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Résumé

L’apprentissage par renforcement hors ligne (RL) promet de dériver des politiques efficaces
à partir d’ensembles de données statiques sans interaction coûteuse avec l’environnement,
mais les approches existantes peinent face au décalage de distribution et à l’expressivité
limitée. Cette thèse fait progresser les approches de modélisation de séquences pour le RL
hors ligne à travers de nouvelles architectures, des perspectives théoriques et une valida-
tion empirique, démontrant comment les méthodes basées sur les transformers peuvent
résoudre les limitations clés des algorithmes traditionnels de RL hors ligne.

Nous apportons quatre contributions principales. Premièrement, nous introduisons les
Multi-Objective Decision Transformers (MO-DT), qui optimisent conjointement les tâches
de prédiction d’états, d’actions et de retours pour induire des motifs d’attention diversifiés
à travers les têtes du transformer—résolvant l’homogénéité d’attention observée dans les
Decision Transformers standards. En s’appuyant sur cela, les Trust Region Decision Trans-
formers (TRDT) augmentent les trajectoires avec des régions d’actions discrétisées, four-
nissant des représentations d’actions plus grossières qui réduisent le surapprentissage à des
motifs comportementaux spécifiques. Deuxièmement, nous développons le Return-Guided
Decision Translator (RGDT), une architecture séquence-à-séquence qui reformule le RL
hors ligne comme la traduction de séquences de retours futurs en séquences d’états passés,
avec des actions inférées par dynamique inverse. Cette approche encodeur-décodeur démêle
naturellement le traitement des modalités.

Notre analyse théorique fournit des perspectives sur ces succès empiriques. À travers
l’analyse du flot de gradient modifié sur des modèles d’auto-attention simplifiés, nous prou-
vons que la descente de gradientmulti-tâches présente une régularisation implicite : elle en-
courage le désaccord entre tâches en minimisant les produits scalaires des gradients. Nous
démontrons en outre que l’entraînement conjoint et séquentiel induisent des dynamiques
d’optimisation fondamentalement différentes, les mises à jour séquentielles introduisant
des corrections hessiennes du second ordre qui peuvent déstabiliser l’apprentissage. En
utilisant le cadre des graphes de priorité de tokens, nous expliquons formellement pourquoi
l’entrainementmulti-objectif crée une attention équilibrée entremodalités tandis que l’entraînement
mono-tâche induit des hiérarchies strictes de tokens. De plus, nous établissons des bornes
de complexité d’échantillonnage pour lamodélisation de séquences en RL hors ligne, révélant
une transition critique entre les régimes dominés par la variance et ceux dominés par le biais
qui fournit des orientations théoriques pour les stratégies de collecte de données.

Empiriquement, nos méthodes atteignent des performances compétitives sur les bench-
marks de locomotionD4RL, avec TRDT améliorant le Decision Transformer standard jusqu’à
31% sur les tâches difficiles medium-replay tout en égalant ou dépassant les méthodes de
pointe sur d’autres. Les visualisations d’attention confirment nos prédictions théoriques
: l’entraînement multi-objectif produit des têtes d’attention spécialisées avec des motifs

xi



inter-modaux distincts, tandis que les modèles mono-tâche présentent une attention redon-
dante centrée sur les actions. Notre cadre théorique prédit avec précision les trajectoires
d’optimisation et fournit des principes actionnables : des taux d’apprentissage plus petits
réduisent la compétition entre tâches dans l’entraînement séquentiel, tandis que des poids
multi-objectifs équilibrés favorisent une convergence stable.

Cette thèse démontre que des approches d’apprentissage supervisé fondées sur des
principes, guidées par une compréhension théorique, peuvent efficacement relever les défis
du RL hors ligne dans le cadre des tâches de contrôle continu. En unifiant les innovations
architecturales avec une analyse rigoureuse, nous établissons la modélisation de séquences
comme un paradigme viable pour apprendre à partir de données de trajectoires statiques,
fournissant des fondations pour des travaux futurs dans des domaines plus complexes.
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Abstract

Offline Reinforcement Learning (RL) promises to derive effective policies from static datasets
without costly environment interaction, yet existing approaches struggle with distribution
shift and limited expressivity. This thesis advances sequencemodeling approaches to offline
RL through novel architectures, theoretical insights, and empirical validation, demonstrat-
ing how transformer-based methods can address key limitations of traditional offline RL
algorithms.

We make four primary contributions. First, we introduce Multi-Objective Decision
Transformers (MO-DT), which jointly optimize state, action, and return prediction tasks
to induce diverse attention patterns across transformer heads—addressing the attention
homogeneity observed in vanilla Decision Transformers. Building on this, Trust Region
Decision Transformers (TRDT) augment trajectories with discretized action regions, pro-
viding coarser action representations that reduce overfitting to specific behavioral patterns.
Second, we develop Return-Guided Decision Translator (RGDT), a sequence-to-sequence
architecture that reformulates offline RL as translating future return sequences to past state
sequences, with actions inferred through inverse dynamics. This encoder-decoder approach
naturally disentangles modality processing.

Our theoretical analysis provides insights into these empirical successes. Throughmod-
ified gradient flow analysis on simplified self-attention models, we prove that multi-task
gradient descent exhibits implicit regularization: it encourages task disagreement by min-
imizing gradient inner products. We further demonstrate that joint and sequential train-
ing induce fundamentally different optimization dynamics, with sequential updates intro-
ducing second-order Hessian corrections that can destabilize learning. Using the Token-
Priority Graph framework, we formally explain why multi-objective training creates bal-
anced cross-modal attentionwhile single-task training induces strict token hierarchies. Ad-
ditionally, we establish sample complexity bounds for sequence modeling in offline RL, re-
vealing a critical transition between variance-dominated and bias-dominated regimes that
provides theoretical guidance for data collection strategies.

Empirically, our methods achieve competitive performance onD4RL locomotion bench-
marks, with TRDT improving upon vanilla Decision Transformer by up to 31% on challeng-
ing medium-replay tasks while matching or exceeding state-of-the-art methods on oth-
ers. Attention visualizations confirm our theoretical predictions: multi-objective training
produces specialized attention heads with distinct cross-modal patterns, while single-task
models exhibit redundant, action-focused attention. Our theoretical framework accurately
predicts optimization trajectories and provides actionable principles: smaller learning rates
reduce task competition in sequential training, while balanced multi-objective weights pro-
mote stable convergence.

This thesis demonstrates that principled supervised learning approaches, guided by the-
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oretical understanding, can effectively address the challenges of offline RL within the scope
of continuous control tasks. By unifying architectural innovations with rigorous analysis,
we establish sequence modeling as a viable paradigm for learning from static trajectory
data, providing foundations for future work in more complex domains.
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Introduction

The Promise of Learning from Experience

In the grand narrative of artificial intelligence, few capabilities are as fundamental as learn-
ing from experience. Reinforcement learning (RL) has emerged as a powerful paradigm for
this challenge, enabling agents to discover optimal behaviors through trial and error. From
mastering complex games [1] to controlling plasma in fusion reactors [2], RL has demon-
strated remarkable success when agents can freely explore their environments. Yet this
very strength—the need for exploration—becomes a critical limitation in many real-world
applications.

Consider an autonomous vehicle learning to navigate busy intersections, a robotic sur-
geon refining its technique, or an AI system optimizing drug dosing protocols. In these sce-
narios, the cost of exploration is measured not in computational cycles but in human safety
and wellbeing. We cannot afford to let these systems learn through potentially catastrophic
trial and error. This fundamental tension—between the need for experiential learning and
the constraints of safety—motivates the field of offline reinforcement learning.

Offline RL promises a compelling resolution: what if we could learn optimal policies
solely from historical data, without any risky exploration? Healthcare systems generate
extensive collections of treatment records, autonomous vehicles collect millions of miles of
driving data, and industrial robots accumulate years of operational logs. These datasets rep-
resent valuable repositories of experience that can be transformed into intelligent decision-
making policies. The challenge lies in developing methods that can effectively extract this
knowledge while avoiding the pitfalls that arise when learning from fixed, potentially sub-
optimal data.

TheFundamentalChallenges of Learning fromStaticData

The transition from online to offline learning fundamentally changes the nature of the re-
inforcement learning problem. In online RL, agents can test hypotheses, explore uncertain
regions of the state space, and iteratively refine their understanding through interaction.
Offline RL removes this feedback loop, creating several interconnected challenges that have
proven remarkably difficult to overcome.
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The most prominent challenge is distribution shift—the mismatch between the state-
action distribution in the dataset and the distribution induced by the learned policy [3].
When an agent learns a policy that deviates from the behavior in the dataset, it must eval-
uate actions in states that may be poorly represented or entirely absent from the training
data. Traditional value-based methods, which bootstrap value estimates from future states,
can catastrophically overestimate the values of these out-of-distribution actions, leading to
poor performance when deployed.

This challenge is compounded by the coverage problem. Unlike supervised learning,
where we typically assume independent and identically distributed data, offline RL datasets
consist of trajectories generated by unknown behavior policies. These trajectories may
provide excellent coverage of some regions of the state-action space while leaving others
completely unexplored. The sequential nature of the data means that certain state-action
pairs may never appear together, not because they are suboptimal, but simply because the
behavior policy never tried them.

Early approaches to offline RL attempted to address these challenges by adapting suc-
cessful online algorithms with various forms of conservatism. Methods like Conservative
Q-Learning (CQL) [4] penalize value estimates for out-of-distribution actions, while others
like BEAR [5] constrain the learned policy to remain close to the behavior policy. While
these approaches have shown success, they introduce a delicate balance: too much conser-
vatism prevents the discovery of better policies than those in the dataset, while too little
leads to overoptimistic extrapolation.

These challenges have led researchers to question whether the dynamic programming
paradigm itself is well-suited to the offline setting. The iterative nature of value estimation,
the need for explicit uncertainty quantification, and the sensitivity to hyperparameters all
suggest that alternative approaches might be more natural for learning from static datasets.

AParadigmShift: FromDynamic Programming to Super-
vised Learning

The frustrations with traditional offline RL methods have catalyzed a fundamental rethink-
ing of the problem. What if, instead of viewing offline RL through the lens of dynamic
programming and value iteration, we approached it as a supervised learning problem? This
shift in perspective, while radical, is grounded in a simple observation: trajectory data in
offline RL has more in common with sequences in natural language processing than with
the incremental feedback loops of online RL.

This reconceptualization transforms trajectories from Markov decision processes into
sequences of tokens—states, actions, and rewards become the vocabulary of a new language.
Just as language models learn to predict the next word given context, we can train mod-
els to predict the next action given a history of states and desired outcomes. This insight
has profound implications: it allows us to leverage the remarkable advances in sequence
modeling, particularly the transformer architecture [6], for reinforcement learning.
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The Decision Transformer [7] implemented this approach, demonstrating that a trans-
former trained with simple supervised learning could match or exceed the performance of
sophisticated offline RL algorithms. By conditioning on desired returns and predicting ac-
tions, it sidesteps the challenges of value estimation entirely. The Trajectory Transformer
[8] extended this concept further, modeling entire trajectories autoregressively and en-
abling planning through beam search.

This paradigm shift offers several compelling advantages. First, it eliminates the need
for bootstrapping and value iteration, avoiding the extrapolation errors that plague tradi-
tional methods. Second, it provides a natural way to condition on desired outcomes, en-
abling more flexible policy specification. Third, it leverages the substantial progress in se-
quence modeling architectures and training techniques developed by the natural language
processing community.

Yet this new paradigm also raises fundamental questions. How should we represent
trajectories for optimal learning? What implicit biases do these models have, and how do
they differ from traditional RL methods? Can we provide theoretical guarantees about their
performance? These questions motivate the research presented in this thesis.

Thesis Statement and Contributions

This thesis advances the following central argument: Supervised learning methods,
when properly designed with appropriate architectures and training objectives,
and understood through rigorous theoretical analysis, can effectively address the
fundamental challenges of offline reinforcement learning while providing com-
petitive empirical performance and greater interpretability than traditional ap-
proaches.

The practical implications of this work extend across numerous domains where safe
learning from historical data is paramount. Ourmethods could enablemore reliable deploy-
ment of AI systems in healthcare, robotics, and autonomous systems, where the supervised
learning paradigm offers both performance improvements and greater interpretability for
human operators.

We support this thesis through four interconnected contributions that span architec-
tural innovations, training methodologies, and theoretical foundations:

First, we address a critical limitation in how Decision Transformers process trajec-
tory data. Our analysis reveals that vanilla Decision Transformers develop homogeneous
attention patterns, failing to fully utilize the expressive power of the transformer architec-
ture. We introduce Multi-Objective Decision Transformers (MO-DT), which jointly opti-
mize state, action, and return prediction tasks. This multi-task approach encourages the
model to develop specialized attention patterns, with different heads focusing on different
aspects of the trajectory. Building on this insight, we develop Trust Region Decision Trans-
formers (TRDT), which augment trajectories with discretized action regions. These coarser
action representations serve as an inductive bias that reduces overfitting to specific behav-
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ioral patterns while maintaining the model’s ability to generate precise actions. Through
the Token-Priority Graph framework, we formally characterize how multi-objective train-
ing creates balanced attention across modalities.

Second, we explore alternative architectural paradigms beyond the decoder-only trans-
formers used in prior work. We develop the Return-Guided Decision Translator (RGDT),
which reconceptualizes offline RL as a sequence-to-sequence translation problem. By us-
ing an encoder-decoder architecture to translate future return sequences into past state
sequences, with actions inferred through inverse dynamics, we achieve natural disentan-
glement of modality processing. This architectural choice enables more effective credit
assignment and allows for asymmetric processing of different trajectory components.

Third, we provide theoretical foundations for understanding these empirical successes.
Through modified gradient flow analysis, we uncover a fundamental property of multi-task
learning: gradient descent implicitly encourages task disagreement byminimizing the inner
products between task gradients. We prove that joint and sequential training induce funda-
mentally different optimization dynamics, with sequential updates introducing potentially
destabilizing second-order corrections. These theoretical insights provide a rigorous expla-
nation for why multi-objective training approaches outperform single-task alternatives in
offline RL settings.

Fourth, we establish fundamental limits and guidelines for offline RL with sequence
modeling. We derive sample complexity bounds that reveal a critical transition between
variance-dominated and bias-dominated regimes, providing theoretical guidance for data
collection strategies. Our analysis shows that success depends not just on dataset size but
on the intricate balance between context coverage breadth and sampling depth within each
context.

Throughout this thesis, we validate our approaches on standard benchmarks includ-
ing D4RL locomotion tasks, demonstrating consistent improvements over both traditional
offline RL methods and vanilla sequence modeling approaches.

Thesis Organization

This thesis is organized to provide both empirical innovations and theoretical understand-
ing, with each chapter building upon previous insights while maintaining sufficient inde-
pendence for selective reading.

Chapter 1 introduces Multi-Objective Decision Transformers, establishing the founda-
tion for our architectural contributions. We begin by analyzing the limitations of vanilla
Decision Transformers through attention visualization, then develop our multi-objective
framework and trust region augmentation. We employ the Token-Priority Graph frame-
work to provide theoretical justification for the observed attention patterns. This chapter
demonstrates how architectural modifications can substantially improve performance on
standard benchmarks while providing more interpretable attention patterns.

Chapter 2 explores the sequence-to-sequence paradigm through our Return-Guided
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Decision Translator. We show how reconceptualizing offline RL as a translation problem
enables more effective processing of trajectory data. This chapter highlights the benefits of
encoder-decoder architectures and provides insights into credit assignment in sequential
decision-making.

Chapter 3 provides the theoretical foundation for understanding multi-task training
in transformers. We develop a comprehensive framework based on modified gradient flow
analysis, revealing the implicit regularization effects of different training objectives. This
chapter bridges the gap between our empirical observations and fundamental optimization
principles, explaining why multi-objective approaches succeed in offline RL.

Chapter 4 examines the statistical foundations of offline RL with sequence modeling.
We establish sample complexity bounds and identify critical factors that determine when
sequence modeling approaches can successfully recover optimal policies. This chapter pro-
vides theoretical guidelines for data collection and helps explain when andwhy these meth-
ods succeed or fail.

The thesis concludes with a synthesis of our contributions and a discussion of future di-
rections. We reflect on the broader implications of treating offline RL as supervised learning
and identify promising avenues for extending this paradigm.

A Note on Reading This Thesis

This thesis is designed to accommodate different reading approaches depending on your
background and interests:

For practitioners interested in implementation: Chapters 1 and 2 provide concrete ar-
chitectural innovations with empirical validation. These chapters include implementation
details and can be read independently.

For theorists interested in foundations: Chapters 3 and 4 offer rigorous theoretical anal-
ysis. While they reference the empirical work, the theoretical results stand on their own.

For researchers new to offline RL: Reading the chapters in order provides a natural pro-
gression from empirical observations to theoretical understanding.

For experts familiar with Decision Transformers: You may wish to start with Chapter 3
for the theoretical insights, then examine how they manifest in the architectural designs of
Chapters 1 and 2.

Each chapter begins with its own introduction that provides the necessary context,
allowing for flexible navigation through the material while maintaining coherence across
the thesis.
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Notation Guide and Conventions

This chapter provides a comprehensive reference for the mathematical notation and con-
ventions used throughout this thesis. We adopt standard conventions from the machine
learning literature while maintaining consistency across all chapters.

General Notation Conventions

Typography and Mathematical Objects

Throughout this thesis, we employ the following typographical conventions to distinguish
between different mathematical objects:

Scalars: Regular lowercase letters denote scalar values (e.g., x, a, α, η). Scalar functions
and indices also use regular notation (e.g., t for time, i for sample index).

Vectors: Bold lowercase letters represent column vectors (e.g., x ∈ Rd, θ, hi). The i-th
element of vector x is denoted xi (non-bold with subscript).

Matrices: Bold uppercase letters denote matrices (e.g., W ∈ Rm×n, H). The element
in row i and column j of matrix X is denoted xi,j or Xij . Row vectors extracted from
matrices are denoted as xi (the i-th row of X).

Sets and Spaces: Calligraphic uppercase letters represent sets and spaces (e.g., S for
state space, A for action space, T for trajectory dataset, V for vocabulary).

Sequences: Sequences of vectors are treated as matrices and use bold uppercase nota-
tion. For sequences of scalars, we use bold lowercase to emphasize their vector nature (e.g.,
g = (g1, . . . , gT ) ∈ RT ).

Indexing Conventions

Subscripts serve multiple purposes:

• Element indexing: xi denotes the i-th element of vector x

• Time indexing: st denotes the state at time t
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• Sequence indexing: hk denotes the k-th element in a sequence

• Task/component specification: θDT denotes parameters for the Decision Trans-
former component

Superscripts are reserved for:

• Sample indexing: x[i] denotes the i-th data sample, with brackets to distinguish
from exponentiation

• Iteration indexing: θ(t) denotes parameters at iteration t, with parentheses for clar-
ity

• Type specification: X h denotes high-return contexts, αh
k denotes high-return pro-

portion

Bracket Conventions:

• Square brackets [·] for sample indices: H [i], x[i]

• Parentheses (·) for iteration indices: θ(1), W (2)

• Curly braces {·} for sets: {1, 2, . . . , N}

• Angle brackets 〈·〉 for inner products: 〈x,y〉

Sequence and Range Notation

Subsequence notation: St2
t1
= (st1 , . . . , st2) denotes elements from index t1 to t2 (inclu-

sive).

Relative indexing:

• S−Ks denotes the past Ks states (shorthand for St
t−Ks

)

• g+Kr
denotes the future Kr returns (shorthand for gt+Kr+1

t+1 )

Integer sets: [N ] := {1, 2, . . . , N} denotes the set of integers from 1 to N .

Special Symbols

Operators and Functions:

• ‖ · ‖2: Euclidean norm

• ‖ · ‖F : Frobenius norm
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• ‖ · ‖1: 1-norm

• σ(·): Softmax function

• N (µ,Σ): Gaussian distribution with mean µ and covariance Σ

• B(p): Bernoulli distribution with parameter p

• ∆k−1: (k − 1)-dimensional probability simplex

Constants:

• η: Learning rate

• γ: Discount factor

• ϵ: Small positive constant (context-dependent)

• ξ: Numerical stability constant

Chapter-Specific Notation

Symbol Type Description
M Set Markov Decision Process
S Set State space
A Set Action space
P (·|·, ·) Function Transition probability function
R(·, ·) Function Reward function
γ Scalar Discount factor
st Vector State at time t
at Vector Action at time t
rt Scalar Reward at time t
gt Scalar Return-to-go at time t
Gt Scalar Discounted return at time t
π Function Policy (behavioral or general)
π∗ Function Optimal/target policy
τ Sequence Trajectory
T Set Dataset of trajectories

Table 2: Core reinforcement learning notation used throughout all chapters

– 9 –



Symbol Type Description
S Matrix Sequence of states in trajectory
A Matrix Sequence of actions in trajectory
g Vector Sequence of returns in trajectory
Ā Matrix Sequence of action regions
Γt Set Context at time t
Γ+
t Set Extended context with action regions

K Scalar Context length
b Scalar Action space discretization granularity
ms Scalar State space dimensionality
ma Scalar Action space dimensionality
θDT Vector Decision Transformer parameters
θs Vector State prediction parameters
θg Vector Return prediction parameters
λ Vector Task weights on unit simplex
LDT Function Action prediction loss
Ls Function State prediction loss
Lg Function Return prediction loss

Table 3: Notation specific to Chapter 1

Symbol Type Description
Kr Scalar Encoder context length (returns)
Ks Scalar Decoder context length (states)
S−Ks Matrix Past Ks states
g+Kr

Vector Future Kr returns
θRGDT Vector RGDT model parameters
ϕRGDT Vector Inverse dynamics parameters
ρθ Function State distribution function
πϕ Function Inverse dynamics policy

Table 4: Notation specific to Chapter 2
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Symbol Type Description
θ Vector Shared model parameters
Lx Function Task x loss function
Ly Function Task y loss function
gx Vector Gradient of task x

gy Vector Gradient of task y

Φ Scalar Angle between task gradients
W Matrix Attention weight matrix
H [i] Matrix Token embedding sequence
h̄
[i] Vector Query token

c[i] Vector Context vector
ζ[i] Vector Attention weights
V Set Token vocabulary
Vx Set Task x vocabulary
Vy Set Task y vocabulary
din Scalar Embedding dimension
W x Matrix Task x prediction matrix
W y Matrix Task y prediction matrix

Table 5: Notation specific to Chapter 3

Chapter 4 - Sample Complexity Analysis

Symbol Type Description
D Set Supervised learning dataset
c[i] Element Discrete context (from X )
ℓ[i] Element Next token label
X Set Context space
Y Set Token/action space
C Scalar Number of contexts (|X |)
V Scalar Vocabulary size (|Y|)
X h Set High-return contexts
X l Set Low-return contexts
Ch Scalar Number of high-return contexts
αk Scalar Expected proportion from policy k

αh
k Scalar High-return proportion from policy k

βh
c Scalar Estimated high-return proportion for context c

Nc Scalar Number of samples with context c
νhmin Scalar Minimum high-return samples
p Matrix Learned conditional distribution
π∗ Matrix Target policy matrix

Table 6: Notation specific to Chapter 4
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Function and Distribution Notation

Probability Distributions

• Discrete distributions: π(a|s) denotes the probability of action a given state s

• Continuous distributions: N (µ,Σ) for Gaussian, B(p) for Bernoulli

• Empirical distributions: p(v|c) denotes learned conditional probabilities

Loss Functions and Optimization

• Loss functions: Always denoted with calligraphic L with appropriate subscripts

• Gradients: ∇θL or abbreviated as g when the context is clear

• Hessians: ∇2
θL for second-order derivatives

Norms and Inner Products

• Vector norms: ‖x‖2 (Euclidean), ‖x‖1 (Manhattan)

• Matrix norms: ‖X‖F (Frobenius), ‖X‖2 (spectral)

• Inner products: 〈x,y〉 or xTy (equivalent for real vectors)

Usage Guidelines

1. Consistency: When the same mathematical object appears across chapters, it main-
tains the same notation unless explicitly noted in a remark.

2. Context clarity: Subscripts and superscripts are chosen to maximize clarity. Time
indices use subscripts, sample indices use bracketed superscripts.

3. Dimensionmatching: Vector and matrix dimensions are implicitly defined by con-
text but explicitly stated when first introduced or when clarity demands.

4. Overloading: Some symbols are overloaded (e.g., π for both behavioral and specific
policies) but the context makes the usage clear.

5. Remarks: When notation differs from established conventions or when connecting
concepts across chapters, explicit remarks are provided to guide the reader.

This notation system follows established conventions in the machine learning and rein-
forcement learning literature while maintaining internal consistency throughout the the-
sis.
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Chapter 1

Multi-Objective Decision Transformers
for Offline Reinforcement Learning

1.1 Introduction

In the realm of offline Reinforcement Learning (RL), traditionally referred to as batch RL
[3, 9], the objective is for an agent to acquire effective policies solely from static, finite
datasets. These datasets are often harvested by an arbitrary, possibly unknown process,
devoid of online interaction. This paradigm is particularly appealing across a range of real-
world applications where data is readily available, but exploratory actions using untrained
policies are prohibitive due to high costs or potential risks. Examples of such domains
include robotics [10], recommender systems [11] , education [12], autonomous driving [13],
and healthcare[14].

Early work in offline RL extended traditional off‐policy algorithms by introducing vari-
ous policy or value-regularization schemes to mitigate distributional shift when bootstrap-
ping from fixed data. Seminal methods include BCQ [3], BEAR [5], CQL [4], AWAC [15],
and BRAC [16]. While these methods demonstrated stable offline policy learning with-
out environment interaction, they still suffer from extrapolation and overestimation biases
inherent to off‐policy value updates [3, 4], a conservatism–vs.–over‐restriction trade‐off
[16], and strong hyperparameter sensitivity in the absence of online validation [17, 18].
Moreover, off‐policy updates can amplify errors over long horizons, making the choice of
discount factor γ a delicate balance between bias and variance [19, 20].

Alternatively, the challenges of traditional off-policymethods havemotivated researchers
to pursue simpler supervised learning approaches for offline RL. In particular, the sequential
nature of trajectory data has inspired methods that recast offline RL as a sequence modeling
task [7, 21], leveraging the algorithmic elegance and scalability of techniques from natural
language processing. The key insight behind these approaches is that trajectories contain
valuable behavioral information even when suboptimal for a specific reward function—
behavior deemed ineffective for one task might be optimal for another. By conditioning on
desired outcomes (e.g., target returns) or employing planning heuristics (e.g., beam search),
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these sequence modeling methods can extract effective policies through direct filtered im-
itation without value bootstrapping or complex regularization schemes [22].

Two seminal architectures have emerged in the sequence modeling approach to offline
RL: the Trajectory Transformer (TT) [21] and the Decision Transformer (DT) [7]. While
both leverage the transformer architecture, they differ fundamentally in their representa-
tion of trajectories and learning objectives.

TT adopts a component-level tokenization scheme where each dimension of states, ac-
tions, and returns is independently discretized and treated as a distinct token. For ms-
dimensional states and ma-dimensional actions over τ timesteps, this results in sequences
of length τ (ms + ma + 1). TT is trained to model the joint distribution over all trajec-
tory components autoregressively, enabling flexible policy extraction through beam search
planning. The authors demonstrate that this fine-grained tokenization leads to distinctive
attention patterns, where heads learn either Markovian strategies or dimension-specific
“action smoothing” behaviors [21]. This architectural design maintains theoretical con-
sistency with the original transformer paradigm, but the discretization process introduces
computational challenges during both training and inference.

In contrast, DT employs modality-level tokenization where states, actions, and returns
are embedded through shared linear layers, focusing primarily on action prediction. While
this architectural choice offers computational efficiency and simplicity, empirical evidence
suggests limitations in how the model utilizes its attention mechanism. Recent work [23]
systematically compared tokenization strategies and found that finer component-level to-
kenization consistently outperforms modality-level approaches in representation quality
and downstream performance, suggesting that DT’s coarse tokenization may create an in-
formation bottleneck.

Analysis of attention patterns confirms this limitation. As shown in Figure 1.1, DT
exhibits attention patterns that are remarkably homogeneous across different transformer
blocks, with minimal specialization or diversity. This contrasts sharply with patterns ob-
served in transformers across other domains. In NLP, [24] demonstrated that BERT’s [25]
attention heads develop specialized functions, with different heads attending to specific lin-
guistic structures. Similarly, in computer vision, [26] found that Vision Transformer heads
learn distinct spatial attention patterns, from local neighborhood focus to global image-
wide attention.

The patterns observed in TT (Figure 4 in [21]) more closely resemble this expected di-
versity, suggesting that the issue stems from DT’s architectural design rather than being
inherent to offline RL data. [27] further reinforced this hypothesis by showing that simply
disentangling action dimensions in DT architectures enhances attention diversity and im-
proves performance, as different heads can then specialize in different action components.

These observations suggest a critical question: without altering DT’s computationally
efficient tokenization approach, how can we encourage more diverse and effective attention
patterns? We propose that multi-task learning provides a natural solution. By training
the model to predict not only actions but also states and returns under the framework
of multi-objective optimization, we can force the attention mechanism to differentiate be-
tween tokens of the same modality type and develop more specialized attention heads. This
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Figure 1.1: Attention patterns per block for DT during action prediction on the walker2d
environment. Top row: Attention heatmaps where rows represent state tokens (as we fo-
cus only on next action prediction) and columns represent the full 60 tokens (20 tokens per
modality context). The lower triangular structure results from masking future tokens, with
color intensity indicating attention strength between the corresponding tokens. Bottom
row: Mean attention weights from states to each modality (Returns, States, Actions) with
standard deviation shown as error bars. The bar plots reveal that DT exhibits relatively uni-
form attention across modalities with minimal variation between layers, suggesting limited
attention specialization.

approach maintains DT’s computational advantages while addressing its limitations in at-
tention utilization. We name our proposed approach Multi-Objective Decision Transformer
(MO-DT).

Following our analysis of Figure 1.1, we observe another concerning pattern: the model
appears to be overly reliant on previous action tokens, attributing considerable attention
weight to them. This is problematic as it biases the model toward pure behavioral cloning
rather than learning generalizable state-action relationships, potentially leading to causal
confusion [28] – a phenomenon where models leverage spurious correlations in training
data rather than true causal factors. [28] demonstrated that providing a policy with the
expert’s past actions can paradoxically worsen performance by encouraging reliance on
these misleading signals.

We hypothesize that this phenomenon in DT stems from fundamental differences in
how states and actions evolve in dynamical systems [29]. States typically change more
smoothly due to physical constraints and system dynamics, while actions (as direct con-
trol inputs) can change more abruptly between timesteps. This inherent difference creates
more distinctive patterns in action token sequences compared to state (and return) tokens,
making them easier targets for attention mechanisms to latch onto. In control systems,
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this distinction is well-understood: state trajectories exhibit smoothness due to inertia and
dynamics integration, while control signals can contain higher-frequency components [30].

To address this limitation, we propose to introduce action space regions — a higher-level
abstraction that groups similar actions— as additional tokens in the trajectory representa-
tion. This approach, which we call Trust Region Decision Transformer (TRDT), is designed
specifically to modify how the transformer’s attention mechanism processes trajectories.
By providing a coarser representation of the action space alongside the original actions,
we encourage the model to develop attention patterns that are less fixated on exact action
reproduction and more focused on meaningful state-action relationships. This is conceptu-
ally similar to addressing causal confusion as studied by [31], who found that preventing
models from overfitting to spurious correlations improves generalization. In our case, ac-
tion regions serve as an inductive bias that helps the transformer avoid over-relying on
specific action tokens, leading to more balanced attention distribution across modalities.

Our experiments on locomotion benchmarks from the D4RL dataset [32] demonstrate
that both MO-DT and TRDT significantly outperform our primary baseline (vanilla DT)
while achieving performance that matches or exceeds state-of-the-art off-policy methods.
Moreover, analysis of the learned attention patterns confirms our hypothesis about in-
creased diversity and more balanced cross-modal attention. To theoretically understand
these empirical improvements, we present a formal analysis in Section 1.6 that leverages
recent advances in analyzing the implicit bias of transformer attentionmechanisms. Specif-
ically, we employ the Token-Priority Graph framework [33] to prove that single-objective
training induces a strict hierarchy in the attention structure that prioritizes action tokens
while suppressing state tokens. In contrast, multi-objective training creates strongly con-
nected components spanning different modalities, enabling more nuanced attention distri-
butions. This theoretical insight not only explains the empirical success of our proposed
methods but also provides a principled foundation for transformer-based approaches to
offline RL.

The remainder of this paper is organized as follows. Section 1.2 reviews related work
on transformers for reinforcement learning and attention diversity. Section 1.3 establishes
notation and provides background on Decision Transformers. Section 1.4 introduces our
multi-objective approach and trust region augmentation method, detailing their formula-
tions and inference procedures. Section 1.5 presents experimental results on D4RL bench-
marks, ablation studies, and attention pattern analysis. Section 1.6 provides theoretical in-
sights using the Token-Priority Graph framework to explain why multi-objective training
induces more diverse attention patterns. We conclude with a discussion of contributions
and future directions.

1.2 Related Work

In this section, we provide an overview of the related work relevant to our study, focusing
on two main fields: (1) transformers for reinforcement learning, and (2) explicit regulariza-
tion techniques in transformers.

– 16 –



Multi-Objective Decision Transformers for Offline Reinforcement Learning

Transformers forReinforcement Learning Recent advancements in casting reinforce-
ment learning as a supervised learning problem have been noteworthy [34, 35]. As a fur-
ther development of this paradigm, numerous studies have suggested treating offline RL as
a context-conditioned sequence modeling problem [7, 21, 36], with [37] providing theoret-
ical analysis of when such return-conditioned supervised learning succeeds or fails. This
approach places greater emphasis on the predictive modeling of action sequences based on
task specifications (e.g., returns or goals) rather than explicitly learning Q-functions or pol-
icy gradients, as commonly done in conventional model-free RL methods. [7] implemented
a transformer [6, 38] as a model-free, context-conditioned deterministic policy, while [36]
introduced a more general probabilistic formulation that employs a stochastic policy, which
proved to be more effective in offline settings and can be fine-tuned efficiently in online
scenarios. [21] employed a transformer as both a model and a policy, revealing that the
integration of beam search can improve performance beyond several purely off-policy RL
approaches. Despite their successes, these approaches face limitations in certain scenarios,
with [39] demonstrating that Decision Transformers can struggle in stochastic environ-
ments due to overfitting to lucky trajectories.

Later research has explored various architectural innovations and training methodolo-
gies to address these limitations. Architectural extensions include Multi-Game Decision
Transformers for transfer learning across multiple tasks [40], Context-Former for improved
trajectory stitching via latent conditioning [41], DeFog for handling missing observations
[42], and Graph Decision Transformer for processing graph-structured state spaces [43].
Additionally, the efficacy of these sequence modeling techniques can be enhanced through
advanced trainingmethodologies borrowed fromNLP, including transfer learning [44], self-
training [45], or contrastive learning [46].

In our work, we interrogate the foundational design choices of DT, particularly focus-
ing on attention mechanisms and optimization objectives, as opposed to leveraging com-
plex trainingmethodologies or architectural extensions. By examining howmulti-objective
training affects transformer attention patterns, we provide insights that complement exist-
ing theoretical analyses [37] while maintaining the computational efficiency that makes DT
appealing in practice. Naturally, the incorporation of sophisticated techniques explored in
recent literature could further enhance our proposed models in future research.

AttentionMechanisms and Diversity in Transformers. Attention mechanisms form
the core of transformer architectures, allowingmodels to selectively focus on different input
elements when generating outputs. A growing body of research has sought to understand
how thesemechanisms function and develop specialized roles. Studies across both language
and vision domains have revealed that attention heads can develop distinct functional spe-
cializations when properly trained. In NLP, [47] demonstrated that different heads focus
on specific linguistic patterns, with some tracking long-range dependencies while others
handle local details. Similarly, in computer vision, [26] found that vision transformer heads
exhibit distinct spatial attention patterns ranging from local neighborhood focus to global
image-wide attention. This functional specialization appears to be particularly pronounced
in multi-task settings, where [48] showed heads can evolve to attend to different aspects of
the input data when simultaneously processing multiple objectives.
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Despite the potential for specialization, researchers have observed that transformers of-
ten develop redundant attention patterns. [49] demonstrated that many heads in transform-
ers are functionally redundant, with pruning a large fraction of heads having minimal im-
pact on performance. This redundancy can limit model expressivity and computational ef-
ficiency, as noted by [50], who found that attention matrices often lie in a low-dimensional
space with many heads attending in similar ways. The problem is particularly pronounced
in single-task settings, where the model lacks diverse learning signals that might encour-
age attention diversity. This redundancy is not merely a computational inefficiency but can
also limit the transformer’s ability to capture complex patterns in the data.

To address this limitation, various regularization approaches have been proposed to pro-
mote diversity among attention heads. These techniques aim to ensure that different heads
attend to distinct aspects of the input, effectively expanding the model’s representational
capacity. Several methods have been explored, including introducing additional loss terms
to explicitly encourage diversity among attention head outputs [51], leveraging dropout
mechanisms [52] to randomlymask attention heads [53, 54] or entire encoder/decoder block
layers [54] during training, and employing relaxed attention methods [55, 56] that modify
how attention weights are computed. These approaches share the common goal of prevent-
ing heads from learning redundant patterns, though they differ in their implementation and
theoretical underpinnings.

While explicit regularization has shown promise, an alternative approach is to provide
the model with multiple learning objectives that naturally encourage attention diversity.
[48] found that multi-task learning can enhance functional specialization among attention
heads by reducing negative transfer between tasks. Similarly, [57] observed the emergence
of specialized ”induction heads” in languagemodels trained on diverse corpora, which learn
to replicate token sequences and enable higher-level capabilities. These findings suggest
that multi-objective training may serve as an implicit form of attention regularization, en-
couraging heads to specialize in different aspects of the input data. In our work, we lever-
age this insight by incorporating state, action region, and return prediction tasks alongside
the primary action prediction task, achieving increased attention diversity without explicit
regularization terms.

1.3 Preliminaries

We adopt the Markov decision process (MDP) framework to model our environment, de-
noted byM = 〈S,A, P, R, γ〉, whereS andA represent the state and action spaces, respec-
tively. The probability distribution over transitions is denoted by P (st+1 | st,at), while
the reward function is defined as R(st,at). The discount factor, γ, is used to weigh the
importance of future rewards. The agent starts in an initial state s1 sampled from the fixed
distribution p(s1) and chooses an action at ∈ A from the state st ∈ S at each timestep
t. The agent then transitions to a new state st+1 according to the probability distribution
P (· | st,at). After each action, the agent receives a deterministic reward rt = R(st,at).
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1.3.1 Setup and Notation

Throughout this paper, we use bold capital letters (e.g., X , W ) to denote matrices, bold
lowercase letters (e.g., x, v) for vectors, and regular lowercase letters (e.g., x, a) for scalars.
Subscripts on vectors denote rows from matrices (e.g., xi is the i-th row vector of X) and
double subscript indices denote scalar entries of matrices (e.g., xi,j is the element in i-th
row and j-th column of X). We use superscripts (e.g., X [i]) to denote the i-th data sample.

Our goal is to model the offline RL problem as a sequence modeling problem, with the
agent having access to a fixed dataset of trajectories T collected using an unknown behav-
ioral policy. We use τ to represent a trajectory and |τ | to denote its length. The return-to-go
of a trajectory τ at timestep t is defined as the sum of future rewards starting from that
timestep, i.e., gt =

∑|τ |
t′=t rt′ . Note that throughout this paper, we use ’return’ as shorthand

for ’return-to-go’ to avoid confusion with traditional returns in RL. The sequence of states,
actions, action regions, and returns of trajectory τ are represented by S = (s1, . . . , s|τ |),
A = (a1, . . . ,a|τ |), Ā = (ā1, . . . , ā|τ |), and g = (g1, . . . , g|τ |), respectively. We denote
the quantization granularity of the action space as b, the dimensionality of the action space
as ma, and the dimensionality of the state space as ms.
Remark 1 (Notation for Sequences). Throughout this thesis, we treat sequences of scalars
as vectors and denote them using bold notation. For instance, while individual returns gt
are scalars, the sequence of returns g = (g1, . . . , g|τ |) is denoted in bold as it can be viewed
as a vector in R|τ |. This convention maintains consistency with our general principle that
bold symbols represent multi-dimensional objects.
Remark 2 (Return Notations). Throughout this thesis, we primarily use gt to denote the
return-to-go (sum of future rewards). In subsequent chapters, we may introduce additional
notations for different types of returnswhen needed. For instance,Gt may be used to denote
discounted returns when the distinction from return-to-go is important for the analysis.

1.3.2 Decision Transformer

The DT model is designed to process a trajectory τ as a sequence of three types of input
tokens: returns, states, and actions. Formally, the trajectory τ is represented as follows:

τ = (g1, s1,a1, g2, s2,a2, . . . , g|τ |, s|τ |,a|τ |) (1.1)

The initial return g1 is equivalent to the return of the trajectory. At each timestep t, DT
utilizes the latestK tokens to generate an action at. The value ofK is a hyperparameter re-
ferred to as the context length for the transformer, which may be shorter during evaluation
than the one used during training.

For clarity and compactness, we define the context up to time t as

Γt = {gtt−K ,S
t
t−K ,A

t−1
t−K} (1.2)

where St
t−K represents the sequence of K past states from max(1, t − K + 1) to t, and

similarly for gtt−K and At−1
t−K . Note that by convention, Γt does not include the action at at
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the current timestep, as this is precisely what the model aims to predict. For models that
also utilize action regions, we extend our context notation to Γ+

t = {Γt, Ā
t−1
t−K}.

DT can learn either a deterministic or a stochastic policy πθDT
(at | Γt). This creates

an autoregressive model of orderK . DT parameterizes the policy using a GPT architecture
[38], which applies a causal mask to enforce the autoregressive structure in the predicted
action sequence.

1.4 Multi-Objective Decision Transformers

In a standard probabilistic framework, the goal of DT is to learn a stochastic policy that
maximizes the likelihood of the training data [36].

For continuous action spaces, we model the policy using a multivariate Gaussian distri-
bution with a diagonal covariance matrix [58]. Formally, the probability density assigned
to action vector at at time step t, given the context of past tokens, is expressed as:

πθDT
(at | Γt) = N (µθDT

(Γt),ΣθDT
(Γt)), ∀t (1.3)

Themean vectorµθDT
and covariance matrixΣθDT

are produced by the transformer model
with parameters θDT .

The primary task loss is the negative log-likelihood:

LDT (θDT ) = −
1

K
Eτ∼T

[
K∑
k=1

log πθDT
(ak | Γk)

]
(1.4)

When the covariance matrix ΣθDT
is diagonal with uniform variances across dimensions,

this problem reduces to learning a deterministic policy with standard ℓ2 loss, as imple-
mented in the original DT [7]. This type of regression problem is referred to as heteroscedas-
tic regression [59].

1.4.1 Multi-Task Learning for Decision Transformers

In addition to the primary task of action prediction, we introduce two auxiliary tasks,
namely, state prediction and return prediction. These are parameterized by θs and θg re-
spectively, which together with θDT form the complete parameter set θ.

For state prediction, we model the next state distribution as a multivariate Gaussian:

ρ
(1)
θs
(st | Γt−1) = N (µθs

(Γt−1),Σθs(Γt−1)), ∀t > 1 (1.5)

For return prediction, we model the next return distribution as a univariate Gaussian:

ρ
(2)
θg
(gt | Γt−1) = N (µθg(Γt−1), σ

2
θg
(Γt−1)), ∀t > 1 (1.6)
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Note that unlike action prediction which uses the current context Γt, state and return pre-
dictions use the previous context Γt−1 since we are predicting the next state and return
given past information.

The auxiliary loss functions correspond to negative log-likelihoods of these distribu-
tions:

Ls(θs) = −
1

K
Eτ∼T

[
K∑
k=1

log ρ(1)θs
(sk | Γk−1)

]
(1.7)

Lg(θg) = −
1

K
Eτ∼T

[
K∑
k=1

log ρ(2)θg
(gk | Γk−1)

]
(1.8)

TheMulti-Objective Decision Transformer (MO-DT) jointly optimizes these auxiliary losses
together with the primary action prediction loss using linear scalarization:

θ∗ = argmin
θ

∑
i∈{DT,s,g}

λiLi(θi) (1.9)

where θ =
⋃

i∈{DT,s,g} θi represents the complete set of model parameters, and λ =

[λDT , λs, λg] are task-specific weights on the unit simplex

∆2 =

λ ∈ R3 : λi ≥ 0 for all i and
∑

i∈{DT,s,g}

λi = 1

 (1.10)

This linear scalarization approach provides computational efficiency, though it may not
guarantee Pareto optimality in non-convex optimization landscapes. More advanced multi-
objective optimization techniques [60, 61] could potentially improve performance but intro-
duce additional computational complexity and hyperparameters, which we leave for future
work.

1.4.2 Trust Region Decision Transformer

In the offline RL setting, trajectories are typically generated by behavior policies that may
be sub-optimal and highly stochastic, leading to diverse action distributions within each
trajectory. This creates a potential limitation for MO-DT, which could become overly fo-
cused on these specific actions during prediction. To address this challenge, we introduce
TRDT, which augments trajectories with action regions that group semantically similar
actions.

Action Region Augmented Trajectories. We modify the trajectory representation in
Eq. 1.1 by incorporating action regions:

τ = (g1, s1, ā1,a1, g2, s2, ā2,a2, . . . , g|τ |, s|τ |, ā|τ |,a|τ |) (1.11)
Here, āt represents the region vector for action at, obtained through coarse uniform dis-
cretization of the continuous action space. This approach preserves Euclidean distance

– 21 –



ChapteR 1

relationships from the original action space, potentially capturing the underlying problem
structure better than the empirical training distribution.

Efficient Action Region Representation. To manage high-dimensional action spaces
efficiently, we represent action regions using ordinal encodings [62] instead of one-hot en-
codings. For an action space of dimensionality ma with discretization granularity b, each
action dimension is represented by an ordinal encoding vector of length b. The complete ac-
tion region encoding is formed by concatenating these vectors, resulting in a binary vector
of dimensionality b×ma.

This representation offers two key advantages: (1) it scales linearly with action dimen-
sionality rather than exponentially, and (2) it maintains ordinal relationships between dis-
cretized actions. Formally, we model the distribution of action regions using a multivariate
Bernoulli distribution:

ρ
(3)
θā
(āt | Γ+

t ) =
b×ma∏
j=1

B(pθā,j(Γ
+
t )) (1.12)

where pθā,j represents the probability of the j-th element in the binary action region vector,
and B(p) represents the Bernoulli probability mass function with parameter p.

The corresponding negative log-likelihood loss is:

Lā(θā) = −
1

K
Eτ∼T

[
K∑
k=1

log ρ(3)θā
(āk | Γ+

k )

]
(1.13)

During inference, we use a simple threshold-based approach, classifying values above 0.5
as 1 and below as 0. While more sophisticated techniques exist for ordinal encoding pre-
diction, such as sequential prediction [62] or factorized architectures [63], our approach
balances effectiveness with computational efficiency.

Multi-Objective Optimization with Action Regions. When incorporating action re-
gions, we adapt the probabilistic functions ρ

(1)
θs

, ρ(2)θg
, and πθDT

to condition on previous
action regions in addition to actions, states, and returns. Importantly, we do not condition
the prediction of at on the corresponding action region āt at the same timestep for two
reasons: (1) it eliminates the need for action region prediction during inference, and (2) it
prevents error propagation if the model predicts sub-optimal action regions.

The complete multi-objective optimization problem for TRDT becomes:

θ∗
TR = argmin

θTR

∑
i∈{DT,s,g,ā}

λiLi(θTR) (1.14)

where θTR =
⋃

i∈{DT,s,g,ā} θi represents the complete set of model parameters, and λ =

[λDT , λs, λg, λā] are task-specific weights on the unit simplex ∆3.
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1.4.3 Inference Procedure

During evaluation, both MO-DT and TRDT utilize a closed-loop inference process that
leverages their multi-task capabilities.

For MO-DT, we begin with an initial state vector s1 and a desired return scalar g1. Since
there is no prior history at the first timestep, the model generates the initial action using a
restricted version of the action prediction head:

a1 = µθDT
(Γ1) (1.15)

where Γ1 = {g1, s1} contains only the initial state and target return. After executing this
action, the model predicts the next return using the return prediction head:

g2 = µθg(Γ
+
1 ) (1.16)

where Γ+
1 = {g1, s1,a1} represents the initial history augmented with the first action. This

return prediction capability represents a key departure from standard DT, which typically
derives the next return by subtracting the received reward. Our empirical results demon-
strate that model-based return prediction leads to more consistent performance. The agent
then observes the next state s2 from the environment transition function P (· | s1,a1) and
generates the next action using the complete history:

a2 = µθDT
(Γ2) (1.17)

where Γ2 = {g1, g2, s1, s2,a1}. This cycle continues until episode termination, with each
step leveraging the full context of previously observed states, actions, and predicted returns.

For TRDT, the inference procedure follows the same overall structure with one addition:
at each timestep, we also append the corresponding action region āt to the trajectory after
generating action at. Following our training methodology, the action region is not used to
condition the action prediction at the same timestep, but becomes part of the context for
future predictions. Both methods are summarized in Algorithm 1.

1.5 Results and Analysis

Our experiments are designed to comparatively evaluate our two proposed multi-objective
decision transformers against prior offline RL methods. Specifically, we aim to understand
how the incorporation of multi-objective optimization affects the attention mechanism in
the Decision Transformer. Furthermore, we vary different components of our approach to
demonstrate their significance.

Benchmark andComparedBaselines. Weevaluate our algorithms, MO-DT andTRDT,
on the D4RL offline dataset for continuous control tasks [32]. Our experiments are con-
ducted in the Gym domain [64], encompassing three environments (halfcheetah, hopper,
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Algorithm 1 Multi-Objective Decision-Transformer Training & Inference
Require: fixed dataset of trajectories T ; context length K ; learning-rate η; weight vector

λ; discretisation granularity b

1: initialise parameters θDT ,θs,θg,θā

Training phase
2: for each training iteration do
3: sample mini-batch {τ i} ∼ T
4: if model = MO-DT then
5: compute losses LDT ,Ls,Lg

6: L ←
∑

i∈{DT,s,g} λiLi

7: else ▷ TRDT branch
8: augment each trajectory with action-regions āt

9: compute losses LDT ,Ls,Lg,Lā

10: L ←
∑

i∈{DT,s,g,ā} λiLi

11: end if
12: LAMB-update: θ ← LAMB(θ,∇θL, η)
13: end for

Inference phase
Require: initial state s1, target return g1
14: Γ1 ← {g1, s1}
15: for t← 1 to Tepisode do
16: if model = MO-DT then
17: at ← µθDT

(Γt)

18: else ▷ TRDT branch
19: at ← µθDT

(Γ+
t )

20: compute āt from at

21: end if
22: execute at; observe rt, st+1

23: predict gt+1 with θg

24: update history Γt+1 (and Γ+
t+1 for TRDT)

25: trim history to the last K tokens
26: end for

walker2d), each with three levels (medium, medium-replay, medium-expert). All experi-
ments utilize the ’v2’ version of D4RL. For comparison, we consider our primary baseline,
DT [7], and the offline variant of the online decision transformer, ODT-O, proposed in [36].
This variant substitutes the deterministic policy of DT with a Gaussian policy. Results from
the original papers of both methods are reported. For the experiments of ’medium-expert’
for ODT-O are based on our reproduction following the hyperparameters and code of the
authors. We also compare against the two strongest dynamic programming-based state-of-
the-art methods CQL[4] and IQL[4]. As the original paper for CQL reports performance
on the ’V0’ version of D4RL, which generally performs worse than ’V2’, we refer to results
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reported in [65]. Additionally, we compare with pure Behavioral Cloning (BC) and its vari-
ant, 10% BC, which mimics the behavior of the top 10%. For BC, we report results from
[65], and for 10% BC, we refer to [7].

1.5.1 Hyperparameters of MO-DT and TRDT

In this section, we detail the optimal architectural and hyperparameter settings for MO-DT
and TRDT. Our chosen model is half the size of the ODT-O model presented in [36]. Specif-
ically, our model employs a Transformer structure comprising four layers, each equipped
with four attention heads. The embedding size is set to 256, deviating from the 512 dimen-
sion embedding used in ODT-O. Our empirical studies revealed no significant performance
gain by increasing the embedding size to 512.

For bothmodels, we used the LAMBoptimizer [66] to optimize themodel parameters. In
terms of scalarization coefficients, uniform values have consistently yielded superior results
across all conducted experiments with both models. Finally, consistent with the findings
from [36], our models do not incorporate positional embeddings. We found this approach
to yield superior results compared to configurations that include them. For TRDT, we used
an action region granularity b = 3 for all experiments. The full list of hyperparameters is
summarized in Table 1.1.

Hyperparameter Value
Number of bins (TRDT) b = 3

Linear scalarization coefficients (MO-DT) Uniform
Linear scalarization coefficients (TRDT) Uniform
Number of layers 4
Number of attention heads 4
Embedding dimension 256
Context Length K 20
Dropout 0.1
Nonlinearity function ReLU
Batch size 256
Learning rate 0.0001
Weight decay 0.001
Gradient norm clip 0.25
positional embedding No
Learning rate warmup linear warmup for

104 training steps
Total number of updates 105

Table 1.1: Summary of Hyperparameters used to train MO-DT and TRDT

In terms of the initial return prompt for both models, empirical evidence indicated that
initializing with a return value twice that of the expert’s return yielded superior results
across all tested datasets, with the exception of the HalfCheetah dataset. For this particular
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dataset, the use of the expert return proved most effective. The exact return values are
summarized in Table 1.2

Domain Initial Return Value
Halfcheetah 12000
Walker2d 10000
Hopper 7200

Table 1.2: Initial Return value for each environment
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Figure 1.2: Block-wise attention patterns for MO-DT during action prediction on walker2d.
Top row: Unlike DT, MO-DT demonstrates diversified focus on different tokens per block,
indicative of more efficient utilization of the transformer’s attention mechanism. Bottom
row: Mean attention weights reveal progressive specialization across layers, with later lay-
ers showing increased attention to action tokens while maintaining balanced attention to
other modalities. The error bars indicate greater variance in attention patterns compared
to vanilla DT, suggesting that multi-objective training encourages attention head special-
ization.

1.5.2 Investigating the learned attention patterns

In Figures 1.2 and 1.3, we present attention maps for MO-DT and TRDT models, respec-
tively. Firstly, we discern that both models prompt the decision transformer to focus selec-
tively on distinct tokens per block, with the attention appearing sparser for the TRDT case,
contrasting the uniform attention patterns displayed by DT as shown in Figure 1.1. This
implies that multi-objective optimization in our configuration potentially mirrors the ef-
fects of contemporary transformer regularization techniques. Secondly, we note that later
blocks of the transformer model predominantly engage with high-level representations of
action tokens over return or state tokens. This observation aligns with the findings by [21]
for the Trajectory Transformer. Lastly, for TRDT, attention in subsequent blocks is divided
between action regions and action tokens, hinting at a decreased dependency on the behav-
ioral policy. Despite the derivation of action regions from the behavior policy, their coarse
nature (we use b = 3 across all experiments) leads to their presence in a wider array of tra-
jectories and contexts, possibly enhancing the DT model’s capacity to effectively integrate
different trajectory segments.

Gaussian vs Deterministic Attention Heads To substantiate our choice of Gaussian
prediction heads for states and returns over linear prediction heads (trained using mean
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Figure 1.3: Block-wise attention patterns for TRDT during action prediction on walker2d.
Top row: The inclusion of action regions promotes more localized attention distribution,
potentially indicating enhanced capacity to distinguish between tokens of the same type.
Notably, attention at later blocks is allocated between both actions and action regions. Bot-
tom row: Mean attention weights show that TRDT distributes attention more evenly be-
tween action regions and actions in later layers, reducing over-reliance on specific action
tokens. The substantial error bars indicate highly specialized attention heads, with different
heads focusing on different modalities—a key advantage over vanilla DT’s homogeneous
attention patterns.

squared error minimization), we comparedMO-DT and TRDT both with and without Gaus-
sian prediction heads in Figure 1.4a. For simpler environment dynamics, as in the Hop-
per environment (action dimensionality 3, state dimensionality 6), deterministic prediction
heads perform on par with their Gaussian counterparts. However, in the face of complex
dynamics, deterministic heads yield high variance within model predictions, an established
observation in RL literature [58].

Importance of Multi-Head Attention In Figure 1.4b, our aim is to evaluate the extent
to which our model leverages the inherent capabilities of the transformer architecture. We
observe that employing a singular attention head detrimentally affects the performance
of both models. The common purpose of multiple attention heads is to facilitate simulta-
neous attention to diverse representation subspaces at distinct positions. Given this, the
performance degradation with a single attention head implies that our model is effectively
utilizing multiple representation subspaces in parallel, thus capitalizing on the transformer
architecture’s potential.
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(a) The effect of Gaussian prediction heads.
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(b) The effect of multi-head attention.

Figure 1.4: Ablation studies showing the effect of each design choice in our proposed meth-
ods across w-m-r (walker2d-medium-replay-v2), ht-m-r (halfcheetah-medium-replay), and
ho-m-r (hopper-medium-replay) datasets.

1.6 Theoretical Insights

In order to understand why incorporating additional tasks leads to improved attention di-
versity, we adopt recent advances from the literature of implicit regularization, which stud-
ies the asymptotic convergence behavior of models trained using gradient descent. In par-
ticular, we employ the Token-Priority Graph framework introduced by [33], which estab-
lishes that self-attention mechanisms trained with gradient descent converge to solutions
that can be characterized as maximum margin classifiers in a graph-structured space. This
theoretical lens allows us to analyze the attention patterns observed in Figure 1.1 and ex-
plain why vanilla DT develop such similar attention patterns across different blocks and
heads. Furthermore, we demonstrate that incorporating auxiliary prediction tasks funda-
mentally alters the structure of these graphs, leading to the more diverse and effective
attention patterns we observe empirically in our multi-objective models.

1.6.1 Self-Attention Formulation for Analysis

To apply the Token-Priority Graph framework to Decision Transformers, we need to in-
troduce theoretical simplifications that make our model amenable to analysis. For clarity
and simplicity, we focus on action and state prediction tasks, though our analysis extends
naturally to any number of modalities or tasks.

In the standard Decision Transformer, different modalities (states, actions, returns) are
embedded through separate projection matrices before being processed by the attention
mechanism. For theoretical tractability, we simplify this representation by assuming all
tokens exist in a common embedding space of dimension din. This allows us to convert the
trajectory dataset T into a supervised learning datasetDmulti = {(H [i], a[i], s[i])}Ni=1, where
H [i] ∈ RK×din represents a sequence of token embeddings, and a[i] ∈ A, s[i] ∈ S represent
target action and state token indices respectively.
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Let h̄[i]
= h

[i]
K denote the final token in the sequence H [i]. For our theoretical anal-

ysis, we employ a simplified self-attention formulation. While standard attention mech-
anisms use separate query, key, and value projection matrices, we follow [33] in using a
single learnable matrix W ∈ Rdin×din that combines query-key interactions, and we as-
sume identity value projections. The self-attention operation then embeds the final token
in a din-dimensional space as follows:

c[i] = H [i]⊤σ(H [i]Wh̄
[i]
), (1.18)

where σ(·) denotes the softmax operation. This formulation represents a weighted linear
combination of input tokens, where the weights are determined by the similarity between
each token and the final token, as measured by W . The vector c[i] ∈ Rdin is referred to as
the context vector of the final token.

For our theoretical analysis to be tractable, we employ the following technical condi-
tions:

1. The embedding matrix H has full row rank, ensuring linear independence among
token embeddings.

2. The token prediction matrices satisfy orthogonality with their respective token em-
beddings, as defined below.

3. The dataset satisfies the realizability condition: for any sequence-target pair (H [i], a[i], s[i]),
both the target action token and the target state token are contained in the input se-
quence H [i].

Given this simplified attention mechanism, we introduce prediction matrices for our
two tasks:

• W a ∈ R|A|×din for action prediction, where |A| is the number of action tokens1

• W s ∈ R|S|×din for state prediction, where |S| is the number of state tokens

Let us denote by wa
i the row vector in W a corresponding to action token i ∈ A, and

similarly ws
j for the row in W s corresponding to state token j ∈ S . These prediction

matrices satisfy the orthogonality condition with respect to the token embeddings:

wa
i · hi = 1 and wa

i · hi′ = 0 ∀i′ 6= i, i′ ∈ A (1.19)
ws

j · hj = 1 and ws
j · hj′ = 0 ∀j′ 6= j, j ′ ∈ S (1.20)

1Throughout this thesis, we primarily work with continuous state and action spaces as defined in our
MDP framework. However, in certain theoretical analyses (e.g., Sections 1.6.1 and 1.6), we employ discretized
or tokenized representations of these spaces for analytical tractability. In such contexts, we use |A| and |S|
with a slight abuse of notation to denote the cardinality of the discretized token sets, rather than the original
continuous spaces. This discretization is particularly relevant when analyzing transformer architectures that
operate on finite vocabularies of tokens.
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where hi and hj represent the token embeddings for action token i and state token j re-
spectively. This condition ensures that each prediction vector can precisely identify its
corresponding token when that token is present in the context vector.

The prediction process produces token scores as follows:

v̂[i]a = wa
a[i] · c

[i] = wa
a[i] ·H

[i]⊤σ(H [i]Wh̄
[i]
) (1.21)

v̂[i]s = ws
s[i] · c

[i] = ws
s[i] ·H

[i]⊤σ(H [i]Wh̄
[i]
) (1.22)

These scores measure how strongly the context vector aligns with each possible token. Un-
der the orthogonality conditions and realizability assumption, if the attention mechanism
places all weight on the target token, the score would be exactly 1 for the correct token and
0 for all others.

Given an input sequenceH [i] with target tokens a[i] and s[i], the empirical risk for both
tasks is formulated using the negative log-likelihood loss:

La(W ) =
1

N

N∑
i=1

− log(v̂[i]a ) (1.23)

Ls(W ) =
1

N

N∑
i=1

− log(v̂[i]s ) (1.24)

The negative log-likelihood is appropriate here because it strongly penalizes low scores for
correct tokens, effectively encouraging the attention mechanism to prioritize target tokens
in the context vector.

For multi-objective training, we optimize the combined loss:

Lmulti(W ) = La(W ) + Ls(W ) (1.25)

A critical aspect of our formulation is that while we have multiple prediction tasks (action
and state prediction), they share the same attention mechanism parameterized byW . This
shared parameterization is key to understanding how multi-task learning affects attention
patterns - both tasks influence the same attention weights, potentially leading to differ-
ent Token-Priority Graph structures than would emerge from single-task learning. In the
following section, we formalize how these Token-Priority Graphs characterize the implicit
bias of the attention mechanism under both single-task and multi-task training.

1.6.2 Token-Priority Graphs for Transformer Models

Building on the self-attentionmodel described in the previous section and following the the-
oretical framework described in [33], we introduce the concept of Token-Priority Graphs
(TPGs) that capture the relationship between different tokens in the transformer vocabu-
lary. A TPG is a directed graph where each node represents a token in the transformer’s
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vocabulary. A directed edge from token i to token j indicates that token i has higher pri-
ority than token j in the attention mechanism. Tokens that are mutually reachable from
each other form a strongly connected component (SCC), indicating equal priority.

We use (i � j) ∈ G to indicate that nodes i and j are in the same strongly connected
component of graph G, and (i ⇒ j) ∈ G to denote that a directed path exists from node i
to node j in graph G, but no path from j to i. We also denote by hi the embedding vector
corresponding to token i in the vocabulary, and by ‖W ‖F the Frobenius norm of matrix
W .

The structure of the TPG depends critically on which prediction tasks are used during
training. When training only for action prediction with loss La(W ), the resulting TPG
will differ from that obtained when training with the multi-objective loss Lmulti(W ). This
difference in graph structure is key to understanding whymulti-task learning leads to more
diverse attention patterns.

We define the gradient descent optimization process used to train the attention mech-
anism as follows: given a starting point W (0) and step size η > 0, the gradient descent
update rule for iteration t ≥ 0 is W (t + 1) = W (t)− η∇L(W (t)), where W (t) denotes
the attention weight matrix at iteration t and L represents either the single-task loss La or
the multi-task loss Lmulti.

1.6.3 Graph Structures and Convergence in Single-Task vs. Multi-
Task Learning

Having established the concept of Token-Priority Graphs, we now analyze how different
training objectives lead to distinct TPG structures in Decision Transformers. When ana-
lyzing the attention mechanism, we observe fundamentally different patterns in the TPGs
depending on whether single-task or multi-task learning is employed.

An Action-Only TPG, denoted Ga, is constructed when the model is trained only with
the action prediction loss La(W ). This graph has several key properties: first, for all i ∈ A
and j ∈ S , we have (i ⇒ j) ∈ Ga, indicating that action tokens have higher priority than
state tokens. Second, for all j ∈ S and i ∈ A, we have (j ⇒ i) 6∈ Ga, meaning there are no
directed paths from state tokens to action tokens. Finally, strongly connected components
can only be formed by tokens within A, not across modalities, reflecting the fact that only
action tokens can be prediction targets.

In contrast, a Multi-Modality TPG, denoted Gm, arises when the model is trained with
the multi-objective lossLmulti(W ). In this graph, for some i ∈ A and j ∈ S , both (i⇒ j) ∈
Gm and (j ⇒ i) ∈ Gm can exist, creating strongly connected components that can span
across modalities. This reflects the fact that both action and state tokens can be prediction
targets.

These different graph structures lead to fundamentally different optimization problems
when training the attention mechanism. For the Action-Only TPG Ga, the corresponding
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Graph-SVM problem [33] is:

W a = argmin
W
‖W ‖F (1.26)

s.t. (hi − hj)
⊤Wh̄ = 0 ∀(i � j) ∈ Ga (1.27)

(hi − hj)
⊤Wh̄ ≥ 1 ∀(i⇒ j) ∈ Ga (1.28)

Similarly, for the Multi-Modality TPG Gm, the corresponding Graph-SVM problem is:

Wm = argmin
W
‖W ‖F (1.29)

s.t. (hi − hj)
⊤Wh̄ = 0 ∀(i � j) ∈ Gm (1.30)

(hi − hj)
⊤Wh̄ ≥ 1 ∀(i⇒ j) ∈ Gm (1.31)

The critical mathematical distinction between these two problems lies in their constraint
structure. In the Action-Only Graph-SVM, there are many inequality constraints between
action and state tokens (enforcing h⊤

i Wh̄ ≥ h⊤
j Wh̄ + 1 for i ∈ A, j ∈ S). These con-

straints force the attention mechanism to prioritize action tokens over state tokens, effec-
tively suppressing attention to state tokens. Equality constraints exist only between action
tokens that form strongly connected components.

In contrast, in the Multi-Modality Graph-SVM, many of these inequalities are replaced
by equality constraints (when tokens from different modalities form an SCC) or are even
reversed, when some states get higher priority compared to actions. This allows for more
diverse attention allocation across modalities, enabling state tokens to receive meaningful
attention weights. This difference is illustrated in Figure 1.5.

The following result proves that Decision Transformers trainedwith different objectives
converge to the corresponding Graph-SVM solutions, explaining why they exhibit different
attention patterns:

Theorem 1 (Modality-Dependent Attention Bias). Consider the self-attention model defined
in equation 1.18. Under the technical conditions established earlier and with reference to The-
orem 2 in [33]:

(a) When trained only on action prediction (L(W ) = La(W )), the attention weights
converge in direction to the solution of the Action-Only Graph-SVM problem:

lim
t→∞

W (t)

‖W (t)‖F
=

W a

‖W a‖F
(1.32)

(b) When trained on both action and state prediction (L(W ) = La(W ) + Ls(W )), the
attention weights converge in direction to the solution of the Multi-Modality Graph-SVM prob-
lem:

lim
t→∞

W (t)

‖W (t)‖F
=

Wm

‖Wm‖F
(1.33)

Proof. The proof follows by constructing the appropriate TPGs for each scenario and ap-
plying the convergence result from Theorem 2 in [33].
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(a) Example of two sequences in offline reinforcement learning, showing the relationship be-
tween states and actions.
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(b) Action-Only TPG (Ga) for vanilla Decision
Transformer, showing the strict hierarchy where
action tokens dominate state tokens.
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(c) Multi-Modality TPG (Gm) for Multi-Objective
Decision Transformer, where bi-directional
paths between action and state tokens create
cross-modal strongly connected components.

Figure 1.5: Comparison of Token-Priority Graphs for single-task and multi-task Decision
Transformers. The different graph structures lead to different optimization problems that
shape the attention mechanism in fundamentally different ways.

1.6.4 Implications for Decision Transformers

While our theoretical analysis is based on a simplified attention mechanism, it provides
valuable insights into why multi-objective training might lead to more diverse attention
patterns in practice. Our results suggest that even in a simplified scenario, the structure of
the optimization problem fundamentally changes when moving from single-task to multi-
task learning.

In the Action-Only setting, the Graph-SVM formulation creates a strict hierarchical re-
lationship between token types, which may translate in practice to the homogeneous atten-
tion patterns we observe across different heads and layers in vanilla Decision Transformers.
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The constraints force the optimization to prioritize one modality over others.

Conversely, in the Multi-Modality setting, the emergence of cross-modal strongly con-
nected components allows for more balanced attention distribution. This mathematical
insight aligns with our empirical observations that multi-objective Decision Transformers
exhibit more diverse attention patterns across both heads and layers, with different com-
ponents of the network potentially specializing in different aspects of the task.

It’s important to note that our theoretical formulation omits many components present
in practical DT implementations, such as layer normalization, MLP layers, separate query-
key matrices [67, 68], dropout, and residual connections. Moreover, practical DTs employ
multiple attention heads and layers with complex interactions. Therefore, we cannot claim
that our analysis provides a complete explanation for the empirical diversity of attention
patterns.

Nevertheless, the fundamental principle we’ve identified—that multi-task learning in-
ducesmore complex attention relationships through different TPG structures—offers a plau-
sible mechanism for how auxiliary objectives might encourage specialization among atten-
tion heads. The key insight is that different prediction tasks create different optimization
geometries that shape the attention mechanism in fundamentally different ways. By inten-
tionally incorporating auxiliary tasks, we can guide the inductive bias of the transformer
toward more balanced, nuanced, and ultimately more effective attention patterns.

1.6.5 Numerical Validation

To validate our theoretical analysis, we conducted controlled experiments comparing atten-
tion patterns and convergence behavior of single-task (action prediction only) and multi-
task Decision Transformers. These experiments used a simplified setup with vocabulary
size |V| = |A| + |S| = 6, embedding dimension din = 8, number of training samples
N = 6, and sequence length K = 4.

For both models, we trained for 4000 iterations with step size η = 0.01. To accelerate
convergence, we used normalized gradient descent:

W (t+ 1) = W (t)− η
∇L(W (t))

‖∇L(W (t))‖F
(1.34)

where L represents either La for the single-task model or Lmulti for the multi-task model.

At each iteration, we measured the correlation between the current weights and the
theoretical Graph-SVM solution:

Correlation(t) = 〈W (t),W a〉
‖W (t)‖F‖W a‖F

(1.35)

for the single-task model, and analogously using Wm for the multi-task model. Results
were averaged over 10 random initializations.

The single-task model’s weights strongly correlated with W a (reaching approximately
0.98), confirming our theoretical prediction of directional convergence. Its attention heatmap
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Figure 1.6: Empirical validation of our theoretical analysis. The left column shows results
for the vanilla Decision Transformer (action prediction only), while the right column shows
results for the Multi-Task Decision Transformer. The two different Graph-SVM problems
lead to fundamentally different attention patterns. In the attention maps, even indices rep-
resent state tokens and odd indices represent action tokens.

(Figure 1.6c) shows the predicted priority pattern: action tokens receive substantial atten-
tion while state tokens receive negligible attention.

Similarly, themulti-taskmodel’s weights correlatedwithWm, and its attention heatmap
(Figure 1.6d) reveals a more balanced distribution of attention across modalities. This con-
firms that multi-task learning fundamentally alters the Token-Priority Graph structure, al-
lowing state tokens to receive meaningful attention weights.

These results demonstrate that the choice of prediction tasks shapes the optimization
geometry, which in turn determines how attention is allocated across different token types
in Decision Transformers.
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1.7 Conclusion

We introduced Multi-Objective Decision Transformer (MO-DT), which enhances trans-
former effectiveness in offline RL by jointly optimizing state, action, and return prediction.
This approach encourages diverse attention patterns across transformer heads, address-
ing a key limitation in vanilla Decision Transformers. We further extended this to Trust
Region Decision Transformer (TRDT), incorporating action region prediction to reduce de-
pendency on behavioral patterns in training data and improve generalization.

Our theoretical analysis through the Token-Priority Graph framework explains why
single-task transformers develop homogeneous attention patterns, while multi-objective
training enables balanced cross-modal attention. This analysis establishes that transformer
implicit bias is significantly influenced by prediction tasks, with multi-task learning cre-
ating strongly connected components spanning different modalities in the token-priority
structure.

Empirically, both MO-DT and TRDT outperform vanilla Decision Transformer across
most D4RL locomotion benchmarks, with TRDT achieving state-of-the-art total perfor-
mance. Notable improvements appear in challenging scenarios likemedium-replay datasets,
where our approaches demonstrate robust performance despite heterogeneous training
data. Ablation studies validate our design choices, confirming benefits of Gaussian pre-
diction heads for complex environments and multi-head attention for capturing diverse
representation subspaces.

Future work could explore more sophisticated multi-objective optimization techniques
beyond linear scalarization, extend our approach to discrete action domains and partially
observable environments, and investigate pre-training on diverse datasets. The principles
of multi-objective optimization and attention diversification introduced here could extend
to other sequence modeling applications where transformers show limited attention diver-
sity.

This work advances offline reinforcement learning while deepening our understand-
ing of transformer properties in sequential decision-making tasks. By bridging theoretical
insights with algorithmic improvements, we provide a foundation for future research lever-
aging transformer capabilities in reinforcement learning.

The content of this chapter is based on the paper ”Multi-Objective Decision Transformers for
Offline Reinforcement Learning”, currently under review at IEEE Transactions on Neural Net-
works and Learning Systems (TNNLS).
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Chapter 2

State Prediction for Offline
Reinforcement Learning via
Sequence-to-Sequence Modeling

2.1 Introduction

Transformer Encoder

Transformer Decoder

Inverse Dynamics Model

+Concatenation

Figure 2.1: RGDT framework overview. Our sequence-to-sequence architecture maps fu-
ture returns to past states via an encoder-decoder structure, with actions inferred through
an inverse dynamics model. This design disentangles modality processing, separately han-
dling vector states/actions and scalar returns.
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Offline RL has emerged as a promising approach for deriving effective policies from
static datasets, circumventing the necessity for online interactions with the environment.
This paradigm is particularly advantageous in domains where real-world exploration is
expensive, hazardous, or impractical, such as robotics, healthcare, and finance [17].

Offline RL datasets typically comprise sequences of three distinct modalities: encoun-
tered states, actions executed by a single or a mixture of policies, which may not necessarily
be optimal, and scalar reward information, which can be in the form of Q-values or the sum
of future rewards per timestep. This sequential nature of offline RL data makes it an ideal
candidate for the application of sequence modeling techniques [7]. Recent work in the sig-
nal processing community has embraced this perspective, with [69] proposing an offline
RL method based on next state supervision, [70] introducing uncertainty estimation with
generative adversarial networks, and Wu et al. introducing pre-trained policy guidance in
offline learning. These methods harness the capabilities of transformer models, particularly
the decoder component, to directly learn policies from trajectories [38].

Transformers, initially designed for natural language processing to handle discrete in-
put tokens, have been adapted for offline RL either by discretization-based tokenization
of input features from each modality [8], or by a higher-level tokenization that consid-
ers only three tokens: states, actions, and returns [7]. This approach has parallels in sig-
nal processing, where Ohta et al. designed a sequential Audio Spectrogram Transformer
with a memory token for real-time sound event detection, and Seraphim et al. developed
structure-preserving Transformers for sequences of symmetric positive definite matrices
in EEG classification.

The primary advantage of discretization is the flexibility it affords the model to learn
distinct statistical properties of each feature, as each discretized value is associated with
its own parameters [38]. However, this approach faces significant scalability challenges
with even relatively small datasets and dimensions [8]. The higher-level modality-based
tokenization offers greater scalability and simplicity, but with all transformer layers beyond
the embedding layer shared across modalities, it may not adequately capture the unique
characteristics of each data type. For instance, in continuous control tasks, action sequences
often represent joint torques with non-smooth trajectories [71], while state sequences are
governed by the environment’s dynamics and exhibit smoother patterns [72].

This disparity explains why discretization, despite being modality-agnostic, often yields
superior performance. The advantage of disentangling transformer components per modal-
ity has been explored extensively in signal processing applications. [73] introduced RESTAD,
a Transformer-based model for time-series anomaly detection that effectively separates
the processing of normal and anomalous signal patterns, while [74] employed contrastive
representation learning on wireless channel-state sequences for human-orientation detec-
tion. [75] proposed ”Speed,” a scalable preprocessing pipeline for EEG data enabling self-
supervised sequence learning, demonstrating howproper signal-domain preprocessing aids
downstream representation learning. Specifically, in offline RL, there is work that explores
the effect of disentangling transformer components per modality [76]. This approach hard-
codes the importance of each modality into the design of a multimodal architecture after
attention analysis of the decision transformer, using multiple small transformers. How-
ever, instead of training a model to discover the importance and leverage it with a mixture

– 40 –



State Prediction for Offline Reinforcement Learning via Sequence-to-Sequence Modeling

of models, an automated approach within a single model would be more desirable.

In this work, we develop a modality-aware sequence-based approach for offline RL that
exhibits both the flexibility of disentangled parameters across different modalities and the
scalability of high-level modality-specific tokenization within a single model. We adopt a
sequence-to-sequence modeling framework where the model translates from one modality
to another—specifically, from sequences of future returns to sequences of past states. This
approach aligns with successful encoder-decoder architectures in signal processing: [77]
designed CNN-Transformer architectures for audio captioning that map audio features to
text descriptions, [78] presented YourMT3+, which transcribes polyphonic audio into mul-
tiple instrument tracks, and [79] proposed parameter-efficient transfer learning for Audio
Spectrogram Transformers.

Our sequence-to-sequencemodeling leverages the vanilla transformer architecturewith
an encoder-decoder structure [6], ensuring each modality has its own transformer compo-
nents (see Figure 2.1). This approach is conceptually similar to [80]’s LMCodec, which
uses a causal Transformer for neural speech coding with coarse/fine token hierarchies.
With our formulation, each modality has disentangled weights while still using the high-
level modality tokenization employed by decision transformers. The idea of translating
from one modality to another using an encoder-decoder architecture is widely common in
the literature and forms the cornerstone for fields like speech-to-text, text-to-speech, and
image-to-text translation. Finally, actions are predicted using an inverse dynamics model,
a design choice we explain in subsequent sections. Our experimental results demonstrate
that this approach substantially outperforms decoder-based counterparts and matches or
surpasses state-of-the-art off-policy methods across a range of continuous control tasks.

2.2 Preliminaries

Following the notation established in Section 1.3, we adopt the MDP framework to model
our environment, denoted byM = 〈S,A, P, R, γ〉 (as defined in Section 1.3), where S
andA represent the state and action spaces, respectively. The probability distribution over
transitions is given by P (st+1 | st,at), while the reward function is defined as R(st,at).
The discount factor, γ, is used to weigh the importance of future rewards. The agent starts
in an initial state s1 sampled from the fixed distribution p(s1) and chooses an action at ∈ A
from the state st ∈ S at each timestep t. The agent then transitions to a new state st+1

according to the probability distribution P (· | st,at). After each action, the agent receives
a deterministic reward rt = R(st,at).

2.2.1 Setup and Notation

Throughout this paper, we maintain the notation conventions established in our notation
chapter: bold uppercase letters (e.g., X , W ) denote matrices, bold lowercase letters (e.g.,
s, a) denote vectors, and regular letters (e.g., r, g) represent scalars. This distinction is
particularly important as we deal with various modalities of different dimensionalities in
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our sequence-to-sequence formulation.

As in Section 1.3, our goal is to model the offline RL problem as a sequence modeling
problem, with the agent having access to a fixed-size static training dataset T . We use τ
to represent a trajectory and |τ | to denote its length. The return-to-go (which we continue
to refer to as ’return’ for brevity, consistent with Section 1.3) of a trajectory τ at timestep t

is defined as the sum of future rewards starting from that timestep, i.e., gt =
∑|τ |

t′=t rt′ . We
use Gt to represent the discounted returns which are computed as Gt =

∑|τ |−1
t′=t γt′−trt′ .

We use ms and ma to denote the dimensionality of the states and actions respectively.

Remark 3 (Sequence Notation). For consistency with Section 1.3, we denote sequences of
states, actions, and returns for trajectory τ as S = (s1, . . . , s|τ |), A = (a1, . . . ,a|τ |), and
g = (g1, . . . , g|τ |), respectively. Note that we use bold uppercase for sequences of vectors
and lowercase for the sequence of scalars (returns).

To represent segments of trajectories, we define τ t2
t1 as a segment of the trajectory τ

from timestep t1 to t2. The sequences of states and returns in the segment τ t2
t1 are denoted

by St2
t1
= (st1 , . . . , st2) and gt2

t1 = (gt1 , . . . , gt2), respectively.

2.2.2 Sequence Modeling for Offline RL

Recall from Section 1.3 that sequence modeling approaches in offline RL treat trajectory
data as sequences suitable for transformer architectures. We previously saw two trajectory
representations in Equations 1.1 and their component-level variants. Here, we present these
representations again for completeness:

τDT := (g1, s1,a1, g2, s2,a2, . . . , g|τ |, s|τ |,a|τ |), (2.1)
τ TT := {s1t , s2t , . . . , sms

t ,a1
t ,a

2
t , . . . ,a

ma
t , rt, Gt}|τ |t=1 (2.2)

In this context, the subscripts on all tokens denote the timestep, while the superscripts
on states and actions signify dimensions. The core objective is to develop a model capable
of predicting action distributions. This can either be conditioned on desired returns and
preceding states, a strategy employed in DT [7] (as discussed in Section 1.4), which typi-
cally aligns with the trajectory representation in (2.1); or it can entail crafting a distribution
of actions based on previous states, accompanied by the utilization of a discounted return
guided beam search for selecting actions, a methodology followed by TT[8] and commonly
corresponding to the trajectory configuration outlined in (2.2). Despite the distinct techni-
cal variations between these approaches (e.g., the implementation of quantization in [8] as
opposed to [7]), both avenues employ a decoder-only architecture and fundamentally aim
to employ the transformer architecture as a tool for policy modeling.
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2.3 OfflineRL as a Sequence-to-SequenceModelingProb-
lem

Remark 4 (Key Distinction from Previous Approaches). While the methods discussed in
Section 1.4 employ decoder-only architectures (similar to GPT), we introduce a sequence-
to-sequence approach using an encoder-decoder architecture. This key distinction allows
us to disentangle the processing of different modalities.

In thiswork, our goal is to disentangle the processing of differentmodalities in transformer-
based approaches for offline RL by formulating the problem as a sequence-to-sequence
modeling task. Given a dataset T of trajectories, where each trajectory τ is composed of
sequences of states, actions, and returns-to-go tuples {S,A, g}, we model the relationship:

Model: gt+Kr+1
t+1 7→ St

t−Ks
, ∀t > 0 (2.3)

This formulation captures our sequence-to-sequence approach, where we learn to map se-
quences of future returns gt+Kr+1

t+1 to sequences of historical states St
t−Ks

. Here, St
t−Ks

denotes states from timestep t−Ks to t, and gt+Kr+1
t+1 denotes returns from timestep t+ 1

to t + Kr + 1. For simplicity, we introduce the following shorthand notation that will be
used throughout this chapter:

S−Ks := St
t−Ks

(past Ks states up to time t) (2.4)
g+Kr

:= gt+Kr+1
t+1 (future Kr returns from time t+ 1) (2.5)

where the subscript t is implicit and determined by context.

This sequence-to-sequence formulation offers several advantages. Firstly, it enables
mapping segments from different timesteps, allowing direct conditioning on a sequence of
upcoming returns rather than a single scalar sum. Our experiments indicate that this direct
conditioning of state generation enhances performance. We attribute this improvement to
the richer, more detailed representation of future behavior provided by the sequence, which
facilitates more effective credit assignment.

Additionally, this approach permits the use of different context lengths for returns and
states. Considering a larger context length for returns,Kr, helps avoid short-sightedness in
policy decisions, similar to the role of the discount factor in value-based RL algorithms. This
extended context allows the model to capture long-term dependencies more effectively. In
contrast, the context length for states, Ks, can be smaller due to the Markov property of
the environment, which implies that fewer past states are needed for next state prediction.

2.3.1 Model Architecture

An encoder-decoder architecture [6] provides a robust framework for addressing sequence-
to-sequence modeling problems. In our setting, the source segments of returns, g+Kr

, are
processed by an encoder model, which consists of a stack of identical layers. Each layer has
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two sub-layers: a multi-head self-attention mechanism and a position-wise fully connected
feed-forward network. The target sequence, S−Ks , is processed by a decoder model, which
also comprises a stack of layers. Notably, the number of layers in the decoder does not
necessarily have to match the number of layers in the encoder.

Each decoder layer includes its own masked multi-head self-attention mechanism and
position-wise fully connected feed-forward network. Additionally, the decoder introduces
a third sub-layer that performs multi-head attention over the encoder’s output. This archi-
tecture allows for separate processing of each token modality with distinct sets of weights
and the use of networks with varying depths. In contrast, the GPT architecture [38], used
in prior sequence modeling approaches to offline RL [7, 8] (as discussed in Section 1.4),
which only employs a variant of the decoder part of the transformer model, lacks this level
of flexibility.

2.3.2 Training the Sequence-to-Sequence Decision Translator

In a sequence-to-sequence framework, the mapping from the source space to the target
space is learned by performing next token prediction in the target space. In our case, the
mapping from g+Kr

to S−Ks is learned by performing next state prediction. To this end,
we introduce a probabilistic function ρθRGDT

which models the distribution of states. This
function is parameterized by the transformer model with both its components—the encoder
and decoder—which we denote with weights θRGDT , and it assigns probability density at
the t-th time step, conditioned on the futureKr instances of returns andKs historical state
instances.

More precisely, the state distribution function ρθRGDT
is modeled using a multivari-

ate Gaussian distribution parameterized by the transformer model which outputs its mean
µθRGDT

and a diagonal covariance matrix ΣθRGDT
, i.e.,

ρθRGDT
(st+1 | S−Ks , g+Kr

) = N (µθRGDT
(S−Ks , g+Kr

),ΣθRGDT
(S−Ks , g+Kr

)), ∀t > 1
(2.6)

Subsequently, ρθRGDT
can be learned by minimizing the negative log-likelihood (NLL)

loss, which can be expressed as follows:

L(θRGDT ) = −ESt+1
t−Ks

,g+Kr
∼T

[
log ρθRGDT

(st+1 | S−Ks , g+Kr
)+

t−1∑
i=t−Ks

1{i+1≤Ks} log ρθRGDT
(si+1 | Si

i−Ks
, g+Kr

)
] (2.7)

By setting1{i+1≤Ks} to 1, we recover the training regime commonly employed in sequence-
to-sequence approaches, where the model is trained to predict other tokens in the context,
effectively varying the context length from 1 to Ks. This strategy of training with varying
context lengths, even when the full context is available, is widely used in sequence pre-
diction tasks to expose the model to diverse scenarios, potentially promoting robustness,
adaptability, and generalization to unseen sequences.
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(a) Linear correlation in the
dataset

[g, s]t 9 [g, s]t
0.0

0.1

0.2

0.3

0.4

(b) Full context prediction

[g, s]t 9 [g, s]t
0.00

0.05

0.10

0.15

0.20

0.25

(c) Final token prediction

Figure 2.2: (a) Pearson correlation between each state and its subsequent states inWalker2d-
Medium, decreasing with timestep offset. (b) Attention weights for GPT model with full
context token prediction. (c) Attention weights with final token prediction only. Full con-
text prediction (b) biases attention toward linear state correlations observed in (a), while
final token prediction (c) shows more balanced attention distribution.

However, in our case, since subsequent states are highly correlated, as can be seen
in Figure 2.2, this approach may lead the model to overfit easily to these correlations by
assigning high attention to nearby states, potentially neglecting more distant tokens that
could be valuable for the ultimate objective of return maximization. To address this issue,
we propose a simple adaptation: setting 1{i+1≤Ks} to 0. As Figure 2.2 shows, this final token
prediction approach makes the model less biased toward the linear correlations between
subsequent states in the dataset.

2.3.3 Policy Extraction and Inference

Predicting states using the transformer model is insufficient for defining a controller. Nev-
ertheless, a policy can be inferred by estimating the action at that caused the transition
from state st to st+1 at any timestep t in τ . Given two consecutive states, we generate an
action according to the inverse dynamics model [81, 82], which we model as a conditional
multivariate Gaussian distribution, as follows:

πϕRGDT
(at | st, st+1) = N (µϕRGDT

(st, st+1),ΣϕRGDT
(st, st+1)) (2.8)

Note that the same offline data utilized to train the state predictor model ρθRGDT
can also

be employed to learn πϕRGDT
. Furthermore, we employ the same framework as used for

the transformer model, utilizing maximum likelihood estimation to learn the parameters
ϕRGDT .

During inference, a desired sequence of returns gKr+1
2 and an initial state s1 are speci-

fied. In practice, to filter for good behavior during inference, the whole sequence of returns
g is constructed by taking the best return per-timestep from the dataset of trajectories T .
The RGDT model then generates the first state ŝ2 = µθRGDT

(s1, g
Kr+2
2 ). Then, both s1

and ŝ2 are fed to the inverse dynamics model πϕRGDT
which generates a deterministic ac-

tion according to a1 = µϕRGDT
(s1, ŝ2). After executing the action a1, the agent observes
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Algorithm 2 Inference with RGDT
1: Input: g+Kr

,S−Ks

2: Output: ât

3: procedure InfeRence(g+Kr
,S−Ks)

4: Initialize t← 1

5: while not done do
6: ŝt+1 ← µθRGDT

(S−Ks , g+Kr
)

7: ât ← µϕRGDT
(st, ŝt+1)

8: Execute ât

9: Observe st+1 ∼ P (· | st, ât)

10: t← t+ 1

11: end while
12: end procedure

the next state s2 from the transition probability distribution P (· | s1,a1). Subsequently,
the RGDT generates the next goal state ŝ3 based on gKr+3

3 , s1, s2 as inputs. This process
continues until the episode terminates.

2.4 Experiments

We evaluate RGDT against leading offline RL approaches on the D4RL benchmark [32],
comparing performance with both sequence modeling methods and off-policy algorithms.
Our experiments focus on three aspects: (1) overall performance across continuous control
tasks, (2) benefits of final token prediction over full context prediction, and (3) advantages
of our sequence-to-sequence formulation.

Implementation Details and Hyperparameters. Our RGDT implementation uti-
lizes a transformer with hidden dimension 64 and 2 attention heads. The encoder and
decoder comprise 2 and 3 layers, respectively, reflecting the asymmetric nature of our
sequence-to-sequence formulation. We employed context lengths of Kr = 20 for returns
andKs = 5 for states, enabling the model to consider extended future horizons while main-
taining computational efficiency. For optimization, we used the AdamW optimizer with a
learning rate of 5× 10−4, linear warmup over 10,000 iterations, weight decay of 10−3, and
dropout probability of 0.1. Training continued for 150,000 gradient steps with a batch size
of 256. The inverse dynamics model consists of a neural network with 2 hidden layers of
512 units each, trained using the Adam optimizer with learning rate 10−4, weight decay of
10−4, and dropout of 0.1. This model was trained for 200,000 gradient steps with a batch
size of 1024.

Benchmark and Compared Baselines. We evaluate RGDT on the D4RL bench-
mark [32] using the Gym environment [64], focusing on six continuous control tasks:
halfcheetah-medium (HC-M), hopper-medium (HP-M), walker2d-medium (WK-M) and their
medium-expert (HC-ME, HP-ME, WK-ME) variants. We compare against four established
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Table 2.1: Normalized scores on Gym D4RL tasks (10 seeds). Our method RGDT achieves
the best performance.

Dataset 10% BC CQL IQL DT RGDT
HC-M 42.5 44.0 47.4 42.6 44.4
HP-M 56.9 58.5 66.3 67.6 93.2
WK-M 75.0 72.5 78.3 74.0 83.3
HC-ME 92.9 91.6 86.7 86.8 93.4
HP-ME 110.9 105.4 91.5 107.6 112.4
WK-ME 109.0 108.8 109.6 108.1 113.3
Total 487.2 480.8 479.8 486.7 539.0

baselines: 10% BC [7], which replicates the top decile of behaviors in the dataset; and two
leading dynamic programming methods - Conservative Q-Learning (CQL) [4] and Implicit
Q-Learning (IQL) [65], as well as DT [7] (discussed in Section 1.4), the primary sequence
modeling approach. All baseline results are sourced from their respective papers with CQL
results adapted from [65] for the v2 datasets.

Full Context Token Prediction vs. Final Token Prediction. An important aspect
of our method is the training regime of final token prediction as implied by equation 2.7.
As demonstrated in Figure 2.3, this approach leads to significantly better performance com-
pared to full context token prediction across the D4RL medium tasks.
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Figure 2.3: Comparison of RGDT training strategies on Gym D4RL medium tasks.
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2.5 Conclusion

We introduced RGDT, a sequence-to-sequence approach for offline RL that disentangles
modality processing through an encoder-decoder architecture. By translating future re-
turns to state sequences and using an inverse dynamics model for action inference, our
method effectively addresses the limitations of decoder-only architectures (discussed in
Section 1.4) and achieves superior performance on the D4RL benchmark.

Future work could explore: (1) adapting RGDT to visual observations and complex state
spaces, (2) investigating transfer learning across tasks with similar dynamics but different
return structures. The sequence-to-sequence formulation presented here offers a promis-
ing foundation for addressing the multimodal nature of sequential decision-making while
maintaining computational efficiency.

The content of this chapter is based on the paper ”State Prediction for Offline Reinforcement
Learning via Sequence-to-Sequence Modeling”, accepted for publication at IEEE International
Workshop on Machine Learning for Signal Processing (MLSP 2025).
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Chapter 3

When Tasks Collide: A Gradient-Flow
Analysis of Alternating and Joint
Training in Transformer Models

3.1 Introduction

Lx(θ) Ly(θ)

g = ∇θ(Lx + Ly)

θ ← θ − η g

(a) Simultaneous step

Lx(θ)

gx = −∇Lx

θ(1) = θ − η gx

Ly(θ
(1))

gy = −∇Ly

θ(2) = θ(1) − η gy

(b) Alternating step

Figure 3.1: Two paradigms of multi-task optimisation. (a) Simultaneous GD aggre-
gates both gradients before stepping. (b) Sequential GD applies task x first, producing θ(1)

that feeds task y; this shift is the source of the Hessian-driven correction analysed in §3.4.
Colours match task identities.

Multi-Task Learning (MTL) jointly trains a single model on several related objectives,
encouraging the emergence of shared representations that transfer information across tasks [83].
This paradigm leverages the observation that many practical problems—from computer vi-
sion [84, 85, 86, 87, 88] and language understanding [89, 90] to bioinformatics [91, 92] and
speech recognition [93, 94]—possess latent commonalities that can be exploited to improve
sample efficiency, reduce model footprint, and boost generalisation performance compared
to training one network per task [83, 95, 96]. As such, MTL has become a cornerstone of
modern deep learning and an indispensable component of large-scale foundation models.
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Despite its strong empirical record, we still lack a principled understanding ofwhy MTL
often outperforms its single-task counterpart. It is particularly unclear how the implicit
regularisation induced by gradient-based optimisers in the multi-task setting differs from
that in the classical single-task regime. Does sharing parameters fundamentally alter the
bias that gradient descent (GD) imposes on the learned solution, and can this difference
explain the superior generalisation observed in practice?

To address this gap, we develop a rigorous theoretical framework using the Modified
Gradient Flow (MGF) [97], which reveals the implicit biases of discrete optimisation al-
gorithms. Through this lens, we uncover a surprising phenomenon in the standard MTL
setting: joint gradient descent implicitly encourages task disagreement by mini-
mizing the inner product between task gradients. This finding extends the implicit
regularization literature [98, 99, 97, 100, 101] by explicitly characterizing how multiple loss
functions interact to shape the optimisation landscape.

This initial insight, however, pertains to the most common MTL optimisation scheme:
minimising a weighted sum of task losses in a single step. Yet, a rich spectrum of alter-
native training schedules exists, including sequential, alternating, or bandit-style task sam-
pling [102]. This raises a crucial follow-up question: how does the choice of schedule—
conceptually illustrated in Figure 3.1—modify the optimiser’s implicit bias? Understanding
this is key to explainingwhy joint training has become the de facto standard and identifying
when alternatives might be preferable. We extend our analysis to alternating updates—a
common alternative—and show that they introduce a second-order Hessian correction ab-
sent from joint training, a finding that theoretically explains the empirical instability often
observed with this method.

The practical implications of this schedule-dependent bias are particularly salient in
offline RL, where the choice between joint and alternating updates is a central design de-
cision. For instance, the TT [21] uses an alternating schedule to predict returns, states,
and actions, while the MO-DT [103] opts for joint, multi-objective updates. Our frame-
work provides the ideal tools to dissect this choice. By specialising our general theory to
a one-layer self-attention model, we derive closed-form expressions for the implicit regu-
lariser, interpreting its geometric action on the attention weights and providing theoretical
insights that may help explain performance differences between these architectures.

Finally, we conduct extensive numerical experiments that confirm our theoretical pre-
dictions across these different settings. The results provide a theoretical perspective on
the different optimization dynamics of joint versus alternating training, which may con-
tribute to the empirical performance differences observed between MO-DT and TT. Taken
together, our work provides the first rigorous account of how the optimisation schedule
shapes the inductive bias of MTL, offering both fundamental insights and practical guid-
ance for designing the next generation of scalable multi-task systems.

In summary, this work makes the following key contributions:

1. Implicit Regulariser for Joint MTL: We derive the exact modified objective for
joint multi-task training, revealing a novel regulariser that encourages gradient anti-
alignment between tasks, thus providing a theoretical basis for MTL’s generalisation
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benefits (Section 3.4).

2. Analysis of Alternating Schedules: We extend the MGF framework to alternat-
ing/sequential training, uncovering a second-order Hessian correction term that ex-
plains the method’s potential instability and highlights its fundamental difference
from joint training (Section 3.4).

3. Theory for Multi-Task Transformers: We provide the first theoretical analysis
of implicit bias in multi-task self-attention models, deriving closed-form expressions
that characterize how tasks compete via attention weight redistribution (Section 3.5).

4. Practical Design Principles & Empirical Validation: We establish precise geo-
metric criteria linking learning rates and loss curvature to task competition, offering
actionable guidance for MTL design. We validate all theoretical predictions with
controlled experiments that accurately forecast optimisation dynamics (Sections 3.6
and 3.7).

The remainder of this paper is organized as follows. Section 3.2 reviews related work
on multi-task learning, implicit regularization, and transformer architectures. Section Sec-
tion 3.3 sets up the required preliminaries. Section 3.4 develops our model-agnostic theoret-
ical framework, deriving the modified gradient flow for both multi-objective and sequen-
tial training regimes. Section 3.5 specializes these results to self-attention mechanisms,
providing closed-form expressions for gradient dynamics in simplified transformer mod-
els. Section 3.6 presents our geometric analysis of task competition, establishing precise
conditions for cooperation versus competition. Section 3.7 validates our theoretical predic-
tions through controlled experiments. Finally, Section 3.9 concludes with a discussion of
implications and future directions.

3.2 Related Work

To situate ourworkwithin the existing literature, this section reviews the three key research
domains that form the backdrop for our contributions. We begin with the foundations of
Multi-Task Learning and the gradient-based methods developed to address its challenges.
We then survey the literature on implicit regularization, the primary theoretical tool we
employ. Finally, we discuss the recent progress in understanding the training dynamics of
transformer architectures, the specific context in which we apply and validate our general
theory.

Multi-TaskLearning andGradient-BasedOptimization. MTL is founded on the prin-
ciple that joint training on related tasks can improve generalization by promoting shared
representations [83, 104]. However, this benefit is not guaranteed; a persistent challenge is
negative transfer, where multi-task performance degrades below single-task baselines [96].
The root cause is often attributed to destructive interference between task objectives, man-
ifesting as conflicting gradients during optimization [102, 105]. Consequently, a significant
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body of research has focused on developing algorithms to manage these conflicts. Promi-
nent methods include projecting conflicting gradients (PCGrad [106]), dynamically balanc-
ing gradient magnitudes (GradNorm [107]), finding conflict-averse update directions (CA-
Grad [108]), computing Pareto-optimal updates (MGDA [60]), and framing MTL as a bar-
gaining game (Nash-MTL [109]). While empirically successful, these methods are largely
algorithmic interventions that treat the symptoms of gradient conflict. They do not provide
a first-principles explanation for how and why standard gradient descent induces task com-
petition in the first place—a fundamental gap our modified gradient flow analysis directly
addresses.

Implicit Regularization and Modified Gradient Flow. Our theoretical approach is
grounded in the literature on implicit regularization, which studies the biases that opti-
mization algorithms impose on the learned solution. For classical deep networks, it is
well-established that gradient descent on regression tasks implicitly minimizes parame-
ter norms [110, 111, 112, 113, 114, 115, 116, 117, 118, 119], while for classification with
exponential-tailed losses, it promotes margin maximization [120, 121, 122]. These insights
are often derived using tools like the MGF, which shows that a discrete-time optimizer
like GD can be seen as optimizing a modified continuous-time objective that includes ad-
ditional regularization terms [97]. Our work extends this powerful framework in two key
directions: first, by characterizing the regularizer that arises from the interaction of multi-
ple loss functions, and second, by analyzing non-homogeneous models like transformers,
for which many prior analyses on homogeneous networks do not directly apply [123, 124].

Training Dynamics of Transformer Architectures. The remarkable success of trans-
formers has spurred a new wave of theoretical work aimed at understanding their train-
ing dynamics [125, 126, 127, 128, 129, 130, 131, 132, 133]. This research has shown how
transformers learn data structure [125, 127] and has begun to characterize their general-
ization properties [126]. The line of work most relevant to ours uses implicit bias analysis
to connect the attention mechanism to max-margin separation, akin to a Support Vector
Machine (SVM) operating on tokens [134, 135, 68]. Recent studies have also investigated
the dynamics of next-token prediction [136, 33, 137]. However, this entire body of work
has predominantly focused on single-task objectives. Our research provides a critical ex-
tension by being the first to apply the MGF framework to a multi-task transformer. We
thereby bridge the gap between the MTL gradient-conflict literature and the implicit bias
analysis of self-attention, providing a precise mechanism for how tasks compete through
the redistribution of attention weights.

3.3 Preliminaries

In this section, we establish the notation, formally define the multi-task learning problem,
introduce theModified Gradient Flow framework that serves as our primary analytical tool,
and state the central questions this work addresses.
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3.3.1 Notation and Multi-Task Learning Setup

We consider amodel parameterized by a vector θ ∈ Rd. In a hard-parameter-sharingMulti-
Task Learning (MTL) setting, the model is trained to perform two tasks, denoted by x and
y. Each task has an associated loss function, Lx(θ) and Ly(θ), which are both functions of
the shared parameters θ. We assume the losses are twice continuously differentiable. We
analyze two primary training regimes for minimizing these losses.

1. Joint (Multi-Objective) Training. In this regime, the parameters are updated by
performing gradient descent on the summed loss, Lmulti(θ) = Lx(θ) + Ly(θ). A single
gradient descent step with learning rate η > 0 is given by:

θt+1 = θt − η∇θLmulti(θt) = θt − η (∇θLx(θt) +∇θLy(θt)) . (3.1)

2. Sequential (Alternating) Training. In this regime, the tasks are optimized in a fixed
sequence within each update step. An update first performs a step for task x, then uses the
resulting parameters to perform a step for task y:

θ(1) = θt − η∇θLx(θt), (3.2)
θt+1 = θ(1) − η∇θLy(θ

(1)). (3.3)

Remark 5 (Connection to Chapter 1). The general multi-task framework presented here en-
compasses the specific setting of Chapter 1’s Multi-Objective Decision Transformer. In that
context, the abstract tasks x and y correspond to concrete prediction objectives in offline
RL: task x might represent state prediction (with loss Ls), task y might represent action
prediction (with loss LDT ), and additional tasks could include return prediction (with loss
Lg). The general parameter vector θ here unifies the task-specific parameters {θDT ,θs,θg}
from Chapter 1.

3.3.2 The Modified Gradient Flow Framework

Our analysis relies on the MGF framework [97], which uses backward error analysis to
find a continuous-time differential equation whose flow better approximates the discrete
steps of an optimization algorithm like gradient descent. This allows us to characterize the
implicit regularization induced by the choice of optimizer and its step size.

For a single-task setting with loss L(θ), the standard gradient flow is θ̇ = −∇θL(θ).
The MGF corrects this to account for the discrete nature of GD with a finite learning rate η.

Definition 1 (Modified Gradient Flow [97]). The modified gradient flow for gradient de-
scent with learning rate η on a lossL(θ) is the solution to the ordinary differential equation
(ODE):

θ̇ = −∇θL(θ)−
η

2
∇2

θL(θ)∇θL(θ) +O(η2). (3.4)
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Crucially, this modified flow can be expressed as the gradient flow of a modified loss
function.

Lemma 1 (Modified Loss [97]). The optimization trajectory under the modified gradient flow
from Eq. (3.4) is equivalent to performing gradient descent on a modified loss L̃(θ):

L̃(θ) = L(θ) + η

4
|∇θL(θ)|22 +O(η2). (3.5)

This modified loss was first derived in [97], with which they showed that the additional
term that arises is nothing but the slope of the original loss function, and hence gradient de-
scent attempts to find local minima flat local minima. This same mathematical framework,
was later used by [138] to show how GD with dropout further introduces additional terms.
The additional term, η

4
‖∇θL(θ)‖22, is the implicit regularizer. It encourages the optimizer

to find solutions not only with a low loss but also in ”flat” regions of the landscape where
the gradient norm is small. This term is the foundation of our analysis.

3.3.3 Problem Statement

The existence of these two distinct training regimes (joint vs. sequential) and the powerful
lens of MGF raise fundamental questions about the optimization dynamics of MTL:

1. How does the implicit regularization of joint training differ from that of sequential
training?

2. Can we derive the explicit form of the modified loss (for joint training) and the effec-
tive update rule (for sequential training) to reveal how task gradients and curvatures
interact?

3. What are the practical implications of these differences, especially in complex models
like transformers where the choice of schedule can significantly impact performance?

This paper develops a rigorous theoretical framework to answer these questions, first in a
model-agnostic setting and then specialized to a one-layer self-attention model.

3.4 Model agnostic Implicit regularization of Sequential
vs Multi-Objective Training

Building on theMGF framework, we now derive the specific forms of implicit regularization
induced by joint and sequential training schedules.

For the joint training regime, we can directly apply the modified loss from Lemma 1 to
the aggregate loss Lmulti = Lx + Ly. This immediately yields the implicit regularizer for
the multi-task setting.
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Remark 6 (Generalization tomTasks). For clarity of exposition, we focus our analysis on the
two-task case. However, our framework extends straightforwardly to an arbitrary number
of tasks ≥ 2. In the m-task setting, the aggregate loss becomes Lmulti =

∑m
i=1 Li, and the

implicit regularizer becomes proportional to ‖
∑m

i=1∇Li‖2. This term decomposes into in-
dividual gradient norm regularizers and a sum of all pairwise interaction terms 〈∇Li,∇Lj〉,
preserving the core finding that joint training regularizes through gradient inner products.
Indeed, the TRDT variant in Chapter 1 exemplifies this m-task setting with m = 4, incor-
porating action region prediction as an additional task alongside state, action, and return
prediction.
Remark 7 (On TaskWeighting Coefficients). We also note that practical MTL often involves
weighting coefficients, i.e., minimizing

∑m
i=1 λiLi (as we did in chapter 1). For notational

simplicity, we set all weights to one. This is done without loss of generality, as any constant
weight λi > 0 can be absorbed into the definition of the loss function itself (i.e., by consid-
ering a rescaled loss L′

i = λiLi). This scaling does not alter the fundamental structure of
the resulting implicit regularizer, which would still be governed by the inner products of
the (now-weighted) task gradients.

Theorem 2 (Multi-Task Modified Loss). For tasks with losses Lx and Ly , the modified loss
optimized by GD is given by:

L̃multi(θ) = Lx(θ) + Ly(θ)

+
η

4
‖∇θLx(θ) +∇θLy(θ)‖22 +O(η2).

(3.6)

Proof. The total loss is Lmulti(θ) = Lx(θ) + Ly(θ). Applying the modified loss formula
from Lemma 1 directly:

L̃multi(θ) = Lmulti(θ) +
η

4
‖∇θLmulti(θ)‖2 +O(η2)

= Lx(θ) + Ly(θ)

+
η

4
‖∇θLx(θ) +∇θLy(θ)‖22 +O(η2) (3.7)

Themost remarkable property of this additional loss is that it isminimizedwhen∇θLx(θ) =
−∇θLy(θ). This behavior of GD under MTL is surprisingly different from its behavior in
single task settings. In single-task optimization, the implicit regularization term is mini-
mized only at critical points where the gradient vanishes. In the multi-task setting, how-
ever, the regularizer can also be minimized through gradient anti-alignment, creating a
tension between minimizing the original losses and encouraging gradient disagreement.

Which leads us to the following proposition:

Proposition 1 (Gradient Anti-Alignment Bias). Multi-objective gradient descent implicitly
biases the optimization toward regions where task gradients are anti-aligned, though this effect
competes with the primary objective of minimizing the individual losses.
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The disagreement between the gradients is equivalent to making the angle Φ between
the two tasks equal to π. Which becomes clear from the following corollary:

Corollary 1. The modified multi-task loss decomposes into task-specific terms and an inter-
action term:

L̃multi(θ) = Lx(θx) + Ly(θy)︸ ︷︷ ︸
task-specific losses

+ (3.8)

η

4

(
‖∇θLx(θx)‖22 + ‖∇θLy(θy)‖22

)︸ ︷︷ ︸
task-specific gradient regularization

+ (3.9)

η

2
〈∇θLx(θx),∇θLy(θy)〉︸ ︷︷ ︸
multi-task interaction regularization

+O(η2) (3.10)

where 〈·, ·〉 denotes the standard Euclidean inner product in Rp.

Note how the multi-task interaction term can be either positive or negative based on the
angleΦ between the gradients of the two tasks. The role of this term is to capture how both
tasks interact over shared parameters, which is demonstrated by the following corollary:

Corollary 2 (Task Interaction through Shared Parameters). LetΘ = Θx∪Θy∪Θs whereΘs

represents shared parameters, and let θ = [θx,θy,θs] be the corresponding parameter vector.
If Θs = ∅ (no parameter sharing), then the cross-term vanishes:

〈∇θLx(θ),∇θLy(θ)〉 = 0 (3.11)

With shared parameters (Θs 6= ∅), this term is zero if and only if the gradients are orthogonal
in the parameter space or both null vectors.

Proof. We partition Θ into shared parameters Θs and task-specific parameters Θx, Θy. In
the fully disjoint case where there are no shared parameters,Θ = Θx∪Θy whereΘx∩Θy =

∅.

Let θ = [θ1, ..., θp] be the concatenated vector of all parameters. The inner product can
be written as:

〈∇θLx(θ),∇θLy(θ)〉 =
p∑

i=1

∂Lx

∂θi

∂Ly

∂θi
(3.12)

For parameters θi ∈ Θx:
∂Ly

∂θi
= 0 (3.13)

For parameters θi ∈ Θy:
∂Lx

∂θi
= 0 (3.14)

Since each parameter belongs to eitherΘx orΘy (but not both), for each term in the sum, at
least one of the partial derivatives is zero. Therefore, each term in the sum is zero, making
the entire inner product zero.
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Another direct result is given by the following proposition:

Proposition 2. As long as the angle between the two task gradients satisfies:

Φ < arccos
(
− ‖∇θLy‖
2‖∇θLx‖

)
(3.15)

GD induces stronger regularization compared to single-task settings.

Proof. The difference between multi-task and single-task regularization is:

‖∇θLx +∇θLy‖22 − ‖∇θLx‖22
= ‖∇θLy‖22 + 2〈∇θLx,∇θLy〉 (3.16)

This is positive when:

2〈∇θLx,∇θLy〉 > −‖∇θLy‖22 (3.17)
2‖∇θLx‖‖∇θLy‖ cos(Φ) > −‖∇θLy‖2 (3.18)

cos(Φ) > − ‖∇θLy‖
2‖∇θLx‖

(3.19)

which gives the stated condition.

The insights from our modified gradient flow analysis perfectly align with the well-
known fact frommulti-objective optimization, that optimizing two tasks using linear scalar-
ization – the same technique we are considering here, with the simple distinction that for it,
we also add ponderation coefficients for both tasks – leads to solutions that are completely
biased for one task over the other [61].

3.4.1 Modified Gradient Flow Analysis for Sequential Multi-Task
Updates

In contrast to the multi-objective update

θ ← θ − η
[
∇θLx(θ) +∇θLy(θ)

]
,

we study a sequential update scheme. Starting from θ, we first perform an update for task
x:

θ(1) = θ − η∇θLx(θ), (3.20)

and then update for task y:

θ(2) = θ(1) − η∇θLy

(
θ(1)
)
. (3.21)

We assume that both losses are twice continuously differentiable.
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Theorem 3 (Effective Update for Sequential Multi-Task Gradient Descent). Under the se-
quential updates (3.20) and (3.21), the overall parameter update is given by

θ(2) = θ − η
[
∇θLx(θ) +∇θLy(θ)

]
+η2∇2

θLy(θ)∇θLx(θ) +O(η3).
(3.22)

Moreover, the gradient for task y computed at the intermediate point θ(1) satisfies

∇θLy

(
θ(1)
)
= ∇θLy(θ)− η∇2

θLy(θ)∇θLx(θ) +O(η2). (3.23)

Proof. The first update (3.20) yields

θ(1) = θ − η∇θLx(θ).

Expanding ∇θLy at θ(1) by a first-order Taylor expansion about θ gives

∇θLy

(
θ(1)
)
= ∇θLy(θ) +∇2

θLy(θ)
(
θ(1) − θ

)
+O

(
‖θ(1) − θ‖2

)
.

Since θ(1) − θ = −η∇θLx(θ), we obtain (3.23). The second update (3.21) then gives

θ(2) = θ(1) − η∇θLy

(
θ(1)
)

(3.24)

=
[
θ − η∇θLx(θ)

]
− η

[
∇θLy(θ)

− η∇2
θLy(θ)∇θLx(θ)

]
+O(η3) (3.25)

= θ − η
[
∇θLx(θ) +∇θLy(θ)

]
+ η2∇2

θLy(θ)∇θLx(θ) +O(η3). (3.26)

This completes the proof.

In the multi-objective update scheme, one minimizes the aggregate loss

Lmulti(θ) = Lx(θ) + Ly(θ),

and the modified gradient flow analysis (via backward error analysis) shows that an extra
regularization term of order η arises proportional to

η

2
〈∇θLx(θ), ∇θLy(θ)〉.

This term directly reflects the alignment (or disagreement) between the two task gradients.

In contrast, the sequential update analyzed inTheorem 3 yields an effective update (3.22)
with an additional Hessian-induced correction term,

η2∇2
θLy(θ)∇θLx(θ),
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which does not appear in the multi-objective update. Equation (3.23) reveals that the gra-
dient for task y is evaluated at a shifted parameter value θ(1) and is corrected by the term
η∇2

θLy(θ)∇θLx(θ).

The implication is that—even if the two tasks are similar and their gradients are aligned
at θ—the re-evaluation of the gradient for task y after the update on task x can lead to a
significant directional change when the curvature (as measured by ∇2

θLy(θ)) is large. In
extreme cases, this curvature effect may cause the effective gradient for task y (computed
at θ(1)) to differ substantially from its original direction. In particular, while the multi-
objective update encourages direct interaction via the inner product 〈∇θLx(θ), ∇θLy(θ)〉,
the sequential update may induce an effective anti-alignment in regions of high curvature—
though the precise outcome depends on both the magnitude and the structure of the Hes-
sian.

Remark 8 (Implications for Training Regimes). Our analysis reveals that:

• Multi-objective training directly exposes gradient alignment through the cross-term
〈∇θLx(θ),∇θLy(θ)〉

• Sequential training introduces additional curvature-dependent effects that can arti-
ficially induce task competition

• The distinction becomes negligible as η → 0, explaining convergent behavior at small
learning rates

3.5 Implicit Regularisation in One-Layer Self-Attention

Theprecedingmodel-agnostic analysis established the fundamental mechanisms of implicit
regularization in multi-task settings, revealing a first-order interaction term for joint train-
ing and a second-order Hessian correction for sequential updates. To understand the prac-
tical implications of these findings, we now specialize our analysis to a concrete and highly
relevant architecture: the transformer. By examining a simplified one-layer self-attention
model, we can derive closed-form expressions for these regularization effects and interpret
their geometric action on the attention mechanism itself. This allows us to bridge the gap
from abstract theory to the specific dynamics governing modern sequence models.

3.5.1 Mathematical Setup of the Self-Attention Model

Following a large body of previouswork [134, 135, 68, 136, 33, 137], we consider a simplified
self-attention mechanism designed to make theoretical analysis tractable while preserving
the essential characteristics of attention-based learning.

Definition 2 (Token Vocabulary). et V = Vx ∪Vy be the vocabulary of all possible tokens,
where Vx and Vy are the token sets for tasksX and Y respectively. We assume Vx∩Vy = ∅.
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If overlap is desired, distinct embeddings per task must be supplied. Each token j ∈ V has
a fixed embedding ej ∈ Rdin .

Remark 9 (Mapping to Decision Transformer Vocabulary). In the context of Chapter 1’s
Decision Transformer for offline RL, the generic vocabularies Vx and Vy map to specific
modalities: Vx ≡ S (state tokens) and Vy ≡ A (action tokens). The assumption Vx ∩
Vy = ∅ naturally holds in this setting since states and actions represent distinct data types.
Similarly, the prediction matrices W x and W y in our general framework correspond to
W s and W a respectively in the RL setting.

Definition 3 (Input Representation). Given a trajectory dataset T , we construct a super-
vised learning datasetDmulti = {(H [i], x[i], y[i])}Ni=1 whereH [i] = [h

[i]
1 , . . . ,h

[i]
K ]

⊤ ∈ RK×din

represents a sequence of K token embeddings1. Each embedding h
[i]
k belongs to the set

{ej : j ∈ V}, ensuring that the embedding map is global and fixed across all sequences.
The targets x[i] ∈ Vx and y[i] ∈ Vy denote the token indices for tasksX and Y respectively.
We denote the final token h̄

[i]
= h

[i]
K ∈ Rdin , which serves as the query in our attention

mechanism.

This abstract supervised learning formulation is directlymotivated by themodern paradigm
of treating sequential decision-making problems as sequencemodeling, as explored in Chap-
ter 1. A prominent example is offline reinforcement learning (RL), where trajectories are
sequences composed of multiple data types or modalities (e.g., returns-to-go, states, and
actions). In this context, our setup can be interpreted as a multi-task prediction problem:
given a history of trajectory tokens H [i], the model might be trained to concurrently pre-
dict the next state token (task X , with target x[i] ∈ S) and the next action token (task Y ,
with target y[i] ∈ A). This perspective was popularized by architectures like the Decision
Transformer [7] and the Trajectory Transformer [21], which frame RL as autoregressive
prediction over tokenized trajectories. Thus, our simplified model is not merely a toy prob-
lem; it captures the essential structure of multi-modal prediction tasks that are central to
these influential models, including the MO-DT and TRDT variants analyzed in Chapter 1.

Remark 10 (Query Token). We fix the query token to positionK for simplicity. The deriva-
tions for arbitrary query position q[i] are analogous with h̄

[i]
= h

[i]

q[i]
.

Definition 4 (Simplified Self-Attention). The self-attention operation is parameterized by
a single learnable matrix W ∈ Rdin×din . Given an input sequence H [i], the attention mech-
anism computes:

1. Attention logits: z[i] = H [i]Wh̄
[i] ∈ RK

2. Attention weights: ζ [i] = σ(z[i]) ∈ ∆K−1, where the softmax function is defined
component-wise as:

σ(z)k =
ezk∑K
j=1 e

zj
(3.27)

1K is the sequence length, possibly with token repetitions, hence K ≥ |V| is allowed.
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3. Context vector:

c[i] = H [i]⊤ζ [i] =
K∑
k=1

ζ
[i]
k h

[i]
k ∈ Rdin (3.28)

For simplicity, we set the value projection matrix to the identity, i.e., V = Idin .

Remark 11 (Connection to Token-Priority Analysis). The simplified self-attention model
presented here is identical to the one analyzed in Chapter 1, Section 1.6.1. While Chapter 1
employs this model to study asymptotic convergence through the Token-Priority Graph
framework, revealing how multi-objective training affects the final attention patterns, here
we analyze the transient optimization dynamics through modified gradient flow. These
analyses are complementary: Chapter 1 characterizes where the optimization converges,
while this chapter reveals how the implicit regularization shapes the path to convergence.

This connection between two distinct mathematical frameworks—asymptotic Token-
Priority analysis andmodified gradient flow—opens an intriguing research direction. Specif-
ically, one could investigate whether the strongly connected components and priority struc-
tures identified in the Token-Priority Graphs of Chapter 1 are primarily determined by the
implicit regularization terms η

2
〈∇θLx,∇θLy〉 derived in this chapter. Understanding this

relationship would provide a complete picture of multi-task optimization: not only where
we converge and how we get there, but whether the transient dynamics fundamentally de-
termine the asymptotic structure. This would constitute a valuable bridge between local
optimization dynamics and global convergence properties in multi-task transformers.

Remark 12 (Attention Weight Dependencies). The attention weights ζ [i] depend on the pa-
rameter matrix W through the attention logits: ζ [i] = ζ [i](W ) = σ(H [i]Wh̄

[i]
). This

dependency is crucial for understanding the gradient flow through the attention mecha-
nism.

Remark 13 (Mathematical Conventions). We use ∆k−1 to denote the (k − 1)-dimensional
probability simplex, δkm for the Kronecker delta (δkm = 1 if k = m, 0 otherwise).

Remark 14 (Architectural Simplifications). Our simplified attention mechanism differs from
the standard transformer architecture in three fundamental ways. First, we employ a single
matrix W instead of separate query, key, and value projection matrices (WQ,WK ,W V ).
Second, we set the value projection to the identity (V = I) rather than learning task-
specific value transformations. Third, both tasks share the same attention matrix W , cre-
ating a natural setting for studying task interactions through shared parameters. These
simplifications enable exact gradient analysis while preserving the core attention mecha-
nism, allowing us to derive precise conditions for task cooperation versus competition in
multi-task settings.

Definition 5 (Task-Specific Prediction Heads). Each task employs a dedicated prediction
matrix: W x ∈ R|Vx|×din for task X and W y ∈ R|Vy |×din for task Y . We denote by wx

j the
j-th row of W x corresponding to token j ∈ Vx, with an analogous notation for task Y .
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Assumption 1 (Orthogonality Condition). The prediction matrices satisfy:

wx
j · ek =

{
1 if j = k and j, k ∈ Vx
0 otherwise

(3.29)

wy
j · ek =

{
1 if j = k and j, k ∈ Vy
0 otherwise

(3.30)

In particular, wx
j · ek = 0 for all j ∈ Vx, k ∈ Vy and vice versa. This requires din ≥

max{|Vx|, |Vy|}.

Assumption 2 (Realizability). For each training example (H [i], x[i], y[i]), both target tokens
appear in the sequence:

∃k[i]
x , k[i]

y ∈ {1, . . . , K} : h
[i]

k
[i]
x

= ex[i] and h
[i]

k
[i]
y

= ey[i] (3.31)

Definition 6 (Token Prediction Scores). Given the context vector c[i] and the orthogonality
assumption, the prediction scores for each task are computed as:

v̂[i]x = wx
x[i] · c[i] =

K∑
k=1

ζ
[i]
k (wx

x[i] · h[i]
k ) (3.32)

v̂[i]y = wy

y[i]
· c[i] =

K∑
k=1

ζ
[i]
k (wy

y[i]
· h[i]

k ) (3.33)

Lemma 2 (Score Simplification under Orthogonality). Under Assumption 1, the prediction
scores simplify to:

v̂[i]x = ζ
[i]

k
[i]
x

(3.34)

v̂[i]y = ζ
[i]

k
[i]
y

(3.35)

where k[i]
x and k

[i]
y are the positions of the target tokens in the sequence.

Proof. By the orthogonality assumption, wx
x[i] · h

[i]
k = 1 if k = k

[i]
x and 0 otherwise. There-

fore:

v̂[i]x =
K∑
k=1

ζ
[i]
k (wx

x[i] · h[i]
k ) = ζ

[i]

k
[i]
x

(3.36)

The same reasoning applies for task Y .

Definition 7 (Loss Functions). The empirical risk for each task employs the negative log-
likelihood with smooth clipping to ensure differentiability. For task X , we have Lx(W ) =
1
N

∑N
i=1− log(v̂[i]x +ξ), while task Y uses Ly(W ) = 1

N

∑N
i=1− log(v̂[i]y +ξ). The multi-task

objective combines both losses as Lmulti(W ) = Lx(W ) + Ly(W ), where ξ ∈ (0, 1) is a
small constant ensuring numerical stability.

Assumption 3 (Initialization). We assume W is initialized such that ζ [i]k (W 0) > 0 for all
k ∈ {1, . . . , K} and all training examples i ∈ {1, . . . , N}, where W 0 denotes the initial
parameter values. This ensures the losses are well-defined at initialization.
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3.5.2 Preparatory Lemmas

We now derive the gradients of the task losses with respect to the shared attention matrix
W . Note that we compute gradients of the negative log-likelihood of the clipped score
log(v̂x + ξ).

Lemma 3 (Softmax Derivative). The derivative of the softmax function is:

∂σ(z)k
∂zm

= σ(z)k[δkm − σ(z)m] = ζk[δkm − ζm] (3.37)

where δkm is the Kronecker delta and we use the shorthand ζk = σ(z)k.

Definition 8 (Attention-Weighted Target Embeddings). For each example i and task, de-
fine:

u[i]
x := ζ

[i]

k
[i]
x

h
[i]

k
[i]
x

= v̂[i]x h
[i]

k
[i]
x

(3.38)

u[i]
y := ζ

[i]

k
[i]
y

h
[i]

k
[i]
y

= v̂[i]y h
[i]

k
[i]
y

(3.39)

Lemma 4 (Gradient of Token Score). Since v̂[i]x = ζ
[i]

k
[i]
x

, we have:

∇W v̂[i]x =
(
u[i]

x − v̂[i]x c[i]
)
h̄

[i]⊤ (3.40)

where c[i] =
∑K

k=1 ζ
[i]
k h

[i]
k is the context vector.

Proof. Computing the derivative:

∂v̂
[i]
x

∂Wpq

=
∂ζ

[i]

k
[i]
x

∂Wpq

(3.41)

=
K∑

m=1

∂ζ
[i]

k
[i]
x

∂z
[i]
m

∂z
[i]
m

∂Wpq

(3.42)

=
K∑

m=1

ζ
[i]

k
[i]
x

[
δ
k
[i]
x ,m
− ζ [i]m

]
h[i]
mph̄

[i]
q (3.43)

=
K∑

m=1

v̂[i]x
[
δ
k
[i]
x ,m
− ζ [i]m

]
h[i]
mph̄

[i]
q (3.44)

= v̂[i]x h
[i]

k
[i]
x ,p

h̄[i]
q − v̂[i]x

K∑
m=1

ζ [i]mh[i]
mph̄

[i]
q (3.45)

= [u[i]
x − v̂[i]x c[i]]ph̄

[i]
q (3.46)

Remark 15 (Geometric Interpretation). The gradient (u[i]
x − v̂

[i]
x c[i])h̄

[i]⊤ is a rank-1 update
that alignsWh̄

[i] with the target embedding while suppressing alignment with the current
context. Note that the clipping affects only the 1

v̂x+ξ
prefactor in the loss gradient, but not

the formula for ∇W v̂x.

– 63 –



ChapteR 3

Lemma 5 (Complete Gradient Expression). The gradients of the task losses are:

∇WLx(W ) = − 1

N

N∑
i=1

1

v̂
[i]
x + ξ

[
u[i]

x − v̂[i]x c[i]
]
h̄

[i]⊤ (3.47)

∇WLy(W ) = − 1

N

N∑
i=1

1

v̂
[i]
y + ξ

[
u[i]

y − v̂[i]y c[i]
]
h̄

[i]⊤ (3.48)

For the sequential training analysis, we require the Hessian of each task loss.

Lemma 6 (Second-Order Softmax Derivative). The second derivative of the softmax function
is:

∂2σ(z)k
∂zu∂zv

= σ(z)k

[
(δku − σ(z)u)(δkv − σ(z)v) (3.49)

− (δuv − σ(z)v)σ(z)u

]
(3.50)

Lemma 7 (Hessian of Task Loss). The Hessian of task X loss has the form:

[∇2
WLx(W )]pq,rs =

1

N

N∑
i=1

[
G

[i]
pqG

[i]
rs

(v̂
[i]
x + ξ)2

− H
[i]
pq,rs

v̂
[i]
x + ξ

]
(3.51)

where:

G[i]
pq = [u[i]

x − v̂[i]x c[i]]ph̄
[i]
q (3.52)

H[i]
pq,rs =

K∑
u,v=1

∂2ζ
[i]

k
[i]
x

∂z
[i]
u ∂z

[i]
v

h[i]
uph̄

[i]
q h

[i]
vrh̄

[i]
s (3.53)

Proof of Lemma 7. We derive the Hessian by taking the second derivative of the task loss
Lx(W ) with respect to the attention matrix entries. Our approach builds systematically
on the first-order gradient computation established in Theorem 5.

Step 1: Starting from the first-order gradient. From Theorem 5, we have:

∂Lx

∂Wpq

= − 1

N

N∑
i=1

1

v̂
[i]
x + ξ

∂v̂
[i]
x

∂Wpq

(3.54)

where ∂v̂
[i]
x

∂Wpq
= G

[i]
pq , giving us:

∂Lx

∂Wpq

= − 1

N

N∑
i=1

G
[i]
pq

v̂
[i]
x + ξ

(3.55)
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Step 2: Computing the secondderivative. To obtain theHessian entry [∇2
WLx(W )]pq,rs,

we differentiate the first-order gradient with respect to Wrs:

∂2Lx

∂Wrs∂Wpq

= − 1

N

N∑
i=1

∂

∂Wrs

[
G

[i]
pq

v̂
[i]
x + ξ

]
(3.56)

Step 3: Applying the quotient rule. Using the quotient rule for differentiation:

∂

∂Wrs

[
G

[i]
pq

v̂
[i]
x + ξ

]
=

∂G
[i]
pq

∂Wrs
· (v̂[i]x + ξ)−G

[i]
pq · ∂(v̂

[i]
x +ξ)

∂Wrs

(v̂
[i]
x + ξ)2

(3.57)

=

∂G
[i]
pq

∂Wrs
· (v̂[i]x + ξ)−G

[i]
pq · ∂v̂

[i]
x

∂Wrs

(v̂
[i]
x + ξ)2

(3.58)

Since ∂v̂
[i]
x

∂Wrs
= G

[i]
rs, this becomes:

∂

∂Wrs

[
G

[i]
pq

v̂
[i]
x + ξ

]
=

∂G
[i]
pq

∂Wrs
· (v̂[i]x + ξ)−G

[i]
pq ·G[i]

rs

(v̂
[i]
x + ξ)2

(3.59)

Separating the terms:

=

∂G
[i]
pq

∂Wrs

v̂
[i]
x + ξ

− G
[i]
pqG

[i]
rs

(v̂
[i]
x + ξ)2

(3.60)

Step 4: Computing ∂G
[i]
pq

∂Wrs
. Recall that G[i]

pq =
∂v̂

[i]
x

∂Wpq
where v̂[i]x = ζ

[i]

k
[i]
x

. Therefore:

∂G
[i]
pq

∂Wrs

=
∂2v̂

[i]
x

∂Wrs∂Wpq

=
∂2ζ

[i]

k
[i]
x

∂Wrs∂Wpq

(3.61)

Step 5: Applying the chain rule for second derivatives. Since ζ
[i]

k
[i]
x

depends on W

through the attention logits z[i]u =
∑din

j=1

∑din
k=1 h

[i]
ujWjkh̄

[i]
k , we apply the chain rule:

∂2ζ
[i]

k
[i]
x

∂Wrs∂Wpq

=
K∑

u,v=1

∂2ζ
[i]

k
[i]
x

∂z
[i]
u ∂z

[i]
v

∂z
[i]
u

∂Wpq

∂z
[i]
v

∂Wrs

(3.62)

Step 6: Evaluating the logit derivatives. From the definition of the attention logits, we
have:

∂z
[i]
u

∂Wpq

= h[i]
uph̄

[i]
q (3.63)

∂z
[i]
v

∂Wrs

= h[i]
vrh̄

[i]
s (3.64)
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Substituting these into our expression:

∂2ζ
[i]

k
[i]
x

∂Wrs∂Wpq

=
K∑

u,v=1

∂2ζ
[i]

k
[i]
x

∂z
[i]
u ∂z

[i]
v

h[i]
uph̄

[i]
q h

[i]
vrh̄

[i]
s (3.65)

This is precisely the definition ofH[i]
pq,rs given in the theorem statement.

Step 7: Assembling the final result. Substituting back into our expression from Step
3:

∂

∂Wrs

[
G

[i]
pq

v̂
[i]
x + ξ

]
=
H[i]

pq,rs

v̂
[i]
x + ξ

− G
[i]
pqG

[i]
rs

(v̂
[i]
x + ξ)2

(3.66)

Therefore, the Hessian entry is:

[∇2
WLx(W )]pq,rs = −

1

N

N∑
i=1

[
H[i]

pq,rs

v̂
[i]
x + ξ

− G
[i]
pqG

[i]
rs

(v̂
[i]
x + ξ)2

]
(3.67)

=
1

N

N∑
i=1

[
G

[i]
pqG

[i]
rs

(v̂
[i]
x + ξ)2

− H
[i]
pq,rs

v̂
[i]
x + ξ

]
(3.68)

This completes the proof of the theorem.

This completes the setup and gradient derivations needed for analyzing the multi-task
training dynamics.

3.5.3 Notation for First- and Second-Order Quantities

For each training example i ∈ [N ]2, recall from definition 6 the token-level quantities:

v̂[i]x := ζ
[i]

k
[i]
x

, v̂[i]y := ζ
[i]

k
[i]
y

, c[i] :=
K∑
k=1

ζ
[i]
k h

[i]
k , h̄

[i]
:= h

[i]
K . (3.69)

We define scalar coefficients and rank-one matrices:

ω[i]
x := − 1

v̂
[i]
x + ξ

, ω[i]
y := − 1

v̂
[i]
y + ξ

,

Q[i]
x :=

(
u[i]

x − v̂[i]x c[i]
)
h̄

[i]⊤
, Q[i]

y :=
(
u[i]

y − v̂[i]y c[i]
)
h̄

[i]⊤
.

(3.70)

By lemma 5, the task gradients satisfy:

gx(W ) =
1

N

N∑
i=1

ω[i]
x Q[i]

x , gy(W ) =
1

N

N∑
i=1

ω[i]
y Q[i]

y (3.71)

Because every Q[i]
∗ is an outer product, their pairwise Frobenius inner product factorizes:

2We use the standard notation [N ] := {1, 2, . . . , N} to denote the set of integers from 1 to N .
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Lemma 8 (Outer-product factorisation). For any i, j ∈ [N ],

〈Q[i]
x ,Q

[j]
y 〉F =

(
h̄

[i] · h̄[j]
) (

u[i]
x − v̂[i]x c[i]

)⊤ (
u[j]

y − v̂[j]y c[j]
)
. (3.72)

Proof. Let q[i]
x := u

[i]
x − v̂

[i]
x c[i]. Then Q[i]

x = q
[i]
x h̄

[i]⊤, so:

〈Q[i]
x ,Q

[j]
y 〉F =

(
h̄

[i] · h̄[j]
)
q[i]⊤
x q[j]

y

which yields (3.72).

3.5.4 Implicit Regularization Effect

We refine the analysis sketched in section 3.4 by specialising every step of the modified-
gradient-flow (mgf) framework to the simplified self-attention architecture of definition 4.
All derivations are carried out for a single shared attention matrix W ∈ Rdin×din ; both
task-specific heads (W x,W y) are held fixed (assumption 1). We provide full first- and
second-order computations and highlight the geometric interpretation of every term.

Joint (Simultaneous) Training When both losses are optimised jointly, Lmulti = Lx +
Ly, the mgf argument from section 3.4 shows gradient descent is equivalent to flow on the
modified loss:

L̃multi(W ) = Lx(W ) + Ly(W ) +
η

4

∥∥gx(W ) + gy(W )
∥∥2
F
+O(η2). (3.73)

Theorem 4 (Explicit implicit term under joint updates).

η

4

∥∥gx + gy

∥∥2
F
=

η

4N2

∑
i,j

ω[i]
x ω[j]

x 〈Q[i]
x ,Q

[j]
x 〉F

+
η

4N2

∑
i,j

ω[i]
y ω[j]

y 〈Q[i]
y ,Q

[j]
y 〉F

+
η

2N2

∑
i,j

ω[i]
x ω[j]

y 〈Q[i]
x ,Q

[j]
y 〉F︸ ︷︷ ︸

cross-task interaction

. (3.74)

Proof. Use ‖gx + gy‖2F = ‖gx‖2F + ‖gy‖2F + 2〈gx, gy〉F and insert (3.71).

The cross-term in the implicit regularization depends on two key geometric factors.
First, the query similarity h̄[i] · h̄[j] captures how aligned the query tokens are across differ-
ent training examples. Second, the residual-context similarity

(
u

[i]
x − v̂

[i]
x c[i]

)⊤ (
u

[j]
y − v̂

[j]
y c[j]

)
measures the alignment between the attention-weighted target embeddings and their cor-
responding context vectors. When these factors produce negative alignment, the resulting
negative regularizer term encourages maximal task disagreement.
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Sequential (Alternating) Training Sequential update: first task X , then task Y :

W (1) = W − ηgx(W ), W (2) = W (1) − ηgy(W
(1)). (3.75)

Theorem 5 (Second-order correction under sequential updates). The overall update is:

W (2) = W − η
[
gx(W ) + gy(W )

]
+

η2

n2

∑
i,j

ω[i]
y ω[j]

x Ξ[i,j] +O(η3) (3.76)

with:
Ξ[i,j] :=

[(
u[i]

y − v̂[i]y c[i]
)
�O[i,j]

]
h̄

[i]⊤
,

O
[i,j]
k :=

(
u[j]

x − v̂[j]x c[j]
)⊤

h
[i]
k .

(3.77)

Proof. Insert the Hessian structure from lemma 7 into the general sequential update from
theorem 3.

The second-order term isO(η2) and becomes negligible as η → 0, explaining why both
regimes agree in the infinitesimal limit (see fig. 3.2).

Our analysis reveals fundamental differences in how joint and sequential training shape
multi-task optimization dynamics. Joint training introduces the first-order implicit term
(3.74), which directly encourages anti-alignment between task gradients through the inner
product regularization. Sequential training, on the other hand, adds a second-order curva-
ture correction (3.76) that can potentially amplify disagreement through Hessian-mediated
interactions. Notably, as the learning rate η approaches zero, both implicit regularization
terms vanish, causing the training trajectories to converge. These theoretical predictions
will be empirically validated in Section 3.7.

3.6 Geometric Analysis of Task Competition

Our analysis has so far revealed the precise mathematical forms of the implicit regularizers
for both training regimes. To build a more intuitive and actionable understanding, this
section develops a geometric perspective on the problem. We formalize the notion of ”task
competition” and derive precise conditions based on the angle between task gradients and
the curvature of the loss landscape.

3.6.1 Task Competition

Definition 9 (Task Competition - Multi-Objective Training). In multi-objective training,
tasks x and y are said to be competing at parameter θ if:

Cmulti(θ) := 〈∇θLx(θ),∇θLy(θ)〉 < 0 (3.78)
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Definition 10 (Task Competition - Sequential Training). In sequential training where task
x is optimized before task y, tasks are competing at parameter θ if:

Cseq(θ) := 〈∇θLx(θ),∇θLy(θ
(1))〉 < 0 (3.79)

where θ(1) = θ − η∇θLx(θ) and ∇θLy(θ
(1)) is the effective gradient from Equation 3.23.

Lemma 9 (Relationship Between Competition Definitions). The sequential competition met-
ric can be expressed as:

Cseq(θ) = Cmulti(θ)− η∇θLx(θ)
T∇2

θLy(θ)∇θLx(θ) +O(η2) (3.80)

As η → 0, both definitions converge: Cseq → Cmulti.

Proof. Substituting the expression for ∇θLy(θ
(1)) from Equation 3.23:

Cseq = 〈∇θLx(θ),∇θLy(θ)− η∇2
θLy(θ)∇θLx(θ) +O(η2)〉 (3.81)

= Cmulti − η∇θLx(θ)
T∇2

θLy(θ)∇θLx(θ) +O(η2) (3.82)

3.6.2 Competition Regions as Functions of Gradient Angle

Let Φ ∈ [0, π] denote the angle between task gradients:

cos(Φ) = 〈∇θLx(θ),∇θLy(θ)〉
‖∇θLx(θ)‖‖∇θLy(θ)‖

(3.83)

Proposition 3 (Competition Region - Multi-Objective Training). Tasks compete in multi-
objective training if and only if Φ > π/2.

Proposition 4 (Competition Region – Sequential Training). Define the normalized curva-
ture factor:

κ :=
∇θLx(θ)

T∇2
θLy(θ)∇θLx(θ)

‖∇θLx(θ)‖2‖∇θLy(θ)‖
(3.84)

Tasks compete in sequential training when:

cos(Φ) < ηκ‖∇θLx(θ)‖
‖∇θLy(θ)‖

(3.85)

Proof. From Lemma 9, Cseq < 0 when:

‖∇θLx(θ)‖‖∇θLy(θ)‖ cos(Φ) < η∇θLx(θ)
T∇2

θLy(θ)∇θLx(θ) (3.86)

cos(Φ) < ηκ‖∇θLx(θ)‖
‖∇θLy(θ)‖

(3.87)
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3.6.3 Special Cases and Implications

Corollary 3 (Competition Enhancement in Sequential Training). When task y has a convex
loss (∇2

θLy(θ) � 0 and κ > 0), sequential training can induce competition even between
naturally aligned tasks (Φ < π/2). Competition emerges when:

η >
‖∇θLy(θ)‖ cos(Φ)

κ‖∇θLx(θ)‖
(3.88)

The critical angle where competition begins is Φc = arccos
(

ηκ∥∇θLx(θ)∥
∥∇θLy(θ)∥

)
.

Example 1 (Isotropic Curvature). If ∇2
θLy(θ) = ιI with ι > 0, then κ = ι and tasks

compete when:

Φ > arccos
(
ηι‖∇θLx(θ)‖
‖∇θLy(θ)‖

)
(3.89)

Remark 16 (Practical Implications). Our geometric framework reveals that:

• Multi-objective training maintains a fixed competition boundary at Φ = π/2, pre-
serving natural task alignment when Φ < π/2

• Sequential training’s competition boundary depends on η, gradient magnitudes, and
loss curvature, potentially inducing artificial competition

• Smaller learning rates reduce the gap between training regimes, providing more pre-
dictable optimization dynamics

• For transformer architectureswith shared attentionmechanisms, these insights guide
the choice between joint and sequential training strategies

3.7 Numerical Validation

The preceding sections have developed a comprehensive theoretical framework, predicting
that joint and sequential training induce fundamentally different implicit biases. Specifi-
cally, our analysis points to a first-order gradient alignment term in joint training versus
a more complex, second-order Hessian correction in sequential training, with the diver-
gence between them amplified by the learning rate and loss curvature. To validate these
predictions and demonstrate their tangible impact on optimization, we now turn to a series
of numerical experiments. We design controlled settings to first visualize the optimization
paths on a simple landscape, then measure the evolution of gradient alignment and solution
flatness in a multi-task neural network.
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Figure 3.2: Optimization trajectories for sequential versus multi-objective gradient descent
under varying learning rates.

3.7.1 Optimization Trajectories

To validate our theoretical analysis of gradient flow dynamics in multi-task learning set-
tings, we designed a simplified two-dimensional optimization problem that captures es-
sential aspects of task interaction while remaining analytically tractable. Specifically, we
examined the optimization trajectories of two distinct loss functions sharing a common
parameter space:

L1(x, y) =
1

2
(xy2 − 1)2 (3.90)

L2(x, y) =
1

2
(x2y + 1)2 (3.91)

These functions were deliberately constructed to possess different curvature properties,
allowing us to observe how gradient interactions shape the optimization trajectory. The
multi-objective loss function is the direct sum Lmulti(x, y) = L1(x, y) + L2(x, y).

We examined four optimization approaches: (i) multi-objective gradient descent, up-
dating parameters using the combined gradient∇(L1+L2); (ii) the modified gradient flow
approximation of multi-objective updates; (iii) sequential gradient descent, which updates
parameters first with respect to L1, then with respect to L2; and (iv) the corresponding
sequential modified flow with Hessian correction. For comparison, we also tracked the
trajectories of disjoint optimization, where each task is optimized independently.

Figure 3.2 presents optimization trajectories under two learning rate regimes: η = 0.01
(left) and η = 0.001 (right). The contour lines represent the combined loss landscape Lmulti.
With the larger learning rate of η = 0.01, we observe a clear divergence between multi-
objective and sequential optimization paths. The multi-objective approach follows one tra-
jectory toward a particular local minimum, while the sequential approach takes a markedly
different path converging to a distinct local optimum. Notably, the discrete gradient descent
trajectories closely follow their corresponding modified flows, providing strong empirical
confirmation of our theoretical analysis.
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In contrast, with the smaller learning rate of η = 0.001, both multi-objective and se-
quential optimization trajectories become nearly indistinguishable, converging to the same
local minimum. This observation precisely aligns with our theoretical prediction that the
Hessian correction term in the sequential update scales quadratically with the learning
rate (η2∇2

θLy(θ)∇θLx(θ)). As this term becomes negligible at smaller learning rates, both
methods essentially follow the standard gradient flow trajectory.

These results provide compelling evidence for our theoretical framework. The distinct
optimization paths observed at larger learning rates demonstrate that the training regime—
multi-objective versus sequential—can significantly impact the solution found through gradient-
based optimization. Furthermore, the close correspondence between discrete updates and
their continuous flow approximations validates our derivation of the modified gradient
flow, including the Hessian correction term that emerges in the sequential setting.

3.7.2 Implicit Regularization Effect on Gradient Norms

We conducted a comprehensive evaluation of our theoretical findings through carefully
controlled experiments on synthetic datasets. This experimental design allowed us to pre-
cisely isolate the effects of our proposed training regimes and architectural choices. Our
experimental protocol maintained consistent hyperparameter settings across all conditions,
with networks trained for 100 epochs using a hidden dimension of 256 and 2 layers. To thor-
oughly assess the sensitivity of implicit regularization effects to step size, we examined two
learning rates: η = 0.001 and η = 0.01.

Our investigation compared two fundamental architectural approaches. The first em-
ployed disjoint networks, where each task was modeled independently without parameter
sharing. The second utilized a shared architecture with task-specific heads, where a com-
mon backbone was shared across tasks except for the final output layer. For the shared
architecture, we explored two distinct training regimes: a multi-objective approach that
simultaneously updated both task-specific heads using an aggregated loss, and a sequential
regime that implemented a two-stage process, updating parameters first with respect to
one task and then the second.

To analyze the implicit regularization effects in greater depth, we tracked three keymet-
rics throughout training: cosine similarity between task gradients, norm of the summed
gradients, and the training loss curve. These metrics allow us to directly examine how
different training regimes influence the alignment of task gradients and validate our theo-
retical predictions regarding gradient disagreement.

Figure 3.3 presents the results for similar tasks, where both prediction heads were ini-
tialized with identical weights and optimized for the same objective. Under the larger learn-
ing rate regime (η = 0.01, bottom row), we observe a striking divergence in behavior
between training approaches. The sequential training regime progressively drives tasks to-
ward disagreement, as evidenced by the cosine similarity trending toward -1. This indicates
that even with initially aligned tasks, the sequential update introduces gradient conflicts
through the Hessian correction term. In contrast, the multi-objective approach maintains
perfect gradient alignment (cosine similarity≈ 1) throughout training. Notably, both train-
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Figure 3.3: Optimization dynamics under similar task settings. The top row displays the
evolution of (a) cosine similarity between the task gradients, (b) the norm of the summed
gradients, and (c) the training loss for experiments conducted with a learning rate of 0.001.
The bottom row presents the corresponding results for a learning rate of 0.01.

ing regimes maintain stable training loss and gradient norm profiles, confirming that the
observed gradient alignment effects are not artifacts of divergent optimization dynamics.

Under the smaller learning rate (η = 0.001, top row), both training approaches exhibit
nearly identical behavior, maintaining maximum task agreement throughout the optimiza-
tion process. This pattern reinforces our theoretical prediction that the influence of the
implicit regularization terms diminishes at smaller learning rates.

Figure 3.4 presents the corresponding analysis for dissimilar tasks, where each predic-
tion head was assigned a different objective. In this scenario, both multi-objective and
sequential training regimes encourage task disagreement regardless of learning rate. With
the smaller learning rate (η = 0.001, top row), both approaches follow nearly identical paths
of gradually increasing gradient disagreement. With the larger learning rate (η = 0.01, bot-
tom row), the task disagreement emerges more rapidly, though the multi-objective training
regime demonstrates more consistent behavior across experimental seeds, as indicated by
the tighter confidence intervals.

When tasks have inherently competing objectives, the multi-objective training regime
renders this competition explicit through its implicit regularization term η

2
〈∇θLx(θ),∇θLy(θ)〉,

which is minimized when gradients are anti-aligned. When tasks are naturally compatible,
however, this same term preserves their alignment, maintaining higher training efficiency.
The sequential training approach, by contrast, introduces an additional source of disagree-
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Figure 3.4: Optimization dynamics for dissimilar task settings. The top row shows the evo-
lution of (a) cosine similarity between task gradients, (b) the norm of the summed gradients,
and (c) the training loss for experiments conducted with a learning rate of 0.001. The bot-
tom row presents the corresponding metrics for a learning rate of 0.01.

ment through the Hessian correction term η2∇2
θLy(θ)∇θLx(θ), which can induce artificial

competition even between compatible tasks.

These findings reveal that the choice of training regime profoundly influences how
multi-task models negotiate competing objectives, with the multi-objective approach pro-
viding a more direct and consistent mechanism for balancing task interactions. This has
significant implications for attention-based models like Decision Transformers, where gra-
dient disagreement may contribute to the formation of specialized attention patterns when
trained on multiple prediction tasks.

3.7.3 Implicit Regularization Effect on Flatness of Local Minima

The robustness of the obtained local minima was evaluated by systematically perturbing
the weights of the trained models using multiplicative Gaussian noise. Specifically, for each
model we applied noise with varyingmagnitudes (ranging from 0.0 to 0.4) and subsequently
measured the test error, defined as the sum of mean squared errors over the tasks. By
plotting the test error on a log-log scale as a function of the perturbation magnitude, we
derived a quantitative estimate of the loss surface slope. This experimental design allows
us to assess the flatness of the minima: flatter regions (i.e., lower slopes) are generally
associatedwith better generalization. The analysis was carried out for models trained under
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(c) Dissimilar tasks, η = 0.001
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Figure 3.5: Loss surface analysis via weight perturbation. Top row: Results for models
trained on similar tasks. Bottom row: Results for models trained on dissimilar tasks. For
each setting, the left subfigure corresponds to a learning rate of 0.001 while the right sub-
figure corresponds to a learning rate of 0.01. The plots depict the change in the loss surface
slope—computed as the variation in test error under multiplicative Gaussian perturbations
applied to all network weights—with lower slopes indicating flatter minima and, conse-
quently, enhanced generalization.

both similar and dissimilar task conditions, and for two learning rates (0.001 and 0.01),
thereby providing a comprehensive evaluation of the implicit regularization effects inherent
to the different training regimes.

3.8 Discussion and Practical Implications

Our theoretical analysis and empirical validation provide several actionable insights for
practitioners designing multi-task learning systems. The fundamental finding that gradient
descent implicitly encourages task disagreement, combined with the distinct mechanisms
through which joint and sequential training manifest this bias, leads to concrete design
principles.
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3.8.1 Design Principles for Multi-Task Systems

The choice of learning rate emerges as a critical factor in multi-task optimization. Our anal-
ysis on learning rates of η ∈ {0.001, 0.01} suggests that smaller learning rates reduce the
gap between training regimes, potentially providing more predictable optimization dynam-
ics. This is particularly important when the desired task interactions are known a priori, as
larger learning rates can introduce unintended competition through the Hessian correction
term in sequential training.

Task compatibility assessment becomes essential for selecting appropriate training strate-
gies. Practitioners should monitor gradient alignment cos(Φ) during early training epochs
to identify potential task conflicts. When tasks exhibit natural alignment (Φ < π/2),
joint training preserves this beneficial cooperation, while sequential training may inadver-
tently induce artificial competition. Conversely, for inherently competing tasks (Φ > π/2),
both methods encourage disagreement, but sequential training amplifies this effect through
curvature-dependent corrections.

The architectural choice between shared and task-specific parameters fundamentally
alters the optimization landscape. As shown in Corollary 2, task interactions only arise
through shared parameters. This suggests that careful architecture design—selectively shar-
ing parameters based on expected task relationships—can modulate the strength of implicit
regularization effects.

3.8.2 Implications for Transformer-based RL

Our theoretical framework provides insights into the different optimization dynamics of
MO-DT and TT that may contribute to their performance differences in offline reinforce-
ment learning settings. Recall that in the RL setting, our generic tasks x and y correspond to
state and action prediction respectively, with themulti-objective lossLmulti = Ls+LDT+Lg

in the MO-DT formulation. The joint training employed by MO-DT avoids the Hessian-
induced competition that affects TT’s sequential approach. This distinction becomes partic-
ularly crucial when predicting correlated modalities like states and actions, where artificial
competition introduced by sequential training may hinder the model’s ability to capture
natural dependencies.

Our framework suggests that the choice between joint and sequential training should
depend not only on computational constraints but also on the fundamental relationships be-
tween tasks. For transformer architectures processing multi-modal sequences, joint train-
ing provides amore principled approachwhenmodalities exhibit natural correlations, while
sequential training may be preferred when explicit task specialization is desired.
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3.9 Conclusion

In this work, we developed a theoretical framework for understanding the implicit biases
of gradient descent in multi-task learning. Through modified gradient flow analysis, we
revealed that multi-task optimization fundamentally encourages task disagreement by im-
plicitly minimizing the inner product between task gradients. This finding reveals a nu-
anced picture: while parameter sharing enables task interaction, the optimization dynamics
through gradient descent can implicitly encourage task disagreement.

Our analysis uncovered critical differences between training regimes: while multi-
objective optimization introduces a first-order regularization term that directly reflects gra-
dient alignment, sequential training adds a second-order Hessian correction that can cre-
ate artificial competition even between compatible tasks. By specializing to self-attention
mechanisms, we demonstrated how these effects manifest in transformer architectures
through attention weight redistribution, providing the first theoretical characterization of
multi-task dynamics in attention-based models.

The geometric framework we developed offers practical insights for MTL design. Our
conditions linking gradient angles, learning rates, and loss curvature enable practitioners
to predict when tasks will cooperate or compete, guiding architectural and algorithmic
choices. The empirical validation on controlled experiments confirms our theoretical pre-
dictions about optimization trajectories. These insights provide a potential explanation
for performance differences between multi-objective and sequential training approaches,
though the connection to complex models like transformers requires further investigation.

While our analysis provides valuable insights, several limitationsmerit future investiga-
tion. First, our theoretical results rely on simplified models—extending to full transformer
architectures with layer normalization, residual connections, and multi-head attention re-
mains an open challenge. Second, we focused on gradient descent dynamics, but modern
optimizers like Adam may exhibit different implicit biases worthy of study.

Future research directions include: (i) developing optimization algorithms that explic-
itly control task interactions based on our geometric insights, (ii) extending the analysis
to continual learning settings where tasks arrive sequentially, (iii) investigating how our
findings translate to other multi-task architectures beyond transformers, and (iv) explor-
ing connections between task disagreement and generalization performance. Our work
provides a foundation for understanding multi-task optimization dynamics, opening new
avenues for principled MTL algorithm design.

The content of this chapter forms the basis of the paper ”When Tasks Collide: A Gradient-Flow
Analysis of Alternating and Joint Training in Transformer Models”, to be submitted.
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Chapter 4

When Can Sequence Modeling
Approaches Recover the Target Policy
in Offline Reinforcement Learning? A
Statistical Analysis

4.1 Introduction

Remark 17 (Connection to Previous Work). This chapter provides a theoretical analysis of
sequence modeling approaches to offline RL, complementing the empirical methods de-
veloped in Chapters 1 and 2. While previous chapters focused on architectural innova-
tions (MO-DT, TRDT, RGDT), here we establish fundamental sample complexity bounds
for when these approaches can successfully recover optimal policies.

Offline RL addresses the challenge of learning effective policies fromfixed datasets with-
out online interaction with the environment [3, 9]. This paradigm is particularly relevant
in domains such as robotics, logistics, and operations research, where exploration with un-
trained policies is impractical or unsafe. The offline RL setting has prompted the develop-
ment of various approaches, initially focusing on adapting classical RL algorithms. These
algorithms, such as off-policy methods [58, 139], were primarily designed for the online
paradigm—a fundamentally different setting where the agent can interact with and learn
from the environment in real-time. These adaptations typically incorporate mechanisms
to mitigate action distribution shift while pursuing policy improvement [5, 3, 20, 65, 4].
The goal is to learn an optimal policy that maximizes expected return, leveraging the infor-
mation contained in the offline dataset, which often contains data from multiple policies
or training stages. However, off-policy methods in offline RL settings are known for their
sensitivity to hyperparameters and lack a theoretical basis for selecting among different
distribution shift mitigation strategies [20, 65].

The limitations of classical RLmethods in offline settings have motivated a shift towards
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framing offline RL as a supervised learning problem [140, 141]. Leveraging the inherently
sequential nature of offline RL datasets, sequence modeling (SM) approaches have emerged
as a promising direction [7, 8]. These methods offer several advantages over their off-policy
counterparts, including algorithmic simplicity, reduced sensitivity to hyperparameters, and
inherent resilience to action distribution shift [7]. Unlike off-policy techniques that aim to
directly learn an optimal policy, SM approaches model the entire conditional distribution
of policies present in the dataset, typically using transformer architectures [6, 38]. This
comprehensive modeling approach, while powerful, introduces unique challenges. By cap-
turing the full spectrum of policies, including suboptimal ones, these methods may be more
susceptible to the influence of poor-quality data. During inference, the best policy is ex-
tracted by conditioning on the most high return contexts, but the success of this process
heavily depends on the composition of the training dataset. The presence of suboptimal
policies in the data could potentially hinder the extraction of truly optimal behavior, a chal-
lenge that is less pronounced in off-policy methods that explicitly target the best possible
policy. This characteristic of SM approaches underscores the critical need for a thorough
understanding of how dataset composition affects the quality of the extracted policy.

In this work, we address this challenge by providing a theoretical framework for analyz-
ing the sample complexity of learning the target policy in offline RL using SM approaches.
The analysis yields a novel bound on the required number of high-return samples, expressed
in terms of theminimumnumber of samples and the expectedminimumproportion of high-
return data across contexts. This formulation allows for the characterization of the relation-
ship between sample complexity and dataset composition, revealing distinct small-data and
large-data regimes. A critical transition point between these regimes is identified and an-
alyzed, providing insights into the diminishing returns of increasing dataset size beyond
this point. The theoretical results suggest a fundamental trade-off between the breadth of
context coverage and the depth of sampling within each context. This analysis may inform
data collection strategies and algorithm design in offline RL, particularly in scenarios with
imbalanced or limited data across different contexts.

4.2 Related Work

The study of sample complexity in reinforcement learning has a rich history, with seminal
works establishing bounds for various settings [142, 143]. In the context of offline RL, recent
research has focused on the challenges of distribution shift and policy constraint [144, 5].
SM approaches to RL, while relatively new, have shown promising empirical results [7, 21].
These methods draw inspiration from advances in natural language processing, particularly
the use of transformer architectures [6]. Our work bridges the gap between these empiri-
cal advances and theoretical foundations, building on techniques from statistical learning
theory [145].
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4.3 System Model

We cast offline RL as a sequence modeling problem within a MDPM = (S,A, P, R, γ),
whereS ,A, P ,R, and γ denote the state space, action space, transition probability function,
reward function, and discount factor, respectively. We assume discrete data, noting that
continuous spaces can be addressed through discretization techniques [21].

The core of our analysis revolves around a fixed-size static training dataset T , compris-
ing trajectories generated by T distinct unknown policies {πk}Tk=1. We transform T into
a sequence modeling dataset D = {(c[i], ℓ[i])}Ni=1, where c[i] ∈ X represents the context
(e.g., previous states, actions, returns) and ℓ[i] ∈ Y represents the next token (typically
an action). The vocabulary size V = |Y| corresponds to the number of possible actions,
while C = |X | denotes the number of possible contexts. To enhance interpretability, our
approach prioritizes actions as tokens, though the methodology generalizes to vocabular-
ies that incorporate state and return tokens. Additionally, we adopt returns—defined as
the cumulative sum of future rewards—as our primary reward metric. This choice is made
without loss of generality, as alternative metrics, such as Monte Carlo value estimates [21],
are also applicable.

Remark 18 (Relationship to Multi-Task Framework). This single-objective formulation spe-
cializes the multi-task framework of Chapter 3. While Chapter 3 uses continuous history
representations H [i] with separate token predictions x[i], y[i] for multiple tasks, here we
work with discrete contexts c[i] ∈ X that summarize the relevant history. We focus solely
on predicting the next action ℓ[i] ∈ Y , corresponding to restricting the multi-task frame-
work to a single action prediction objective.

Remark 19 (Context Notation). In this chapter, c[i] denotes a discrete context from the fi-
nite set X , contrasting with Chapter 3’s c[i] which represents a continuous vector in Rdin

computed via attention mechanisms.

To characterize the dataset composition, we define αk as the expected proportion of
samples in D generated by policy πk, ensuring

∑T
k=1 αk = 1. We distinguish between

high-return and low-return contexts, denoting X h ⊂ X as the set of high-return contexts
and X l = X \ X h as the set of low-return contexts, with Ch = |X h|. For each policy
πk, we decompose αk = αh

k + αl
k, where αh

k and αl
k represent the proportions of high-

return and low-return data, respectively. The overall expected proportions of high-return
and low-return data are denoted as αh :=

∑T
k=1 α

h
k and αl :=

∑T
k=1 α

l
k.

For a context c ∈ X h, let Nc = Nh
c + N l

c denote the number of samples in D con-
taining c, whereNh

c andN l
c represent the numbers of high-return and low-return samples,

respectively. For c ∈ X l, we have that Nc = N l
c. This decomposition is crucial, as even if

a context c is in X h, not all of its occurrences in the dataset are necessarily optimal. This
is particularly evident in episodic environments where trajectories near the end timesteps
may have the same return, but the chosen actions might be sub-optimal depending on the
policy. The illustrative example below provides further clarification on this point.
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Illustrative Example Consider a 5 × 5 grid world where an agent must navigate from
a start position to a goal. We define high-return trajectories as those reaching the goal in
10 steps or fewer. Let context A represent the agent’s position one step away from the
goal, and contextB represent the starting position. ContextA is classified as a high-return
context (A ∈ X h) due to its proximity to the goal.

Consider a dataset T which contains the following two trajectories:

• τ 1: B → · · · → A→ Goal (10 steps, high-return)

• τ 2: B → · · · → A→ [suboptimal actions]→ Goal (20 steps, low-return)

In this example, NA = 2 (total occurrences of context A), while Nh
A = 1 (occurrences of

A in high-return trajectories). Thus, NA 6= Nh
A despite A ∈ X h. This discrepancy arises

because context A’s classification as high-return is based on its potential for high returns,
but the actual returns depend on subsequent actions in the trajectory. □

Finally, we use βh
c = Nh

c

N
to denote the estimated proportion of high-return samples in

which context c appeared. By design, we have that E
[∑

c∈Xh βh
c

]
= αh.

4.4 Statistical Trajectory Model

We define each policy πk as a conditional probability distribution over actions given con-
texts. Specifically, πk(v|c) represents the probability of taking action v given context c
under policy k. For each context c ∈ X , πk(·|c) forms a probability distribution over the
action vocabulary [V ], satisfying

∑V
v=1 πk(v|c) = 1. Subsequently, we define the behavior

policy π as a mixture of πk and the target policy π∗ for offline RL as follows:

π =
T∑

k=1

αkπk (4.1)

π∗ =
1

αh

T∑
k=1

αh
kπk (4.2)

Note that π∗ uses αh
k as coefficients, distinguishing it from the behavior policy π. An

effective offline RL algorithm should aim to approximate π∗. Off-policy methods attempt
this by directly modeling the policy with the maximumQ-value, effectively targeting π∗. In
contrast, SM approaches model π, but attempt to recover π∗ during inference by condition-
ing on contexts c ∈ X h at each timestep. This approach implicitly assumes that high-return
contexts are predominantly generated by π∗, theoretically allowing its recovery.

We define our learned model p as an estimate of the behavior policy, where p(v|c) =
1
Nc

∑Nc

l=1 X
c,v
l , andXc,v

l are indicators of the occurrence of the pair (c, v) given c for the l-th
sample inD. We assume that p is an unbiased estimator of the true underlying distribution
π, i.e., E[p] = π. Consequently, Xc,v

l can be interpreted as a Bernoulli random variable,
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with the probability of Xc,v
l = 1 given by the conditional probability π(v|c). Additionally,

to simplify our theoretical analysis, we assume that the Xc,v
l ’s are independent across dif-

ferent samples. It can be shown that the empirical conditional distribution p is obtained
by minimizing the known categorical cross-entropy loss [146]. For theoretical analysis, we
assume a simplified model where the canonical vectors of context-action pairs are directly
used. In practice, these would be derived from a transformer model [6].

4.5 Problem Statement

Given a dataset with a minimum number of samples generated by the behavior policy for
any high-return context, our goal is to find a lower bound on the minimum number of high-
return samples needed so that our learned model approximates the target policy in offline
RL.

Formally, let νh
min := βh

minNmin be the minimum number of samples generated by π for
any c ∈ X h in D, where βh

min = minc∈Xh E[βh
c ], and Nmin = minc∈Xh Nc. Our goal is to

find a lower bound on νh
min such that our learned conditional model p approximates π∗ on

all c ∈ X h. To achieve this, we consider the matrix representations of p and π∗:

p = (p(v|c))c∈X ,v∈[V ] ∈ [0, 1]C×V (4.3)
π∗ = (π∗(v|c))c∈X ,v∈[V ] ∈ [0, 1]C×V (4.4)

In order to measure the approximation error, we use the 1-norm:

‖p− π∗‖1 =
∑
c∈Xh

∑
v∈Y

|p(v|c)− π∗(v|c)| (4.5)

Throughout the rest of the paper, we use
∑

c,v to denote this double summation for
brevity. It is worth noting that the 1-norm is twice the total variation distance ‖p−π∗‖TV,
another commonly used metric for probability distributions [146, 147]. Additionally, we
compare π∗ and p only on contexts from X h, which delineates a key flexibility of offline RL
compared to scenarios of offline imitation learning (i.e., BC) [148] where we would require
the model to approximate π∗ on all c ∈ X .

4.6 Main Results

This section presents our main theoretical results, establishing sample complexity bounds
for learning near-optimal policies in offline RL using SM approaches, and analyzes the im-
plications of these bounds across different data regimes.

Theorem 6 (Sample Complexity Bound). For any ϵ > 0, if νh
min satisfies:

νh
min ≥ max

{
βh
min

(
ChV

ϵ

)2

, Nmin

(
1− ϵ

4Ch

)}
, (4.6)
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then, we have that:

E[‖p− π∗‖1] < ϵ (4.7)

Proof. We begin by decomposing the error into variance and bias terms using the triangle
inequality:

E[‖p− π∗‖1] ≤ E[‖p− E[p]‖1] + ‖E[p]− π∗‖1 (4.8)

Step 1: Bounding the variance term E[‖p− E[p]‖1].

We begin by expressing the 1-norm and applying linearity of expectation:

E[‖p− E[p]‖1] =
∑
c,v

E[|p(v|c)− E[p(v|c)]|] (4.9)

Now, we apply Jensen’s inequality to each term:

∑
c,v

E[|p(v|c)− E[p(v|c)]|] ≤
∑
c,v

√
E[(p(v|c)− E[p(v|c)])2]

=
∑
c,v

√
Var(p(v|c)) (4.10)

For each p(v|c), we have that:

Var(p(v|c)) = π(v|c)(1− π(v|c))
Nc

≤ 1

4Nc

≤ 1

4Nmin

(4.11)

Therefore,

E[‖p− E[p]‖1] ≤
ChV

2
√
Nmin

(4.12)

Now, to ensure that E[‖p− E[p]‖1] ≤ ϵ/2, we need:

νh
min ≥ βh

min

(
ChV

ϵ

)2

(4.13)

Step 2: Bounding the bias term ‖E[p]− π∗‖1.
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Since E[p] = π =
∑T

i=1 αiπi, where π is the matrix representation of π, we have that:

‖E[p]− π∗‖1 =

∥∥∥∥∥
T∑
i=1

αiπi −
1

αh

T∑
i=1

αh
i πi

∥∥∥∥∥
1

(4.14)

=

∥∥∥∥∥
T∑
i=1

(
αl
i + αh

i −
αh
i

αh

)
πi

∥∥∥∥∥
1

(4.15)

≤ Ch

(
T∑
i=1

αl
i +

∣∣∣∣1− 1

αh

∣∣∣∣ T∑
i=1

αh
i

)
(4.16)

= 2Ch(1− αh) = 2Ch

(
1− E

[∑
c∈Xh

βh
c

])
(4.17)

≤ 2Ch(1− βh
min) (4.18)

The key step is recognizing that ‖πi‖1 = Ch for all i. To ensure that this is at most
equal to ϵ/2, the following inequality must be satisfied:

νh
min ≥ Nmin

(
1− ϵ

4Ch

)
(4.19)

Combining the two bounds completes the proof.

Proposition 5 (Sample Complexity Regimes). The sample complexity νh
min exhibits distinct

regimes as a function of the minimum number of samples Nmin:

1. For Nmin � N∗
min: ν

h
min ≈ βh

min

(
ChV
ϵ

)2
(small-data regime)

2. For Nmin � N∗
min: ν

h
min ≈ Nmin

(
1− ϵ

4Ch

)
(large-data regime)

where the transition point N∗
min is given by:

N∗
min =

4βh
min(C

h)3V 2

ϵ2(4Ch − ϵ)
(4.20)

The analysis highlights key factors influencing sample complexity in offline RL, par-
ticularly emphasizing the role of worst-case context coverage. In data-scarce scenarios,
reducing action space complexity and carefully selecting high-return contexts become crit-
ical. As data increases, the focus shifts to improving the minimum sample count for any
high-return context, with diminishing returns from increasing overall dataset size. This
suggests a fundamental trade-off between ensuring a good proportion of high-return sam-
ples across contexts (breadth) and sufficient samples per context (depth). These findings
have significant implications for data collection strategies in offline RL, suggesting adap-
tive sampling methods that balance exploration of diverse contexts with exploitation of
known high-return areas, particularly focusing on underrepresented high-return contexts
in larger datasets.
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Proposition 6 (Approximated Critical Minimum Sample Size). LetN∗
min be the critical min-

imum sample size at which the two terms in the bound of Theorem 6 are equal. For ϵ � Ch,
N∗

min can be approximated as:

N∗
min ≈

βh
min(C

h)2V 2

ϵ2
+

βh
minC

hV 2

4ϵ
(4.21)

Proof. To express N∗
min in a more analytically tractable form, we consider the typical case

where ϵ� Ch. Under this assumption, we use a Taylor series expansion:

1

4Ch − ϵ
=

1

4Ch
· 1

1− ϵ
4Ch

(4.22)

≈ 1

4Ch

(
1 +

ϵ

4Ch
+
( ϵ

4Ch

)2
+ · · ·

)
(4.23)

≈ 1

4Ch

(
1 +

ϵ

4Ch

)
(keeping only first-order terms) (4.24)

Substituting this back into our expression forN∗
min from (4.20) yields the result in (4.21).

The formula for the critical minimum sample size N∗
min highlights key factors driving

the transition between small-data and large-data regimes in offline RL. The dominant term,
βh
min(C

h)2V 2

ϵ2
, shows that N∗

min scales quadratically with the number of high-return contexts
(Ch) and the action space size (V ), and inversely with the accuracy (ϵ). This indicates that
larger datasets are required for problems with complex action spaces or many high-return
contexts to transition into the large-data regime.

The secondary term, βh
minC

hV 2

4ϵ
, becomes more significant as ϵ increases, suggesting that

lower accuracy thresholds require more data to balance growth. The linear dependence on
βh
min across the formula emphasizes that datasets with more evenly distributed high-return

samples across contexts will require proportionally larger sizes to reach the transition point.

4.7 Numerical Results

We empirically validate our theoretical findings through controlled experiments.

Experimental Setup We designed a synthetic, controlled environment with |S| = 10
states and |A| = 5 actions, using an optimal policy (favoring first action with 0.7 probabil-
ity), a uniform random policy, and a suboptimal policy. The behavior policy weights follow
αh
k ≤ αk with controlled βh

min and Nmin to ensure consistent coverage across high-return
contexts.

Results and Analysis For values of ϵ ∈ {0.2, 0.3, 0.4, 0.5}, we calculated the theoretical
minimum sample size νh

min and testedwhether the resulting empirical error remained below
the theoretical threshold.
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4× 10−1

‖p
−
π
∗ ‖

1

0.190

0.280

0.364

0.471

Target Error (ε)

Empirical Error

Figure 4.1: Empirical approximation error versus theoretical thresholds for varying ϵ values.
Error bars represent standard deviation across 10 random seeds.

As shown in Figure 4.1, the empirical error ‖p − π∗‖1 consistently remains below the
theoretical threshold ϵ across all tested values.

We then varied high-return samples as a fraction {0.1, 0.75, 1.0, 1.5, 2.0} of the theo-
retical minimum to test bound tightness.

For ϵ = 0.2 (Figure 4.2), using 0.75× the theoretical sample size yields errors above
threshold, while the full theoretical size maintains error below threshold, confirming our
bound’s tightness.

With themore stringent ϵ = 0.1 (Figure 4.3), the required samples increase significantly,
and using fewer samples than predicted consistently fails to achieve the target error.

Discussion Our experiments confirm that using the minimum number of high-return
samples prescribed by our theory ensures the empirical error remains below the target
threshold, while using fewer samples results in higher errors. This simultaneously vali-
dates both the effectiveness and tightness of our bounds, providing theoretically grounded
guidance for minimum data requirements in offline RL.
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Figure 4.2: Approximation error as a function of high-return samples for ϵ = 0.2. Vertical
line indicates theoretical minimum sample size.

4.8 Conclusion and Future Directions

This theoretical analysis of sample complexity in offline RL using SM approaches reveals
critical insights into the relationship between dataset composition and learning effective-
ness. By identifying distinct small-data and large-data regimes separated by a critical tran-
sition point, the study challenges the notion that simply increasing dataset size is sufficient
for improved performance. Instead, it emphasizes the importance of balanced data collec-
tion strategies that ensure adequate coverage of high-return contexts. The revealed trade-
off between context coverage breadth and sampling depth suggests that adaptive sampling
methods may be more effective than uniform strategies. These findings provide a founda-
tion for developing more efficient offline RL algorithms and data collection strategies, po-
tentially leading to improved performance in real-world applications where data collection
is costly or constrained. Future work should focus on validating these theoretical results
using realistic transformer architectures on standard offline RL benchmarks, while explor-
ing their practical implications for algorithm design, particularly in developing efficient
data selection and weighting strategies that bridge the gap between theoretical insights
and real-world applications.
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Figure 4.3: Sample complexity analysis for ϵ = 0.1, showing increased sample requirements
for lower error tolerance.

The content of this chapter is based on the paper ”When Can Sequence Modeling Approaches
Recover the Target Policy in Offline Reinforcement Learning? A Statistical Analysis”, accepted
for publication at European Signal Processing Conference (EUSIPCO 2025).
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Conclusion and Future Perspectives

Synthesis of Contributions

This thesis has advanced the supervised learning paradigm for offline reinforcement learn-
ing through architectural innovations and theoretical analysis. Our investigation began
with the empirical observation that Decision Transformers [7], despite their strong per-
formance, exhibited homogeneous attention patterns that suggested suboptimal use of the
transformer architecture. This observation motivated a series of contributions that enhance
sequence modeling approaches to offline RL.

Our first contribution, the Multi-Objective Decision Transformer (MO-DT), demon-
strated that single-task training was responsible for the homogeneous attention patterns.
By jointly optimizing state, action, and return prediction objectives, we induced specialized
attention patterns across different heads. The Trust Region Decision Transformer (TRDT)
extended this multi-objective framework by augmenting trajectories with discretized ac-
tion regions, reducing overfitting to specific behavioral patterns while maintaining action
precision. Both methods achieved state-of-the-art performance on D4RL benchmarks.

The Return-Guided Decision Translator (RGDT) explored an alternative architectural
paradigm, separate from the multi-objective framework. By reconceptualizing offline RL as
a sequence-to-sequence translation problem using an encoder-decoder architecture, RGDT
achieved effective disentanglement of modality processing. This approach demonstrated
that decoder-only architectures are not the only viable option for trajectory modeling in
offline RL.

Our theoretical contributions provided rigorous foundations for these empirical obser-
vations. The modified gradient flow analysis revealed that multi-task learning induces an
implicit regularization term proportional to the inner product of task gradients, explain-
ing why gradient descent encourages task specialization. This analysis was conducted on
simplified self-attention models to maintain mathematical tractability. The Token-Priority
Graph framework, applied specifically to our multi-objective setting, characterized how
different training objectives create distinct attention hierarchies.

Our statistical analysis established sample complexity bounds for sequence modeling
in offline RL, identifying the critical factors of context coverage and sampling depth. These
bounds reveal a phase transition between variance-dominated and bias-dominated regimes,
providing theoretical guidance for data collection strategies.
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Technical Implications

Our findings have several technical implications for offline RL and transformer-based se-
quence modeling:

Multi-Task Training Dynamics: The modified gradient flow analysis shows that
multi-task training fundamentally alters optimization dynamics through the cross-task gra-
dient term η

2
〈∇θLx,∇θLy〉. This term is minimized when gradients are anti-aligned, pro-

viding a mechanistic explanation for the emergence of specialized representations.

Architectural Design Principles: The success of both decoder-only (MO-DT, TRDT)
and encoder-decoder (RGDT) architectures suggests that architectural choices should be
guided by the specific structure of the offline RL problem. The encoder-decoder architecture
proved particularly effective for explicit return conditioning.

Sample Complexity Considerations: Our bounds show that the required number
of high-return samples scales as O((ChV /ϵ)2) in the small-data regime and linearly with
Nmin in the large-data regime, where Ch is the number of high-return contexts and V is
the action vocabulary size.

Limitations and Open Problems

Several limitations of our work point to important open problems:

Experimental Scope: All experiments were conducted onD4RL locomotion taskswith
relatively low-dimensional state and action spaces. Scaling to high-dimensional observa-
tions (e.g., images) and more complex action spaces remains unexplored.

Computational Analysis: We did not analyze the computational costs of our methods
compared to baselines. While sequence modeling approaches avoid value iteration, the
transformer architectures may have different scaling properties that warrant investigation.

Theoretical Gaps: Our theoretical analysis relied on simplified models. Extending the
modified gradient flow analysis to practical transformers with layer normalization, residual
connections, and multiple layers remains challenging. The gap between our simplified self-
attention model and practical architectures is substantial.

Generalization Beyond D4RL: The effectiveness of our methods on other offline RL
benchmarks and real-world applications requires further validation. The D4RL benchmark,
while standard, may not capture all challenges in practical offline RL settings.

Partial Observability: Our methods assume fully observable states. Extending to par-
tially observable settings would require architectural modifications to handle belief state
representation.
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Conclusion

Future Research Directions

Based on our contributions and identified limitations, we outline several concrete research
directions:

1. Scaling to Complex Observations

Extending ourmethods to image-based observations requires addressing the computational
and memory constraints of processing high-dimensional inputs. Potential approaches in-
clude:

• Hierarchical tokenization schemes that preserve spatial structure

• Efficient attention mechanisms designed for long sequences

• Integration with learned state abstractions

2. Foundation Models for Sequential Decision-Making

Thesupervised learning paradigmnaturally enables pre-training on diverse trajectory datasets.
This suggests the possibility of building foundation models that:

• Pre-train on trajectories from multiple environments and tasks

• Fine-tune efficiently on new tasks with limited data

• Leverage the multi-objective framework to learn general trajectory representations

The key challenge is designing architectures and training objectives that enable positive
transfer across diverse sequential decision-making problems.

3. Theoretical Extensions

Several theoretical directions merit investigation:

• Extendingmodified gradient flow analysis to stochastic optimization algorithms (e.g.,
Adam)

• Analyzing the effect of architectural components (layer normalization, positional en-
codings) on implicit bias

• Establishing finite-sample convergence guarantees for multi-objective training

• Connecting our Token-Priority Graph analysis to the broader literature on attention
mechanism interpretability
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4. Bridging Offline and Online Learning

Developing principled methods to transition from offline pre-training to online fine-tuning
while maintaining the simplicity of the supervised learning framework. This includes:

• Uncertainty-aware sequence models that can identify when to explore

• Safe exploration strategies that leverage the offline policy as a prior

• Theoretical guarantees on the sample complexity of online adaptation

5. Alternative Training Objectives

Our multi-objective framework used simple summation of losses. Future work could ex-
plore:

• Adaptive weighting schemes based on task uncertainty

• Hierarchical objectives operating at different temporal scales

• Contrastive objectives that explicitly encourage diversity

Technical Requirements for Deployment

The deployment of sequence modeling approaches to offline RL in safety-critical applica-
tions requires addressing several technical challenges:

Verification and Validation: Unlike value-based methods where Q-values provide
interpretable value estimates, sequencemodels operate as black-box predictors. Developing
methods to verify policy behavior and provide safety guarantees is essential.

Computational Efficiency: Real-time deployment requires efficient inference. While
transformers have well-optimized implementations, the context length requirements for
trajectory modeling may necessitate specialized architectures or approximations.

Distribution Shift Detection: Methods to detect when the deployment distribution
differs significantly from the training distribution are critical for safe operation. This could
leverage the attention patterns as indicators of out-of-distribution inputs.

Interpretability: Developing tools to interpret the decision-making process of se-
quence models, potentially leveraging our understanding of attention patterns and task
specialization.
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Conclusion

Concluding Remarks

This thesis has demonstrated that the supervised learning paradigm for offline reinforce-
ment learning, introduced by the Decision Transformer, can be significantly enhanced
through careful architectural design and multi-objective training. Our theoretical analy-
sis provides a rigorous foundation for understanding why these enhancements succeed,
revealing the implicit biases that shape learning in multi-task settings.

The key insight thatmulti-objective training induces specialized attention patterns through
gradient disagreement has implications beyond offline RL. As transformers continue to be
applied to diverse sequential decision-making problems, understanding how training ob-
jectives shape learned representations becomes increasingly important.

Our work contributes to the growing convergence between reinforcement learning and
supervised learning communities. By demonstrating that trajectory modeling can be en-
hanced through architectural innovations and multi-task learning, we provide evidence
that the boundaries between these fields are more fluid than traditionally conceived.

The supervised learning approach to offline RL offers practical advantages: stable train-
ing, reduced hyperparameter sensitivity, and the ability to leverage advances in sequence
modeling. Our contributions show that these advantages can be amplified through princi-
pled design choices guided by theoretical understanding.

As the field progresses toward more complex applications, the principles established in
this thesis—multi-objective learning for representation diversity, architectural flexibility for
different problem structures, and rigorous theoretical analysis—will continue to guide the
development of effective offline RL methods. The future of offline reinforcement learning
lies not in choosing between dynamic programming and supervised learning paradigms,
but in understanding how to combine their strengths to build systems that can learn safely
and effectively from historical data.
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Résumé: L’apprentissage par renforcement
hors ligne vise à apprendre des politiques
à partir de données statiques sans inter-
action avec l’environnement. Cette thèse
améliore les approches par modélisation de
séquences via de nouvelles architectures et
analyses théoriques. Nous proposons les
Multi-Objective Decision Transformers (MO-
DT) et Trust Region Decision Transformers
(TRDT) qui induisent des motifs d’attention
diversifiés, ainsi que le Return-Guided De-
cision Translator (RGDT) utilisant une ar-
chitecture encodeur-décodeur. Notre anal-

yse théorique sur des modèles simplifiés
révèle que l’apprentissage multi-tâches en-
courage implicitement le désaccord entre gra-
dients et établit des bornes de complexité
d’échantillonnage. Empiriquement, nos méth-
odes atteignent des performances compétitives
sur les benchmarks D4RL de locomotion, avec
TRDT améliorant le Decision Transformer
jusqu’à 31% sur certaines tâches. Ce travail
démontre l’efficacité des approches supervisées
pour le RL hors ligne dans le domaine du con-
trôle continu.
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