAPTER 2

MAXIMAL VALUE SPREADING

In this chapter, we analyze different techniques for distributively spreading the greatest of the
initial values in the context of an asynchronous Wireless Sensor Network. This quite simple
question can arise in many applications and it also sheds light on the speed of information
dissemination in an asynchronous network.

2.1 Introduction

Wireless Sensor Networks can often be seen as groups of connected agents that cooperate to
achieve a common goal. As they are generally deployed in hostile environments, there can
not be a master agent acting as a fusion center fetching the data and coordinating the agents;
hence, they have to exchange locally with each other in order to achieve their objective.

For example, if a network has to transmit periodically some data through a costly link,
a natural way to operate would be to elect the sensor with the largest amount of power
remaining to operate that communication. To do so, the sensor network has to retrieve and
spread the maximal amount of energy left in the sensors battery (along with the ID of the
corresponding sensor); this has to be done distributively using only the wireless links between
some of them.

Another useful application deals with distributed medium access control: in the case
where many nodes want to send information using the same medium, the network has to
choose which node will effectively transmit. A possible distributed protocol is to make the
agents that want to send i) draw a number in a common window; and then ii) reach consen-
sus over the greatest drawn value (and the ID of the associated agent). The sensor with the
maximal value then sends its packet to the access point.

We remark that all these actions require the computation of the maximum between the
initial values of the network. Mathematically, we need an asynchronous distributed algorithm
which produces a sequence {x*} such that

xk — x 1 (2.1)
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with x,,, = max; xl‘.). Obviously, all maximal value spreading algorithms easily generalize to
the computation of the minimum value, the closer to a constant, etc.

Interestingly, if the sensor with the maximal value knows that it has the maximum across
the network, then our problem reduces to the well-known rumor spreading problem where the
rumor bearing sensor spreads it to the others using the underlying communication network.
Our setup, where the agents of the network do not know if they have the rumor to spread or
not, can be seen as a juiciest rumor spreading in which the network has to locate the juiciest
rumor before spreading it. Another fundamental difference with standard rumor spreading
is that most rumor spreading algorithms are designed in the context of a synchronous wired
networks whereas our setup is an asynchronous wireless network. However, it will be infor-
mative to compare the performance of asynchronous maximum value spreading algorithms
on wireless networks with similar rumor spreading procedures.

This chapter is organized as follows. Section[2.2]will present the rumor spreading problem
and its similitudes and differences with our problem; it will also introduce the algorithms
that we will consider for analysis. The details about the setup and how to investigate the
algorithms convergence will be given in Section Then, Section will be dedicated
to the mathematical analysis of the mentioned algorithms. Finally, numerical results will
illustrate our claims in Section [2.5]and conclusions will be drawn in Section [2.6

2.2 The maximum value diffusion seen as a Rumor Spreading
problem

2.2.1 The rumor spreading problem

Rumor spreading is the problem of spreading a particular, local information through a net-
work. It was introduced by [[10] in the case of replicated databases (name servers, yellow
pages, etc.) where the updates are made locally (on a single database) and have to be propa-
gated to all other sites. This seminal paper introduced some very useful concepts:

e rumor mongering — it is the idea that all updates are not of equal importance to the
network so that only the most recent ones may be propagated. It is clear that this
asymmetry is something we encounter when trying to spread the maximal initial value
through a network.

e push transmission — it is when information go from the caller to the called agent. This
transmission setup is responsible for the term epidemic algorithms which is the original
term coined by Demers et al. [10].

e pull transmission — it is when information go from the called to the calling agent.

The push and pull transmission methods are often combined to form push&pull algorithms.
These algorithms are based on pairwise exchanges between neighbors in the network which
recall the Random Gossip algorithm [[11]] introduced for average value computation and in a
asynchronous context.
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Due to i) the wired medium in the original works which implies that an agent may only
call (or be called by) its neighbors one by one; and ii) the possible congestion and collisions

in the network, the rumor spreading algorithms are randomized by nature.

2.2.2 Rumor spreading algorithms

In terms of communication between agents, most papers dealing with rumor spreading con-
sider push and/or pull transmission methods [[12] (13} (T4} (15| (16} 17, 18] [19] as it is more
suited for a wired networks. Some papers [20, 21], 22} 23] 24]] consider a radio medium and
hence propose broadcast! based algorithms.

Randomized rumor spreading may seem very close to our problem but the two problems
differ on two major points summarized in Table 2.1l On the one hand, even if the commu-
nications of rumor spreading are randomized, many nodes may communicate simultaneously
which leads to collisions. In the setup, communications are asynchronous so collisions
are avoided by construction and only one sensor can speak at a time. On the other hand, in the
rumor spreading problem, the nodes know if they have the desired rumor and hence can act
consequently. In the maximal value problem, no sensor can know if it has the maximum value
so the time spent by each (potentially useless) communication has to be taken into account.
These two differences make our problem quite different from classical rumor spreading and
imply the use of different mathematical tools for analyzing the related algorithms. The fact
that the sensors do not know if they have the maximal value in our context is a key difference

with rumor spreading as it will change the algorithms as well as the proof techniques.

Rumor spreading Maximum value diffusion

Communication timing | Synchronous. Many nodes | Asynchronous. One node
may speak at each clock | speaks per clock tick. No
tick. Collisions. collisions

Rumor awareness Aware. Unaware.

Table 2.1: Key differences between rumor spreading and maximal value spreading in WSNs.

The maximal value diffusion can thus be seen as an “asynchronous juiciest rumor spread-
ing problem” where i) asynchronous is linked to the communication framework of (WSNk; and
ii) juiciest means the agents do not know if they own the rumor. Consequently, we need to
develop gossip algorithms (i.e. algorithms suited for (W'SNk) solving this problem.

2.2.3 Maximum value gossipping algorithms

To the best of our knowledge, in the framework of distributed computation for [NSNk, only

[25] has focused on the maximal value computation. Actually, [25] developed a general

!the term broadcast means here sending information to all its neighbors and not spreading information across
a network.



16 CHAPTER 2. MAXIMAL VALUE SPREADING

framework to compute a wide family of functions (including the maximum value) of the
nodes initial values in a distributed fashion. Compared to our setup, this work has been
done under continuous time and synchronous clocks assumptions. It can nevertheless be
adapted to our context (discrete time and asynchronous clocks), but the derived algorithm
will perform poorly since each node goes to the maximum in an incremental way even if one
of its neighbors has the maximum value. Therefore, we proposed gossip algorithms adapted
to maximal value computation in Wireless Sensor Networks.

2.2.3-a Random-Walk

First, as a toy example, we consider a simple random walk on the graph propagating the
maximal encountered value. This algorithm is not really asynchronous nor synchronous and

will be a comparison point as it is very popular and well studied [26), 27].

Random-Walk
At time k, let i be the active node:

» isends xlk to a neighbor j uniformly chosen in A;;

; S k kY.
» j updates: Xx;" = max (xi,xj),

» j is then the active node for time k + 1.

2.2.3-b Random-Pairwise-Max

A simple way to estimate the maximal value would be to mimic the Random Gossip algorithm
introduced for averaging [11]]. The agents would wake up randomly and exchange their value
with another reachable sensor chosen uniformly; both sensors would then keep the maximum
between their former and received values. This can also be seen as a asynchronous push&pull
algorithm.

Random-Pairwise-Max

At each clock tick k, let i be the activating node:

» i chooses a neighbor j uniformly in 4; and they exchange their values.

K1 = x*1 = max (xf‘, x’.‘).

» Both i and j update: x; j ;

This algorithm is suited for wired networks whereas it is clearly not optimal for wireless
networks. Indeed, it does not take advantage of the broadcasting abilities of the wireless

channel.

2.2.3-¢c Random-Broadcast-Max

Since the communications between the sensors are wireless in our context, it seems more
natural for the active sensor to broadcast its value, and then the sensors which have received
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the information would update their value accordingly. Note that an averaging algorithm based
on broadcast communications has been proposed in [7], but it does not perform well due
to the non-conservation of the initial sum. This is not an issue for estimating the maximum
value since the maximum value is preserved. The RANDOM-BRoADCAST-Max will be our flagship

algorithm.

Random-Broadcast-Max

At each clock tick k, let i be the activating node:
» i broadcasts xlk to all its neighbors.

» All the neighbors update: xJIFH = max (x}‘,xf) forall j € A,.

One can remark that that if the activating sensor has not received information since the
last time it broadcast, it is useless that it broadcasts as its neighbors are already informed with
its current value, it could just stay idle. This minor change does not affect the convergence
time (as it is always driven by the independent Poisson clocks of the sensors) but reduces the
number of transmission and thus the consumed power. In the following we will not consider

this this change for the sake of simplicity.

2.3 Setup

2.3.1 Precisions about the setup

We will use the model defined in Section that is a of N agents modeled as an
undirected connected graph ¢ = (V, E). For the sake of clarity and without loss of generality,
we will consider that the agents activate though an[L.L.d]process and at any (global) clock tick
the activating agent is chosen uniformly in V.

The underlying graph model is very important as the convergence speed is closely linked
to the graph structure and the rumor spreading community focuses on finding relations be-
tween the performance of the algorithms and the properties of the underlying graph. The
following quantities will be useful to characterize the graph (see Section [I.1] for definition
and properties):

e the number of vertices N;

o the maximal degree d,,, = max;cy |A;|;

e the second smallest eigenvalue of the Laplacian AL;

e the diameter Ay = max{l“(i, ) : (i, ) € V?} where [¥(i, j) is the minimum number of

edges needed to connect i to j in 9.

Even if we want our performance analysis to depend closely on the graph properties, we
do not focus on a particular graph unlike [[18] which focuses on expanders and [28]] which
focuses on regular graphs, both in the rumor spreading context.
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2.3.2 The convergence time

We define the convergence time 7 as the first time when all the nodes share the maximum of
the initial values (at this point they should not change their values), i.e.,

t2inf{teN:Vk>t x*=xyql}. (2.2)

We will now prove a convergence result (7 < co almost surely) for a vast class of random
spreading algorithms. Let us consider the class of Random Maximum Spreading algorithms,
that is the algorithms such that:

e each sensor has one variable initialized with their measurements;

o the activating sensors are chosen through an irreducible Markov process;

e at any time k > 0, the newly active sensor sends its variable to some of its neighbors

and may also receive the variables of some of its neighbors;

e when a sensor receive a variable greater than its, it updates by replacing its variable by

the received one.

Theorem 2.1. Let Assumption[I.Ilhold. Then, for any Random Maximum Spreading algorithm,
one has T < oo with probability 1.

Proof. Let Mk ={ieV: xf = Xpnax} be the set of nodes sharing the maximum at time k. Let
X* = |M*| be the cardinal of M* and Y* = & x*+15x+} be the random variable equal to 1 when
X*1 > x*k and 0 otherwise where § ¢} is the Kronecker symbol.

The considered algorithms are such that M¥ is a nondecreasing sequence of subsets of V
so X* is a nondecreasing sequence of integers upper-bounded by N and X* then converges to a
random variable X* < N. Hence, we have that Zzozl YK < X < N and, taking expectations
over the choice of the activating and receiving sensors, 21?;1 E[Y*] < co.

Whenever XX < N, using the graph connectedness, there is at least one couple (i,]) €
M* x (V — M¥) such that j € 4. For any pair of sensors i, j € V, the probability that i informs
j with x,., before N iterations is positive and we will denote by p > 0 the lower of these
probabilities over any pair of sensors (see Section [1.2.2] for more details). Then, for all k > 0

k+N k+N k+N
E[Z Y] > ]P’[Z Yi=1,xk<N]= ]P’[Z Yt =1)x* < NJP[X* < N] > pP[X* < N].
t=k t=k t=k

Then, by summing over k > 0, we have

o0 N o
D Plx* <N1< =) E[Y,] < oco.
k=1 Pia

Thanks to Borel-Cantelli lemma, we know that P[XX < N infinitely often ] = 0. Hence,
there is a finite time 7 such that X* = N almost surely. O

Then, we obviously have the following result.
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Corollary 2.2. The RANDOM-WALK, RANDOM-PAIRWISE-MAX and RANDOM-BROADCAST-MAX con-
verge to a CONsensus over X, in finite time with probability 1.

This result is not surprising and we would like now to have more information about the
behavior of 7 versus some characteristics of the operating graph. For this purpose, we will
measure the performance of the proposed algorithms in the light of two criteria:

e the mean convergence time: E[7] gives a first order approximation of the convergence

speed;

e the convergence time dispersion: for all ¢ €]0,1[, finding a bound B such that P[T <

B] > 1 — ¢ gives a more general view of the convergence speed through the tail of the
convergence time distribution.

Finally, in order to be able to compare with the results of the rumor spreading literature,
we will study the behavior of our bounds with respect to the number of nodes N when it
goes to infinity. To this purpose, we will use the notation &(-) to get results of the form
T = O(f(N)) meaning that there is a finite constant C such that 7 < Cf(N) for N large

enough.

2.4 Performance Analysis

In this section, we will derive performance bounds for the introduced algorithms by the crite-

ria introduced in the previous section.

2.4.1 Random-Walk

This algorithm has mainly a comparison purpose and hence its performance will not be studied
extensively. Still, we will relate its performances to some well-studied quantities and give
pointers to find results about the expectation and the tail inequalities for these quantities
enabling the reader to derive the mean convergence time and convergence time dispersion of
the algorithm.

Let us denote by vk the active node at time k. We define the walk matrix W as W, =
P[vk*! = j | vk =] for any i, j € V. This matrix has the same support as the communication
matrix defined in Section[I.1.2]and thus Assumption [I.Tlimply that W is irreducible by Propo-
sition In addition, it is a stochastic matrix i.e.a non-negative matrix whose row sum is 1;
W can thus be seen as the transition matrix of N-states irreducible Markov chain. The random
walk on a graph can thus be seen as the visit of the states of a stationary Markov chain of
transition matrix W.

Let us imagine that agent j has the maximal value at time O and that the Random-Walk

algorithm begins at sensor v°

= 1. Then, the convergence time of the Random-Walk algorithm
is the sum of i) the time the walk takes to go from i to j, namely the (i, j)-hitting time HV (i, j);
and ii) the time the algorithm takes to go through all the other vertices of the graph starting

from j (or identically all the states of the Markov chain), namely the j-cover time CW(}).
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Finally, as we want our results to be true for any initialization, we have the following
result.

Proposition 2.3. For the RANDOM-WALK algorithm, one has
T<HY+cW

where:
o HW = max; HW(i,j) is the maximal hitting time on W;

o CW =max; CV(i) is the maximal cover time on W.

From this proposition, the reader can find bounds on E[7] in [126} 29] for general graph
and in [27,130] in the case of Random Geometric Graphs. Concentration bounds on expander
graphs can be found in [31]].

2.4.2 Random-Pairwise-Max
2.4.2-a Expected convergence time
Theorem 2.4. For RANDOM-PAIRWISE-MAX, one has

hy—1

E[T] < NdmaxT:
2

with h, = 212:1 1/k the n-th harmonic number.

The details of the proof are reported in Appendix [A.2l The idea of the proof is that
considering the set S of the nodes informed by the maximum value, the probability for another
sensor to become informed after an iteration of Random-Pairwise-Max is the same as the
probability that one of the exchanging nodes is in S while the other is in V'\ S. This probability
is lower-bounded by p.,;,|0S| where i) ppin = 1/(Ndpax) is @ lower bound of the probability
for any pair of connected nodes to be active at each iteration of the algorithm; and ii) 95 =
{{i,jl€E:ieS,j¢S}isthe set of edges with one end in S and the other end in V' \ S. Then,
a useful inequality proved in Appendix [A.T]is

@>AL 1—ﬂ (2.3)
S| =2 N )’ ’

For the sake of clarity in the comparisons with the literature, it is useful to derive a slightly
different version of our bound depending on the vertex expansion ay of the graph instead of
AL. This quantity is defined as

16S|
A = MIin
¢ 7 <V min{|S|,N — |S|}

where S is any subset of the nodes of ¢4 and 6S = {i € V\ S : 3j € S such that {i, j} € E} is

the set of vertices in V \ S with at least one neighbor in S.
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Theorem 2.5. For RANDOM-PAIRWISE-MAX, one also has
hyyy
E[7] < Ndp——,
Qg
with h, = ZZZI 1/k the n-th harmonic number and a the vertex expansion.

Proof. The proof is very similar to the one of Theorem [2.4] in Appendix [A.2l To obtain the
result of the corollary, we remark that for any set S, |2S| > |6S], thus Eq. still holds
with |6S| instead of |0S|. Then, applying the definition of the vertex expansion we have
|6S| > ay min{|S|,N — |S|} that we plug in the previously mentioned equation to obtain

Oy

PxF =xk+1|xk1>2 min{Xx*, N — x*}

max
and as in Appendix[A.2] we sum the inverse of this bound for X* = 1,...,N — 1 to obtain the

claimed result. O

In order to illustrate the upper-bound given in Theorem [2.4] let us consider a complete
graph?; for this particular graph, d../ 7L]2‘ is of order ¢(1) hence our bound is of order
O(NlogN). In the standard rumor spreading context, the bound is of order &(logN) [32].
We thus pay an extra factor of order N for not knowing which nodes are informed or not.

2.4.2-b Convergence time dispersion

Theorem 2.6. For RANDOM-PAIRWISE-MAX, with probability 1 — &,

E N
T <C*(N) (l—l—log (;))

where C®(N) is one of the bounds (RHS) of Theorem or 2.5

The proof is reported in Appendix[A.3]and is based on concentration inequalities.

Again, in order to compare ourselves with the rumor spreading literature, let us take
£ = 1/N, we now have C*(N)(1+2log(N)) as a right hand side. Hence, T = @(C*(N)log(N))
with probability 1—1/N. Using the bound of Theorem[2.5] we get that T = O(N a;l log?(N)d )
with probability (1 —1/N).

In [133]], it is proven that 7 for the Push-Pull is 0(0(;1 log?°(N)) with probability (1—1/N).
Apart from the factor N (essentially due to our communication protocol), the trends offer

strong similarities.

2.4.3 Random-Broadcast-Max
2.4.3-a Expected convergence time

Theorem 2.7. For RANDOM-BROADCAST-MAX, one has

N-1
E[T]SNAg+N(Ag—1)log(A 1)
v—

2a complete graph is a graph where every vertex is connected to any other one.
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where Ay is the diameter of the graph.

The proof is reported in Appendix [A.4l In this proof, we actually compute the expected
convergence time on a spanning tree subgraph of ¢ rooted on the node that has the maximum
at time 0, that is a graph with the same vertices set but where we delete some vertices so that
the graph is still connected but has no cycles (or loops, that is sequences of edges starting and
ending at the same vertex). Seeing the sensor that has the maximum as the top of the tree, we
count the time it needs to inform all its successors (the neighbors, in a descending way) that
we call the first layer L. Once the first layer is informed, we add the time to inform the second
layer, etc. When layer L" is informed, the time to inform L™"! using Random-Broadcast-Max
is the time for all the sensors of L" to become active, this time is equal to N following the
standard proof of the coupon collector problem [34].

Note that for complete graphs (A4 = 1), the upper bound of Theorem is tight since
the time needed for propagating the max is the time needed for the initially informed node
to wake up and communicate its value to all other nodes using only one broadcast commu-
nication, hence N in expectation. Moreover, for the ring graph, we can prove that E[7] =
(N2 — N)/2 while our bound is close to N2(1 +log(2))/2, thus both quantities scale in N2.

Let us now consider the previous works on maximum propagation by using the broadcast-
ing nature of the medium [20] 21], 22| 23] 24]]. Even if the framework is strongly different
(as showed in Section [2.2)), it is interesting to compare the obtained performance bounds. In
the rumor spreading framework where all the informed nodes wake up simultaneously and
broadcast the information to their neighbors (causing collisions), the expected convergence
time behaves like Ay log(N/Ay) [22]. Quite surprisingly, their bound has almost the same
shape as ours up to a factor N, which was already observed for the Random-Pairwise-Max
(Section [2.4.2-a).

2.4.3-b Convergence time dispersion

Theorem 2.8. For RANDOM-BROADCAST-MAX, with probability 1 — &,

T<CEN)+NAy (log (A(g) - 1)

i
where C®(N) is the bound of Theorem 2.7

The proof is reported in Appendix[A.5l It is based on the same framework as the proof of
Theorem [2.7] and uses the tail probabilities of the Bernoulli distribution as well as the Union
bound.

If we take a look at the complete graph, we remark that the extra time cost scales like
NlogN for ¢ = 1/N. Again, quite surprisingly, [[14]] obtained similar results although, as

before, the two frameworks are strongly different.
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2.5 Numerical illustrations

In order to evaluate the performance of the proposed algorithms and the tightness of our
bounds, we need to put a model on the underlying graph. Contrary to the rumor spreading
literature, we do not want to impose a specific structure on the graph (e.g. to be regular). We
thus chose to use Random Geometric Graphs [[35]] which is a large class of graphs that is very
well suited for modeling as we will see in the following. We will first define and give
intuitions about connectivity in in Section then we will examine the algorithms
performance and the tightness of our bounds in Section

2.5.1 AboutRGGSs

To obtain such a graph, one has to choose N points uniformly in the unit square [0,1] x
[0,1] (these points represent the position of the nodes/sensors). Then, one has to draw an
(undirected) edge between any pair of sensors closer than a pre-defined radius r (this radius
represents the communication radius of a sensor, thus the edges link sensors that are able to
communicate). The construction of a 10-nodes[RGGwith radius 0.3 is illustrated in Figure[2.1]

1 T

0.8

0.6

0.4

0.2

Figure 2.1: Construction of a[RGGl

This class of random graphs is well suited for modeling by their construction and
can lead to very different graphs (the circle or the complete graph can be generated with this
method with a large variety of intermediaries) which coincide with our objective of finding
general bounds valid for any graphs. However, we assumed that our communication graph
was connected which may not be the case for some of the RGGb, in this case we just drop the
graph (in order to determine if a graph is connected a simple method is to use the properties of
Proposition[1.2]). By choosing r = ry4/log(N)/N with r( not too small, connectivity is ensured
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with a high probability (asymptotic connectivity with high probability has been proved for
ro > 3, see [36, Appendix A], though smaller radii seem to work quite well for relatively
small N).

In Figure 2.2] we plot i) the percentage of connected graphs; ii) the mean percentage of
edges (that is the number of edges of the graph over the number of edges of the complete
graph with the same number of nodes which is equal to N(N —1)/2); and iii) the mean second
smallest eigenvalue of the Laplacian Alz‘ versus the number of nodes for different values of r.
We remark that for ry > 2 the graph is always connected for 10 to 100 nodes. We also see
that the mean percentage of nodes decreases with N but remains quite high. Finally, the value
of AIZ“ is very instructive as it is always positive and upper bounded by the number of nodes
(bound attained in the case of a complete graph), it also gives a insight on how well the graph
is connected. This enables us to see how the graphs are more and more connected as r, grows,
and finally that the graphs generated with ry = 6 are almost always complete.
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Figure 2.2: Connectivity of RGGks with different radii.

2.5.2 About the tightness of the derived bounds

Following what we saw in the previous section, we choose the RGGk with ry = 4 as a graph
model; indeed, they are pretty well connected while at the same time being quite far from
the complete graph for N > 60 as seen in Fig. All simulations will thus be done over
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Monte-Carlo trials of these graphs.

In Figure we look at the percentage of informed sensors versus the number of iter-
ations for a 50-sensors graph. We remark that the Random-Broadcast-Max converges faster
than the two other algorithms which have similar convergence speeds. After a short first hit
step, the Random-Walk is faster than the Random-Pairwise-Max for the first 150 iterations but
slows down after that and is finally slower. This is due to the fact that Random-Walk informs a
new sensor very frequently when only a few sensors are aware whereas the last sensors take a
long time to inform as it is a local algorithm. In contrast, the Random-Pairwise-Max performs

updates uniformly on the graph and is thus more successful when many sensors are informed.
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Figure 2.3: Percentage of informed nodes versus the number of iterations.

In Figure [2.4] we plot the (empirical) mean number of communications for reaching con-
vergence and the associated upper-bounds (given by Theorems [2.4] and [2.7) for Random-
Pairwise-Max and Random-Broadcast-Max versus the number of sensors N. The number
of communications is a good indicator in the case of as the power constraints are
important, it is simply obtained by multiplying the number of iterations by the number of
communications per iteration, that is, 1 for the Random-Walk and the Random-Broadcast-
Max® and 2 for the Random-Pairwise-Max. We again observe that the Random-Broadcast-
Max outperforms the Random-Pairwise-Max; however, due to its communication cost the
Random-Pairwise-Max is no longer faster than the Random-Walk. For small networks, the
graph is almost always complete (see Fig. [2.2d) and thus our bound is tight as mentioned
in Section for the Random-Broadcast-Max. When the network size increases, the
upper-bounds become quite pessimistic due to the various used simplifications (in the case of
Random-Pairwise-Max, we use the inequality of Eq. (2.3) and the approximation d; ~ 1/dax;

3we assume that a point-to-point communications costs roughly as much as broadcasting in a wireless setup.



26 CHAPTER 2. MAXIMAL VALUE SPREADING

in the case of Random-Broadcast-Max, we rely on the spanning tree instead of the whole
graph and we broadcast the information layer per layer). The looseness of our bounds is in
fact inherent to the problem of rumor spreading on graphs as soon as one want to consider
all kinds of graphs; the graph-related tools and inequalities used in our derivations are indeed
similar to the ones used in the rumor spreading literature so the derived bounds suffer from

the same tightness problem.

1,400 . . . . i ‘ ‘ -
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Figure 2.4: (Empirical) mean number of communications for reaching convergence and asso-

ciated upper-bounds versus N.

As the Random-Broadcast-Max is much more interesting in terms of performance, we
hereafter focus on it exclusively. In Figure [2.5] with N = 40 sensors, we plot the histogram of
the convergence time and i) the quantile at 1/N (that is the value such that a fraction of 1/N
of the trials are greater than this value); ii) the upper-bound of Theorem [2.8] Once again,
our bound is loose which illustrates the fact that it is very hard to obtain tight bounds for

spreading problems on general graphs.

2.6 Conclusion

In this chapter, we presented and analyzed the problem of distributed estimation of the maxi-
mal initial value in a[WSNl After detailing the problem, we examined precisely the similitudes
and differences between this problem and the well-known rumor spreading problem. Then,
we presented and analyzed three algorithms: i) the Random-Walk which acts here as a toy
example; ii) the Random-Pairwise-Max which mimics the well-known Random Gossip; and
iii) the Random-Broadcast-Max which uses broadcast communications.

We showed that, roughly speaking, we pay a factor of the size of the network due to the
fact that the sensors do not know if they have the wanted information (maximal value or ru-
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Figure 2.5: Histogram of the convergence time and associated upper-bound with probability
(1 —1/N) for the Random-Broadcast-Max when N = 40.

mor). We also observed that the use of the broadcast nature of the wireless channel improves
dramatically the convergence speed of gossip algorithms for the maximum estimation.

In the next chapter, we will consider the problem of distributed estimation of the average
value. Comforted in the idea that broadcasting would improve the convergence speed we will
exhibit the convergence issues due to broadcasting in an averaging context and present a way

to overcome this problem.
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CHAPTER 3

DiISTRIBUTED AVERAGE CONSENSUS

In this chapter, we will study the problem of distributed average consensus which consists in
making a network to share the average of its initial values by performing local communications

and linear operations at each sensor.

3.1 Introduction

As mentioned in Chapter [T} one of the most studied problems in is how to reach con-
sensus over the average of the initial measurements of the sensors in a asynchronous way. In
the seminal paper written by Boyd et al. [11]], the problem is solved through the so-called
Random Gossip algorithm in with at each iteration a randomly chosen sensor chooses one of
its neighbors, then they exchange their values and update them by taking the mean between
their received and former values. In the rest of the literature, the main proposed improve-
ments for averaging algorithms (and any gossip algorithm in general) were based on either
i) a better exploitation of the global geometry of the network; or ii) the use of broadcast
communications.

The network structure was exploited in |37, 38] in order to perform a better mixing over
the graph. Indeed, [|37]] proposed an algorithm called Geographic Gossip very similar to the
random gossip but where the two exchanging nodes are not necessarily connected; the mixing
is thus more global and hence the algorithm converges faster than the standard random gossip
but this algorithm needs routing between the waking and the chosen sensor. This routing step
can be in terms of communications/overhead and energy. [38] improved this algorithm by
collecting the values of the sensors along the way of the routing, the chosen sensor thus has
the values of all the sensors on the route between the waking sensor and itself. The chosen
sensor can thus compute the average of these values and send it back through the same
route as before. This algorithm named Randomized Path Averaging converges even faster than
geographic gossip but still needs a costly routing. All these algorithms suffer from the need
of costly routing. In addition, all the algorithms assume that the node receiving information

feeds back its information to the sending node. This assumption can be very restrictive in
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case of link failures (which may occur in real-life static network) or mobile wireless networks.
Therefore we would like to propose feedback-free (and routing-free) gossip algorithms.

We have seen in the previous chapter that broadcast-based algorithms converge much
faster than pairwise-based ones in the case of maximum value estimation. Thus it is natural
to propose broadcast-based averaging algorithms. In the most simple algorithm of this type,
called Broadcast Gossip [7], the waking node broadcasts its value to all its neighbors which
update their estimates by taking the mean between their received and former values, this al-
gorithm is in addition feedback-free, and so should be very promising. Indeed, it has a very
fast convergence to a consensus but unfortunately does not converge to the true average of
the initial values but to a random variable centered over the true average which is problematic
and thus prevents its use. The inexact final value is due to the fact that the sum of the sensors
estimates is not preserved over time. Some other broadcast-based averaging algorithms con-
verge to the true average exist but they need feedback. This feedback is a problem when link
failures happen (as mentioned in previous paragraph) and also induces a non-negligible com-
munication cost. In this context (broadcast with feedback-based algorithms), one can quote
the Neighborhood Gossip [139] in which the waking sensor broadcasts a beacon to all its neigh-
bors which then send back their values (the collisions are avoided by superposition coding) to
the waking sensor which computes and broadcasts the average of the communicated values.
The multiple transmissions and the multiple access issues are the negative points of this algo-
rithm in the setup. One can also quote the Greedy Gossip with Eavesdropping [40] which
is a modified version of the random gossip where the waking sensor chooses its neighbor with
the most different value to exchange, every sensor knows its neighbors values as the sensors
broadcast their value after each update. As a conclusion, finding a feedback-free broadcast
based algorithm converging to the true average is still an open issue. We propose hereafter to
fix this issue.

To do so, we cannot rely on the standard gossip framework. Indeed, it is impossible to find
such an algorithm via this framework as remarked in [41]]. In contrast, as remarked in [42] !,
the so-called Sum-Weight framework introduced in [43] is well adapted to the feedback-free
algorithms. We will also show that it is well adapted to design a (feedback-free) broadcast-
based algorithm. In this framework, each sensor maintains and updates two local variables
instead of one; the average estimate being the quotient of these two variables. In oppo-
sition to the two variables of the Sum-Weight framework, we will call the standard gossip
algorithms depending on only one variable single-variate. The Sum-Weight formalism was
originally proposed and studied in terms of convergence for synchronous average computa-
tion, the asynchronous case was treated by Bénézit et al. [42]] and later in [41]]. However, the
convergence speed has never been theoretically evaluated except in [43]] for a very specific
case.

As a conclusion, our objective is twofold: on the one hand, we propose to theoretically

lwhere the authors generalize the randomized path averaging to a new feedback-free algorithm leading to the
so-called One-Way Path Averaging algorithm
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analyze the convergence speed of any algorithm based on the Sum-Weight framework; on the
other hand, we design a feedback-free broadcast-based algorithm using this framework which
converges very quickly and outperforms existing algorithms.

The chapter is organized as follows: in Section [3.2] we remind some results and algo-
rithms associated with the standard (single-variate) framework. In Section [3.3] we recall the
Sum-Weight framework and introduce our assumptions. In Section [3.4] we provide our re-
sults about the convergence and convergence speed for sum-weight-based algorithms. This
section corresponds to the main contributions of the chapter. In Section [3.5] we propose a
new feedback-free broadcast-based Sum-Weight algorithm called In Section [3.6]
we revisit the results on the standard (single-variate) gossip algorithms according to results
obtained in Section 3.4l Finally, in Section we provide one application for averaging al-
gorithms which is the distributed spectrum sensing in a cognitive radio context. We especially

see that the BWGossip helps us to fix some problems raised in this Section.

3.2 Standard (single-variate) framework

3.2.1 Model

According to Chapter [I] we consider a modeled by a graph ¢ = (V, E) and each sensor
i has an initial value x? but now the goal of the algorithms is to compute x,,. = 1/N Zf’zl le
by i) exchanging only locally in the sense of Assumption [I.T and ii) through linear operations
with non-negative coefficients?. In the standard single-variate framework, all the algorithms

can then be expressed with a matrix formulation as
XM = K x 3.1)

where the process {K;}~o, valued in the set #" = {K;};—1 _y, isiidl The set 2 contains M
non-negative matrices whose support is included in the support of I+ A with A the adjacency
matrix of 4. The goal of an averaging algorithm can be written

1
xK s X, 1 (= N]l]lTxO =Jx%) (3.2)

where ~» is a convergence to be defined later.
Before going further, it seems natural that the matrices of ¢ satisfy two properties:
e Sum conservation: in order to keep the sought information (the average/sum of the
initial values) throughout the processing time, it is mandatory that the sum of the nodes
variables should be unchanged at each iteration and so identical to the sum of the initial

values given by x,,.. Therefore, we need
1TxM T =17k, (3.3)

As xk = KriKer ...KngO, Eq. (3.3) holds if and only if each matrix of the set £ is
column-stochastic.

2this is actually not restrictive as it seems logical to combine receive values using weighted means.
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e Consensus conservation: it seems important that the consensus is stable (if it exists).
Let ¢ be the consensus value. The stability leads to

k=c1=xkl=c1 (3.4)

As xF1 = K xk, Eq. (39 for any c holds if and only if the set ¢ is row-stochastic.
Notice that, in the remainder of this Section, the relative importance of both above-mentioned
properties will be analyzed. Therefore we will not assume these properties by default but case
by case.

Finally, it seems natural that a sensor always keeps a part of its own value at each iteration.
This implies that each matrix of the set ¢ has positive diagonal entries. Therefore, we will
consider that the following Assumption 3.1l holds throughout this Chapter.

Assumption 3.1. The matrices of & are non-negative and positive diagonal entries.

This section is organized as follows: in Subsection[3.2.2] we consider the doubly-stochastic
matrices case whereas in Subsection [3.2.3] we focus on the strictly non-doubly-stochastic
(either row or column) matrices case.

3.2.2 Case of doubly-stochastic matrices

In order to introduce the problem in a more simple way, we start this Subsection by focusing
on the synchronous communications context (even if the contributions of the thesis concern

the asynchronous communications context) in Section [3.2.2-al

3.2.2-a Synchronous communications context

In synchronous communications context, all the nodes speak at the time and do always the
same operation. We consider that collisions are avoided by choosing an appropriate multi-
ple access scheme. Consequently, the algorithms are no random and simply characterize by
the initial vector x° and an unique K (satisfying Assumption 3.1 and the doubly-stochastic
property, obviously). We so have

Xk =Kk, (3.5)

Notice that the below-mentioned existing results are based on [3] 44] 45|] and [46]].

According to Chapter[I] K can be viewed a transition probability matrix of a homogeneous
Markov Chain since it is row-stochastic. From [46, Prop. 8.3] (or [I3, Theorem 8.5.1]), this
related homogeneous Markov chain is ergodic if K is primitive. Thanks to Definition [[.TQ] we
know that, if K is primitive and so ergodic, then it exists a positive vector v (with 1Tv = 1)
such that

lim (K)™ = 1v7.

m—00

As K is also column-stochastic, we have v = (1/N)1 and so

1
lim (K)™ = —11". (3.6)
m—o00 N
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Eq (3.6) implies directly that

lim x* = x,,.1
k,o00

which corresponds to the convergence proof.

Once the convergence ensures, we would like to analyze the convergence speed to the
consensus. Before going further, we need two preliminary (well-known) propositions. For
pedagogical reasons, we will also remind their proofs.

Result 3.2. Under Assumption [3.1) if K is primitive, then K'K is also primitive.

Proof. As K is non-negative, we have (K'K), ; > K; ;K; ;. Furthermore, as K has positive di-
agonal entries, we get that the support of K is included in the support of K'K. This implies
that if ¢(K) is strongly connected (and so K primitive as it is irreducible with positive diag-
onal entries), then ¢(K"'K) is also strongly connected and so K'K is irreducible with positive

diagonal entries and so primitive. O

Result 3.3. Under Assumption [3.1] if K is doubly-stochastic and primitive, then
p (K'K-J) <1. (3.7)

Proof. As K'K is doubly-stochastic, its largest eigenvalue in magnitude is 1 associated with
left- and right-eigenvectors 1/+/N1. According to Result 3.2] K'K is primitive. So thanks to
Theorem 1 is the sole eigenvalue of magnitude 1. Consequently, all the eigenvalue of
K'K — J are strictly less than 1 in magnitude which concludes the proof. O

Eq. (3.7, will play a great role for finding the convergence speed. Indeed, the term x*

can be decomposed as follows

xk = Tk 4+ Jhxk
and as K is column-stochastic, one can easily see that Jx* = x,,.1 for any k. Consequently,
we have

xk = Xavel + JEx*  (due to the column-stochasticity of K) (3.8)

which implies the convergence of the {x*},;-, to the average consensus is equivalent to the
convergence of IIJkaIIE to 0. As K is row-stochastic, Proposition [I.7 holds and so we have

[0 K2 = I3EKIEXF))2 (due to the row-stochasticity of K).

Consequently, we have a simple link between the projections of the nodes variables into
span(1)* at time k and (k+1) enabling us to conclude quickly. Indeed, thanks to the previous
equation, we have

2 < IR .

After simple algebraic manipulations, if K is column-stochastic (cf. Proposition [I.8), we have
K = p (K'K-J)

which is less than 1 according to Result[3.3l
To sum up, we have the following well-known Theorem.



34 CHAPTER 3. DISTRIBUTED AVERAGE CONSENSUS

Theorem 3.4. Let Assumption hold. If K is doubly-stochastic and primitive, the sequence
{x*} =0 defined in Eq.

e converges to Xg,1.

e the squared error ||x* — xave]1||% goes exponentially to zero with the slope p (KTK— J)

which is ensured to be less than 1.

Example: Metropolis algorithm. Each node replaces its own value with a weighted average
of its previous value and the values of all its neighbors at each iteration. The Metropolis
weights, introduced in the context of Markov chain Monte Carlo [[47, 48], are as follows

1 op -
1+max{d;,d;} lf] € ‘/Vl

Kij=4 1=, Ky ifi=j (3.9)
0 otherwise.

In order to the algorithm to converge, we would like to check the sufficient conditions on the
matrix K given in Theorem [3.4] The above-defined matrix K trivially satisfies Assumption [3.7]
and is doubly-stochastic. We now just have to check its primitivity. This matrix has the same
support as I+ A where A is the adjacency matrix of the underlying (undirected, self-loop-free)
communication graph ¢. According to Proposition [I.2] if ¢ is (strongly) connected, then A
is irreducible, so the matrix I + A is primitive and so the support I + A is primitive too which
implies that K is primitive. So this algorithm converges to the true consensus as soon as the
communication graph is connected.

We are now ready to move on the asynchronous communications context in Section

3.2.2-b Asynchronous communications context

Now, the sequence {x*},. is defined as in Eq. (3.I). We would like to obtain conditions on
the set ¢ for converging to the true consensus almost surely. To do so, we have to see the
choice of the matrices of ¢ at each time as a random process. Obviously, the random may
differ from the considered algorithm. We will just consider that this process is i.i.d. for the
sake of simplicity. In addition, we consider that each matrix of ¢ satisfies Assumption [3.7]
and are doubly-stochastic. The results will be similar to the synchronous case by adding some
mathematical expectations well localized!

Notice that the below-mentioned existing results are based on [6| 42| 49]] and [8]]. We still
consider that Assumption 3.1l holds.

Once again, one can use the Markov Chain formalism to prove the convergence to a con-
sensus (here in the almost sure sense). The sequence of random matrices {ng} k>0 1S assumed
i.i.d.. We obviously have

xk — plky0
with
pok £ K:Kei1...Kys  for any s and k > s. (3.10)
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Clearly, x* is obtained through a (backward) concatenation of transition probability matrix of
a heterogeneous Markov Chain since each matrix of the set 2¢ is row-stochastic. According to
Section when backward direction is considered, the notions of weak ergodicity and
strong ergodicity are equivalent. In [42] Lemma 4.3], it is proven that, if E[K] is primitive,
then the sequence {ng}k>0 is weak ergodic (in backward direction) almost surely and so
strong ergodic. Consequently, according to Definition [I.T0] it exists one non-negative vector v
with unit sum such that lim,_,., P'* = 1v". In addition, as the matrices in the set .# are also
column-stochastic, we have v = (1/N)1. Finally, as each matrix in ¢ is doubly-stochastic and

as E[K] is primitive, we obtain that
x*=x,,1 almost surely

So the condition of primitivity has to be checked by the mean matrix instead of by each matrix

in 4 at each time.

We hereafter would like to inspect the convergence speed. Once again, the column-
stochasticity of each matrix in 2 implies that we only have to analyze the convergence speed
of ||J1x*||2. Using the same approach as in the synchronous case, we have, due to the row-
stochasticity (cf. Proposition[1.7),

[T 3 = 1 Kk atd P13 = ()T K )T (K g ) (T x5). (3.11)
Taking the expectation over £K*1 we get
E [P 3] = R TEIO Reen) (I R )] ()
< p (B[ Ken) (I Ken) ] ) 1353, (3.12)

Now, the main important term providing the slope of the exponential decrease is
p (B [ Kee) (I Keirn)] )

and we have to prove that it is less than 1. As each matrix in ¢ is also column-stochastic, we
get that for every i € {1, ..., M},

(KT K) =K'K; —J

which means that we just have to verify that p(E[K'K] — J) is less than 1. As E[K'K] is
trivially doubly-stochastic, we have p(E[K'K]) = 1. Similarly to Result[3.2] (so by considering
the associated support matrices), we have that Assumption [3.I] leads to the primitivity of
E[K'K] if E[K] is primitive. Consequently, by Perron-Frobenius Theorem, 1 is the unique
eigenvalue of maximum modulus, and 1 is the unique eigenvector of E[K'K] associated with
the eigenvalue 1. So the eigenvalues of E[K'K] — J are strictly less than 1 since the matrix
J has removed the eigenspace associated with 1 in E[K'K]. Finally, the primitivity of E[K]
leads to

p (E[K'K] -J) <1. (3.13)
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We just have to check now that Eqgs. (3.12)-(3.13) enable us to fix the problem. For any & > 0,
thanks to Markov’s inequality, we have

o0 1 o0
D P > ] < =v Y E[II k2]
k=0 ¢ =0

According to Eq. (3.12), we obtain that

o0 C o0

§ P[|JtxX]2 > e] < = § rk
£

k=0 k=0

withr=p (E[KTK] — J) and C = [|J1x°||?. According to Eq. (3:13), we have r < 1, so

o0

D P > €] <

<— <00,
~ e(l1—r)
and the Borel-Cantelli Lemma holds which implies ||J*x*||? converges to zero almost surely

at an exponential rate equal to r. To sum up, we have the following Theorem.

Theorem 3.5. Let Assumption 3.1l hold. If each matrix in 2 is doubly-stochastic and i.i.d. and
if E[K] primitive, the sequence {x*};-q defined in Eq. (3.1)
e converges to X, 1 almost surely.
e the mean squared error E[||x* — xave]IH%] goes exponentially to zero with the following
slope p (]E[KTK] — J) which is ensured to be less than 1.

Example: Random Gossip algorithm. The Random Gossip algorithm, introduced in [11]],
relies on a pairwise exchange between the activating node and one of its neighbors chosen
uniformly. Then they compute the average of their received and former values. The algorithm
is summed up in next Table. As mentioned in Section the agents activate through an

Random Gossip

Let i be the node activating at time k.

» i chooses a neighbor j uniformly in .4 and they exchange their values.

k k
k+1 _ Xt

> Both i and j then update: x** = X; 5

[Lid]process and for any time k > 0 and any node i € V, P[i activates at time k] = 1/N.
Using the matrix framework described in previous Sections, the iteration at time k can be

written as follows

k+1 __ k
X =Ky jyx
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with

1/2 1/2
K jy =

1/2 1/2

According to our framework, we have %" = {Ky; j1}; jjep and & k = {i, j} with probability
N7+ A4

In order to apply results developed previously, we just have to check that matrices in ||
satisfy all the constraints. Assumption [3.1] holds since each matrix in ¢ is non-negative with
a positive diagonal. In addition, it is doubly-stochastic. Thus, we now just have to check that
E[K] is primitive for applying Theorem As this matrix has the same support as I + A
where A is the adjacency matrix of the underlying communication graph ¢, E[K] is primitive
as soon as ¢ is connected (as done for Metropolis algorithm example.).

3.2.3 Case of non-doubly-stochastic matrices

First of all, we will see that the double stochasticity of the updates requires a feedback.
Therefore, when feedback-free algorithm is of interest, the update matrices will be either
row-stochastic or column-stochastic but not both simultaneously. Hereafter, we will inspect
existing results under this less-restrictive assumption.

Let us focus on the relationship between doubly-stochasticity and the feedback require-
ment. Let K be an update matrix. If the node i provides information to the node j, then
K;; > 0. Node j performs weight mean with these values of interest (in this toy example, its
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own value and that of node i). We thus have

1

1/2 1/2

1

and, due to the weight mean, the sum of each row is equal to 1. By construction, the matrix
K is row-stochastic but not column-stochastic. In order to be doubly-stochastic, the i-th row
must modify entries (i,i) and (i, ) and force them to be equal to 1/2 (leading actually to
the so-called Random Gossip algorithm described in Section 3.2.2-D). Having a non-null
coefficient at entry (i, j) means that j must also provides its value to i. Therefore, the double

stochasticity property requires feedback communications.

3.2.3-a Row-stochastic matrices

The previous example shows that it is easy to design a lot of algorithms by considering dif-
ferent weight means at the receive node. Then such algorithms have row-stochastic update
matrices. Therefore, we first focus on this case of row-stochastic matrices.

As matrices in ¢ are row-stochastic, they can still be seen as transition probability ma-
trices of a heterogeneous Markov Chain but in backward direction. According to Section
weak and strong ergodicity are equivalent. Moreover, like [42, Lemma 4.3], if the
update matrices satisfy Assumption [3.1] and E[K] is primitive, then the product of matrices
in 2 chosen in an i.i.d. manner, is weak ergodic and so strong ergodic almost surely which
implies that Eq. (1.3) applies (we just have to consider the backward direction instead of the
forward one.).

So let £ = {£¥}, oy be a realization of the chosen node. According to Definition 10} it
exists almost surely a non-negative vector v (with 1Tv = 1 and depending on &) such that

klEI;J ng s Kgl - ]lVT.

Given the previous equation, we have that
k—o00
x5 (Tx91  (almost surely)

Moreover as matrices in 2 are not column-stochastic,we have v # (1/N)1. As a conclusion,

the algorithm will converge to a consensus but the consensus is random and different from

xave *
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Nevertheless, notice that if E[K] is column-stochastic (so column stochastic in expectation
not for each realization), then one can prove E[v] = (1/N)1 which implies that the algorithm
converges to an unbiased random consensus [|7,41]]. We sum up these results in the following

Theorem.

Theorem 3.6. Let Assumption [3.11 hold. If each matrix in A is row-stochastic and i.i.d. and if
E[K] primitive, it exists a non-negative random vector v with (1Tv = 1) such that the sequence

{x*} o0 defined in Eq. 31D

o converges to (vTx%)1 almost surely,
e Furthermore, if E[K] is column-stochastic, then E[v'x°] = x,, and the algorithm is

unbiased.

As a remark, the row-stochasticity implies that the consensus is stable but does not ensure
that the sought main information (here, the average) is kept. Consequently, it is hopeless to
expect the convergence to the true value since the true value (here, the average) is lost as
soon as the first iteration. In order to design algorithms converging to the true consensus,
the column-stochasticity is much more important since it ensures the average conservation
at each iteration. Therefore, we now focus on this case. Before going further, let us give an
example of a (feedback-free broadcast) algorithm based on row-stochastic update matrices.

Example: Broadcast Gossip algorithm. The Broadcast Gossip algorithm, introduced in [[7],
relies on a broadcast of its value by the activating node to its neighbors. Then its neighbors
compute the average of their received and former values. This algorithm is clearly feedback-

free as wanted. The algorithm is summed up in next Table. As mentioned in Section [1.1.2]

Broadcast Gossip

Let i be the activating node at time k.
» i broadcasts its estimate to all its neighbors.

. : k1 _ X
» Every neighbor j € A/ update: X = TJ

the agents activate through an process and for any time k > 0 and any node i € V,
P[i activates at time k] = 1/N.

Using the matrix framework described in previous Sections, the iteration at time k can be

written as follows

XK1 = Kk
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with
[ 1/2 1/2
1/2 1/2

~£

1/2 1/2

1/2 1/2 |

According to our framework, we have ¢ = {K;};c, and &% = i with probability 1/N.

In order to apply results developed previously, we just have to check that matrices in ||
satisfy all the constraints. Assumption [3.T] holds since each matrix in ¢ is non-negative with
a positive diagonal. In addition, it is only row-stochastic. Thus, we now just have to check that
E[K] is primitive for applying Theorem[3.6l As this matrix has the same support as I+A where
A is the adjacency matrix of the underlying communication graph ¥, E[K] is primitive as soon
as ¥ is connected (as done for Metropolis algorithm example.). Moreover, the sum of the i-th
column of E[K] is equal to 1+ 1/N(d;/2) —d;1/N(1/2) = 1. So, E[K] is column-stochastic
and the consensus value is well centered on X, as proven in [[7, [41]].

3.2.3-b Column-stochastic matrices

Let us now focus on the case of column-stochastic update matrices. Compared to the row-
stochastic update matrices case, the average is kept at each iteration. We just want to exhibit
algorithms providing this average.

As the update matrices are column-stochastic, they can not be viewed as transition prob-

ability matrices of Markov Chain. It is easy to overcome this problem by working on
(Ker - Ke1)' =K, - -~K"§k (3.14)

instead on
ng e Kgl

as naturally done by the algorithm.

So we can work with a concatenation of row-stochastic "update matrices" (actually, the
transpose of the real update matrices) but in forward direction. In forward direction case,
weak and strong ergodicity are distinguished. Under similar assumptions as before, we can
just ensure the weak ergodicity. This means that it exists a random sequence of non-negative
vectors vk (with 1Tvk = 1) such that

T
(ng - Ke )T ~ 1vk
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or equivalently
K- Ko ~ VeI (3.15)

Compared to the row-stochastic case, we have two fundamental differences: i) the vector vk is
moving so there is no stable consensus (this is logical since the consensus conservation related
to the row-stochasticity is not assumed), ii) the vector vK multiplies 1 by the left (and not by
the right in the row-stochastic case). The last difference is crucial and will be the key way to
solve our problem.

Let us inspect the consequence on xX. We thus have that

xk ~ kaxave

or equivalently, at node i, we have
k

X~ vl.kNxave. (3.16)

We observe that the average is kept but is hidden in xlk by the unknown term vik. Conse-
quently the algorithms based on column-stochastic update matrices do not have any chance
to converge to the true value even if this value is there !

To fix this issue, we have to remove the term vl.k, and so we need side information on this
term. Therefore, an other variable linked to the value of vl.k has to be computed in parallel. But
which one ? the answer will be given in next Section by the so-called Sum-Weight framework.

The Sum corresponds to Eq. (3.16), and the Weight corresponds to the variable related to vl.k.

3.3 Sum-Weight framework

According to Section[3.2.3-D)] it seems reasonable to design algorithms with column-stochastic
matrices, but then two variables are needed. Clearly, a way to compute vl?‘ at node i in parallel
with vl.kN X.ve 1S to apply Eq. with an other initialization point, i.e., 1. Therefore at each
iteration, we will update two variables sk (the sum as initialized with x°) and w* (the weight
as initialized with 1) with the same update matrix. In such a case, the first (resp. second)
variable behaves as vl.KN Xave (TESD. viKN ) at node i. Doing the division (assuming non-null
vl.k) leads to the average Xx,ye-

The Sum-Weight framework, introduced in [43]] and adapted in [[42] to the wireless net-
work, is thus based on the joint update of two variables per node as above explained. Mathe-
matically, we have two variables sl{‘ and Wf at node i and time k.

We initialize with s° = x° and w® = 1. Then at time k, we have

skl = K5k+1sk

whH = Koawk (3.17)
k+1 sk+1
O

where
e the division is elementwise,
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e the process of update matrices {Kgx}i~o belonging to " = {K;};—; y isfid]
e the set ¢ contains M non-negative matrices whose support is included in the support
of I+ A with A the adjacency matrix of ¥.
The goal of Sum-Weight averaging algorithms is the same as the one of standard gossip
algorithms (see Eq. (3.2)) and writes as follows

xk— Xavel almost surely. (3.18)

In the remainder of this Section, we will prove new results about the convergence and
convergence speed of Sum-Weight-based averaging algorithms under the following assump-

tions.

Assumption 3.7. The update matrices must verify:
a. the matrices of & are non-negative, column-stochastic, and have positive diagonal entries;
b. the update matrices are chosen through an independent and identically distributed process
(£}, o0 valued in {1,....M};
c. E[K] is primitive.

The column-stochasticity in Assumption ensures that, for any k, >, sk = >, x?
and Ziev Wlk = N. Notice that Assumption [3.7¢c holds if Supp(E[K]) = (I+ A) and A is the
adjacency matrix of a (strongly) connected graph.

3.4 Convergence of Sum-Weight-based averaging algorithms

The convergence proofs and convergence speed bounds derived in this Section correspond to

our main contribution in distributed average consensus algorithms.

3.4.1 Preliminary results

In order to intuitively get how to prove the convergence x* to the average consensus?, let us

write it as follows:

sk plkyo

wk  plkq
pLkj 0  pLkyl,0
k X

w w
Xy U PLEFLO
+

PLkq wk
pLkyl 0
A

= Xyl + (3.19)

w

3notice that we can not follow the approach done for standard (single-variate) algorithms since the update
matrices are not row-stochastic. This especially implies that Eq. (311D does not hold anymore and the recursion
on Jtx* does not work anymore.
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The last inequality indicates that proving that the convergence of x* to x,.1 is equivalent
to proving that PHKJ1x% /wk vanishes. As it is uneasy to work with elementwise division, the
proof has to be divided into two parts: i) proving that w* is bounded away from zero; and
ii) proving that P%XJ+x? vanishes for any x°. This approach for analyzing the convergence of
Sum-Weight algorithms is inspired by [[43]] (with a number of important differences explained
below).

Formally, let us upper-bound the Squared Error by a product of two terms as follows

N N
k k 2 1 k k|2
||X _xave]l”% = Z|xi _xave{ =Z kN2 |5i _xavewi| (3.20)
i=1 = w;)
N o N N1 & 2
_ Lk 0 Lk ~ 0
= Z (wh)? Zpi,j Xj Zpi,j le
i=1 "1 j=1 j=1 =1
< wkyk (3.21)
02
X
with vk = Ml (3.22)
! [min wk]2
i 1
N N N ,
vk = (Pl’k(I—J))i’j‘ = |[pHat; (3.23)
i=1 j=1

From now, our main contributions will be to understand the asymptotic behavior of both
terms \lllf and \1112‘ In Section [3.4.2] we will prove that there is a constant C < oo such that
the event {\1111‘ < C} occurs infinitely often with probability 1. The term \IJ’E represents the
projection of the current sensor values on the orthogonal space to the consensus line; the
exponential decay of this term will be proven in Section [3.4.3] Finally, we will put together
these two results in Section [3.4.4]to derive our core results.

3.4.2 Analysis of ¥, (t)

This term depends on the inverse of the minimum of the sensors weights (see Eq. (3.22)
and thus can increase quickly if one of the weights goes close to zero. However, the sensors
frequently exchange information and hence spread their weight so the probability that a node
weight keeps decreasing for a long time should be very small. We will work on the probability
that every sensor weight is greater than a positive constant and show that this event occurs
infinitely often. This will enable us to prove that there exists C < oo such that }P’[{\I/’{ <

C} infinitely often] = 1. To obtain these results, some preliminary lemmas are needed.
Lemma 3.8. Under Assumption[3.7) for any s < k,

if P9k > c117" for some ¢ > 0 then w* > ¢cN1.
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Proof. First let us remark that as the matrices of ¢ are column-stochastic from Assump-
tion 3.7 and w® = 1, we have that w* is non-negative and 1"w* = N for all s > 0. Hence, if
P>k > 117 for some ¢ > 0, then wk = P**w® > c11™w® = cN1 (see [3, Chap. 8.1] for details

about inequalities for non-negative matrices). O

It is thus interesting to focus on the minimal value of P*¥. To this purpose, we will i) give
a lower-bound on the smallest non-null value of P*¥; and then ii) prove that there is a time L
such that the probability that P**L > 0 is positive.

Lemma 3.9. Under Assumption[3.7) forall 1 <s <k and i, j,
k k -
P =0o0rP; > (m )5+

where m 5 = min, {Ki’ i KeX,K;;> O} is the smallest non-null entry of all the matrices of
the set A'.

Proof. Let us consider the random matrix P¥ (as the matrix choice is we drop the offset
s). We will prove this result by induction. It is trivial to see that every non-null coefficient of
P! =K; is greater than m,, and as

N
Lk _ 2 : 1,k—1
Pi,j - : (ng)i,lpl’j P
=1

it is obvious that if Pl.l’].k > 0, there is a term in the above sum that is positive (we recall that
all the coefficient here are non-negative). This term is the product of a positive coefficient

PLk=1 Hence, if all the non-null coefficients of PL<~1

of Kgx and a positive coefficient of
are greater than (m,,)¥, then any non-null coefficient of P is greater than (m,,)*.m, =
(m,)**!. So, by induction, we have that Yk > 1 every non-null coefficient of P1* is greater

than (m_, )<+ O

Now that we have lower bounded the positive coefficients of the product matrices, we
have to investigate the instants where these matrices are positive.

Lemma 3.10. Under Assumption there is a finite constant L such that for all s > 0,
P[Pl > 0] > 0.

Proof. As {£k},, is anLidlsequence and E[K] is primitive from Assumption[3.7, there is a fi-
nite m such that E[K]™ > 0 and E[KgnKzm-1...Kg1] = E[K]™ > 0 so P[(KznKgm-1... Kz1); >
0] > 0 for any entry (i,j). Furthermore, Pff > 0 implies that Pf;‘/ > 0 for all k¥’ > k be-
cause all the matrices of £ have positive diagonal elements (indeed pok = pktlipsk —
(eI + (PFTLK — ¢1))psk = gpsk 4 (PFTLK _ ¢D)PF and as one can find ¢ > O so that the
second matrix is non-negative, Pff/ is positive if Pf;( is). Finally, by taking L = mN?, we
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get that the probability that all entries of P are positive is greater than the probability of

{Psl,sl-i-m > 0} n {Psl-i-2m+1,s+2m > 0} A---N {P§V+]€I—m+1,s+L > 0} o

N
P[Pt > 0] > l_[ IP’[(P5+m[(i_1)+(j_1)N]+1’5+m[i+(j_1)N])i,]- >0]>0
i,j=1

which concludes the proof. O

Under Assumption and where L be the same constant as in Lemma we define
E, = {P"L.("*DL > 0} as being the event where the product matrix is positive considering
iterations L by L. We also define the following times:

where I} is the indicator function* of event E. And,
A, =T, —Th1 n=1,..,00.

The events {E,},-( are[Lid]and P[E;] > 0 according to Lemma[3.10] so Borel-Cantelli lemma
tells us that E,, occurs infinitely often. Hence, the inter-arrival times {A,}, -, are and
geometrically distributed up to a multiplicative factor L i.e. P[A; = jL] = p/~}(1 — p) for
j=1andp €(0,1). Finally, observe that the {7}, are all finite and the sequence converges
to infinity with probability one. These results along with Lemmas [3.8] and enable us to
state the final result on {\Iﬂl‘} >0+

Proposition 3.11. Under Assumption there is a finite constant L such that there exists a
sequence of positive geometrically distributed random variables {A,},~o such that for all
n>o0,

VT < [x30m) 2

where T, = 2221 Ay

3.4.3 Analysis of ¥,(t)

This section deals with the exponential decay of {\I/S}k>0; these results extend significantly
those given in [43] since we consider a more general model for .# and {£¥}, .. According to
Eq. (3:23), we have, for all k > 0,

Wk = |[PLEgH| 2, (3.24)

The technique developed in Section (and used in e.g. [|6]) which is based on the
spectral norm can be mimicked. We write

= Trace (J*(PYO)TJ E[K"K]I PVAS) (3.25)
p(J*E[K'K]J)? wh (3.26)

E[PAH|wk]

IA

“that is the function equal to 1 if E is true and zero otherwise.
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where the first equality comes from the identity ||X||§ = Trace(X'X) for any real matrix, the
second comes from the linearity of the trace. The final inequality comes from the fact that the
trace can be seen as the sum of the eigenvalues and X'Y'YX < p(YTY)X"X where ‘<’ denotes
an inequality in the semi-definite ordering (see [3 Chap. 7.7]).

Unfortunately, this proof technique does not work in the most general case®. As a conse-
quence, this inequality is not tight enough to prove a general convergence result and another
recursion has to be found.

3.4.3-a A new and tighter recursion matrix: R

Therefore, as proposed alternatively in [[6] (though not essential in [[6]]) in the context of
Random Gossip algorithm, we write \IJS with respect to a more complicated matrix for which
the recursion property is tighter. Indeed, recalling that for any real matrix X,

IX||Z = Trace (XTX)
and Trace(X®X) (Trace (X))?

where ‘®’ denotes the Kronecker product, one can find that

IX|I2 = Trace (XTX) = y/Trace ((X"X) ® (X'X))

= \/Trace (XTeX") (X®X)) = \/Trace ((X X)) (X® X))
= [[X®X||g.

So, we have that
Wl = (|24l
with
gk (PHht) @ (PHAU1). (3.27)
As before, we easily see that for a column stochastic matrix K, one has JIKJt = (I-

JKJt = (K —J)J* = KJ*. Hence, using standard properties on the Kronecker product, we
have

m

1= (KPP ® (Ko PHEIL)
= (Ko J'PYIY) @ (K JHPVAIH)
= (K€k+1 ®K€k+1) (JL ®JL) =k, (3.28)

By considering the mathematical expectation given the natural filtration of the past events
F=0 (51,...,<§k), we obtain

E (87 ] =E[K®K] (JteJ) e

SSometimes, this spectral radius of J'E[K'K]J* can be greater than 1; indeed for the BWGossip algorithm
(introduced later in Section 3.5.1), one can have |||J*E[K'K]J%|||, > 1 for some underlying graphs even is the
algorithm converges as we will see later.
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and so we have
E [Ek] = (R) (3.29)

with
RZE[K®K] (JteJ'). (3.30)

We thus have to analyze the behavior of (R)* as k goes to infinity.

3.4.3-b Relationship between the recursion matrix R and the convergence speed

Now, let us find a simple relationship between E[\PS] and the entries of the matrix E[Z] by
considering Q% = P¥J1. We show that

=k _ k Ak ..
(]E[H ])i+(l—1)N,j+(m—1)N - ]E[QUle]) VIa,]:l;m € {1:' . :N}

According to Eq. ([3:24), we have E[\Pg] = E[IleH%] which implies that

N N
SSHED I ICAY EDWCI LN (3:31)
i,j= i,j=

As a consequence, the behavior of the entries of E[=k] drives the behavior of E[\I/’;].

Using the Jordan normal form of R (see 3] Chap. 3.1 and 3.2]) and the [, vector norm on

.....

matrix S such that
IR lloo = ISCAY*S ™ oo < 11SlloollS ™ oo ll(A)¥ [l (3.32)

where A is the Jordan matrix associated with R.
After some computations, we derive that the absolute value of all the entries of (A) is

bounded in the following way:
k k k—j < 7.J-1 k—J+1
[(A¥]|,, < max (o PR <K Tp®) (3.33)

0<j<J—1

where J is the size of the greatest Jordan block. Note that when R is diagonalizable, J = 1,
and we get that
H(A)kHOO < p(R)k (when R is diagonalizable). (3.34)

Putting together Eqgs. (3.29), (3.31D, (B.32), (3.33), and remarking that the subspace
spanned by 1 ® 1 is in the kernel of R, we get that the size of the greatest Jordan block is
smaller than N — 1, we can derive a fundamental result on the convergence speed of ]E[\IJ’E].

Lemma 3.12. We have
E[¥5] = 0 (KN ?p(R)")

where R is defined in Eq. (3.30).
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This lemma states that E[\P’g] globally decreases exponentially® at speed p(E[K®K] (J*®
J1). We will thus focus on this spectral radius and particularly on the conditions under which
it is smaller than 1.

Remark 3.13. As E[EX] = (R)X, we have from [3, Thm. 5.6.12] that

E [2F] — 0 pR)<L

Furthermore, we get from Eq. (3.31) that E [Ek] — 100 if and only U‘]E[\Ilg]—>k_>000. The

spectral radius of R thus plays a central role in the convergence and convergence speed of {\Il’g beso-

3.4.3-¢c Analysis of the spectral radius of R

The next step of our analysis is to prove that the spectral radius p(R) is strictly less than
1 when Assumption [3.7] hold. For this, we will prove that E [Ek] converges to zero using
another matrix recursion and use Remark [3.13]to conclude on p(R).

Actually, one can find a simple linear recursion on EX(t) (different from the one exhibited
in Eq. (3.28)) as
gl = (K§k+1 ® K§k+1) =k

thus by taking the mathematical expectation given the past we obtain
E (8|7 ] =E[K®K] B,
Remarking that (1 ® 1)T=k = 0, we have for any vector v of RN 2,
E (g% ] = (E[KeK]-v(1e1)") &

and then,
E[8"] =(T,)* &° (3.35)

with T, =E[K®K] —v(1 ® 1)T.

By considering Eq. ([8.35)), it is straightforward that E [Ek] converges to zero as k goes to
infinity if there is a vector v such that p(T,) < 1. However, this condition is only sufficient
whereas the one derived from Eq. is a necessary and sufficient condition.

The following lemma is very important in our proof as it ensures that, under Assump-
tion [3.7] there is a vector v such that p (IE [KQK]—v(1® ]l)T) <1.

Lemma 3.14. Under Assumption there is a vector v such that
p (EK®K]-v(1e1)") <1

and thus E [Ek] —k000-

bas in log scale log(k) + klog(a) ~_., klog(a). Furthermore, we could have directly derived that Ve >
0, IE[\I/’Z‘] =0 ((p(R) + s)k) from Eqgs. (3:29), (3.31) and [3] Corollary 5.6.13] but this introduces an epsilon that
might make the following results less clear.
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Proof. Assumption implies that:
i) E[K® K] is a non-negative column-stochastic matrix so p(E[K® K]) = 1 according to
[3) Lemma 8.1.217;
ii) according to Lemma[3.I0there is a finite L such that P[Pl > 0] = P[P ®@PLL > 0] >
0 so (E[K® K])* > 0 which imply that E[K ® K] is a primitive matrix.

These two properties imply that 1 is the only eigenvalue of maximal modulus of E[K® K]
and it is associated with the left eigenvector 1 ® 1. This means that by taking v = v, the right
eigenvector corresponding to eigenvalue 1 such that (1 ® 1)"v; = 1, we get that the spectrum
of T, is the same as the one of E[K ® K] without the maximal eigenvalue equal to 1. As a
consequence, the modulus of the eigenvalues of T, is strictly less than 1, i.e. p(T,,) <1. O

Finally, Remark [3.13] enables us to conclude on the spectral radius of R.

Corollary 3.15. Under Assumption 3.7
p(R)<1
with R defined in Eq. (3.30).

Combining Lemma [3.12] and Corollary B.15] concludes our analysis of {\Pé}k>0‘
Proposition 3.16. Under Assumption[3.7)

E[5] = 0 (KN "%e™F)

with w = —log (p (R)) > 0 and R defined in Eq. (3.30).

3.4.4 Final results

Thanks to the various intermediate Lemmas and Propositions provided above, we are now
able to state our general theorems for the convergence and convergence speed of Sum-Weight-
based averaging algorithms.

3.4.4-a Result on the convergence

First, let us prove an interesting result: the estimates {x*};., get closer from each other in
the sense of the I, norm and thus the error {x* — x,.1};¢ is non-increasing in terms of I,

norm.

Lemma 3.17. Under Assumption 13K — xgye ]| oo = max; Ixf — Xave| forms a non-increasing
sequence with respect to k.

Proof. One can remark that, at time k + 1, for all i,
N k N k. k
k41 Z]’:l Ki,jsj _ Z]’:1 Ki,jwjxj
X; N K k N K k
Z]’:1 i,jW; 21:1 i,jW;

N ok
J

N k
j=1 21:1 Ki,lwl
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k+1

where K corresponds to any matrix in 2. Hence, x; 7" is a center of mass of {xj.‘} j=1,..N-

k+

Therefore, using the fact that x,,.1 verifies the same above inequality as x**!, we have that

Vi=1,..,N,

k+1 S KiJW;{ k
X; _xave| = Z N—k |Xj — Xaye
j=1 2121 Ki,lwl
= maX|X’-< - xavel
j J
which implies that [|x 1 — x, o1l < 1% = Xave 1]l oo O

Now, let us use the results derived in Sections [3.4.2] and [3.4.3] to state our convergence

theorem under necessary and sufficient conditions.
Theorem 3.18. Under Assumption [3.7]
{x*} o0 is bounded and converges to the average consensus X, 1 almost surely.

Furthermore, if Assumption 3.7 does not hold, {x*},~, does not converge to the average consen-

sus with probability one for some values of x°.

Proof. We divide the proof into three steps: i) the boundedness of the sequence; ii) the almost
sure convergence; and iii) the fact that Assumption [3.7k is necessary.

o boundedness: As {||x* — x,e1|lo }x=0 iS Non-increasing from Lemma[3.17 it is obvious
that for any k > 0, ||x* — XL lleo < 11X° = Xavel|lo thus {x*}4. is bounded.

o almost sure convergence: Let us assume that Assumption holds. Using Markov’s
inequality along with Proposition [3.16], there is a finite constant C such that for any ¢ > 0,

1
Sk >e] < = E[WE]
€
k>0 k>0
1
—CZkN_ze_“’k < 00.
€
k>0

IA

Thus, Borel-Cantelli’s lemma leads to the almost sure convergence of {\Ifé}bo to zero.
In addition, as the random variables {7,},-o provided in the statement of Proposition [3.11]
converge to infinity with probability one, \Ilg” — 00 0 almost surely. Since \I/I” is (upper)
bounded for any n > 0,
\PI”\IJ;“ - 0 almost surely.

According to Lemma 317, ||x* — x,.1||., is @ non-increasing nonnegative sequence ver-
ifying [1x* — xaeLII% < [1xK — xaeLl|2 < UXWE and there is a converging subsequence with
limit O with probability one (following the {7,},-0). As a consequence, the sequence {||x* —
Xavellloo }>0 converges almost surely to the O which imply the almost sure convergence of
{x*},~0 to the average consensus.

¢ Assumption is necessary: Let us consider that Assumption [3.7c does not hold.
Recalling Lemma[3.10land its proof, it is easy to see that if Assumption[3.7k is not true, then AL
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such that P[P! > 0] > 0 so P[P"* > 0] = 0 for any k with probability 1. Let i, j be such that
Pl.l’jk = 0 for any k > 0 (As from Assumption [3.7h the matrices of ¢ have positive diagonals
if Pl.l”jk = 0 then Plljs =0 for any s < k ), the i-th component of {xf}k>0 is independent of x?

hence {xf‘}k>0 cannot converge to x, for all x°. O

Remark 3.19. One can note that the previous theorem implies that {x*},., converges to the
average consensus Xg,.1 in LP for any p € N by an immediate consequence of the dominated

convergence theorem. As a particular case, the Mean Squared Error (MSE) converges to 0.

3.4.4-b Result on the convergence speed

The next result on the convergence speed corresponds to the main challenge and novelty
of our contribution to averaging algorithms. For this theorem we introduce the following
notation: given two sequences of random variables {X*},., and {Y*},.,, we will say that
Xk =0, (YO if X*/Y* —,_ . 0 almost surely.

Theorem 3.20. Under Assumptions the Squared Error (SE) is upper-bounded by a non-
increasing sequence converging to 0. Furthermore, it is also upper-bounded by an exponentially
decreasing function as follows

SE™n = [lx™ — xge L1 = 0,5 (e ™)

with w = —log (p (E [K®K] (JL®JL))) > 0and 17, = 2?21 A; as defined in Proposi-
tion 3.11]

This result tells us that the squared error will globally vanish exponentially and we derived
a lower bound for this speed. The particular behavior of the weights variables in this very
general setting does not enable us to provide a more precise result about the squared error
(we can just say that the elementwise maximum does not increase in interval [7,, T,,] for
any n — see Theorem [3.18 -); however for some particular algorithms (e.g. standard gossip
ones) this derivation is possible (see Section [3.6] for more details). We will illustrate the
tightness of the exponential decrease constant ¢« via numerical results in Section 3.51

Proof. To prove this result we will once again use the decomposition of the squared error
introduced in Eq. (3.2I). We know from Proposition [3.16] that E[k™N e“’k\Ifg] = 0(1/k?). By
Markov’s inequality and Borel-Cantelli’s lemma,

kN e‘*’k\lllz‘ P 0 almost surely.
—00

Composing with the {7,},-¢, we get

— T
TnNeM"\IJZ“ — 0 almost surely.
n—oo

Since there is a finite constant C such that Vn > 0, \IJI" < C, we get the claimed result. O
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3.5 Proposed algorithm and extensions

We have proven the convergence and given a bound on the convergence speed of Sum-Weight-
like averaging algorithms under mild assumptions, it is interesting to see how the Sum-Weight
formalism allows us to derive faster averaging algorithms. In Subsection we propose
a new Sum-Weight algorithm using the broadcast nature of the wireless channel which con-
verges and offers remarkable performance. This algorithm is hereafter called In
Subsection we introduce a distributed management of the nodes clocks which can im-
prove averaging algorithms. Finally, Subsections and provide an extension of this
work to distributed sum computation and the case of [Li.dl failures in the communication

graph.

3.5.1 algorithm

Remarking i) that the broadcast nature of the wireless channel was often not taken into ac-
count in the distributed estimation algorithms (apart in [[7]] but this algorithm does not con-
verge to the average) and ii) that information propagation is much faster while broadcasting
compared to pairwise exchanges (see Chapter 2]), we derive an algorithm taking into account
the broadcast nature of the wireless channel. At each global clock tick, it simply consists
in uniformly choosing a sensor that broadcasts its pair of values in an appropriate way (to
ensure column-stochasticity); then, the receiving sensors add their received pair of values to
their current one. A more algorithmic formulation is presented below.

As mentioned in Section the agents activate through an process and for any
time k > 0 and any sensor i € V, P[i activates at global time k] = 1/N.

BWGossip
At each clock tick k, let i be the activating node:

Si(t) . wi t)
d+1° d+1

» i broadcasts a scaled version of its pair of values to all its neighbors (
» Every neighbor j € A4 update :

— si(t)
Sj(t + 1) = Sj(t) + dt1
wi(t)

» The sensor i updates :
si(t)

Si(t + 1) = d+1

Using a matrix formalism, the iteration at step k is

Sk-‘rl — Kisk
Wk+1 — Kl'Wk
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with
1 1/(d; +1)
1 1/(d; +1)

1/(d; +1)
1/(d;+1) 1

1/(di +1) 1

This form matches our formalism with # = {K;},cy and &K =i with probability 1/N. Ob-
viously, all matrices of ¢ are column-stochastic but not row-stochastic and they have positive
diagonal elements. Again, Supp(E[K]) = (I+ A) with A the adjacency matrix of the underly-
ing graph and Proposition [I.2] tells us that E[K] is primitive as soon as the underlying graph
is connected.

This implies that Assumption [3.7] is verified and hence that the converges to
the average consensus almost surely by Theorem [3.18] and Theorem gives us an insight
about the decrease speed of the squared error.

3.5.2 Performance of the

In order to investigate the performance of distributed averaging algorithms over WSN| Wireless
Sensor Networks, we plot the obtained by Monte-Carlo simulations versus the number
of iterations. The underlying graph is modeled by 100-nodes connected with radius 2
(see Section for details about these graphs).

In Fig. [3.1] we compare different average gossip algorithms: i) the Random Gossip [11]]
which is the reference algorithm in the literature (see Section for details); ii) the
Broadcast Gossip [7] which uses the broadcasting abilities of the wireless channel but does
not converge to the average (see Section [3.2.3 for details); iii) the algorithm introduced
by Franceschelli in [[50] which uses a bivariate scheme similar to Sum-Weight and seems to
converge (no convergence proof is provided in the paper); and iv) the proposed
algorithm.

We remark that the algorithm outperforms the existing algorithms without
adding routing or any other kind of complexity. Furthermore, the slope is linear in log scale,
it is thus interesting to compare this slope to the one derived in Theorem [3.20

In Fig. B.2] we display the empirical convergence slope obtained by linear regression on
the logarithm of the empirical mean squared error and the associated lower-bound w derived
in Theorem for the algorithm versus the number of sensors N. Different Ran-
dom Geometric Graphs with same radii r, = 2 have been considered. We observe that the

slope of our proposed bound is very tight. Note that as we proposed an upper bound for a
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Figure 3.1: Mean squared error of the and other algorithms of the literature versus
time.

exponentially decreasing quantity, the associated slope in log scale must be a lower bound of

the actual slope as in the displayed figures.
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Figure 3.2: Empirical convergence slope of the and associated lower bound w.

3.5.3 Adaptation to smart clock management

So far, the choice of the awaking sensor was done uniformly, i.e.all the coefficients of the
Poisson clocks were identical in our model (see Section [I.1.2). This way, all sensors were
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waking up uniformly and independently from their past actions. Intuitively, it would be more
logical for a sensor to talk less if it has been very active during the past iterations.

Another advantage of the Sum-Weight algorithms is the knowledge of how much a sensor
talks compared to the others, which is a useful information. Actually, each sensor knows
whether it talks frequently or not (without additional cost) through its own weight value
because when a sensor talks, its weight decreases and conversely when it receives information,
its weight increases. Therefore, our idea is to control the Poisson coefficient of each sensor
with respect to its weight.

We thus propose to consider the following rule for each Poisson coefficient
VieV, Af=a+(1-awt (3.36)

where a € (0, 1) is a tuning coefficient.

Notice that the global clock remains unchanged since Yk > 0, Z?’:l Af = N. Keeping the
global message exchange rate unchanged, the clock rates of each sensor are improved. The
complexity of the algorithm is the same because the sensor whose weight changes has just to
launch a Poisson clock.

We see in Fig. [3.3] where we plot the empirical mean squared error for the
algorithm versus time with different clock tuning coefficients that even if the convergence
and the convergence speed with clock improvement have not been formally established, it
seems the exponential convergence to the average consensus still holds, and the convergence
can be quicker if a is well chosen. Compared to the algorithm without clock management
(a = 1), the convergence is much faster at the beginning with a = 0 but the asymptotic rate
is lower; with @ = 0.5, the performance is better than the standard BWGossip for every time.

1094 ‘ ‘ ‘ ‘ 1
B —— BWGossip (a =1) i
i —4— BWGossip with a = 0.5 [}
L —>— BWGossip with a =0 ||
- [ B
o
g
[£3) 10_1 =
e r
8 [
= I
: |-
[Sa
3 L
o L
o
=
1072 1
| | | | | |

|
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300

Number of Iterations

Figure 3.3: Mean squared error of the with clock management for different values

of a.
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3.5.4 Distributed estimation of the sum

In some cases, distributively computing the sum of the initial values is very interesting. For
example, in the case of signal detection, the Log Likelihood Ratio (LLR) of a set of sensors
is separable into the sum of the LLRs of the sensors. Hence, in order to perform a signal
detection test based on the information of the whole network (using a Generalized LLR Test
for instance), every sensor needs to estimate the sum of the LLRs computed by the sensors
(see Section[3.7).

An estimate of the sum can be trivially obtained by multiplying the average estimate by
the number of sensors but this information may not be available at any sensor. Another
interest of the Sum-Weight scheme is that the initialization of the weights of the sensors
enables us to compute different functions related to the average. Intuitively, as the sum of
the sequences {s%},., and {w*},- is conserved through time and the convergence of their
ratio to a consensus is guaranteed by Assumption[3.71 Actually as seen in Section3:3} {x*};-,
converges to a CONSensus over . s? /D W? ; which is obviously equal to x5 =1/N Y, x?(O)
with the initialisation of Eq. (3.17).

Now, if a sensor wants to trigger a estimation of the sum through the network, it simply
sets its weight to 1 and sends a starting signal to the other nodes which set their weights to 0.
Mathematically, we then have the following initialization after sensor i triggers the algorithm

where e; is the i-th canonical vector. In this setting, all Sum-Weight like algorithms converge
exponentially to the sum of the initial value as our theorems hold with only minor modifica-
tions in the proofs.

Using this initialization, during the first iterations of the algorithm some of the sensors
k

weights are null and hence their estimate is undefined. This can be solved by setting xlk =s;
while wf‘ = 0. The time for the algorithm to be put on tracks is equal to the time for the
information of the initializing sensor to be spread to everyone and thus has been analyzed in
Chapter[2l More precisely, using Random Gossip, this time is equal to the convergence time of
Random Pairwise Max (see Section[2:4.2)); and using[BWGossip| it is equal to the convergence

time of Random Broadcast Max (see Section [2.4.3)).

3.5.5 Convergence with i.i.d. failures in the communication graph

For some reasons as objects in the light of sight creating a fading in the wireless channel,
links in the communication graph can disappear temporarily. Looking at Assumption [3.7] we
see that only the expectation of the matrices has to support a strongly connected graph. Let
us assume in this section that the underlying graph represented by its adjacency matrix A
can suffer from [Lidl link failures so that each link e of the graph can fail with probability
p.- Whenever p, < 1, the graph is still connected in mean (E[A] is primitive) and thus our
conditions are still verified and our analysis holds.
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Let us we inspect the influence of link failures in the underlying communication graph on
the algorithm. We consider a connected 10-sensors network onto which [L.i.d]link
failure events appear with probability p, (taken identical for each edge e).

In Fig. 34, we plot the empirical [MSE of the versus time for different values
of the edge failure probability p,. As expected, we observe that the higher p, the slower the
convergence but the [MSE] still exponentially decreases.

0 T
-
]
=
3
o O |
9}
g
2 —10| : |
3
=)
)
5 -15)
o
VV
£ -
T 20 v |
Q V V v
— V"t
VA
—25 | | | | | | | | | V¥ W VY | v

|
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Number of Iterations

Figure 3.4: Mean squared error of the for different values of the edge failure prob-
ability p,.

Then, in Fig. 3.5} we plot the empirical convergence slope and the associated bound w
for different link failure probabilities. Here, w is computed according to a modified matrix
set taking into account the link failures through different update matrices. We remark a very
good fitting between our lower bound and the simulated results. Consequently, computing w
on the matrix set including the link failures enables us to predict very well the convergence
speed in this context.

3.6 Comparison with existing works

In this section, we will show that our results extend the works done previously in the litera-
ture. In Subsection [3.6.1]and we compare our results with existing papers dealing with
the design and the analysis of the Sum-Weight like algorithms. In Subsection [3.6.3] we will
observe that our results can even be applied to the traditional framework of single-variate
gossip algorithms.
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3.6.1 Comparison with Kempe’s algorithm

In Kempe’s work [[43]], the setup is quite different since the sensors update synchronously, that
is, at each time k, all the sensors send and update their values. Another important difference
lies in the fact that the communication graph is assumed to be complete and to offer self-
loops, i.e.each sensor can communicate with any other one, including itself. The algorithm

introduced in [[43]] is described below.

Push-Sum Algorithm

At each time k, every sensor i activates:

» i chooses a neighbor (or itself) j l.kH uniformly in A4 U {i} and sends it its pair of values.

> Let .%’l.kH be the set of sensors that sent information to i, i updates:

k k

k1 _ SE s

s = + Zre%ik“ >
k

k
k+1 _ Wi wy
Wi =3 +Zr€%ik“ 2

Using a matric formalism, the iteration at step k is

Sk+1 =K.n ~k+1Sk
]1 7"-;]1\]

Wk-H =Kin ~k+1Wk
J1 senln



3.6. Comparison with existing works 59

Consequently, at time k, the update matrix takes the following form
1. 1
Kjf“y--,j]’flﬂ = EI + E Zl Ejik+1 6;[. (3.37)
1=

Notice that the first term of the right hand side corresponds to the information kept by
the sensor, while the second term corresponds to the information sent to the chosen sensor.
Moreover, as each sensor selects uniformly its neighbor” (including itself), we immediately
obtain that

1 1
E[K] = §I+ EJ.

It is then easy to check that i) the update matrices are column-stochastic® with a strictly
positive diagonal; and ii) that E[K] > 0, thus it is a primitive matrix. This proves that the
Kempe’s algorithm satisfies the Assumptions[3.7] and so that it converges almost surely to the
average consensus (which was also proven in [[43]]).

Let us now focus on the convergence speed of the Kempe’s algorithm. We remind that
the convergence speed is driven by {‘I’Iﬁ}bo (denoted by {®,},-¢ in [43]]). As this algorithm
is synchronous and only applies on a complete communication graph, it is simple to obtain
a recursion between E[\I”;HI\P’;] and \Il’é using the approach of Section and more
precisely Eq. (3:25). Indeed, one has

1 1
E[((KID(KID] =(=--— | J* 3.38
000 = (5 - 5 )9 (.39
(see Appendix [B.I] for details). Then, we have that
1 1
E[5 | 95] = Trace (3L (PM)TE[(RI)T(RIH)]PHIL) = (5 — 4—N) vk, (3.39)

Moreover, from Eq. (3:38), we get that p((KJ1)T(KJ1))=1/2—1/(4N) < 1 and thus the
inequality of Eq. ([3.26)) is replaced with an equality. Therefore, the true convergence speed
is provided by p(E[(KJ*)"(KJ1)]). Comparing this convergence speed” (obtained very easily
in [43]) with the convergence speed bounds obtained previously is of great interest and will
be done below.

First of all, we remind that in the general case treated in this chapter, it is impossible
to find a recursion similar to Eq. which justifies our alternative approach. Secondly,
following the general alternative approach developed previously, the matrix of interest is R =
E[K®K](J* ® J&) (see Proposition 3.16). After some computations (a detailed proof is
available in Appendix[B.2]), we have that

N-1 .
vy (3.40)
N

1
R:ZJi®Ji+

7as the graph is complete, this means, choosing one node uniformly in the graph.

8In Kempe’s article [43]], the update matrix corresponds to the transpose of the matrix presented here, it is thus
row-stochastic in the paper.

°Note that there is a typo in Lemma 2.3 of [43]). Indeed, the coefficient is (1/2 — 1/(2N)) in [43] instead of
(1/2—-1/(4N)).
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withv=(1/VN -1 (u—(1/N)1@1) andu= 3" ¢ ®e;.
Consequently, R is a linear combination of two following orthogonal projections:
e the first projection, generated by J* ® J*, is of rank N — 2N + 1,
o the second projection, generated by vvT, is of rank 1.
As Jt ®J*+ and vv" are orthogonal projections, the vector space RY ’ (on which the matrix
R is operating) can be decomposed into a direct sum of four subspaces:
Fy=2m(vw)nHer(Jt ®J*)
F=2m(vwwHnsmIt @I
= AHer(vwh)Nngsm(It @ J)
S =Her(wh)nHer(J*t@JH)
As J* ® J*v = v (see Appendix[B.2), we have %, = {0}.
Moreover, according to Eq. (3.40), we obtain that

(% - %N) X VxeHA
%x VxeHh

0 Vx €S

As a consequence, the non-null eigenvalues of R are 1/4 and (1/2 — 1/(4N)) which implies
that p (R) = 1/2 — 1/(4N). Hence, the convergence speed bound obtained by our general
alternative approach developed here provides the true convergence speed for the Kempe’s
algorithm [43]).

3.6.2 Comparison with Bénézit’s algorithm

In [38]], it has been shown that doing a multi-hop communication between sensors provides
significant performance gain. However, the proposed algorithm relied on a single-variate
algorithm. In order to ensure the convergence of this algorithm, the double-stochasticity of
the matrix update is necessary which implies a feedback along the route. The feedback can
suffer from link failure (due to high mobility in wireless networks). To counter-act this issue,
Bénézit proposed to get rid of the feedback by using the Sum-Weight approach [42]. In this
paper, the authors established a general convergence theorem close to ours. In contrast, they
did not provide any result about convergence speed. It is worth noting that our convergence
speed results can apply to the Bénézit’s algorithm.

3.6.3 Comparison with the single-variate algorithms

In our analysis of standard gossip algorithms for averaging in Section [3.2] we assumed that
the updates matrices were doubly-stochastic and showed that if they were only row-stochastic,
the derived algorithms converged to a random value centered on x,,.. As we only assumed
column-stochasticity in our analysis of Sum-Weight algorithms, let us see what our results tell
us when the updates matrices are also row-stochastic.
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Assumption 3.21. In addition to Assumption 3.7} the matrices of A are row-stochastic'°.

If the previous additional assumption holds, one can easily show that the weight sequence
{wk},- o remain constant and equal to 1, i.e.,

Vk >0, wkt1 — pLk+1,,0 _ pLk+lq _ 1
and so xktl = gkt = ngﬂxk.

Therefore, the single-variate algorithms with double-stochastic update matrices such as
the Random Gossip [11]], the Geographic Gossip [37] can completely be cast into the Sum-
Weight framework. Moreover as Yk > 0, \IJ’{ = ||x0||§ because all the weights stay equal to 1,
the proposed results about {‘I’lﬁ}k>o (that is Section[3.4.3) can be applied directly to the
for these algorithms.

Let us re-interpret the work of Boyd et al. [[6] (especially their Section II) in the light of
our results. In [6], it is stated that under doubly-stochastic update matrices, the at time
k is dominated by p(E[K"K] — (1/N)11T)X using the same technique as in Section[3.:2.2-bl In
addition, they prove that the Random Gossip algorithm converges to 0 when k goes to infinity
if

P (E[K] ~ ]iVMT) <1 (3.41)

which is equivalent to Assumption [3.7k.
Furthermore, in [|6, Section II-B], it is stated that the condition corresponding to Eq. (3-41)
is only a sufficient condition and that the necessary and sufficient condition is the following

one

p(E[K®K]-J) <1 (3.42)

which is exactly the same expression as in Lemma [3.141'!.

Moreover, according to [6, Eq. (19)] and Eq. (3.35), we know that the at time k
is upper bounded by —w’k with w’ = —log(p(E[K® K] — (1/N)11T)) > 0. However, as
mentioned in Section the condition w’ > 0 seems only sufficient whereas w > 0 is a
necessary and sufficient condition; furthermore, p(E[K® K] J* ® J1) (i.e. e~®) is in general
smaller than p(E[K ® K] — (1/N)117) (i.e. e”®"). This accounts for our approach when
analyzing convergence speed of gossip algorithms.

In Fig. we display the empirical convergence slope, the associated lower-bound w,
and the bound given in [6] for the Random Gossip algorithm versus the number of sensors N.
The proposed bound «w seems to fit much better than the one proposed in [6]]. Actually, our
proposed bound matches well the empirical slope.

1035 they were column-stochastic with Assumption[3.7] this additional condition makes them doubly-stochastic.
HIndeed, as the vector v used in our formulation can be replaced with the left eigenvector corresponding to

the eigenvalue 1 (see the proof of Lemma [3:.14] for more details) which is proportional to 1 here due to the
double-stochasticity of the update matrices
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Figure 3.6: Empirical convergence slope of the Random Gossip, and associated lower bounds.

3.7 An application of averaging algorithms to cognitive radio

In this section, we will give an example of how averaging algorithms can be used in a cognitive
radio context.

3.7.1 The problem of distributed spectrum sensing in cognitive radio networks

In some applications, agents of a [WSN| have to detect quickly the presence or absence of a
signal of interest. For instance, one can mention the spectrum sensing in cognitive radio or
the intrusion detection in military mobile ad-hoc networks. In order to make an accurate
decision, these agents/nodes may have to cooperate with each other.

The traditional way to deal with a detection problem in a network consists in providing
hard or soft detection decisions to a fusion center which makes a decision with the aggregated
data and then transmits it to the agents of the network. This centralized approach is thus
clearly sensitive to fusion center failure. Moreover, in the ad-hoc networks context, a fusion
center election and a dedicated routing protocol have to be carried out which is costly in terms
of overhead and time. Therefore, designing fully distributed decision algorithms is of great
interest. Such algorithms rely on decision test functions and decision thresholds computed in
a distributed way, i.e.only exchanging local data with neighbors.

Cooperative detection has recently received a lot of attention (see [51]] and references
therein). Nevertheless, most works assume the existence of a fusion center and finally focus
on the design of operations done at each node in order to help the fusion center make the
right decision. In the literature, only a few algorithms are fully distributed in the sense defined
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above [52,/53],54]. An important difference is that sensing and gossiping steps are alternated
in [52, 53]] whereas sensing steps come before gossiping steps in [[54].

These algorithms are well adapted to time-varying environments but they suffer from
difficulties in computing the threshold distributively. Indeed, in [52} [54], the threshold is
chosen in the asymptotic regime and performances (especially false alarm probability) are
not ensured in finite time. In [53]], the threshold is chosen assuming the absence of diffu-
sion/gossiping step. Hence, the threshold distributed computation remains an open issue.

We thus propose a new fully distributed signal decision algorithm based on our proposed
algorithm, the (see Section [3.5.1) where sensing steps are followed by gossiping
steps and where the threshold is chosen adequately even in finite time. In addition, thanks
to the separation of both steps, we are able to optimize their durations at the expense of less
adaptivity compared to [52] [53]].

3.7.2 Model

We consider a network of N nodes collaborating to detect the presence or absence of a signal.
The received signal at time k on node i is yl.k. We assume that the number of samples used
for sensing is the same for all nodes and equal to N, so for any sensor i we will write y; =
[y}, ...,leS]T the vector of received data and y = [y, ..., yn1 -

The signal to (potentially) detect is denoted by xf at time k on node i and an additive
noise can disturb the detection and is denoted by ni.‘ at node i. We will model this noise at
sensor i by a Gaussian random vector with zero mean and covariance matrix O'iZI; formally,
we have n; ~ A(0, G?I) where A (m, ) denote a Gaussian random vector with mean m and
covariance matrix . We assume that the statistics of x; and n; are known at node i.

The binary hypothesis test of our problem can thus be written as follows

{ Ay Vi, yi=n; (3.43)

%1: Vl, yi:xl——l-ni

and we want to build a test A(y) whose goal is to enable us to separate the hypotheses so that
if A(y) > 6 then we decide that hypothesis 54 is valid and 7, elsewhere. We introduce two
conditional probabilities that enable us to evaluate the performance of any binary test: i) the
probability of detection Pp; and ii) the false alarm probability Py, defined as:

Py =P[A(y) > 8|54] and Py =P[A(y) > 6|54]. (3.44)

In the context of cognitive radio, it seems natural to ensure a fixed probability of detection
as the secondary users may have non-disturbance requirements towards the primary users.
Moreover, a high false alarm probability only implies that the secondary users do not use the
white spaces while they could. Consequently, we want to minimize the false alarm probability
for a fixed probability of detection which is the opposite of the standard Neyman-Pearson
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criterion'? (see [55, Chap. 2.2]).

Lemma 3.22. In the case of a binary decision test with a constrained Pp, the optimal test is the
Log-Likelihood Ratio (LLR) defined as

. p(y1#4)Y %
A(y) =log (— 2 (3.45)
(17 ) 7,
where p(y|s#€) is the probability density of y given the tested hypothesis 5 and where & is

target
Py,

chosen such that the target probability of detection, denoted by is ensured.

Proof. The proof follows the approach developed in [55, Chap. 2.2] in the case of the
Neyman-Pearson criterion.

Let us partition the received signal space % into two subspaces : %, corresponding to
the signals for which A(y) < & ( so for which we will decide 7)) and % corresponding to
the signals for which A(y) > & (we will decide ). Now, let us consider the optimization
problem

ming{lize Pgp
subject to P];arget —Pp<0

which we solve through the function F where A is a Lagrange multiplier

F = Py + AP —Pp)

= J p(y1#4)dy + A (Pgarge‘ —f p(yle%’l)dy)
5’1 g‘l

A,P];arget + (p(ylg%o) - 7LP(J’|<%01)) dy
%

Hence, for any A > 0, the behavior (i.e.the choice of the partition of % into %, and % )
which minimizes F is “deciding 5# (i.e.being in %) if the term in the bracket is negative” i.e.

7
p(y1#%) <s.

p(yls6)

As a conclusion, the optimal test is a Likelihood Ratio Test (LRT) as in the standard
Neyman-Pearson approach. For the sake of simplicity we will work only on the classical
in the following. O

3.7.3 Review on centralized cooperative spectrum sensing

Before going further, we remind some important results about centralized cooperative spec-
trum sensing. We focus, on the one hand, on an energy-based detector (when the sought
signal is unknown) and, on the other hand, on a training-based detector (when the sought
signal is known and thus corresponds to a training sequence [53]]).

121 the standard Neyman-Pearson criterion, one wants to maximize the probability of detection given a target
false alarm probability.
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3.7.3-a Energy-based detector

When the sought signal is unknown, it is usual to assume x; is a zero-mean Gaussian vector
with covariance matrix yl.zl, iex; ~ AN(O, )/iZI). Then, the Signal-to-Noise Ratio at node
i is equal to SNR; = yl.z / O'i2 and is assumed to be known at node 1.

Assuming independence of the received signals at different nodes (this assumption is rea-
sonable since even if the same signal is transmitted by the primary user, the random wireless
channel leads to independent received signals between nodes), the test given in Eq.
can be decomposed as follows:

N
INOEDWNED
i=1

with A;(y;) =log(p(yil54)/p(yil 7))
As x; ~ A(0,y71) and n; ~ A(0,071), we obtain the following test by removing the
constant terms

N 112 B
T(y) £ %; lizlyl”;iz SNR; ;; n (3.46)
where 1 must be chosen such that P[T(y) > n|#4] = P];argﬂ.

In order to compute the threshold 7, we need to exhibit the probability density of T under
hypothesis #. Unfortunately, due to the unequal between the sensors, T is not y2-
distributed as in the standard energy detector. In [56]], it is advocated that the density of T
can be approximated with a Gamma distribution, denoted by I'(k, 8), whose the probability

density function is equal to g, ¢ defined by

F(K)ka’(_le_x/e, x>0, (3.47)

gK,Q(x) =

and 0 otherwise. The mean of this distribution is k8 and its variance is k82, we thus choose x
and O so that the mean and variance of the approximating Gamma distribution are the same
as the ones of T. After some algebraic manipulations detailed in Appendix[B.3] we obtain that
T ~ I'(k 7, 87 ) under hypothesis 5 with
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(3.48)

KT and 9T=ﬁ~

One can then deduce that the optimal threshold ) given the target probability of detection

target
P g

N is such that

P]t)arget — [P[T()’) > nljfl] rA~1-— GK‘T,QT(T’)

which leads to
n=G. g (1- Py

where G, g is the cumulative distribution function (cdf) of a Gamma distribution with param-
eters (k,0) and G,(;el) is its inverse.
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Finally, we can derive the Receiver Operating Characteristic (ROC) of the test, that is the
relation between the false alarm probability and the probability of detection,

-1
Peia=1- Gy g (G,((T,Q)T(l - PD)) (3.49)
with
N (ZN SNR, )2 ZZN ( SNR; )2
s i=1 1+SNR; d 6/ = i=1 \_1+SNR;
Kr = N sne 2 ond br= N SR
221':1 (1+SN1RI-) =1 14+SNR;

3.7.3-b Training-based detector

We now assume that each node i has the knowledge of the (possible) transmit signal x;.
Typically, the signal x; may decomposed as h;x where h; corresponds to the (known) channel
fading between the node i and the sought transmitter and x is a (common) training sequence
[53]. Here, the signal power is y7 = ||x;||*/N;.

Then the test given in Eq. (8.45) takes the following form

1 yixi%’l
T(y) = — L . (3.50)
IR o A

As x; is deterministic, T is Gaussian-distributed with mean my and variance g% under

hypothesis 5 given by
1Y N [1&
J— . 2 —_ _S J— .
my = N, (N E SNRI) and ¢f = = (N ;:1 SNRl) .

As a consequence, the obtained threshold is
n=¢rQV (P5™E) +my

where Q-1 is the inverse of the Gaussian tail function.

3.7.4 Fully distributed spectrum sensing algorithms

Obviously, the tests described in Egs. (3.46)-(3.50) are not computable since a node may not
have the information from all the others. To overcome this problem, we propose to introduce
a gossiping step in order to compute the involved averages. Indeed both previously derived
tests can rewrite

1 N
T0)= 5 2,400
with

2 2 2 . .
ti(y,) = Il ||2SNRi/(Yl~ + 0] ) %n the case of enérgy detection |
Y lT xi/ 01-2 in the case of training-based detection.
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It is thus interesting to perform N, gossipping steps after the N; sensing steps in order
to obtain a test close to the centralized one. Using a matrix formalism (see Section [3.2] for
details), we have

Ti(y) t1(1)
: 2 pLN,

Tn(y) tn(rn)

where T;(y) is the final test function at node i, and where Pz corresponds to the considered
gossiping algorithm matrix after N, iterations.

It is thus easy to design fully distributed algorithms that estimate the test T(y). Actually,
our main issue is to find a distributive way for computing a good threshold at any time,
ensuring that the common target probability of detection P];arget is as close as possible at any
step of the algorithm. Indeed, the decision is made before the convergence of the gossip
algorithm and, assuming a primary user is present, T; may be above the threshold whereas

the gossip has not still converged to the consensus.

3.7.4-a Energy-based detector

When an energy-based detection is carried out, the final test function at node i is

L, ||y|| %
T(y)—ZP " SNR, 2

where 7); is the threshold at node i.
Once again, by assuming that T; is well approximated by a Gamma distribution, using the
same technique as in Appendix we obtain that under 54

;=G g (1-P5E) (3.51)
where P[arget is the target detection probability at node i, and
2
N, (P R ) P (pl.l’f’g) SNR?
Ki=3s' RV and 6, =2 n (3.52)
N 5 2 g
PR (Pi’j *) SN 3Py *SNR,
Then, we obtain that the is equal to

Poai =1- Gy (GU3 (1= Po,)) (3.53)

with

SN phNe SV, 2 N (ps 2 7 s\, )2
, N j=1"1ij 1+SNR; , =1\ i 1+SNR;
K;=—" and 0; =2- .

) sV (pth 2 sNr; )2 Z{le.l’?\’gﬂ
j=1 i,j 1+SNR,; J=1"1] 1+SNR;
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We remark that our[ROC curve depends on the gossip algorithm. Unfortunately, the terms
involving (P.l’?vg )? in k! prevent us from obtaining the threshold 7, in a distributed way at

target

node i for ensuring the probability of detection Py To overcome this issue, we propose

hereafter two approaches.

Approach 1: distributed test with knowledge of N. Actually, in the centralized setup,
the threshold depends on the average of the SNR and the squared SNR through Eq.(3.48).
A simple idea is to replace these exact averages with the averages obtained thanks to the
considered gossip algorithm. It is clear that if N, is large enough, the obtained thresholds
will be close to those of the centralized case and also to those described in Eq. (8.52). As a
consequence, the new threshold is

= G(u})em (1-pyee) (3.54)
with
RO NN, (Ziv 1Pl] gSNR) and 9(1) 2 Z) 1 l] gSNRZ.
l 2 ¥ 1Pl] gSNRZ N SLP gSNR

This algorithm is still not fully distributed since the knowledge of the number of nodes
is required but the threshold only depends on the [cdfl of a Gamma distribution (which can
be tabulated to avoid further complexity) with parameters depending only on terms that can
be computed by gossipping the vector of the vector and the squared vector along
with the individual tests.

Unfortunately, the target probability of detection is not ensured since the real probability
of detection, denoted by PSl.), is given by

M _ -1 plarget
PD,i =1- GKisQ (G (1) (1>(1 - arge ).

In contrast, we prove that the ROC| curve is the following one

1 _ (-1 (1)
PFAl 1-G Kﬁ,e{(GKi,ei(l_PD,i )

which is the same as in Eq. (8.53). Consequently, the [ROC curve is not degraded due to our
approximate threshold. In addition, the operating point in the curve can not fixed a

priori.

Approach 2: fully distributed test. In this approach, the knowledge of the number of
nodes will not be required anymore. As seen in Section our proposed algorithm, the
is able to perform the estimation of the sum jointly with the estimation of the
average.

We define

1 1
MLV £ di PLNe and SMNe £ dj ptNs 3.55
iag (Pl ~ ]l) an iag PR, ( )
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so that M*Ne x©0 (resp. S1Ne x0) is the estimate of the average (resp. the sum) of x© obtained
by a Sum-Weight-based algorithm (as the BWGossip).

In this setup, before gossipping, the two auxiliary variables of each node must be initial-
ized to match 1 and e; respectively. For the first auxiliary variable, each node is initialized
to 1. For the second one, only the first node is initialized to 1 whereas the others to 0. In
cognitive radio context, this means the first node is the secondary user launching the sensing,
i.e.which wants to access the medium.

Recalling Eq. (3.48), we see that eliminate the factor N in the coefficients k1 and O: 1)
in K, by replacing the averages by the sum of the [SNRk; and ii) in O, by replacing
the average in the denominator by the sum of the [SNRk. Consequently, replacing the
involved sums and averages by estimates found through gossip, we find

1 =65 (1-25) (3.56)
with
N Ng Ng 2
@ _ Ns (Zl 1S SNR) @ _, Z] 1Mu SNR;
K; =5 " . and 0,7 = " N,
- 1s SNR 2= 1s SNR;

The algorithm is now fully distributed since even the number of nodes is not required.
Once again, the new threshold does not ensure the target probability of detection, and the
curve is still described by Eq. but P is replaced by M given by Eq. (3.55).

Finally, for both approaches, the curves converge to the curve related to the
centralized case when N, is large enough since the parameters «;, k;, 0; and 6/ all converge
to those of the centralized case.

3.7.4-b Training-based detector
In the case of the training-based detector, the test function at node i after N, gossiping itera-

tions is
y Xj 3201

Ti(y) = ZP” 2 n;,

O'

§§

As T; is Gaussian distributed with mean m; and variance gl.z under %, we have

=¢,QY ( ];alrget) +m;

and
& 1N STRLAY
m; =N,y P, *SNR;and ¢2=N,y (P;}") SNR;.
j=1 j=1

Once again, this algorithm can not be computed in a distributed way due to the presence of
1L,Ng\g . . . .
the terms (P; i ¢)2 in the variance. To overcome this issue, the previous proposed approaches
can be applied straightforwardly.
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3.7.5 Numerical illustrations

Except otherwise stated, an energy-based detector is carried out with Ny = N, = 64 and

target
P D,i

at each node are exponentially-distributed with mean SNR. Only performance for the
node exhibiting the smallest realization will be plotted.

= 0.99 for all i, and performance are averaged over RGGk with N = 10 nodes. The

Hereafter, we test the four following algorithm configurations: i) the centralized one; ii)
the Random Gossip with centralized threshold (see Eq. (3.51)); iii) the Random Gossip with the
threshold of approach 1 (see Eq.[3.54); and iv) the BWGossip| with the threshold of approach
2 (see Eq. (3.59)).

In Fig. 3.7 we plot the curve for the above-mentioned algorithm configurations.
We remark that the curves (which only depends on the gossipping) are very close to
each other. In addition, when the same gossip algorithm is used, the ROC curve is identical
regardless of the threshold technique computation.

1
0.8 |
0.6 |-
o
0.4
-1~ Centralized Detector
0.2 [ - 0- Random Gossip with centralized threshold M
—O— Random Gossip with threshold of approach 1
—— BWGossip with threshold of approach 2
0 | | | | T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pFA

Figure 3.7: Receiver Operating Characteristic curve (Pp vs. Pgy).

In Figs. 3.8l and we display empirical Pgy and Py, versus i) SNR for N, = N, = 64;
and ii) N; for N, = N; + N, = 128 fixed with mean —5dB. The Random Gossip with
centralized threshold performs almost as well as the centralized detector which implies that
gossipping the personal tests instead of having a fusion center gathering and summing the
sensors data is not very costly, thus the losses in performance are mainly due to the threshold
computation. We remark that when the threshold is computed through approach one, the
false alarm probability is lower than in the centralized case however the target probability
of detection is not ensured especially when the number of gossipping steps is small (N, close
to 128). In the case of with approach 2, the loss in false alarm probability is
reasonable while its probability of detection is higher than the target one, it has thus very good
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performances. We also remark the sensing-to-gossipping ratio that offers the best performance
is common and close to 1 for all algorithms.

Iy
W Centralized Detector - Py,
—{1— Centralized Detector - Py,
0.8 |- ¢ Random Gossip w/ centr. thres. - P, I
- - Random Gossip w/ centr. thres. - Py,

@ Random Gossip w/ thres. of appr. 1 - P,
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Figure 3.8: Py, and Pp versus SNR.
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Figure 3.9: Py, and P versus N;.

Finally, in Fig. we compare our training-based algorithms to the Diffusion LMS de-
scribed in [53]]. Notice that the sensing and gossipping steps are mixed for the diffusion
LMS. We remark that our proposed algorithms outperform the diffusion LMS. Actually, our
block processing for the sensing step is much more efficient that the adaptive LMS one in
[53]]. Moreover, unlike diffusion LMS, our algorithms are asynchronous which simplifies the
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network management, and the threshold is chosen much more adequately.
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Figure 3.10: Py, and Pp versus SNR for proposed algorithms and Diffusion LMS.

As mentioned before, one of the advantages of cooperation between secondary users is to
solve the so-called Hidden Terminal problem shown in Fig. 3,11l In this figure, we see a cog-
nitive radio network consisting of two Primary Users (PU) and five secondary users (SU). The
primary user PU1 may contact PU2 in which case secondary user must not interfere, the links
with associated long-term are represented in dashed lines. In order to efficiently detect
a communication from PU1, the secondary users may communicate through dedicated links
represented by green lines. The Hidden Terminal problem problem occurs when a secondary
user (SU1 in our case) is not able to detect the emitting primary user (PU1) because of a bad
long-term due to some obstacle or large distance; but can perturb another primary user
(PU2) if it emits.

In Fig. B.12] the four proposed algorithms of the previous section have been evaluated on
the hidden terminal practical configuration described in Fig. 3.1l We represent the probabil-
ity of detection and false alarm probability of the secondary user #1 versus N, = N; + N, with
N; = N,. The centralized detector is obviously very efficient as our user of interest then bene-
fits from the measurements of all the network and thus from the sensors close to the emitting
primary user. When gossipping, the hidden secondary user is in general poorly connected to
to the other as represented in Fig. [3.11l Thus, asynchronous gossip-based algorithms have
quit poor performance even in the centralized threshold case. As seen before, Approach 1
does not ensure the target probability of detection and thus cannot be used in a practical set-
ting. Approach 2 with seems to ensure our target probability of detection in most
cases at the price of a higher false alarm probability. We can conclude that our most advanced
algorithm is enable to distributively detect the hidden terminal quite quickly.
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Figure 3.12: Py, and Pj, versus T for the hidden terminal problem of Fig.[3.171

3.8 Conclusion

In this chapter, we proved very general results about convergence and convergence speed
of average gossip algorithms over WSNk. The Sum-Weight framework enabled us to prove
more general convergence properties and to derive a very efficient feedback-free broadcast
algorithm which significantly outperforms the existing ones. In addition, we showed that
our results applied to any standard averaging algorithm and that our derived speed bounds
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were in general tighter than the ones in the literature. Finally, we applied our results to
the problem of distributed spectrum in cognitive radio networks and enabled us to design a
fully-distributed spectrum sensing algorithm.

In the next chapter, we will consider the problem of distributed optimization.
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CHAPTER 4

DISTRIBUTED OPTIMIZATION

In this chapter, we focus on optimization algorithms over networks. After motivating our
choices, we design and prove the convergence of an asynchronous distributed optimization

algorithm.

4.1 Introduction

The recent years have seen a dramatic increase in the quantity of data available over the Web
and in the computational abilities of any electronic device. The classical model of statisti-
cal inference where a single computation unit has to infer behaviors on a small data set is
thus inadequate for such a setup. To take into account these recent developments [|57]], it is
interesting to consider a system where:
e a large quantity of data is spread over many (physically) distant machines;
o these machines can perform costly computations;
e they need to communicate to infer a global behavior as their own dataset (although
large) might not be representative;
o for evident congestion reasons, local, peer-to-peer communications must be preferred
over a centralized scheme.
A large majority of data processing algorithms rely on the minimization of a well-designed
cost function that takes into account the whole dataset. We will focus in this chapter on convex
optimization, that is when the cost function is convex. f : R"™ — RU{+o0} is a convex function

if and only if its epigraph
epif ={(x,t)eR"xR: f(x) <t}

is a convex set; in addition, f will be closed if its epigraph is. Also, the optimal points will

necessarily be in the effective domain of f

domf ={x € R": f(x) < 400}
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epi f

dom f

Figure 4.1: The epigraph and domain of a convex function.

i.e. the set of points for which f takes on finite values as represented on Fig.[4.1} if dom f # 0,
f is proper.

The performance of these algorithms depend on i) the choice of the cost function, which
mostly depends on the problem; and ii) the optimization algorithm used for minimizing it,
that changes how the function is used in the iterations of the minimization.

In order to perform efficient data processing on big data networks, one has to design
distributed optimization algorithms. Mathematically, a network of agents represented by its
graph ¥ = (V, E) is seeking to distributively solve the following optimization problem.

Problem 4.1.
E(Tg]g f(x) = Zievfi(x)

where f; is a convex real cost function known only by agent i.

Function f; can be interpreted as the price payed by agent i when the global network state
is x. In the most general case the optimization variable x lives in any Euclidian space but for
the sake of clarity we will work in R along this chapter. The goal of this chapter is thus to
design optimization solving Problem [4.T] with the following particularities:

o the agents may only perform local updates, i.e. they update their private estimate using

only their private cost function, indeed the global cost function is nowhere available;

e the agents can only communicate their variables locally using the edges of the underly-

ing communication graph.
For these reasons, each agent will update its own variable x; only according to its cost function
fi, it is thus useful to write Problem [4.1] making apparent the nodes variables and adding an
equality (or consensus) constraint.
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Problem 4.2.
min F(x)= Ziev filx;)

xRN
subjectto xq;=x9=-'-=Xy

A function that writes as a sum of functions over scalar components, as F, will be said
separable.

As each sensor cannot know all {x;};—; n and {f;};—; _y, any distributed optimization
has to feature two steps: i) a local variable update where one or more sensors update their
local variables using their local cost function; and ii) a consensus step where some sensors
exchange scalars with their neighbors in order to reach a consensus. The problem of reaching
consensus with local exchanges (step ii) has been studied in details in Chapters 2] and Bl In
the literature, two main classes of optimization algorithms exist for solving Problem [4.1] (or
related ones). They differ from how a node makes use of its local function:

o the methods where the i-th node uses local properties of f; at x; as the gradient (or
subgradient) introduced as a classical distributed computing problem in [[46], Chap. 7.5]
(based on [58,[59]]) and refined in [160, 61}, 162, |63]]. One can also mention Nesterov-like
methods [64] [65]], or Newton-like methods [|66].

e the methods where the nodes use their whole individual function through an argmin
step for example. The most celebrated algorithm for distributed optimization is the Al-
ternating Direction Method of Multipliers (ADMM), popularized by the monograph [67]],
which uses a regularized argmin of the functions at each iteration. It was demonstrated
to be particularly suited to graph-based (local) communications in |68, [69].

Standard algorithms are generally synchronous that is to say all agents are supposed to
complete their local computations synchronously at each tick of some global clock, and then
synchronously merge their local results. However, in many situations, one faces variable sizes
of the local data sets along with heterogeneous computational abilities of the machines. Syn-
chronism then becomes a burden as the global convergence rate is expected to depend on the
local computation times of the slowest agents. In addition, we saw that in the previous chap-
ters that synchronism in the communications can result in collisions and network congestions.
It is thus crucial to introduce asynchronous methods which allow the estimates to be updated
in a non-coordinated fashion, rather than all together or in some frozen order.

This chapter is organized as follows. First, Section [4.2] describes existing synchronous and
asynchronous first order methods for distributed optimization. These methods are ultimately
based on first-order derivatives of the cost functions and enable us to oversee some local
optimization methods. Then, in Section [4.3] we introduce proximal methods which constitute
a large majority of the optimization methods based on the whole functions. We put the focus
on the algorithm and show how it can be used to solve a distributed optimization
problem. Section [4.4] then recalls the basics of monotone operators theory which enables us
to elegantly analyze proximal algorithms in general and the in particular. Finally,
in Section [4.5] we introduce our new asynchronous [ADMMlbased algorithm for distributed
optimization, we prove its convergence using monotone operator theory, and illustrate its
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performances in Section [4.6]

4.2 First order methods

In this section, we will review some simple algorithms that distributively solve Problem [4.2]
using local properties of the cost functions. We consider the case where the nodes update their
value by computing a gradient of its cost function then exchange with each other in order to
reach the wanted consensus. We will focus here on the consequences of these exchanges (or
gossip) on the convergence properties of gradient algorithm.

These results are based on [58] 159, 61} 162]] and [70|].

4.2.1 Model

As previously mentioned, these algorithms are based on two steps: i) a gradient descent; then
ii) a gossip step. We will thus make explicit the two steps independently and then put them
together along with classical assumptions from the literature.

4.2.1-a Step 1: Gradient descent

In first order methods, every node i makes use of its individual function f; through a gradient
descent step. Assuming f; is differentiable, the update equation reads:

xkHl = xlk - kafi(xf) 4.1

1

where V f;(x;) is the gradient of f; at point x; and {y*},- is a sequence of positive coefficients.
For notational simplicity, we shall assume that the {f;};—; ) are R — R in which case the

gradients boil down to derivatives?

. Fig. [4.2] gives a representation of a gradient step with
k
Yt = 1.

If f; has a unique minimum, then f; is non-decreasing and null at the point x where

f; is minimal. Then, it is easy to see that if xf‘ > x[, then xf‘“ < xg‘ and conversely. The
sequence {xf‘}bo produced by Eq. (4.1) then converges to x; under some assumptions on f;

and {}f{‘}bo (see [[71, Chap. 9] for details).

4.2.1-b Step 2: Gossipping

Let ¢ = (V, E) be a network of nodes wanting to solve Problem [4.T] with first order methods.
They need to maintain a common value x € R and compute f'(x) = ..., f{(x) which is
very difficult to implement without the presence of a fusion center. One way to overcome this
problem is to compute this gradient along an Hamiltonian cycle (a cycle that visits exactly
once every vertex) which leads to incremental gradient methods (see [[72]] and references
therein for details). However, this method needs the creation of an Hamiltonian cycle which

This avoids the use of Kronecker products in the equations related with the gossipping.
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Figure 4.2: Tllustration of a gradient descent step.

can be costly and implies the presence of an acting fusion center; furthermore, the resulting
algorithm is quite sensitive to link failures.

We will thus consider a more distributed approach based on Problem (4.2 where the net-
work performs a gradient descent on F (i.e. each sensor i performs a gradient descent on f;)
and the sensors exchange their estimates with their neighbors by an average gossip step as in
Eq. B.I):

xk+l = K£k+lxk

where the process {Kg}>o, valued in the set & = {K;}i—y . is

4.2.1-c Distributed gradient algorithms

Combining these two steps, we get the following algorithm where the word asynchronous
means here that the communications between the agents are asynchronous as in the previous
chapter; the gradient steps of the agents still have to be performed synchronously. As in
Section [3.2] the process {Ki}i~o of the communication matrices, valued in the set ¢ =
{Ki}iz1,.. v, isLidl

Recalling the definition of F in Prob.[4.2] the two steps can be merged into a single equa-

tion as
k1l = Keen (xk - kaF(xk)) (4.2)
or with matrices products
k=1
Xk = KaKeior.. Kenx® = Y 'K eKior . Kee VE(x). (4.3)
=1

In the next sections, we will see how gossipping enables this algorithm to converge to
a consensus minimizing the function f. For the sake of clarity, we shall assume first that
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Asynchronous distributed gradient algorithm
At each clock tick k:

» every sensor i performs a gradient descent on its cost function f;:
okl _ k _ kel k
X; —Xi_}/fi(xi)

» the sensors average their value using matrix Kgx:

Xk-i-l — K£k+1i‘k+1

all the matrices {Kgx};-o are equal to a given matrix K. This corresponds in practice to a
synchronous gossipping scheme as in Section 3.2.2-al The asynchronous scheme where the
process {Kgk}iso is[Lid]will be considered as a second step.

Let us start by putting some general assumptions on the cost functions {f;};—; _y, the
stepsizes and the matrix K.

Assumption 4.3. The functions {f;};—; _n verify:
i) The functions {f;};=1 _n are convex and differentiable;
ii) The function f attains its infimum and the set of its minimizers .# is compact;
iii) Their derivatives {f};_; _y are L-Lipschitz continuous and ¥x, |f/(x)| < C.

Assumption 4.4. The positive sequence of stepsizes {y*},~ verifies:
D Dotk =+00;
i) Ypno(r*)? < oo;
iii) Yy —, 1

Assumption 4.5. The matrix K is doubly stochastic with a positive diagonal and primitive.

4.2.2 Convergence of the Synchronous Distributed gradient algorithm

As in Section [3.2.2-3] let us first review synchronous distributed gradient algorithms. Let K
be the gossip matrix that models the exchanges at each iteration, the associated distributed
gradient algorithm is presented below.

As before, the two steps can be rewritten in a single equation:

xF1 =K (xk — kaF(xk)) ) 4.4
We also have

k-1
k= (K)kx = >y R VE(Y). (4.5)
(=1

We will prove the convergence of this algorithm under the above stated conditions. The
convergence proof will follow two main steps: i) we will prove that this sequence converges to
a consensus; and ii) we will show that the value of the consensus is x* such that Vf(x*) = 0.
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Synchronous Distributed gradient algorithm
At each clock tick k:

» every sensor i performs a gradient descent on its cost function f;:

ck+1 _ Lk _ L kpre k
X; —Xi_}/fi(xi)
» the sensors average their value using matrix K:

okl = gkttt

4.2.2-a Convergence to a consensus

Recalling Eq. (4.5), we have

k
||JJ_Xk+1 ||2 — JL ((K)k+1xo _ Z Y[ (K)k-i-l—ﬂ VF(XK))

(=1

2

k
k
_ (JJ_KJJ_) +1 %0 _ Z},E(JJ_KJJ_)I(-H—EVF(XZ)

=1 2
k
L)kt o | 1Ly 7L yk+1—¢ ¢
< |(H*xH) T x 2+€Z1:y | RIYHIETE D),
k
< IIHRIHIE IOl + Yy IR V),

(=1

where the first equality comes from the fact that J'K = J*KJ' as K is row-stochastic from
Assumption The second inequality comes from the induced norm inequality for matrices.
Furthermore, the conditions of Theorem [3.4 are satisfied so o = |||J'KJ'|||, < 1. We thus

have

k .t
HJJ_xk-HHZ < (cr)kHIIxOIIz—I—yk«/ﬁcz%(a)kﬂ_e
(=1

where the first term of the RHS goes to zero as k — co; the second term is the product of y*
and VNC Zif:l v*/y*(0)**1=¢. One can find in [[73} Part 1, Pb. 178] that as i) y*™!/y* — 1
from Assumption [4.4} and ii) 0 < 1 as seen above; lezl vt /yk(o)k+H1=t converges. Hence,

we have proved that
Pl = o (v). 4.6)

This implies that { HJkaH Hz}k>0 decreases to zero at the same speed as { %}, hence
the sensors variables go to a consensus. We will now study the value of this consensus.
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4.2.2-b Consensus value

First, recalling Eq. (4.4) and using the identity JK = J for any column-stochastic matrix K, we
observe that
Ikt = Jxk — vk v F(x5) 4.7)

is almost a gradient descent of the sequence {x*},.o = {1/N1Tx*},-, (it would have been a

gradient descent if the sequence X* were described by the iterations X<+ = xk — vk f/(xk) =

% —ykN(1/N1"VF(x*1))). Equation (#7) can be rewritten as
g =gk —y* (1/N1TVF (xF)). (4.8)

Let us take x < x’/, as f is differentiable, the mean value theorem states that there is
x < ¢ < x’ such that
fON) = f)=F'()x"—x)
and as f is convex, f’ is non-decreasing so
fIOO =) < fF(D) = fO) < f/(xD(x" = x)
e fO)S D)+ G —xD) and f(x) < fO)+ f/(x)x" = x).

Thus, working on {f (¥*)},, the above result tells us that

f()_ckH) < f(-)—(k) _’_f/()?k-‘rl)(i_k-i-l _ )_Ck)
FER) + £ ER = 56 + LN (R — 252,

IA

where the second inequality comes from the fact that f’ is LN-Lipschitz by a straightfor-
ward derivation based on Assumption @3l Then, using Eq. (£.8), we replace x**1 — xk by
—yR(1/N1TVF(x5)):

L(v5)2
%(]ITVF(JC"))Z

k kL L kN2
£ - L@+ TP I e, + S o r ey

k
FEH) < FE) - L EOATYRER) +

IA

where the inequality is due to the identity 1TVF(x*1) = f/(x) and the fact that 1TVF is
L-Lipschitz continuous from Assumption[4.3] Since the derivatives of the functions {f;};—; _n

are bounded by Assumption [4.3] we get

k
fEMY < - %(f’(ik))z + CryrRIl xRl + Co(rF)? (4.9)

where C; and C, are finite constants.
Recalling that || J*x*]||, is of the same order as y* from Eq. (4.6)), we see that the two last
terms are of the same order as (y*)?. Thus,

k
FE) < £ = T2+ (7
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where C; is a finite constant. Iterating this inequality, and using the summability of (y*)?

(Assumption [4.4), we get that

0
PR ()P < oo,
k=1
As Yoo 7" =400, we have f/(x*) — 0 as k — oco.

Conclusion: The fact that f’(x*X) — 0 implies that {¥*},., does not diverge. In-
deed, since f’ is non-decreasing and the set .# of its zeros is compact (Assumption 4.3)),
lim infi,| o |f ()| > O which is in contradiction with our result. Thus, the sequence )
belongs to a compact set, and its accumulation points belong to .#. We have shown the
following theorem.

Theorem 4.6. Let Assumptions and hold. Then, the sequence {xk}k>0 defined in
Eq. (@3) satisfies J*x* — 0 and x* — 4.

4.2.3 Convergence of the Asynchronous distributed gradient algorithm

As in Section we will now allow the sensors to communicate asynchronously with
their neighbors, mathematically this sums up to having the gossip matrix chosen randomly in
a set ¢ through an process as previously described in Section We thus put the
following assumptions in place of Assumption

Assumption 4.7. The matrices of & are non-negative, doubly-stochastic with positive diagonal

elements.

Assumption 4.8. The gossip matrices sequence {Kg} o forms an L.idlprocess valued in ¢ and
E[K] is primitive.

The sketch of the proof is quite similar to the synchronous case up to some modifications

in order to take into account the randomness of the gossip matrices. Indeed:

e combining the derivations of Section and one can prove that
E[JtxX5] Zi_1] = @(y*) and that ||J-x¥||, converges almost surely to 0;

e remarking that as all the update matrices are column stochastic from Assumption [4.7]
Eq. (4.7) holds and thus Eq. also holds under Assumption [4.3] Taking the con-
ditional expectation over this inequality and applying Robbins-Siegmund theorem (see
(74, Chap 1.3.3] or the original paper [[75]) enables to give almost sure convergence
results.

Finally, one can find in [[70] the following result.

Theorem 4.9. Let Assumptions and hold. Then, the sequence {xk} k>0 defined
in Eq. @2 satisfies J*x; — 0 and x* — _# with probability one.
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4.2.4 Extensions

In the previous sections, we gave assumptions and proofs for the convergence of synchronous
and asynchronous distributed gradient algorithms. In particular, we assumed that every agent
could compute exactly the gradient of its cost function at any point. The case where the
gradient can only be obtained up to an additional noise leads to the well-studied domain of
distributed stochastic gradient algorithms [|62} 163}, [70]].

In addition, the considered gossip matrices suffer from the same limitations as in Sec-
tion 3.2} as they are doubly-stochastic, there is a need for a feedback. Now, if the matrices of
A are i) only row-stochastic; ii) column-stochastic in mean; and iii) E[K] is primitive (which
was studied in Section 3.2.3] and can represent the Broadcast Gossip [7]), the almost sure
convergence still holds. Detailed proof and further considerations can be found in [76].

Finally, the algorithms ultimately based on a gradient step followed by a gossipping step
(as described in Section can be improved in terms of convergence speed by i) im-
proving the gossip; and/or ii) improving the gradient descent. Unfortunately, improving the
convergence speed by improving the average gossip (see Chapter[3) seems to bring only little
gains by simulation. Enhancements of the gradient descent through, for example, Nesterov ac-
celeration have been provided in the literature (see [64] and references therein) and showed
to offer a significant gain in performances.

Still, first order methods only use local information of the cost functions while the op-
timum computation can be made more efficient by exploiting the knowledge of the whole
functions when available. That is what the next section deals with.

4.3 Distributed Optimization with the ADMM

In this section, we focus on solving Problem [4.2] using a celebrated proximal algorithm: the
Alternating Direction Method of Multipliers (ADMM). This implies a modification in the net-
work setup: in the previous section the agents were required to compute a gradient whereas
now the agents have to evaluate the proximal operator of their cost function (denoted by
prox,) which involves a small optimization by itself. After introducing the proximal methods,
we will focus on the dual methods of which the is a variant. Finally, we will explicit
the algorithm and see how it applies to our distributed optimization problem.

In the whole section, we will focus on the construction of a distributed optimization algorithm
using the The reader can refer to [67|] and [77] for proofs and further considerations.

4.3.1 Proximal methods

4.3.1-a The proximal operator

Before focusing on the ADMM] let us present the proximal operator which is the core of proxi-
mal methods (see [[77] for a detailed overview) to which the ADMM] belongs.



4.3. Distributed Optimization with the ADMM 85

Let f : R™ — R U {+00} be a closed proper convex function, the proximal operator prox; :
R™ — R" of f is defined as

1
prox(x) = argmin {f(u)+ §||X—u||§} (4.10)
f u

and is unique for all x under the above assumptions as the function in the argmin is not
everywhere infinite and is strongly convex. In most cases, it will be useful to work on the
proximal operator of the scaled function p~!f with p > 0 i.e.

prox(x) = argmin {f(u)—i-Ble—uIl%}. (4.11)
p—lf u 2
It is interesting in the case of distributed/parallel computing to remark that, for F separa-
ble as defined in Problem 4.2} prox; is also separable:

prox; (x1)

prox(x) =
F
prox;, (xy)

It is worth to remark that the proximal operator of the indicator function of a set C

(x) = 0 xecC
e = +00 x¢C

is simply the (Euclidian) orthogonal projector to C that we denote as I1:

1
prox(x) = argmin {Lc(u) + §||x — u||§} =TI.(x). (4.12)

le u

4.3.1-b The proximal point algorithm

Now that we have an idea of the behavior of a proximal operator let us focus on the proximal
point algorithm:
xk+1 = prox(x*) (4.13)
p~f
with p a positive coefficient. Under suitable assumptions, this algorithm converges to a fixed
point of prox,-1, that is a point x* such that x* = prox,-1,(x"); recalling Eq. (4.11) it is
easy to see that this point minimizes f. Fig.[4.3]illustrates an iteration of the proximal point
algorithm with p = 1 by making appear the quadratic term in the argmin.
Interestingly, when f is differentiable, by differentiating the function inside the argmin

and using the fact that x**!

minimizes this function, we have
1
Vf(xk+1) +p(Xk+1 _ Xk) =0 xk+1 — xk _ _vf(xk-‘rl)
Jo)

so an iteration of the proximal point algorithm can be seen as a gradient descent but the
gradient is not taken at the current point but at the arrival point (which is prox -1 (x*)). That
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1 _ k2
L — x|

Figure 4.3: Illustration of a proximal iteration on a convex function.

Figure 4.4: Illustration of a proximal iteration with the implicit gradient on a convex function.

is why proximal algorithms are sometimes called implicit gradient methods, as represented by
Fig.[4.4

An useful property is that, contrary to the gradient algorithm, the iterates {x*},., gener-
ated by the proximal point algorithm are always on the same side of x*, as

1
(xk _ X*;xk+1 _ X*) — <Xk+1 _ x*;xk-‘rl _ x*) + (;vf(xk-‘rl); Xk+1 _ x*)

1
||Xk+1 _ X*”% + —(Vf(xk+1); Xk+1 _ X*> >0
P
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where (V£ (xk*1); x**1 — x*) > 0 as f is convex. By Cauchy-Schwartz inequality, this also

K — Xy < = %l

implies that ||x

In fact, except in some particular cases, computing a proximal operator is about as hard
as minimizing the function itself so the proximal point algorithm has not many direct ap-
plications but is often used combined to other optimization techniques. For example, let us

consider the problem

Problem 4.10.
min  f(x)+ g(x)
xeR

where i) f is a smooth convex function, suited for gradient methods; and ii) g is a convex function

adapted to proximal operator computation (not necessarily smooth).

A well-known algorithm solving this problem is called Forward-Backward splitting where
a forward (explicit) gradient descent is followed by a backward (implicit) gradient, that is to

say a proximal step.

Forward-Backward splitting
At each clock tick k:
» Forward step, on f:

Zk+1 — Xk _ ’)/ka(Xk)

» Backward step, on g:

xk+1 = prox(z

P g

k+1)

This algorithm which combines the proximal point algorithm with a gradient is useful in

many case, for instance:

o If one wants to minimize f on a constraint convex set C, the gradient algorithm is not
adapted as it can result in point outside the constraints set. Taking g = i, one can
remark that forward-backward sums up to a projected gradient as the backward step
becomes a projection onto C.

o If one wants to find a sparse vector minimize f, it is usual to minimize the sum of f
and a penalty function g(x) = ||x||; (when f is the Euclidian distance to some vector,
this technique is called least absolute shrinkage and selection operator 178).
The [;-norm penalty is non-smooth and thus unsuited to gradient methods (one can use
subgradients but the convergence is quite slow).

4.3.2 Constrained problems and Method of Lagrange multipliers

From now on, we will consider constrained problems, that is problems where in addition
to minimizing a function, the solution must verify a constraint. We will particularly work
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on linear equality constraints as they are most commonly used. To treat this kind of opti-
mization problems, it is common to transform the original constrained problem into a new
unconstrained problem called the dual problem.

4.3.2-a Dual problem

Let us consider a linearly constrained problem as

Problem 4.11.
min  f(x)

x€RN
subject to Mx =0

with M € RM*N the constraint matrix.

The Lagrangian for this problem writes
£(x;2) = f(x) + (A; Mx) (4.14)

and the dual function is
2(0) = il)}fz(x; 1) =—f*(-MTQ) (4.15)

where A is named the dual variable or Lagrange multiplier and f* denotes the convex conjugate
(sometimes named Fenchel-Legendre transformation) of f (See [[11, Chap 3.3] for details about
duality).

The dual problem of Problem [4.17] (which is called primal in opposition) is then

Problem 4.12.

sup 2(A)
AERM

where 9 is defined in Eq. (4.15).
If the respective solutions x* and A* of Problems [4.11] and [4.12] are such that
supZ(x*;A) = il)}f.ff(x; A9
A

we say that £ has a saddle point. Then, strong duality holds and one can recover a solution of
the primal problem from a solution of the dual one if it is unique:

x* = argmin £ (x; 1*).
X

Solving Problem [4.12] using a basic gradient ascent leads to the dual ascent method:
where {y*},-, is a positive sequence. We remark that this algorithm involves both the primal
and dual variables, it is thus a primal-dual algorithm. This algorithm converges under i)
strong duality (which imply strict convexity of f); and ii) convergence of the dual ascent (see
Section [4.2.1-d) (which imply finiteness of f).
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Dual ascent
At each clock tick k:

» Primal optimum computation:

x**1 = argmin £ (x; A%)
X

» Dual ascent:
L 0L (M)

A,k+1 — A,k
tr ER)

— Ak + }/k(MXk+1)

It is interesting to remark that the first step of the algorithm is separable if f is. Explicitly,
if we replace f (x) by Zivzl fi(x;), and define the submatrices {M;};—; _y as Mx = Z?’Zl M, x;,
the first step becomes

Vi, xf“ = argmin f;(x;) + (A5 M, x;)

Xi

which can be computed in parallel. However, the algorithm still needs a fusion center to

compute and spread the result of the second step.

4.3.2-b The Method of Multipliers

In order to bring robustness to the above dual ascent algorithm, it is common to consider the
augmented Lagrangian defined for Problem [4.17] as

2,(x2) 2 £ (x)+ (2 Mx) + 2 [Mx 3 (4.16)

where p > 0 is a penalty parameter. This augmented Lagrangian can be seen as the standard
Lagrangian for the following problem which is clearly equivalent to Problem [4.17]

Problem 4.13.
. I3 2
Jmin, fO)+ SIIMx|l;

subjectto Mx =0

with M € RM*N the constraint matrix.

From this augmented Lagrangian, one can derive an (augmented) dual function and solv-
ing our problem using a dual ascent on this function leads to the Method of Multipliers.

In this algorithm, one must note that the stepsize of the dual gradient ascent is the same
as the penalty parameter of the augmented Lagrangian (hence it does not change through
time). This method converges under far more general conditions that the simple dual ascent.
Unfortunately, even if f is separable, the primal step is not separable anymore in the general
case due the quadratic penalty and the matrix M.
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Method of Multipliers
At each clock tick k:

» Primal optimum computation:

x**1 = argmin £,(x; A5
X

» Dual ascent:
kk-i—l — 7Lk +p(Mxk+1)

4.3.3 Alternating Direction Method of Multipliers

Let us now derive the which combines the separability of the (simple) dual ascent
and the good convergence properties of the method of multipliers. We consider the following
split? problem and denote by %,(x,z;A) its augmented Lagrangian.

Problem 4.14.
min flx)+g(=)
RM

x€RN ze

subjectto Mx =z

with M € RM*N the constraint matrix.

The is a modified version of the method of multipliers where the primal variables

are updated in a sequential order® instead of being jointly optimized.

Alternating Direction Method of Multipliers
At each clock tick k:
» Alternating primal optimum computation:

xk 1l = argmingp(x,zk; A9
X

k+1

z'" = argmin ¥, (x**1 2; 20
Z

» Dual ascent:
Ak-i—l — A.k +p(MXk+l —Zk+1)

The iterates {x¥},., converge to a solution of Problem .14 and thus of Problem [&.1] if
the function f is closed, proper and convex and if the unaugmented Lagrangian has a saddle
point. A convergence proof can be found in [[67, Chap. 3.3], but it is quite tedious and not
very intuitive. In Section [4.4] we will recall monotone operators that will allow us to give a
short and comprehensive proof for the

2the term split comes from the fact that we split the optimization problem into two parts solved by two different

variables which must verify a linear constraint.
3this is sometimes called a Gauss-Seidel pass.
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Furthermore, by combining the linear and quadratic terms in the argmin step, one can
make the proximal operators of f and g appear.

Alternating Direction Method of Multipliers (with explicit argmin steps)
At each clock tick k:

» Alternating primal optimum computation:

x**1 = argmin {f(x) + L
x 2

1
Mx —zk 4+ =k
Jol

2 1
} = prox (zk - —Ak)
2]  plfom? P
2 1
} = prox (Mka + —Ak)
2 p'g P

Ak-{-l — kk +p(Mxk+1 _Zk+1)

21 = argmin {g(z) + g '
b4

1
MK+l — 2 4 2k
o

» Dual gradient ascent:

where M* = (M"M)~'M is the pseudo-inverse of M.

4.3.4 Distributed optimization using the ADMM

Let us now apply the ADMM] to our distributed optimization problem. We will first cast our
distributed optimization problem [4.T]into the splitting Problem [4.14] by choosing naively M =
I

4.3.4-a A naive algorithm for optimization

Let us rewrite Problem [4.2] as

Problem 4.15.
min F(x)+t 2
x€RN zeRN ( ) Sp(]l)( )
subjectto x =z
where F(x) = Zivzl fi(x;) and vgp(qy is the indicator function of the span of 1.

Now, applying the to this problem, we get the three steps are:

k+1 — k_ 1,k
X" = prox,-1p (z - ;A )

k+1 1k — k+1 19k
_1LSp(]1) (X + ;7(, ) = HSp(]l) (X + ;A )
Ak-ﬁ-l — )Lk —|—p(Xk+1 —Zk+1)

k+

1_
z " = prox,

where the identity for the second proximal operator comes from Eq. [4.12]
We can remark that i) the first step is separable as F is; and ii) x*™! +1/pAk = gk*+1 4
1/pAF*1 from the third step which implies that Hsp(mlk“ = 0 by injecting in the second

equation, and finally, we have from the third equation again that Hsp(ﬂ))kk =0 forall k > 0.
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Thus, defining {X*},. as the sequence of the averages of the {x*},., the iterations rewrite
more simply by replacing the auxiliary variable z with its value.

k+1 <k _ 1qk
X" = prox,-1p (x p)L )

A.k-H — A.k +p(xk+1 _ )Z.k+1)

Finally, we see that these two steps can be performed in parallel by each sensor if the
average the primal variables are computed and spread by a fusion center at each iteration.
This algorithm can be thus be seen as parallel algorithm using a fusion center. Thus, this is
unfortunately not a distributed algorithm.

Parallel optimization with the ADMM
At each clock tick k:
» Primal update:

» Average computation (by a fusion center):

1
htl — _]llTkaH

» Dual gradient ascent:
Vi, Ai_ﬁ—l — Af +p(xl{<+1 _ Xk-{—l)

This algorithm is very interesting even if it is not distributed as one can see that the step
that requires a fusion comes directly from the indicator function. Indeed, this function, along
with the constraint, enforces the sensors primal variables to be equal with no consideration for
the communication graphs and thus the information that the nodes can gather locally. That is
why a fusion center is needed when considering Problem In Section following
the idea of [68]], we will design an indicator function and a constraint matrix M that enforce

consensus while only requiring local data gathering.

4.3.4-b A distributed algorithm for optimization

To overcome the need for a global average computation (and thus for a fusion center), [|68]]
proposed to ensure consensus on overlapping subgraphs instead of the whole graph.

From the whole graph ¢ = (V, E), we construct L subgraphs {¥, = (V;, E;)},=; 1 so that
for any subgraph ¥, V, and E,; are a subset of V and E respectively, E, only links edges of
V;, and ¥, is connected. It is straightforward to see that ensuring the consensus on all the
subgraphs imply a consensus on the whole network if

* Ui V=V,

e (V, ULE() is strongly connected.
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Along with every subgraph ¥,, we define a matrix M, € RIVexN

with zeros everywhere
except at one entry per line which is 1, the i-th line non null entry corresponds to the number
of the node in i-th position in V, in V. Let M = Zﬁ:l |V;|, we define the matrix M that will
transcribe our partition of the graph as the RM*N matrix equal to the column stacking of the
submatrices {My}y—; ;.

It will be useful to introduce the following notations: let z be vector of size M, we split it
in blocks of size |V1],...,|V,| so that z = (2, ...,%.) € RVil x ... x RIVil. This way, if z = Mx,
we have for all £ = 1,...,L z, = M,x. For all i € V we also define o; the set of the indexes
of the subgraphs in which i is a node and for all £ € o;, we define z; |, as the coefficient of z|;
linked to the i-th node.

With these conditions and notations, we formulate the following problem.

Problem 4.16.
min . F(x)+G(2)

x€RN zeR:

subjectto Mx =z

A N A L . . . . .
where F(x) = )., fi(x;), G(z) = >, LSP(lle)(ZIl) with sp(t ) 1 the indicator function of
the span of 1y,

Applying the on this problem gives us the following iterations

§

Mx — 2k + %Ak

x**1 = argmin, {F(x) + %

1_ k+1 4 14k
= ProXasy tsp(ty, (e) (Mx + P}L )

Ak+1 — kk +p(Mxk+1 _zk+1)

zk+

where the second step is again a projection ITg to S = Sp(1ly,|) X ... X Sp(1}y,|) and combining
it with the last equation, we get that for all k > 0, IIgAX = 0. The second step is separable
and thus rewrites

1
— k+1 _ k+1 — § k+1
Vf—l,...,L Zlf _Z|€ ]1|VZ|_ |V| X; ]l|Vl|
thiey,

with 2(}“ the mean of the £-th block of z*1. This way, by separating the updates of x and A
we get a distributed algorithm.

This algorithm is distributed at each step: i) in the second step, the average is computed
only over the subgraphs whereas it was on the whole graph in the parallel version; ii) the first
and third steps are computer locally at each sensor with the knowledge of the averages of the
subgraphs in which it is present.

Still, these steps must be performed in the right order which imply that every sensor must
have completed its proximal step before computing the subgraph average of next iteration.
This can be costly in terms of convergence time as the proximal operators computational costs
can be very different from a sensor to another (e.g. if the cost functions rely on datasets of
very different sizes). Also, the subgraphs average must be computed at the same time which
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(Synchronous) Distributed optimization with the ADMM
At each clock tick k:
» Primal update:

1
Vi, xf*! = prox Z 2{2 - —Af’w
p7'fi \ teo, P

» Blockwise average computation :
1
7 §k+1 - ZX(H-]
V) |V£ | i

i€y,

» Dual gradient ascent:

Vi,l € oy, AP =2k

1 k41
[0 e Pl Z,)

can result in collisions in networks and thus an increase in the iteration time. This advocates
for an asynchronous scheme where a randomly chosen block would perform the three above
steps and then pass the token to another block. This will be the topic of a next section after
having introduced a useful formalism.

Remark 4.17. To overcome the synchronism related issues, it was proposed in [69] to update
the blocks one by one in a Gauss-Siedel pass instead of altogether. This partially overcome this

problem but at the expense of the introduction of a global coordinator.

4.4 Review on Monotone operators

In this section, we will see that the monotone operators are well suited for describing convex
optimization problems and encompasses the ADMM]in a simple way.
The results of this section are based on [[79,180] and [81]].

4.4.1 Monotone operators

An operator T on a Euclidian space* RY is a set-valued mapping:

T: RV - 2R
x — T(x)cRN.

It can equivalently identified to a subset of RN x RN and we write (x,y) € T when
y € T(x). We define the domain of T as domT = {x € RY : T(x) # 0} and we will say that
T is single-valued if for all x € RY, | T(x)| < 1 (the notation | - | represents here the cardinality

“this definition and most properties are actually true for any Hilbert space however working in RN clarifies the
speech.



4.4. Review on Monotone operators 95

of a set). The identity operator is | defined as {(x,x) : x € RN} . We give basic properties for
some operators T and U:

VpeR, pT={(x,py): (x,y) €T}

T+U={0,y+2):(x,y)eT,(x,2) e U};

ToU={(x,2):(x,y)eT,(y,2z) e U}

o T ' ={(y,x):(x,y) €T}

An operator T is said to be monotone if

V(X,J/),(X/,y/)e—r, <x—xl§}’_}’/> >0

and such an operator is maximal if it is not strictly contained in any other monotone operator
as a subset of R¥ x RN. We now define two different contraction properties:
e T is said to be non-expansive (NE) if

Vo, y), (L yNeT, llx—x =y =yl
e T is said to be firmly non-expansive (FNE) if

V(x,¥), (X, ¥y eT, (x—x";y—y) =y —y'II?

where the norm || - || is the Euclidian norm. Obviously, a firmly non-expansive operator is
non-expansive by Cauchy-Schwartz inequality. Furthermore, both properties imply that the
operator is single-valued. Figure [4.5] (which is a reproduction of [I80] Fig. 1]) illustrates the

above properties by representing the behavior of the vector y — y’ with respect to x — x’.

monotone

Figure 4.5: Representation of the monotonicity, non-expansiveness and firm non-

expansiveness of an operator.

We add the following properties about firmly non-expansive operators:
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e T is FNE if and only if | — T is FNE;
e T is FNE if and only if 2T — | is NE;
e T is FNE if and only if T =1/2(C+ 1) with C NE.

We now define the zeros of an operator as
zerT ={x:(x,0) e T} =T740)
which will be fundamental in the following.

Remark 4.18. Let f : RN — R be a convex function, then its (sub)differential 0 f is a monotone
operator and is maximal if f is finite everywhere. Furthermore, finding a zero of 0 f is equivalent
to minimizing f.

4.4.2 The resolvent and the proximal point algorithm
4.4.2-a Definition and properties

We will now see how to find a zero of a monotone operator T. Let us define the resolvent of
operator T as

Jr=0+T)7t
and let us give a fundamental property from [80, [79].

Lemma 4.19. Let p > 0. An operator T is monotone if and only if J ;1 is firmly non-expansive.

Furthermore, T is maximal monotone if and only if J,7 is firmly non-expansive and dom J,t =
RN,

Proof. T is monotone if and only if

V(X;J’):(x/,}’/)e-r, (x_xl;y_.y/>20
e Y0,y (L y)eT, (x—x;py—py') 20
g V(X:J’),(X/,y/)e-r: (x_X/QX_x/"'P)’_py/) = ”X—X/”Z

& V(x,x), (Jpr() = Jpr(x);x —x") = 11,7 () = Jr (NI

which proves the first part of the theorem. The second part is due to Minty’s theorem [[82]]
which states that T is maximal monotone if and only if im(I 4+ pT) = RN, which is equivalent
to dom(l+pT)™ ! =RN. O

Another important corollary of the previous result is the so-called representation lemma.

Lemma 4.20 (Representation Lemma). Let p > 0 and let T be a monotone operator of RY.
Then, every element { of RN can be written in at most one way as x + py where (x,y) € T.
Furthermore, if T is maximal then every element { of RN can be written in exactly one way as
x + py where (x,y) € T.
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Proof. If T is monotone, its resolvent is firmly non-expansive and thus single valued so if
¢ € dom J T, then there is a unique x such that J,7({) =x < { =x + py with (x,y) € T;
if { ¢ dom J ;7 there is no way to write { in such a way. If T is also maximal, its resolvent has

full-domain and thus the above reasoning is true for all ¢. O
Additionally, for a monotone operator T let us remark that the fixed points of J
fix J7=1{x:(x,x)el7}

are such that x = (14 T)~!(x) which is equivalent to x + T(x) = x = T(x) = 0. So, the fixed
points of J are the zeros of T, we are thus interested in finding fixed points of J.

Remark 4.21. From the resolvent Jt of an operator T, one can define the Cayley transform of
T as
Cr=2)-1L

From the properties of the resolvent, one can see that the Cayley transform is non-expansive
whenever the resolvent is firmly non-expansive. Furthermore, it is easy to check that the fixed

points of the resolvent and the Cayley transform are the same.

4.4.2-b TIterating the resolvent

Finding a fixed point of a function (i.e. a single-valued operator) f by fixed point-iterations
K = £ (x9) (4.17)

is a well-known problem. The most fundamental result is Banach fixed point theorem [[83]]
which states that if f is a contraction, that is if there is 0 < a < 1 such that for all x, x’,
allx = x’|| > |If (x) = f(x")|l, then f has a unique fixed point x* and the sequence {x*}.-,
defined by Eq. converges to x*.

Let us now focus on iterating the resolvent of a maximally monotone operator T

g =1,1(0H (4.18)

with p > 0. Unfortunately, this resolvent is not a contraction but Lemma tells us that
it is firmly non-expansive. The two properties are quite different (see Fig.[4.6]) as firm non-
expansiveness only imply that the operator is 1-Lipschitz (non-expansive) but gives additional
monotonicity information. However, one can remark that only one point attain the equality
point in the Lipschitz inequality and thus prevents the operator to be a contraction. This
point is such that { — ¢’ = J,7({) — J,7({"), taking ¢’ = {* € fix T implies that { — {* =
o)== =J,7(f) = { €fix T. Thus, the only points that do not verify a contraction
inequality are the ones we are interested in: the fixed points of T.

The next result will now give a fixed point theorem for the iterations of firmly non-
expansive operators due to Rockafellar [[79]).
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Figure 4.6: Representation of the non-expansiveness, contraction and firm non-expansiveness
of an operator.

Theorem 4.22. Let p > 0. If T is a maximally monotone operator such that zer T # 0, then
the sequence {{*},~, generated by the iteration

¢ = 1,109
started at any point converges to a point of fix J ;7.
Proof. Aszer T #0, fix J, # 0 so let us take {* € fix J,1. Then, for all k > 0, one has
e e R R R

= |Hpr @ =P+ |tk = +2 (37 - R k- )

= Her@ =Pt =P -2 o) @ - 0)
Now, let us remember that as T is a maximally monotone, J,7 is firmly non-expansive from
Lemma[4.19 and so is | — J, 1. Furthermore, as J,1({*) = ¢*, (I = J,7)(¢*) = 0 and so,

L e VR Y e

—2((1=J,1) ()= (1= 1) @)k =)

@) =+l = & =2 (1= dpr) @ = (1= Jpr) @)
ol (ARl RO R

which implies that ||C k_¢ *” converges as it is a non-increasing positive sequence. Also, by

2

IA

iterating we get

o<|-¢ | —kZ 97 (%) = 24"
=0
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e 2 .
which implies that ||J oT(C ¢ k” converges to zero. We can thus conclude that i) {¢%},;-,
is a bounded sequence so it has a least one accumulation point; and ii) any accumulation
point ¢! is such that J oT(C H={liel efix J oT- Taking {* = ¢ ! an accumulation point, then

Hgk-ﬁ-l _ g*

2 .
goes to zero, so the sequence {{*},., converges to a point {* € fix J pT- O

4.4.2-c Link to the proximal point algorithm of Section 4.3.1]

Now, let us make the connection between the iterations of the resolvent and of the prox;
operator defined in

For this, we need to put a fundamental assumption on f that we will use extensively in
the following. We will say that f € T',(RN) if it is a convex, proper and lower semi-continuous
(see [81) Def. 1.21]) RN — R function. This property will enable to state the following result.

Lemma 4.23. Let f € To(RY) and p > 0. Then,

Joaf = prox.
of
Proof. For all x we have,
y=Jpar(x)
& y+pif(y)=x

0

1
8f(y)+;(y—X)=0

0

1
y = argmin {f(u) + E [|lu— x||2}

y = prox(x).
of

0

O

Hence, the resolvent iterations of the proximal point algorithm generalizes the proximal

operator iterations.

4.4.3 From the proximal point algorithm to the ADMM

The resolvent iterations generalize the proximal operator iterations, thus we should be able
to retrieve the above mentioned proximal algorithms and ultimately the ADMM

4.4.3-a The Method of Multipliers as a proximal point algorithm

Let f € T'y(RY). We will now consider Problem [4.11] and solve it by solving Problem [4.13]
Maximizing 2 is the same as minimizing —% or finding A such that d2(1) = —M3 f*(-M'1) =
0 (see the definition of 2 in Eq. (4.15)). Using the monotone operators, this sums up to solv-
ing the following problem.
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Problem 4.24.

Find { suchthat T({)=0

where T=—09 = —M3 f* o (—M") is a monotone operator.

We will now see how the proximal point algorithm translates practically. First let us rewrite
JoT in order to make explicitly appear the subdifferential of f.

T = —Maf*o(-MD)
= {(u,a):(u,a)ERMXIRM,(u,a)ET}
= J{(u,—Mx) ‘(u,x) e RM X]RN,(—MTu,x)eE/‘f*}
= {(u, —Mx): (u,x) € RM x RN, (x,-M"u) € 8f}
(I+pT) = {wu—pMx):(u,x) eRM xRN, (x,~M"u) € 3f }
Jor = {(u —pMx,u): (u,x) € RM xRV, (x,-M™u) € ﬁf} (4.19)

where we used the fact that the output of T is necessarily proportional to —M; and the fact
that 9f*=(8f) ! as f € To(RN) (see [81, Cor. 16.24] for details).

The following approach is fundamental as it enable us to derive algorithms from iterations
of resolvent. It consists in three main steps: i) the representation step; ii) the mapping step;
and iii) the re-representation step. Let us consider iteration k:

€k+1 = JpT(Ck)

Representation step: we see from above that the input of J, 1 writes as u — pMx with
(x,—M"u) € 3 f. The first step is thus to state that the input, {¥, writes uniquely as u* — pMx*
from the representation lemma (Lemma [4.20):

¢k =uk — pMxck, (4.20)

Mapping step: from the definition of J,t and the previous definition of u* and x* we see

that its output is:

L = yk, (4.21)

Re-representation step: as in the representation step, we need to find the values of u**! and
x*H with (x**+1, —MTu**1) € £, such that {¥*! writes uniquely as:
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Putting together the three equations above, we get that
uk-i-l _ prk-i-l — uk with (xk-i-l’ —MTuk+1) c af
= u+ prkJrl =u* with (!, -MTu ) edr

uk
0€df(x*h) + pMT(MxFH + —)
Jo)

J

12
X u
Mx + —

Jol

= xM!=argmin{ f(x)+ % = argmin %, (x; u®)
X X

and the first line also tells us that
Ut =k +prk+1_

So, we get the following couple of iterations,

My + &
P

xk*1 = argmin, {f(x) +5

Uk = ik 4 oMkt

2
} = argmin, £, (x; uh) (4.23)

where the first corresponds to a primal variable as it only depends on the primal function
minimization and the second corresponds to a dual variable. The obtained algorithm is exactly
the Method of multipliers (see Section [4.3.2-D).

Lemma 4.25. Let f € To(RY) and p > 0. The proximal point algorithm using the resolvent
JoT of operator T £ —MIf*o(—MP) (so that T = —39) leads to the Method of Multipliers.

Theorem 4.26. Let f € T'y(RN) such that 0 € core(Mdom f) and p > 0. Then, T = -39 =
—MO f* o (—M?) is maximal monotone with zer T # 0 and the proximal point algorithm

g = ()

converges to a point of {* € zer T which is dual optimal for Problem Furthermore, the
intermediate variables {x*};-, = {1/pM#(Jp-|— — (")} converge to a point x* which is
primal optimal for Problem

Proof. Let f € To(RN), then f* € I'y(RY) by [81} Cor. 13.33] and 2 f* is maximally monotone
from [81], Th. 21.2]. This clearly imply that T which is a linear map of a maximally monotone
operator is also maximally monotone. If 0 € core(Mdom f) then strong duality holds from
Slater condition (see [[81], Prop. 26.18] for example) and zer T # @ (see [81, Def. 6.9] for
the definition of core).

Then, Theorem [#.22 states that (**! — {* € zerT as k — oo and {* is obviously
dual optimal for Problem [4.11] The representation lemma imply that the intermediate se-
quences {x*};-, and {u¥};., both converge and recalling Eq. (&.19), we have the accumu-
lation point is such that {* = u* and Mx* = 0. Finally, looking at Eq. (4:23)), we see that
x* = argmin, %, (x;u") and is thus primal optimal thanks to strong duality. O



102 CHAPTER 4. DISTRIBUTED OPTIMIZATION

Putting together Theorem and Lemma proves the convergence of the Method
of Multipliers. The design of the Method of Multipliers in Section may seem artificial
or tinkered from the Dual Ascent while it is simply a proximal point algorithm applied to the
subdifferential of the dual function. In particular, the equality between the penalty parameter

of the augmented Lagrangian and the stepsize of the dual ascent is in fact essential.

4.4.3-b Douglas-Rachford splitting and Lions-Mercier operator

We have seen that the Method of Multipliers efficiently solves a minimization problem with
a linear equality contraint (Problem [4.11)). Applying this method for solving a minimization
problem engaging two functions and a linear equality constraint (Problem [4.14)) lead to the

following iterations:

(x 1,281 = argmin,, . {f () +g@)+75

uktl =k +p (Mxk+1 _ Zk+1)

2
Mx —z + %H } = argmin, ) £, (X, 2; uk)

but unfortunately, the first step is in general quite hard to compute. Hence, most optimization
algorithms solve this problem by splitting the argmin between the different functions [|84].
In terms of operators, the opposite of the gradient of the dual function writes as

—09=—-Maf*o(-M")+ ag* (4.24)
N =7
AT N

and, whereas J,(t4y) is hard to compute (see the above paragraph), J,t and J, are indi-
vidually easier to compute. A splitting proximal algorithm thus employs only the resolvents
Jo1and J,y of T and U and not J ;1.

Many splitting methods exist in the literature (e.g. Peaceman-Rachford) but Douglas-
Rachford splitting is the most celebrated one [85]]. From this splitting technique, Lions and
Mercier [86] derived an operator S, 1 so that JSp,T,U corresponds to Douglas-Rachford split-
ting of J,(t+u). This operator writes

Sptu={(u+pb,v-u):(wa)eT,(v,b)eU,u+pa=v—pb} (4.25)
and thus one has
s,y =Jpro(2dpu—1)+ (1= Jp7) (4.26)
or, equivalently
1
Js, 70 =75 (14 Co1oCpu) (4.27)
= CSp,T,U =C,o10C,u (4.28)

where C,1, C,y, and CSp,T,U are the Cayley transforms of T, U, and S, 1 respectively (see
Remark [4.27).

Let us now give a fundamental result by Lions and Mercier [[86] about the monotonicity
of this operator.
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Theorem 4.27. Let p > 0. If T and U are monotone, then S, 1 is monotone; furthermore,
JSp,T,U is firmly non-expansive. If T and U are maximal monotone, then S, 1 is maximal
monotone; furthermore, Jsp,T,U is firmly non-expansive and has full domain.

Proof. Let (u,a),(w’,a’) € T, (v,b),(v/,b’) € U such that u + pa =v —pb and v’ + pa’ =
v/ — pb’. Then,

(W' +pb) = (u+pb); (v —u) = (v —u))
= p<(u’+pb’)—(u+pb);%(v’—u’)—b’—%(v—u)+b>
+p (W' +pb")—(u+pb); b’ —b)
= p{U-wad —a)+p*(b—b;a’ —a)
+p ((v' = pa’) = (v —pa); b’ — b)
= p( -uad —a)+p*(b'—b;a’ —a)
+p (v =v;b' —b) —p?(a’ —a; b’ — b)
= p{W—-wd-a)y+p(v—v;b'—D)

and so, as long as p > 0 and both T and U are monotone, S, 1 is monotone. The firm
non-expansiveness of JSp,T,U comes directly from Lemma Finally, using Minty’s theorem
[82] and considering Eq. (4.26), one can see that if T and U are maximal monotone, J oT and
Jou have full domain and so does JSp,T,U which concludes the proof. O

This result along with Theorem [4.22] tells us that under standard monotonicity assump-
tions on T and U, the proximal point algorithm with JSpTU goes to a fixed point of this
resolvent if any. It is thus interesting to characterize the fixed points of JSpTU i.e. the zeros

of Sp,T,U'

Theorem 4.28. Let p > 0. If T and U are monotone then { € ﬁstp,T’U = x ezer(T+U)
where x = J,y({).

Proof. First, from Eq. (4.27), we get that fistpTU = fixC,7 0 C,y. Then, we get from [81,
Prop. 25.1(ii)] that J,y(fixC,1 o C,y) = zer(T + U) which (along with the representation
lemma) concludes the proof. O

Remark 4.29. From the two above theorems, we see that if p > 0 and both T and U are
maximal monotone with zer(T + U) # 0, then JSp,T,U is firmly non expansive and thus the
induced proximal point algorithm converges to {* such that J,y(¢*) € zer(T+U). The resolvent
of the Lions-Mercier operator has thus the same properties as the resolvent of T + U while only
depending on the individual resolvents J ,1 and J,y.
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4.4.3-c The ADMM as a proximal point algorithm

Let f,g € To(R"Y). We now solve Problem [4.14] using Douglas-Rachford splitting. For this, we

consider the two following operators
T=-Mof*(—M") andU=2ag* (4.29)

so that T+U = —92 and apply the proximal point algorithm with the resolvent of Lions-Mercier
operator. We now write explicitly this resolvent as in Section [4.4.3-al

{(u+pb,v—u) :(u,a)e—Maf*(—MT),(v,b)E3g*,u+pa=v—pb}
{(u+pb,v—u) :(—MTu,—Mx)E3f*,(v,b)€8g*,u—pr=v—pb}
{(u—l—pb,v—u) :(—Mx,—MTu)E8f,(b,v)€8g,u—pr=v—pb}
I+S,Tu = {(u—l—pb,v—l—pb) :(—Mx,—MTu)e8f,(b,v)€8g,u—pr=v—pb}
Js {(v+pb,u+pb) :(—Mx,—MTu)E3f,(b,v)€3g,u—pr=v—pb}

Sp.TU

p,T,U

We now use the same approach as in Section to derive explicit iterations from the
proximal point algorithm i.e. i) the representation step; ii) the mapping step; and iii) the

re-representation step. Let us consider iteration k:

G =g ()

Representation step: we see from above that the input of JSpTU writes as v + pb with
(v,b) € U= 3dg*. The first step is thus to state that the input, {¥, writes uniquely as v + p b*
from the representation lemma (Lemma [4.20):

¢k =vk 4+ pbk. (4.30)

Mapping step: from the definition of Jsp - We derive two equalities. First, the equality inside
the operator along with the representation lemma and the previous definition of v* and b*
implies that vk — p b* writes uniquely® as u — pMx with (1, —Mx) € T :

uF 1l — pMx kT = vk — ppk, (4.31)

Secondly, we get that the output of the resolvent is:

gk = k1 4 ok, (4.32)

Re-representation step: as in the representation step and in order to find the values of v<*!
and b*! with (V1 bk*1) € U = 9 g%, so that {*¥*! writes uniquely as:

Ck-‘r]. — Vk+1 + pbk-‘r].. (4.33)

>as they use some properties of the operator, we see them as variables of time k + 1.
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Now, writing Eq. (4.31) of the mapping step, we get that

uk+1 _ prk-i-l — Vk _ pbk with (Xk+1, —MTuk+1) c 8f
k
v
= 0edf(x)+pm’ (Mx"+1 — bk + —)
P

k 2

.
Mx — b+ —
Jol

= xM!=argmin{ f(x)+ % '
X

= argmin %, (x, bk, ub).
X

Now combining Egs. (4.31)), (4.32) and (4.33), we have

vk+1 +pbk+1 — uk+1 +pbk — Vk +prk+1 with (bk+1,vk+1) e ag

= Vk +prk+1 _pbk-‘rl — Vk+1 e 8g(bk+1)

k
= 0e ag(bk+1)_p (Mxk+1 _ bk+1 + V_)
o

k 2

v
= b =argmin{ g(b)+ g Mx ! —p+ — = argminﬁfp(xkﬂ, b;ub)
b Y b

and the first line also tells us that
yhtl — )k +p (Mxkﬂ _ bk+1) ]

So, we get the following iterations,

2
XM = argmin, { f (x) + % Mx — bk + %k } = argmin, <, (x, bk; uk)
2
bk = argmin, { g(b) + % Mxk1 — b+ % } = argmin, gp(karl’ b:uk) (4.34)

vl = pk 4 o (Mxk-i-l _ bk+1)

and as before, x and b are primal variables and v is a dual variable. The obtained algorithm

is now exactly the Alternating Direction Method of Multipliers (see Section[4.3.3).

Lemma 4.30. Let f,g € T'o(RN) and p > 0. The proximal point algorithm using the re-
solvent JSp,T,U of the Lions-Mercier operator associated with the coefficient p and operators
T2 -MIf*(—M") and U = dg* (so that T+ U = —39) leads to the Alternating Direction
Method of Multipliers.

Theorem 4.31. Let f,g € I'o(RN) such that 0 € core(domg —Mdomf) and p > 0. Then,
T =-Mdf*o(—M") and U = 9g* are maximal monotone with zer(T + U) # 0 and the

proximal point algorithm
g =g ()
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where S, .y is the Lions-Mercier operator (see Eq. (4.25)) converges to a point {* such that
v' = J,u(¢") € zer(T + U) is dual optimal for Problem Furthermore, the intermediate
variables {x*}.o = {1/pM#(Jp-|— — D(&F)} =0 converge to a point x* which is primal optimal
for Problem

Proof. Let f,g € T'o(RN), then f* g* € I'o(RN) by [81, Cor. 13.33] and df* , dg* are
maximally monotone from [81] Th. 21.2]. This clearly implies that T and U are maximal
monotone. Let us consider Problem [4.14] (which is equivalent to the problem of [|81], Def.
15.19]); if 0 € core(dom g — Mdom f ), strong duality holds from [81, Prop. 15.22] and
zer(T 4+ U) #0.

Then, Theorem .22 states that {**!1 — ¢* € zer Sp,1,u = as k — oo and Theorem [4.28]
tells us that v* = J,y({*) € zer(T + U) is dual optimal. Using the fact that v* is a zero of
T+ U, we get that T+ U > (v, —Mx* + b*) = (v*,0) so Mx* = b* which implies that the
found zero is feasible. Finally, looking at Eq. (4.34), we see that x* = argmin, £, (x, b*;u")
and is thus primal optimal thanks to strong duality. O

Putting together Theorem [4.3T]and Lemma [4.30] prove the convergence of the Alternating
Direction Method of Multipliers. The formalism of monotone operators enabled us to derive
easily proximal algorithms and give precise and flexible proofs for their convergence. In the
next section, we will build a asynchronous optimization algorithm based on the from
a randomized proximal point algorithm.

4.5 Asynchronous Distributed Optimization using random ADMM

In this section we develop our main results about the design and convergence of an asyn-
chronous distributed optimization algorithm based on the[ADMM]| For this purpose, we prove
a general result about the convergence of a random version of the proximal point algorithm.

4.5.1 Motivation

Recalling Section an efficient technique to perform distributed optimization on a net-
work is to partition the underlying graph into subgraphs and then solve Problem which
is equivalent to Problem [4.2] under some conditions about the subgraphs. We saw that using
standard to solve this problem leads to a distributed algorithm where the computa-
tions are done locally and the communications only involve neighbors. However, the three
steps must be performed in the right order, one after another which is unfortunate as the prox-
imal step which is performed individually at each node may take very different computation
times between the sensors; for example, in the case of learning with heterogeneous datasets.
Hence, it would be pertinent to update only one subgraph at a time randomly.

Looking at the distributed algorithm, it is clear that the M-sized variables (namely z and A)
are updated block by block, where a block represent a subgraph. Thus, recalling the previous
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section, updating only one block seems similar to operating a Lions-Mercier resolvent where
only the components of the block are kept while the others stay the same.

We will first formalize the notion of block operators and prove a new convergence result
about a block-random proximal point algorithm. Then, we will derive a new asynchronous
optimization algorithm based on block-random iterations of the resolvent of Lions-Mercier
operator.

4.5.2 Subgraphs and block-variables

As in Section we divide the underlying graph ¢ = (V,E) into L subgraphs {¥, =

,,,,,

size |V;| ) by {}, so that

4%
(= : where V¢, ), = (Ci,lli)iev[ .
CiL

The matrix linking the nodes of the graph V to the subgraphs nodes V; x ... X V; is denoted
by M € RM*N As with the variables, we divide this matrix into L blocks so that

M,
M= : where V¢, M, € RN,
M,

where each M, has only one non-null coefficient per line which is 1 so that if V; = (iy, ..., {jy,|) €
vivel, (My);;, = 1 and so on... For any node i € V, we define the set of blocks (i.e.subgraphs)
to which it belongs by o; = {¢ € {1,...,,L} : i € V,;}. With this notation, if z = Mx, we have
that for alli € V and all £ € o; that z; |, = x;.

In terms of problem reformulation, we replace the consensus indicator tgpy,)(2) of Prob-
lem @.15] with G(z) = 25:1 Lsp(ﬂw)(zw) where LSp(Ly,)) is the indicator function of the span of
1y, to obtain Problem The two problems are equivalent under the following assump-
tion.

Assumption 4.32. In order to have G(z) = 25:1 Lsp(ﬂ‘vll)(zw) = tgp(1,,)(2), we assume that
* U Vi=V;
o (V, ULEZ) is strongly connected.

This way, we obtained a problem fully separable between the blocks of the variables.
Now, let us see how the proximal point algorithm behaves when it is updated block per block
randomly.
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4.5.3 Random Gauss-Seidel iterations on the proximal point algorithm

From a single valued operator T of RM we define for all £ = 1,.., L the block-mapping Tie
RM — RV 5o that for all € RM,

T
T = :
T

and additionally we define for all £ = 1, .., L the block-operator T!* : RM — RM verifying

(Cu\

T =1 T

Lo

Let T be a firmly non-expansive operator, and considering the proximal point algorithm

iterations

§k+1 — T(Ck)

its block Gauss-Seidel version then writes
§k+1 — TIL 0.--0 Tll(gk)

As mentioned before, we are interested in a randomized version of this block Gauss-Seidel
pass; namely, let us define the block-selection process {£¥},.o and let us put the following

assumption.

Assumption 4.33. The process {E¥},. is independent and identically distributed on {1,...,L}
with P[E' ={]=p, >0 forall £ =1,..,L.

We now state our main contribution.

Theorem 4.34. Let Assumptions and hold. Let T be a firmly non-expansive operator
with full domain such that fix T # 0. Then, for any initial value, the sequence {{*};~q produced

by iterations
€k+1

JH =T (9

converges almost surely to a point of fix T.

Proof. Let us define the diagonal matrix P € RM*M such that the entries of the £-th block are

pe_l/z. We denote by ||-||p the vector norm weighted by matrix P so that ||C||12, = Zizl p[1||§’|g||2.
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Fix {* € fix T. Conditionally to the sigma-field of the past selections Z, = o(£1,...,£5), we
get

7| = St
(

L 1 . 2 L 1
= Yoo | o |[T@r-gif + X ek -4
\ 4774

e[l -0

2

L —_—

o ORI A |
(=1 Ft

= &=+ TEH - -k -

Now, using the fact that for a firmly non-expansive operator (see the proof of Theo-

rem [4.22),

[T - = ok - | = = Ty - |

we get a fundamental inequality

B e -

7] < le -l e - ¢4 (435)

which shows that {||¢% — C*||12>}k>o is a non-negative super-martingale with respect to the
filtration {Z }«~,. Hence, it converges to a non-negative random variable X, with probability
one.

Given a countable dense subset F of fix T, we have that ||{¥ — Cllp — X for all § € F with
probability one. Let {* € fix T and let ¢ > 0, as F is dense one can choose ¢ € FF such that
I — ¢*|lp < €. Putting together these two assertion, we get that with probability one,

12K = Ellp < 11EE = llp +11Z = L llp < Xg +2¢

for k large enough. Similarly, one has

155 = ¢ llp 2 11E* = Gllp = 11§ = ¢l = Xy — 2¢

which implies that
C1: There is a probability one set onto which ||Z¥ — £*||p converges for all {* € fix T.
Taking the expectation onto Eq. (4.35) and iterating over k, we get

2
. (4.36)

o0
2E[Ten-af] =fe-¢
k=0
which implies by Markov’s inequality and Borel-Cantelli lemma that
C2: “T({") — Ck”Z — 0 almost surely.
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We now consider an elementary event in the probability one set where C1 and C2 hold.
On this event, C1 implies that {£X},., is bounded and thus has accumulation points from
Bolzano-Weierstrass theorem; C2 imply that the accumulation points are in fix T. Assume
that {7 € fixT is an accumulation point, then || k_¢ ~llp converges and lim || k_ Cillp =
liminf||Ck — ¢ ~|lp = 0 which shows that &” is unique. O

We just proved that the proximal point algorithm can be performed randomly per block
without loss in the convergence properties.

4.5.4 Asynchronous Distributed Optimization with the ADMM

Let f,g € I'o(RN). Recalling the computations of Section #.4.3] the block random iterations
of the proximal point algorithm with the resolvent of Lions-Mercier operator writes

gk _ ke Q)

Sp,T,U

which is the same as

gk-i-l :J|§k+1 (gk)

spJ&B
Cfg}rl = CE{L and V¢ # £k {f‘eﬂ = g"kg

so at time k the update of the £*1-th block of { is the same as in Section 4.4.3] whereas the
others keep their previous value.

Following the proof of Theorem [4.31] except for the convergence of the proximal point
algorithm which is now provided by Theorem [4.34] we get the following theorem.

Theorem 4.35. Let f,g € T'o(RN) such that 0 € core(domg — Mdomf) and p > 0. Let
Assumptions and hold. Then, T = —M3df* o (=MT) and U = dg* are maximal
monotone with zer(T + U) # 0 and the randomized Gauss-Seidel proximal point algorithm

|€k+1

Ck—H =]

k
=5 @
where S, 1 is the Lions-Mercier operator (see Eq. (4.25)) converges almost surely to a point
¢* such that v* = J,y(¢") € zer(T + U) is dual optimal for Problem Furthermore, the
intermediate variables {x*};.o = {1/pM#(Jp-|— — (")} a0 converge almost surely to a point

x* which is primal optimal for Problem

Derivation of our asynchronous optimization algorithm based on the ADMM: using
the representation steps of Eqs. (@30) and (#33), one can see that only the £*1-th block of
variables v and b need to be updated. Then, looking at Eq. (4.34) we see that these update
need implicitly the update of the variable x; more precisely, only the update of the £<*1-
th block of Mx is needed, which corresponds to the {Xi}ievgkﬂ- The iterations of this new
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algorithm thus write

k 2
v

M‘kaX = argminx {f|£’<+1 (X) + % MngX — b|k§k+1 |5;+1

2
i 3
\ b(‘gﬁl = argmin,, {glgm(b) +§ Mgkﬂx _py e |§k+1 } (4.37)
k — ,k k
v|€-1’<_-31 - v|£k+1 + P (M€k+1x —-b gljl)

where fizx1 and gjzen are the functions f and g restricted in their operands to the gkt th
block. The entries that are not linked to the current block stay the same. Finally, com-
bining these randomized iterations of the with the separable functions defined in
Problem 4.16| we are able to derive a fully-distributed optimization algorithm based on the

Asynchronous distributed optimization with the ADMM
At each clock tick k, let £¥*1 be the index of the activating subgraph:

» Primal update in the block:

2
1
Vi€ Vg, xK1 = argmin{ f; X —— gk — —AkH
Ig A L 2 O M p 3 |Z
x L\ leo;
~ prox Z e _M,Til
o 'p1fi \ 9 ieg,
» Block average computation :
Fktl 1 Z xck+1
gkt [Vjgkn | i
13 16V5k+1
» Dual ascent in the subgraph:
k+1  _ 4k k+1 _ zk+1
A'l |k =A i,| k1 -I-p(X _ngﬂ)
» The other blocks do not change their values:
. k+1 k k+1 k+1 k+1 _ 4k
Vi Veen, X7 =X Ve # & Ie,)t l

Lemma 4.36. Let f € To(RN) be separable, g € To(RM) be defined as in Problem and
p > 0. The randomized Gauss-Seidel proximal point algorithm of Theorem using the
resolvent JSp,T,U of the Lions-Mercier operator associated with the coefficient p and operators
T2 -MIf*(—M") and U= 9g* (so that T +U = —39) leads to the Asynchronous distributed
optimization with the Alternating Direction Method of Multipliers.
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Hence, our proposed algorithm converges using Theorem [4.35]

We can see that this algorithm is well suited for a fully-distributed implementation as at
each time only one subgraph needs to compute and exchange information while the other stay
completely idle. Each sensor i has to know: i) its own function f;, the common parameter p
and how to perform a proximal operator; and ii) the variables z, and A, for all £ € o; and
at each time (this is not limiting as, at each iteration, a new version of these variables are
computed, it must take part to the computation). Then, the nodes only exchange their values

locally in the subgraphs without any fusion center.

Remark 4.37. Taking only one subgraph equal to the original graph gives the original Distributed
optimization with the Furthermore, if we choose as subgraphs each edges of the original
graph with the two ends ( 9, = ((i,j),{i,j}), e = {i, j} € E ), then the block average computation
is similar to the Random Gossip algorithm (see Section [3.2.2-h)).

4.6 Numerical Illustrations

Let us consider the 5-agents network depicted in Fig.[4.7 and divide it into subgraphs so that
each subgraph contains one edge of the original graph and thus two nodes; this gives us 5
subgraphs as seen in Fig. All simulations presented in this section will use these graph
and subdivisions.

Figure 4.7: Considered underlying network.

We choose to illustrate the performance of the algorithms mentioned in this chapter using
quadratic functions as represented in Fig. This comes from two main reasons: i) for a fair
use of the gradient, the functions have to be smooth; and ii) quadratic (norms) functions are
often used in estimation (without a penalty term) and thus can be met in practice.

In Fig. [4.10] we plot the Squared Error versus the number of iterations for a realiza-
tion of various distributed optimization algorithm. We compared two first-order algorithms
and two [ADMMLlbased ones; for each couple, we took a synchronous and an asynchronous
algorithm. Namely, we plot i) the Synchronous Distributed gradient descent with y* = 1/k
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Figure 4.8: Subgraphs obtained by pairwise division.
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Figure 4.9: Local and global cost functions.

(see Section @.2.2)); ii) the Asynchronous Distributed gradient descent with v = 1/k (see Sec-
tion [4.2.3); iii) the Synchronous Distributed optimization with the ADMM with p = 1 (see
Section [4.3.4-D)); and iv) the proposed Asynchronous Distributed optimization with the ADMM
with p = 1 (see Section [4.5.4). As expected, the gradient-based algorithms both converge
rather slowly compared to the ADMMlbased ones whose convergence is clearly exponential.
It is very interesting to remark that the asynchronous gradient fluctuates quite a lot which
prevents to use a stopping criterion based on the iterations convergence (for instance, in prac-

k1 _ xk|| < ¢ for some £ > 0

tical systems it is often interesting to stop the algorithm when ||x
in order not to waste computational time to acquire an unnecessary precision). Finally, we
remark that even if less quick, our proposed asynchronous [ADMM] has the same linear con-

vergence as the synchronous distributed ADMM]}, furthermore, it does not fluctuate a lot while
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decreasing, thus, it is perfectly compatible with any iterations-based stopping criterion.

—O— Synchronous Distributed Gradient descent E
0 —1— Asynchronous Distributed Gradient descent i
10 —O— Synchronous Distributed Optimization with the ADMM H
—— Asynchronous Distributed Optimization with the ADMM ||
_ 107! e
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Figure 4.10: Squared Error versus the number iteration for various distributed optimization

algorithms.

In Figs. [4.11] and 4.12] we plot the Squared Error versus the number of proximal opera-
tor computations and versus the number of communications for the two ADMM-based algo-
rithms. The synchronous version requires 5 proximal operations and 10 communications per
iteration while the asynchronous version uses 2 proximal operations and 3 communications.
This enables us to see that when considering the computational time (of which the number of
proximal operator computations is a fair approximation) or the network usage (represented
by the number of local communications), then the difference between the synchronous and
the asynchronous version is less important. Furthermore, if one adds the congestion of the
network on the parts where the subgraphs overlap and the differences in the computation
times of the different proximal operators, the asynchronous version seems to be better suited
to a decentralized network. In order to compare more precisely these two version, a general
model for a network of agents including computation times, network congestion and so on
would be useful. Designing such a model and analyzing the benefits of asynchronism is a very

interesting perspective.

4.7 Conclusion

In this chapter, we introduced a formalism that enabled us to derive a new asynchronous
optimization algorithm based of the well-known Alternating Direction Method of Multipliers
and proved its convergence using a new randomized version of the proximal point algorithm.
In a sensor network, this algorithm permits to obtain efficiently the wanted optimum by only

using local data and asynchronous communications.
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Figure 4.11: Squared error versus the number of proximal operator computations for ADMM-

based algorithms.
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Figure 4.12: Squared error versus the number of communications for ADMM-based algo-

rithms.

This topic is flourishing and has a major importance in the signal processing for Big Data
and Social Networks; it is thus at the core of our research perspectives. For instance, finding
tight speed bounds for[ADMM}based algorithm is still an issue along with the hyper-parameter
choice. Another promising axis of research is the study of the benefits of an asynchronous,
local algorithm as the one we proposed in the case of an server network subject to congestion,
limited computational times, which thus implies the definition of a global network metric.

Finally, we are often more interested to the optimal solution up to a small (freely se-
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lectable) error and the quicker an algorithm can ensure to be this close to the solution, the
better it is. The costly step in our proposed algorithm is the computation of the proximal
operator as it implies a small optimization subproblem. While it is known (from [[80]]) that
one can compute the proximal operator up to a summable error over time without affecting
the convergence, recent works [|87, [88] seem to indicate that allowing a constant (possibly
random) error at each step enable a faster convergence to a approximate solution.

This work has led to the following publications:
C4 E Iutzeler, P Bianchi, P Ciblat, and W. Hachem, “Asynchronous Distributed Optimization
using a Randomized Alternating Direction Method of Multipliers,” in IEEE Conference on
Decision and Control (CDC), December 2013.



CONCLUSION AND PERSPECTIVES

The work carried out in this thesis dealt with the analysis of distributed asynchronous al-
gorithms that enabled the network to reach consensus over a value of interest. Depending
on the objective value (maximum, average, or solution of an optimization problem), various

algorithms have been proposed and analyzed.

In Chapter 2, we focused on the problem of finding and spreading the maximum between
the initial values of the sensors; this problem can be cast into the rumor spreading frame-
work. For this problem, we designed and analyzed three different algorithms: one based on
a random walk, one based on pairwise communications, and one based on broadcast com-
munications. We reminded the convergence speed results of literature for the first one and
performed a new analysis of the convergence speed for the last two ones. The conclusions
of this chapter are twofold: i) broadcasting significantly increases the speed of information
spreading; and ii) we roughly pay a factor of about the size of the network in the mean
convergence speed for not knowing which nodes have the information (maximum value or

rumor).

In Chapter 3, we concentrated on the well-known problem of computing the average of
the initial values of a sensor network. Although extensively studied, broadcast communi-
cations are allowed by only a few algorithms of the literature, especially, algorithms based
on the so-called Sum-Weight framework. We proved very general convergence and conver-
gence speed results for Sum-Weight based averaging algorithms; this enabled us to derive a
new broadcast-based averaging algorithm which outperforms existing ones. Furthermore, our
convergence results enabled us to revisit the literature and derived tighter speed bounds for
existing algorithms. Finally, we used our new algorithm in the context of distributed spectrum

sensing for cognitive radio.

In Chapter 4, we studied the problem of distributed asynchronous optimization using
proximal algorithms. Thanks to the monotone operators framework, we designed a new
distributed asynchronous optimization algorithm based on the Alternating Direction Method
of Multipliers, and proved its convergence.
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Perspectives

Chapters 2 and 3 have been very important for the comprehension of information spreading
in radio networks and distributed estimation but even though there is some work left (finding
tighter speed bounds for maximum value spreading, analyzing the behavior of averaging al-
gorithms in finite time with some error tolerance), it is not a priority for our future researches.

In contrast, Chapter 4 gave a very powerful analysis tool and our asynchronous proximal
point algorithm has showed to perform remarkably well. Now, looking at the applications
of algorithms such as our asynchronous distributed version of the ADMM, two very different
setups arise depending if the datasets (and thus the cost functions) of the different nodes are
similar or not: i) if they are similar (for example if each set contains samples from the same
ii.d. process), then the objective is to go to the better precision as fast as possible as a quick
approximate result can be obtained at each node by analyzing only its own dataset; ii) if they
are different (each set represent a different mixture of the same random variables) the goal of
the network may be to obtain a snapshot of the global (mean) optimum as quickly as possible.

These problems are very different and lead to different perspectives:

o In case of similar data, where we are interested in the asymptotic speed, a interesting
perspective is to give mild conditions for the linear convergence of the ADMM; condi-
tions for the linear convergence and speed bounds exist in the literature but for par-
allel (not distributed nor asynchronous) ADMM. Furthermore, the conditions are quite
strong and the speed bounds are not tight. The choice of the hyper-parameter giving
the best speed is also an open subject even if the convergence is linear as the speed
bounds are not tight enough to deduce an optimal parameter; finding an efficient way
to distributively select a good parameter is a very interesting perspective too. Also, the
convergence speed could benefit from allowing the proximal operators to be computed
up to some error (that would decrease over time) as it is in general quicker to compute
the proximal operator up to some error. Finally, using the formalism depicted in Chapter
4 to analyze other proximal algorithms of the literature (PPXA, PPXA+) and compare
their speed could lead to even more efficient and distributed algorithms.

e In case of heterogeneous data, we are interested in going to a neighborhood of the ob-
jective value as soon as possible. As the proximal operator can be very costly in term
of computation time, it is interesting to look at the error to which a node can compute
its proximal operator up to some error which still enable the network to converge to
the wanted solution neighborhood. Indeed, computing a proximal operator is an opti-
mization problem in itself and allowing an error in its computation reduces greatly the
convergence time in general [87,[88]].

These perspectives are mainly based on the number of iterations and the computational
cost of the proximal operators to evaluate the speed of an algorithm. In particular, they do
not take into account the effects of the network (congestion, failures, etc.). It would thus be
very interesting to implement various synchronous and asynchronous distributed optimization
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algorithms over a real data network to perform inference through local computations. It
would enable us to evaluate the influence of the asynchronism on the network congestion. In
addition, it might guide us to define a global network metric including the computation times

of the machines along with the network communications, routing and eventual congestion.
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APPENDIX A

PROOFS RELATED TO CHAPTER

A.1 Proof of Eq. (2.3)

This proof follows the argument of [21].

Let ¢ = (V,E) be an undirected graph of N nodes with Laplacian L and S a subset of V.
We want to prove a relation between the second smallest eigenvalue of the Laplacian Ag and
the vertex expansion of S, |0S|, where 8S = {{i,j} €E:i €8S,j ¢S} is the set of edges with
one end in S and the other end in V '\ S.

First, let us remark that when we compute Lx for any x € RN, we get that the i-th
coefficient is

(Lx); = [Alx; — Z Xj= Z(Xi - X;),
JEM JEM
so we get that for any x € RY
xTLx = le- Z(Xi - X;)
i€V jes

= Z x; (o — xj) 4+ x;(x; — x;)

{i,j}eE

= Z (xi—xj)z.

{i,j}eE

Now, let us consider yg the size-N vector with ones at the index of the sensors of S and

zeros elsewhere, we get that

xs"Las= D, (rsi— xs;)* =185,
{i,j}€E

We also know that the second smallest eigenvalue of L is (see Section [I.T.7])

xTLx
T

A= min

xeSp(1)+ xX* X
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As x5 ¢ Sp(1)*, we define 75 = x5 —|S|/N1, the orthogonal projection of y¢ onto Sp(1)*,
we obviously have 75 Lys = ys'Lys = 85| and

— S| S|
As Xs = XS——ll x——ll
IS|>

T |S| T |S| T
— - 1+ —
XsXS N Xs NXS N

S| ISI? S|
= Isl—2—Isl+ —-=Is|1- —
N N

171

Hence,

Xs LXS |0S]|

2= T s |S|( 'f]—')

251, e (121
sl = N’

A.2 Proof of Theorem 2.4

AL

and thus

As in the proof of Theorem 2.1} we define X* = |[M*| as the cardinal of M* = {i e V : x
Xmax} (the set of nodes sharing the maximum at time k).

In the context of Random-Pairwise-Max, the only possibility for node to be informed is to
exchange with an informed neighbor, so at each iteration one has X* < X**! < X* 4 1. Here,
our objective is to exhibit a tight evaluation of the probability that the sequence X* is strictly
increasing at time k. Let i and j be the selected (connected) sensors exchanging at iteration
k of the algorithm, the size of M k increases if i is informed but not j (or vice-versa),

P[Xk+1 :Xk+]- | Mk] :P[{l,]}eaMkle] (A.1)

The choice of the exchanging sensors is done as follows: choose i uniformly in V then j
uniformly in .#;, all this is independent of the time so we drop the time superscript when un-
necessary in the following. Therefore, for any (undirected) edge {i, j}, we have P[{i, j} are chosen] >
2/(Nd,.,) which implies that if i and j are the selected nodes at time k,

- k1 rke < o [OME]
P{i,jledM* | M*]>2 . (A.2)
Ndmax
Now, using Eq. (2.3) and combining Egs. (A.I) and (A.2), we get
AL x*
Plxk =xk 41| MK > 2—2-xk1 - ~ - (A.3)

max

For the sake of simplicity, we assume that a single node has the maximum value at time
0 without loss of generality. Consider the stopping times: T; = inf{k € N : X* = i}, so that
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T7;=0and 7 = Z?I:_ll(riﬂ — 7;) (if more than one node has the maximum value at time O,
one just has to start the sum at the number of initially informed nodes).

Let Y* be the random variable equal to X**1 — x* given X*. Y is Bernoulli distributed
and its parameter is lower bounded by 27L]2‘ J(N?d,. )XK(N — X%) by Eq. (A3).

(T;41 — 7;) is the number of iterations needed to have X*it1 = X*i 41 when X" =i,
or equivalently, the number of trials on Y"*i to obtain a success when X*i = i. The random
variable (7;,, — 7;) is thus bounded below by the geometrically distributed random variable
Y"i. As a consequence,

N%d,,, 1
Eltii—7;] < .

Finally, using the fact that 2/N Zf]:_ll 1/i= Zf]:_ll 1/(i(N — 1)), we have

Nd. "3 1
1=

A.3 Proof of Theorem

We use the same notations as in Appendix[A.2] We have seen that the random variable 7;,; —
7; is bounded below by a geometrically distributed of parameter 7; = 2A%/(N2d ., )i(N — ).
As a consequence, T;,; — T; is stochastically dominated by a geometric distribution with
parameter 71; denoted by Z;, which means that the cdf of 7;,; — 7; is smaller than the cdf of
Y; at any point:

1 1
P |:Ti+1_TiZ(1+5);:| <P [Zl- Z(1+5)n—].

Now, as Z; is geometrically distributed, it can be seen as the first occurrence of a success
in a process of [L.i.d]Bernoulli variables {B;} ., of parameter ;, thus we have, for any 6 > 0,

1 [(148) = -1]
l a_
P |:Zl 2(1+5)—i| S P Z BJ:O — (1_ni)((1+5)ni 1]
i =
1
< ep(-rfa+8)=-11)
i
< exp(—(1+8)+m)
< exp(-96)

where the second inequality comes from the fact that Vx € R, 1+ x < exp(x) and the last
inequality just uses that ; — 1 < 0.

Let € > 0, we now choose &, as the smallest number such that

£
exp(-6,) < +
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N
6, =log (?) .

So, we have P[7;,; —7; > (1+6,)/m;] < €/N. Then, by using the Union bound, we have

which leads to

Plt>(1+6,)E[r]] <e¢

which concludes the proof.

A.4 Proof of Theorem

Let i(¥) be the sensor with the maximum at time 0. We build a spanning tree subgraph of ¢

rooted on i(?). Let us partition the set V in layers according to nodes distances from i(%:
I"={iev:19(?,i)=n}, neN

where 19(i9,{) is the distance between i?) and i (the minimal number of edges to connect
them). One has V = UijL" and L" N L™ = @ for n # m. In the spanning tree subgraph,
there are edges only between consecutive layers, never between sensors of a same layer nor
between more distant layers. Furthermore, all the sensors of layer L™ have to broadcast in
order to inform the whole layer L™*!,

We define the following stopping times: 7, = 0, and 7, = inf{k > 7,,_; : Vi € L”,xf =
Xmaxt. We denote by &, the o-algebra spanned by the nodes sharing the maximum values
at time k. Using the same proof framework as in the standard coupon collector problem
(see [34]), it is easy to show that E[7,1; — T,|%; ] < Nhj;»|. More precisely, we want the
expected time for L sensors/coupons to be chosen/collected knowing that any sensor/coupon
is selected independently with probability 1/N. The probability of selecting a new coupon
knowing that L — £ ({ = 1,...,L) were already selected is £/N, hence time for tis event to
happen follow a geometric distribution of mean N /{. Iterating this for £ =1, ..., L, we get that
the expected time to select L coupons uniformly in a batch of size N is N Zle 1/¢.

The term E[ 7,1 — T,|Z;, ] corresponds to the average time needed to completely fill up
layer (n 4+ 1) given the nodes sharing the maximum value at time 7, i.e. given that layer n

was already filled up. Therefore we have

Ay—1 Ay—1
E[7]< ) Bl = Tl 1S D) Nhyo.
n=0 n=0

By using the inequality h,, < log(n) + 1 and the fact |Ly| = 1, we obtain

Ay—1
E[t] <N (A(g+ > logIL"|) .

n=1

Finally, using the concavity of the log, we get Z?:_ll logx; <(n—1) log(ﬁ Z;:ll x;), and

. Ag—1
remarking that > ¢

ey IL"| <N —1 (we dropped the sensor of the first layer in the previous
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equation as log(1) =0 ), we get

N-1
E[T]SNA%‘I’N(A(g_].)IOg(A 1) .
- —

g

A.5 Proof of Theorem

Let A’l.‘ , be the event “the node i belonging to layer L" is not chosen for k iterations”. Obviously,

k
IP’[A’i"n] = (1 — %) . When the event 7,,; — 7, = k occurs, the event U;c;n A’l."n also occurs.
Therefore P[7,,1 — T, = k] < P[U;¢;n Ali"n]. Using the Union bound and the fact that 0 <
1—y <exp(—y) for y € [0,1], one can bound the probability that, after k iterations, some
of the nodes of L" still have not talked as follows

1\* k
P[Tps1 — Tn = k] S P[Uien AF, ] < Z (1 - ]V) < |L"exp (_ﬁ) :
ieLm

For any ¢ > 0, by choosing k., = N log|L"| + N log(A«/¢), we get

n Ay €
P Tn+1—TnZN10g|L|+N10g - <—.
£ Ay
By considering the union of the events for n =0, ..., Ay — 1 and using once again the Union
bound, we find

N-1 Ay
P|Tu1— T, =N(Ay —1)log o +NAglog - <e
v —

which boils down to the claimed result.



128 APPENDIX A. PROOFS RELATED TO CHAPTER [2




APPENDIX B

PROOFS RELATED TO CHAPTER

B.1 Derivations for Eq. (3.38)

According to Eq. (3:37), we have easily that

1 1
KTk+1 1 Kiks1 e = I+ - Zee + - ZemeT-i— ZZee ek+1e,
SR iR jk k+1 i k+1
J1 IN 4 41 11’ 1
1 1& 1 T
= §I+ZZeie1k+1+4Z +1e + - ZZ€€k+1ek+1€/
i=1 i=1i'=1
i i

where we remarked that the case i = i’ in the first equality leads to 1/4I in the last right

hand term. Now, using the fact that the {j¥};—1 _ y.x>0 are L1d] uniformly distributed over
{1,...,N} we have

N 1 13 (18, 18 (1 T
E[K K:I = ZI+ZZei NZee +ZZ NZQ@ €;
i=1 i

(=1 i=1 (=1
1NN 1 X
+ZZZei N2 Z e e ey

. T, _ / N T, _—
By remarking that e, e;» = 0 as soon as k # k', we have Zk,k’zl e, ex = N. Furthermore,

as Zek—]l and ZZee,—]l]lT

i=1i'=1
i i
. T 1 1 3
we obtain E [K K] = ——— | I+-=J
2 4N 4

It is then straightforward to obtain Eq. (3.38)).
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B.2 Derivations for Eq. (3.40)

Once again, according to Eq. [3:37), we have directly that

1 1[(d 1 il
Kj{“"l .... j11\<[+1 ®K]~{<+1 .... j11\<[+1 = ZI®I+Z (Zejme ) I+ 4I® (Zejlg<+1eiT)

i=1 i=1

1 N N
+4—l (Z ej3<+1eiT) ® (Z eJk/HeT,) (B.1)

i=1 i'=1

~~

=¢

Using the same technique as in Appendix [B.I], we obtain that

[Ze o } =J (B.2)

Thus, it just remains to evaluate E[¢]. Let us first remark that

g—ZZeme ®ek+1e +Zek+1€ ®6k+1€

i=1i'=1
i’ #i

As a consequence, we have

N N N N

El¢] = ]% ZZZele ®eeze + = 226’36 ® e}

i=1i'=1{=1¢'=1 i=1/¢=1
o
1 N N N N 1 N N N 1 N N
D) IFTIEEES 3 3) ) PR 3y per e e
N2 (2] (At N2 € i (A N (A} (A1
i=1{=1{(=1/{'=1 i=1{(=1/¢'=1 i=1/¢=1

Using the well-known result on Kronecker product ( (AB) ® (CD) = (A ® C)(B ® D) for four
matrices A, B, C, and D with appropriate sizes), we have

Elc]=J®J 1(]1@11)T+1 T (B.3)
¢l = N2 u Nuu .
with u = Zflzl e; ® e;. Putting Egs. (B.2) and (B.3) into Eq. (B.I), we get
E[K®K] 1I®I+1J®I+1I®J+1J®J ! (1 1)u’ + L
== = - = -— u 4+ -—uu .
4 4 4 4N>2 4N

4

Before going further, let us remark that

N N
1 1 1 1
't et = Z(eiT - ﬁeiT]l]lT) ® (eiT — NeiT]l]lT) = Z(eiT — ﬁ]lT) ® (el.T — N]IT)
i=1 i=1
N
= ——Z(e ®17)— — Z(]lT®eT)+N—Z]1T®]1T
i=1 i=1

_ o1 1 T
= u N(]l®]l). (B.4)
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As a consequence, we have

R = E[K®K]Jt®Jh)

1 1 1
= Jet-—ae) Ut + —uwTUt eIt
4N2( Ju'( ) N ( )

4
1 1 1 1 1

= lert - — e - —1e 1))+ —u’ - —(1 1)
g7 @7 e el )t qu - e )]

1Jic;>Ji+ LI (1o 1)u’ 1 1)+ ! J®J
= - —uu - — u ——u —
4 4N 4N?2 4N2 4N

Using Eq. (B-4), we definev=1/+/N —1(u—1/N1 ®1) so that
T 71 1 T
w=——I[uw -—11u ——u(lel) +J&J
N N

which straightforwardly leads to Eq. (3.40).

In addition, note that using Eq. (B-4), we have J* ® J*v = v.

B.3 Computations related to Section
In order to fit a Gamma distribution onto it, one has to compute the mean and variance of

LI Iyl
T(y) %~ 5 =5SNR; 2 7

2, 2
N = ri+o; 7y

with x; ~ A(0,2I) and n; ~ (0, 02I).

1Y llx; + 13 1Y llx; + mnill3
E[T))]=E|—> ——29NR,| = =Y E|——L2|3NR,
N; vi+op N; vitop
N &
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N+ 2 | (N ?

Var[T(y)] = E ——L 2 3NR, - —SE SNR;

g =N rito? l NG

2
1|5 g+ ngll3 Nl +mjli3 N, &
= —_F SNR;SNR. | — [ = ) SNR;

1 LY Il + 413 ||Xj+nj”§

- FE :2 E|: o | E 7t ol .SNR;SNR;

J

2 N 2
1 llx; + n;|2 N,
E (;—122 SNR? — [ — D 'SNR;
i=1 i T0; N =

The gamma distribution I'(k, 8) has mean k6 and variance x62. Hence, by identifying
the first two moments of T(y), we get that T(y) ~ I'(kx, 67) with

2
1 N
NN, (ﬁ Y1 SNRi)
S Y
1 N 2
N Zi=1 SNR;
1 \N ’
~ 2ui—1 SNR;

and 6; =

2w
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