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General Introduction

The work presented in this PhD thesis has been produced thanks to the collaboration
of the department “Communications et Électronique” (COMELEC) of Télécom Paris-
Tech and MITSUBISHI ELECTRIC R&D Centre Europe (MERCE) in the framework of
a “Convention Industrielle de Formation par la REcherche” (CIFRE), and has started in
December 2009.

Problem statement

In the last two decades, optical communication has known an amazing expansion. It was
first designed to replace the wired interconnections in the core network, and became day
after day the main interconnecting solution between the network nodes. Moreover, in
order to enhance the user experiment, future access networks such as Fiber To The Home
(FTTH), is also based on optical communication. The success of this technique comes
from its excellent trade-off between cost and performance, which cannot be achieved
by any other wired or wireless system. Unfortunately, due to new Internet applications
(such as video streaming), and the now huge number of users, even the optical fiber based
networks become saturated, both in terms of inter-node transmission and node switching
capacity.

To alleviate the transmission saturation, two solutions can be advocated: i) the first one
is to improve the transmission quality of the fibers, but changing the installed base of fibers
is very expensive, and would only have a marginal utility with current fiber technology.
ii) the second one is to improve the spectral efficiency of existing fibers by using modern
digital signal processing and digital communications tools. The second solution is a
very hot topic nowadays and this thesis deals with this framework. In order to increase
the spectral efficiency, multi-level modulation schemes (such as Quadrature-Amplitude
Modulation (QAM)) have to be used in association with coherent detection. A lot of
works have been already devoted to design new digital signal processing techniques and
new coding techniques for improving significantly the performance. Nevertheless, only
a few works have been focused on the fundamental limits of the fiber-based transmission
using coherent detection. Therefore, the main purpose of this thesis is to analyze the
ultimate performance of a fiber based transmission using coherent detection from an
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information-theoretic point-of-view in order to obtain insights for its design.

Obviously, the ultimate performance will depend on the considered transmission
impairments induced by the fiber and the devices. These impairments can be divided
in two categories: linear and non-linear. The latter are mainly generated by the Kerr ef-
fect, while the former stem from fiber loss, Chromatic Dispersion (CD), Polarization Mode
Dispersion (PMD), and Polarization Dependent Loss (PDL). Since the fiber loss can be eas-
ily compensated for by in-line amplification and as CD and PMD can also be perfectly com-
pensated for assuming coherent Orthogonal Frequency Division Multiplexing (OFDM)
transmission, PDL remains the unique linear impairment leading to performance loss.
As a consequence, we will focus in this thesis on the influence of PDL and non-linear
impairments on the ultimate performance.

But what do we mean by ultimate performance or equivalently information-theoretic point-
of-view? Actually, we would like to find the maximum data rate for the smallest error
probability. When the channel is assumed to be static, the most relevant tool is the so-
called Shannon capacity (for which the error probability vanishes). When the channel is
assumed to be time-varying and so random, the most relevant tool is the so-called outage
probability. Therefore, our objective is twofold: expressing in closed-form the Shannon
capacity in presence of non-linear effect and the outage probability in presence of PDL.

In addition, we also aim at the switching capacity problem. Current network nodes
perform switching almost exclusively in the electronic domain. This requires optical-to-
electronic conversion of the entire traffic at each node, incurring considerable expense,
as high-data-rate transponders are costly and energy-consuming. Therefore, carriers
would like to have transparent (but nevertheless flexible) networks. Transparent means
that the source and the destination are optically connected, i.e., without electronic re-
generation at the nodes. Flexible means that the interconnection in Optical Add/Drop
Multiplexer (OADM) can be remotely configured with respect to the network constraints
(load, failures, etc). This flexibility cannot yet be achieved in the optical domain; it is
currently ensured through packet switching of the data, which has to be performed in
electronics. Proposed all-optical packet switches perform poorly at high network loads,
due to a lack of buffering technology to temporarily store simultaneously-arriving packets
competing for the same output channel.

To this end, a hybrid (electronic/optic) node architecture is envisioned, that performs
switching in the optical domain and buffering using electronics. Such an architecture has
been already proposed and built in the literature. Nevertheless, the performance about
its overflow ability has only been analyzed roughly. Therefore, we propose to analyze
the performance-wise influence of parameters such as the number of access ports to the
buffer, the number of channels per output directions and the collision between ingress
packets and re-emitted packets on the cross-layer equipment.



General Introduction 3

Outline and contributions

In this section, we give the thesis outline and we mention the most important results.

In Chapter 1, our main contribution is to derive in closed-form the Shannon capacity
in presence of a guard band between transmission channels when non-linear effect occurs.
The chapter is divided in three parts: firstly, we remind some definitions and we introduce
the linear optical channel model. Secondly, we introduce a comparative state-of-the-art in
order to choose the best framework adapted to the presence of the guard band. Thirdly,
we provide new closed-form expressions for the non-linear capacity taking the guard
band into account. In addition, numerous numerical evaluations are done and we notice
that the guard band only has a slight influence on the Shannon capacity.

In Chapter 2, our main contribution is to derive in closed-form the outage probability
due to PDL and to compare this probability to practical coding schemes. The chap-
ter is split into three parts: firstly, the PDL phenomenon is described and a rigorous
mathematical model is developed. Secondly, we provide the first (and so new) closed-
form expressions for the outage probability according to different PDL statistical models.
Thirdly, since the outage probability is a reachable lower-bound for Bit-Error Rate (BER)
of any coding scheme, we compare it with some practical transmission schemes involving
Polarization-Time (PT) codes and Forward Error Code (FEC). This comparison shows
that PT codes are of interest and also the concatenation of PT codes and FEC can offer
BER quite close to the outage probability.

In Chapter 3, our main contribution is to analyze the empirical performance of an
optical burst switch extended by an electronic overflow mechanism. We show that, even
with a small overflow mechanism, the gain is significant compared to the all-optical case
and so this hybrid approach is validated. We also remark that the main drawback of
this overflow mechanism is the collision between ingress packets and re-emitted packets,
and that a well designed anti-collision method can significantly improve the overall
performance.

Publications

The work presented in this manuscript has led to the following three publications:

• P. Delesques, E. Awwad, S. Mumtaz, G. Froc, P. Ciblat, Y. Jaouën, G. Rekaya, C.
Ware, “Mitigation of PDL in Coherent Optical Communications: How Close to
the Fundamental Limit?,” European Conference on Optical Communications (ECOC),
Amsterdam (The Netherlands), September 2012.
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• P. Delesques, P. Ciblat, G. Froc, Y. Jaouën, C. Ware, “Outage Probability derivations
for PDL-disturbed Coherent Optical Communication,” OSA Signal Processing in
Photonic Communications (SPPCom), Colorado Springs (USA), June 2012.

• P. Delesques, P. Ciblat, G. Froc, Y. Jaouën, C. Ware, “Influence of guard band on
channel capacity for optical transmission systems,” IEEE Photonics Conference (IPC),
Arlington (USA), October 2011.

Finally another paper has been recently submitted:

• P. Delesques, T. Bonald, G. Froc, P. Ciblat, C. Ware, “Performance analysis of an
optical burst switch with shared electronic buffers,” submitted for publication to
Optical Fiber Communications (OFC), Anaheim (USA), March 2013.
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Chapter 1

Shannon Capacity in non-linear
regime: influence of the guard band

1.1 Introduction

The two basic ways for increasing the data rate in a transmission system are

• increasing the spectral bandwidth, and

• increasing the spectral efficiency.

The latter can be achieved through ever more spectral efficient transmission schemes,
such as Polarization Division Multiplexed (PDM) systems with coherent modulation
schemes. In order to use these modulation schemes, a higher input power is required.
Unfortunately, in optical transmission systems, this power growth forces system designers
to take non-linearities into account.

Even if the total spectral bandwidth is limited in practice by that of Erbium-Doped
Fiber Amplifiers (EDFAs), the effective used bandwidth can be increased by reducing the
guard band between Wavelength Division Multiplexing (WDM) channels. Unfortunately,
once again, this reduction gives rise to non-linear channel interactions.

Therefore, it is of great interest to analyze the influence of the non-linear impairments
on the performance of the next system generation.

In order to be as general as possible (i.e. not considering a given transmission scheme),
we focus on an information theoretical point-of-view. Actually, we propose to analyze
the Shannon capacity which provides the maximum reachable data rate in absence of
transmission error. In the literature, Shannon capacity has already been derived for some
optical channels by taking into account some non-linear effects. Our main contribution is
to inspect the influence of the guard band on the capacity.

This chapter is organized as follows: information-theoretic tools, especially the Shan-
non capacity, are introduced in Section 1.2. In Section 1.3, the optical-fiber based channel
and its associated linear and non-linear impairments are given. Then, in Section 1.4, a
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state-of-the-art dealing with the theoretical derivations for the Shannon capacity for the
optical channel is proposed. The main contribution of this chapter lies in Section 1.5 since
we derive in closed-form the Shannon capacity by taken into account the non-linearity
and the guard band. Finally, in Section 1.6, numerical illustrations are done for checking
our derivations and for analyzing the influence of the guard band. A conclusion is drawn
in Section 1.7

1.2 Information-theoretic tools

Shannon, in his seminal work [1], has created the Information Theory for studying the
fundamental limits (in terms of data rate and error probability) of any transmission
system.

He has considered that any transmission system can be decomposed as on Fig. 1.1. The
source is associated with one encoder which sends digital data to a destination through
a propagation channel. Then the destination is associated with one decoder in order to
retrieve the transmitted data.

Source Channel Destination

Figure 1.1: Shannon paradigm for any transmission scheme

In order to theoretically analyze such a system, he has defined three main metrics:

• the (source) entropy,

• the mutual information, and

• the (channel) capacity.

1.2.1 Definition of the entropy

Before the Shannon’s work, the notion of entropy has been already introduced in physics,
especially in thermodynamic and statistical physics. The entropy always represents the
level of disorder in the considered system. In Thermodynamics, the system is related to
the electrons. In communication, the system is associated with the message to be sent.
Therefore, the entropy is a measure of the disorder in the sequence to be sent, and so
a measure of the quantity of information in a message [2]. Indeed, a message without
disorder (which means perfectly predictable) does not bring information. In contrast, a
message without order, can not be predicted and so brings the maximum information.

In order to measure this disorder, the message/sequence will be modeled by a random
variable. Let X be a discrete random variable of alphabet X. We define the probability
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mass function (for discrete alphabet) by pX(x) = Prob{X = x} for any x ∈ X. The entropy
associated with this random variable, is denoted by H(X), and is defined as follows

H(X) = −
∑
x∈X

pX(x) log2(pX(x)). (1.1)

The expression for continuous random variable can be found in [2] and needs the use of
the so-called differential entropy.

In the following, it will be useful to measure the entropy of a random variable, let’s
say Y, given an other one X. Therefore, we introduce the notion of the conditional entropy
(i.e. the entropy of a random variable given an other one) which is given as follows

H(Y|X) =
∑
x∈X

pX(x)H(Y|X = x)

= −

∑
x∈X,y∈Y

pX(x)pY|X(y|x) log2(pX|Y(y|x)).

1.2.2 Definition of the mutual information

The mutual information provides the common information shared by two random vari-
ables. Let us consider two random variables, X and Y and their mutual information
I(X; Y). We have

I(X; Y) = H(Y) −H(Y|X)

= H(X) −H(X|Y).

We remark that if X = Y, the mutual information corresponds to the maximum informa-
tion available in the random variable. In contrast, if X and Y are independent, the mutual
information vanishes and so there is no shared information between both variables.

1.2.3 Definition of the Shannon capacity

The channel capacity is related to the maximum data rate (useful bits transmitted per
channel use or per second according to the considered definitions) that a channel can
achieve without error.

Let X be the random variable representing the channel input (i.e., the source), and Y
be the random variable representing the channel output (i.e., the destination), according
to Fig. 1.1. Let pX be the Probability Density Function (PDF) of X.

The channel Shannon capacity (per channel use), denoted by c, is the maximum of the
mutual information between X and Y for any possible PDF of X, and so writes as follows

c = max
pX

I(X; Y). (1.2)

Notice that the optimum PDF depends on the channel.
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One of the most standard channel for the communication system is the Gaussian
channel, also called, Additive White Gaussian Noise (AWGN) channel. In that case, we
have

Yn = Xn + Nn,

where n is the time index and where N = {Nn}n is a Gaussian white random process. For
this channel, the closed-form expression of the capacity has been provided in [1]. When
complex-valued random variable is assumed, it has been proven that the optimum PDF is
the zero-mean circularly symmetric Gaussian distribution, with a variance E[|Xn|

2] = 2Px

where Px is actually the power constraint of the user at the carrier. Then we have

c = log2

1 +
Px

σ2
N

 bits per channel use (pcu) (1.3)

with σ2
N = E[|Nn|

2]/2 the variance of the AWGN per real dimension.
If we assume that the information sequence at baud rate B is conveyed by a continuous-

time transmitted signal of bandwidth B, the capacity, expressed in bits per second and
denoted by C, is given by

C = B log2

(
1 +

Px

N0B

)
bits per second. (1.4)

where B is the considered bandwidth and where N0/2 is the noise level for the double-side
noise Power Spectral Density (PSD) 1.

1.3 Optical fiber based channel model

Before going further, we need to model the optical fiber based channel since the capacity
strongly depends on it. Although standard optical transmission systems are built using
optical fibers, lasers, modulators, Multiplexer (Mux), Demultiplexer (DeMux), filters,
amplifiers, detectors, we hereafter only consider the impairments due to the optical fiber,
for the sake of simplicity.

In a optical fiber [3], the transmitted signal has to satisfy the so-called following "wave
equation" strongly connect to the Maxwell’s equation, and thus

∇ × ∇ × ~X(t) = −
1
c2

∂2 ~X(t)
∂t2 −

1
ε0c2

∂2~P
∂t2 (1.5)

where ~X(t) is the electric field in time domain 2, ∇ is the (spatial) differential operator, ×
is the vector product, c is the light celerity, ε0 is the vacuum permittivity, and ~P(t) is the
polarization vector in the time domain.

1In this thesis, we consider that the complex envelope xe(t) = xp(t) + ixq(t) of the transmitted signal leads
to the following transmitted signal x(t) = xp(t) cos(2π f0t) − xq(t) sin(2π f0t) around the central frequency f0.
As a consequence, the power/energy at the baseband is twice that at the carrier. Unless otherwise stated, the
power/energy is calculated at the carrier.

2Notice that the dependence of X(t) with respect to the location is omitted even if this dependence exists.
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It is well-known that the polarization vector in the frequency domain, denoted ~̃P, can
be decomposed as follows

~̃P = ε0

(
χ(1)
·
~̃X + χ(2)

·
~̃X ~̃X + χ(3)

·
~̃X ~̃X ~̃X + . . .

)
(1.6)

with ~̃X is the Fourier transform of ~X, and χ( j) a ( j + 1)-order tensor representing the jth-
order susceptibility. χ(1) is called the linear susceptibility and represents generally the
dominant contribution. However, when the energy increases, the other terms become
significant as well. Since the silicium of the optical fiber is a symmetric material, χ(2)

is close to zero and can be neglected. Therefore, χ(3) gives rise to the main non-linear
impairments.

Let us focus on the linear regime, i.e., only the term χ(1) in Eq. (1.6) is considered. The
wave equation can then be simplified as follows in the frequency domain

∇ × ∇ ×
~̃X −

(2π f )2

c2

(
1 + χ(1)

)
~̃X = 0 (1.7)

where f is the frequency. Through the coefficient χ(1), one can define two important
parameters (see [3] for more details) :

• Energy dispersion (given by the refractive index which may depend on the fre-
quency):

n = 1 +
1
2
<[χ̃(1)] (1.8)

• Energy attenuation (given by the loss coefficient which depends on the frequency):

α =
2π f

c
=[χ̃(1)] (1.9)

Notice that, in this chapter, we neglect the birefringence aspect of the fiber, i.e., we
omit PMD and PDL. Consequently, only fiber attenuation and chromatic dispersion are
taken into account.

1.3.1 Fiber attenuation

During the propagation the signal power is attenuated by the fiber material. This atten-
uation depends on the wavelength (cf. Eq. (1.9)). For standard Single-Mode Fiber (SMF)
and standard used wavelengths (around 1550 nm), the attenuation is minimum. Gen-
erally, the wavelength dependency is neglected, and the relationship between the input
signal power Px and the output signal power Py is

Py = e−αLPx (1.10)

where L represents the fiber length in km.
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The fiber loss/attenuation (defined as the ratio Px/Py) is usually expressed in dB/km
and so satisfies the following relationship: αdB = 10

log(10)α. Its standard value is around
0.2 dB/km. In long-haul optical transmission systems, the attenuation is mitigated by
in-line amplifiers. Unfortunately, these in-line amplifiers lead to a noise enhancement,
and so to a Signal to Noise Ratio (SNR) degradation.

1.3.2 Chromatic dispersion

The CD is due to the frequency dependency of the refractive index of the fiber n( f )
(cf. Eq. (1.8)). Indeed spectral components of the signal do not propagate at the same
velocities. As in [3], fiber dispersion effects can be taken into account by expanding the
mode propagation constant β in Taylor series about the central spectral frequency f0:

β( f ) = n( f )
2π f

c
= β0 + 2πβ1( f − f0) +

(2π)2

2
β2( f − f0)2 + · · · . (1.11)

where β1 is the inverse of the group velocity and β2 represents the Group Velocity
Dispersion (GVD). Usually, the dispersion is measured with respect to the term D(λ)
which is defined as follows

Dλ = −
2πc
λ2 β2 ps/nm/km. (1.12)

If the transmitted signal is narrow band enough, high-order coefficients can be neglected
in Eq. (1.11).

Notice that by doing a appropriate variable changing, the term β1 can be removed in
the wave equation.

Moreover the transfer function of CD in the frequency domain at position z (by
assuming planewave) has been obtained in [4]:

HCD( f ) = e−iπ
Dλλ

2z
c f 2

= e2iπ2β2z f 2
. (1.13)

Since this transfer function is unitary ( |HCD( f )|2 = 1), the channel capacity will not be
modified.

1.3.3 Nonlinear effects

We will now focus on the non-linear effects which are generated by the termχ(3) in Eq.(1.6).
Actually, the first non-linear effect (which has an impact on the value of χ(3)), is due

to the local random variation of the refractive index in fiber with respect to the signal
instantaneous power. This effect is called Kerr effect [3]. Asχ(3) and so the Kerr effect deals
with the product of three electric fields (cf. Eq. (1.6)), there is three main degradations:

• The Self-Phase Modulation (SPM) is the effect induced by its own pulse. It generates
a modification of the instantaneous phase shift of the pulse.
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• The Cross-Phase Modulation (XPM) occurs when several channels propagate si-
multaneously in the fiber as in WDM systems. Then, an other instantaneous phase
shift induced by the combination with an other pulse occurs.

• The Four Wave Mixing (FWM) generates new pulses at specific frequencies and
may lead to interference.

Assuming only one polarization mode and only Kerr effect for the non-linear im-
pairments, the wave equation (Eq.(1.5)) leads to the famous Nonlinear Schrödinger
Equation (NSE) [3]:

i
∂X
∂z

+ i
α
2

X −
β2

2
∂2X
∂t2 + γNL|X|2X = 0 (1.14)

where γNL is the non-linear coefficient due to Kerr Effect. This equation is a spatio-
temporal differential equation which does not exhibit closed-form expressions for its
solution, except in very particular cases such as, CD-free case or linear case. Notice that
the absence of closed-form expressions for the solution to the NSE in the general case will
be one of the most important issue for deriving the non-linear channel capacity in the
remainder of this chapter.

Before going further, we have to introduce the so-called effective length defined as
follows

Leff =
1 − e−αL

α
. (1.15)

It represents the length of the fiber beyond which non-linear effects take place.

Notice that, other non-linearities such as Stimulated Brillouin Scattering (SBS) or
Stimulated Raman Scattering (SRS) exist, but can be neglected compared to the Kerr
Effect. Moreover we do not take into account the fiber polarization. In this case, the
electric filed is driven by the Manakov-PMD equation [5] which proves the existence
of the so-called XPolM corresponding to an extension of the the XPM into the cross-
polarization. Manakov equation is strongly more complicated than the Schrödinger one
and so we will not focus on it.

1.4 State of the art on the non-linear capacity derivations

The problem of the derivations of the non-linear capacity in closed-form can be split into
three steps:

1. exhibiting in closed-form the input-output relationship of the non-linear optical
channel,

2. finding out the PDF maximizing the mutual information of this channel,

3. deriving the mutual information.



12 1. Shannon Capacity in non-linear regime: influence of the guard band

These three steps are quite complicate for the non-linear optical channel since the
NSE does not admit often a closed-form expression. Moreover, even if the solution of
the NSE is known in specific cases, finding the optimal PDF and calculating the mutual
information can be a very hard task.

All existing works (except [6]) consider a Gaussian PDF for the input which will lead
to results similar to Eq.(1.4). The difference between these works lies in the way they take
into account the non-linearities, and so they incorporate the input-output relationship.
Notice that the Gaussian assumption is reasonable since high-order QAM is quite well
modeled by this PDF, and it enables us to derive some expressions in closed-form.

In Section 1.4.1, the non-linear effect is viewed as an additional noise and the capacity
is modified accordingly. In Section 1.4.2, the correlation between the input and output
signals (since the noise is now signal-dependent) are calculated when non-linear effect
occurs and the new expression for the capacity is found. In Section 1.4.3, the non-linear
effect is viewed as a perturbation of the linear case and the capacity is then re-written.
Finally, in Section 1.4.5, empirical evaluations of the capacity are done which enable us to
discuss the validity of the different above works.

Hereafter, we consider a WDM system with Nc channels. Each channel has a bandwith
B and an input power Px. PN = N0B represents the noise power.

1.4.1 Derivations based on additional noise

We recall that in this subsection, the capacity will be calculated in closed-form by modi-
fying the SNR expression in Eq. (1.4). Obviously, all the below-written expressions only
correspond to capacity approximation.

1.4.1.1 When the additional noise is multiplicative [7]

In [7], the authors consider the following system

• a WDM system for which the fiber attenuation is perfectly compensated for.

• The SPM is neglected as it depends on its own channel and thus could be pre-
compensated.

• The FWM is assumed to increase only the additive noise variance PN. Nevertheless,
the increase is not evaluated by the authors.

• Only the XPM is considered and thus the authors asserted that it corresponds to the
main non-linear impairment.

As a consequence (α = 0, no SPM), the input Xk of the k-th WDM channel writes as
follows (cf. Eq (1.14))

i
∂Xk

∂z
−
β2

2
∂2Xk

∂t2 + VkXk = 0 (1.16)
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with Vk = 2γNL
∑
`,k |Ek|

2. In the term Vk, the contribution of all other WDM channels
interference is taken into account.

The term Vk looks like a random variable and the authors assumed (under the as-
sumption of substantial dispersion) it is Gaussian distributed. After tedious and not
straightforward derivations, they eventually obtain the following input-output relation-
ship for the channel

Y(t) =

(∫
u(t, t′)dt′

)
X(t) + N(t) (1.17)

where u(t, t′) corresponds to the additional multiplicative noise depending on Vk.
Assuming X(t) and N(t) are Gaussian distributed, the authors just need to calculate

all the correlations between Y(t) and X(t) (see more details in Section 1.4.2) also averaged
on Vk. They finally obtain the following closed-form expression for the capacity:

C = B log2

1 +
e
−

(
Px

PNL

)2

Px

PN +

1 − e
−

(
Px

PNL

)2 Px

 , (1.18)

with

PNL =

√
Dλc

2γ2
NL log

(
Nc
2

)
Leff

. (1.19)

The maximum capacity can be roughly approximated by

Cmax '
2B
3

log2

(2PNL

PN

)
and is reached when Px = (PNLPN/2)1/3.

In [8], the authors consider the same model as in [7] (WDM, no attenuation, no SPM),
but they asserted that the FWM dominates the XPM when constant-intensity modulations
are used (such as, Binary Phase-Shift Keying (BPSK), Differential Phase Shift Keying
(DPSK), Quadrature Phase-Shift Keying (QPSK)). Using the same framework as above,
they argue that only the term PNL has to be modified as follows

1
PNL

= Nsγ
2
NL

∑
−(Nc−1)/2≤p≤(Nc−1)/2,p,0
−(Nc−1)/2≤q≤(Nc−1)/2,q,0

|p+q|≤(Nc−1)/2

(2 − δp,q)2

α2 + k2
p,q

with kp,q = 2πλ2DλB2qp/c (1.20)

where Ns is the number of spans, and δ·,· stands for the Kronecker index. This expression
was derived for the central channel which is the most disturbed by the FWM.

1.4.1.2 When the additional noise is additive [9, 10]

In [9, 10], the authors consider the following model
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• a CD-uncompensated fiber

• potentially a PDM transmission scheme

The authors have developed a model for which the non-linearities just generate an
additional additive white Gaussian noise independent of the amplification noise. This
assumption is well satisfied when the channel is highly dispersive (cf. β2 large enough).
As a consequence, the capacity is obtained as follows

C = B log2

1 +
Px

PN + Ns
(

2
3

)3
γ2

NLLeff2D

log
[
π2|β2|Leff2D (NcB)2/2

]
π|β2|

(Px)3

 (1.21)

where Leff2D = (1 − exp(−2αL))/(2α) is the non-linear effective length for the PDM case.
Actually, the closed-form expression depends on the nature of the amplification. If

the amplifier is EDFAs, Eq. (1.21) holds. If the amplifier is based on Raman principle, the
correct expression is provided in [10].

1.4.2 Derivations based on input-noise correlation

In [11, 12, 13, 14], all the closed-form expressions for the nonlinear optical channel are
calculated thanks to the use of the so-called Pinsker’s formula [15] which enables them
to take into account the correlation between the input signal and the noise. We have

C =

∫ B/2

−B/2
log2

(
P( f )
Q( f )

)
d f (1.22)

where P( f ) and Q( f ) are the following terms

P( f ) = det

 FT(E[X(t + τ)X∗(t)]) 0
0 FT(E[Y(t + τ)Y∗(t)])


Q( f ) = det

 FT(E[X(t + τ)X∗(t)]) FT(E[X(t + τ)Y∗(t)])
FT(E[Y(t + τ)X∗(t)]) FT(E[Y(t + τ)Y∗(t)])


(1.23)

where X(t) and Y(t) are the input and the output of the fiber respectively. The operator
FT(·) stands for the Fourier transform and the superscript (·)∗ stands for complex conjugate.

In [11, 12, 13, 14], the derivations of the capacity are achieved only for the central
channel of the WDM system. Moreover, all the WDM channels are assumed to be flat
fading.

The authors consider two cases for the input-output relationship:

• the non-dispersive case (β2 = 0) for which the NSE admits an exact closed-form
solution,

• the dispersive case (β2 , 0) for which only an approximate closed-form solution of
the NSE can be used.
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1.4.2.1 Non-dispersive case

For the non-dispersive case, the NSE admits the following closed-form solution (under a
single span assumption)

Y(t) = eγNLLeff|X(t)|2X(t) + N(t). (1.24)

After tedious derivations, the author in [11] obtains that

C = B log2

1 +

Px
1+(γNLLeffNcPx)2

PN + Padd.

 (1.25)

where

Padd. = 2Px

∞∑
n=1

(n + 1)g2n+1(γNLLeffNcPx)2n[
1 + (γNLLeffNcPx)2]n+2

with

g2n+1 =
(2n + 1)

22n+1

bn+1/2c∑
k=0

(−1)k (2n + 1 − 2k)2n

k!(2n + 1 − k)!
.

As the maximum capacity is obtained when the power is small enough, the interval
of interest for the power leads to small enough values and thus enables us to keep only
the first term of the sum in Padd.. Then, we have

C = B log2

1 +

Px
1+(γNLLeffNcPx)2

PN + 3
2 Px

(γNLLeffNcPx)2

[1+(γNLLeffNcPx)2]3

 . (1.26)

Thanks to this equation, one can prove that the maximum capacity is

Cmax = log2

(
1 +

2/92/3

(γNLLeffNcPN)2/3

)
and is reached when Px = (PN/3)1/3/(γNLLeffNc)2/3.

In [12], the multi-span case is studied by induction.

1.4.2.2 Dispersive case

In [13], the dispersive case is treated. The main issue lies in the absence of closed-form
relationship between the input and the output. Consequently, the author proposed to
overcome the problem by using an approximate relationship between the input and the
output based on the Volterra series expansion [16]. Once again , for the sake of simplicity,
let us consider only the single-span case.

If the non-linearities is small enough, the relationship between the input and the output
can be written by considering only a third-order Volterra series expansion (the first order
corresponds to the linear part; the second-order vanishes for the sake of symmetric).
Then, we have, in the frequency domain,

Y( f ) = YL( f ) + YNL( f ) (1.27)
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with

YL( f ) = e2iπ2β2L f 2
X( f ) (1.28)

YNL( f ) = e2iπ2β2L f 2
(2iπ)γNL

$
δ( f − f1 + f2 − f3)X( f1)X∗( f2)X( f3)

×
eL(−α+2iπ2β2(− f 2+ f 2

1− f 2
2 + f 2

3 )) − 1
−α + 2iπ2β(− f 2 + f 2

1 − f 2
2 + f 2

3 )
d f1d f2d f3 + N( f ) (1.29)

where YL( f ) is the linear part of the received signal (associated with the Chromatic
dispersion - cf. Eq. (1.13)) and YNL( f ) is the non-linear part and the noise. The term L
stands for the fiber/span length.

Then, by using Pinsker’s Formula (Eq. 1.22) and assuming white spectrum, the author
asserted that the capacity takes the following form

C = B log2

(
1 +

SX( f0)
K( f0)

)
(1.30)

where f0 is the carrier frequency, SX( f ) is the power spectral density of the input signal,
and

K( f ) = FT(E[YNL(t + τ)Y∗NL(t)]) − |FT(E[YNL(t + τ)Y∗L(t)])|2/SX( f ).

Notice that Eq. (1.30) is actually wrong since it leads to a contradiction for the so-called
opaque channel. Let us consider the opaque channel: Y(t) = N(t). According to Eq. (1.30),
the capacity is C = B log2 (1 + Px/PN) which is impossible since the output is independent
of the input and so leads to a capacity equal to zero. Consequently, in Eq. (1.30), some
terms are missing. In Section 1.5, devoted to our own derivations and contributions, the
missing terms will be exhibited and so added. Let us go back to [13].

As asserted by the author, after tedious but straightforward 3 derivations, he obtained
that

K( f ) = NcSN( f )

+ 4πγ2
NL

$
δ( f − f1 + f2 − f3)SX( f1)SX( f2)SX( f3)

× U( f1, f2, f3)VNc−1( f1, f2, f3)d f1d f2d f3 (1.31)

+ 4πγ2
NL

$
δ( f − f1 + f2 − f3)SX( f1)SN( f2)SN( f3)

× U( f1, f2, f3)
Nc−2∑
n=0

Vn( f1, f2, f3)d f1d f2d f3

where

• SN( f ) stands for the PSD of the noise,

• U( f1, f2, f3) =

∣∣∣∣∣ eL(−α+2iπ2β2(− f 2+ f 2
1 − f 2

2 + f 2
3 ))
−1

−α+2iπ2β(− f 2+ f 2
1− f 2

2 + f 2
3 )

∣∣∣∣∣2,

3We will see in Section 1.5 that these derivations are not so straightforward to our opinion.
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• Vn( f1, f2, f3) =
∣∣∣∣∑n

m=0 emL2iπ2β(− f 2+ f 2
1− f 2

2 + f 2
3 )
∣∣∣∣2.

Finally, in [14], the same author approximated the above three-dimensional integral in
order to obtain the following approximate closed-form expression for the capacity.

C = B log2

1 +

Px
1+(γNLLeffNcPx)2

PN + 3
2 Px

(γNLLeffNcPx)2

[1+(γNLLeffNcPx)2]3ξ

 . (1.32)

with

ξ =
8π3

3

log
(
π2β2N2

c B2/α
)

π2β2N2
c B2/α

.

As soon as the dispersion is large enough, we have ξ < 1 which shows that the capacity
in dispersive environment is larger than in the dispersion-free case.

As a conclusion, even if the author omitted a term in Eq. (1.30), its framework is very
useful and will be used later in the thesis.

1.4.3 Derivations based on perturbation theory

In [17], the authors assumed that the Kerr effect (directly related to X3 in the wave
equation) is smaller than the refractive index. Then, they developed a technique for
deriving the capacity based on the perturbation theory. Let us consider the single-span
case for the sake of clarity. The authors modeled the input-output relationship as follows

Y( f ) = e(−i(2πβ1 f−2π2β2 f 2)L)
X( f ) +

∞∑
`=1

γ`NLF
(`)(X( f ))

 + N( f ) (1.33)

where F (`)(•) represents the perturbation due to the non-linear effect. For more details
about the derivations of F (`)(•), the reader may refer to [17].

Assuming the input Gaussian distributed, we show that the capacity is well approxi-
mate with

C = B log2

(
1 +

Px

PN

)
− ∆C (1.34)

where

∆C = B
(
γNLPx

α

)2 ∫ 1/2

−1/2

∫ 1/2

−1/2

∫ max[ 1
2 ; 1

2 +x1+x2]

−1/2
g(x1, x2, x3)dx1dx2dx3

g(z, x1, x2, x3) =

∣∣∣∣∣∣∣∣1 − e

−αL−i
(
β2

2B4

α2 (x3−x1)(x3−x2)
)2∣∣∣∣∣∣∣∣

1 −
(
β2

2B4

α2 (x3 − x1)(x3 − x2)
)2 .

In [18], similar techniques for the capacity derivation have been used to extend this
work for the WDM system. Unfortunately, only numerical illustrations are shown in [18].
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1.4.4 Derivations of a lower bound

In [6], the authors proposed to derive a very simple lower-bound for the capacity. By
considering that the phase of the transmitted signal is independent of the phase of the
received signal (e.g., a intensity-modulated input signal), the mutual information for
such a input signal leads to the following lower-bound of the capacity (since the capacity
corresponds to the highest mutual information with respect to the input distribution.

C ≥
B
2

log2

( Px

PN

)
. (1.35)

As a consequence, the capacity is clearly unbounded when the SNR increases. Same
conclusion has been drawn in [19].

The question now is: why using the Gaussian distribution and so Pinsker’s formula for
deriving capacity. In practice, the modulation with high efficiency mimics the Gaussian
distribution, and the its phase provides information (which is not the case for intensity-
modulated signal). In order to obtain high data rate, the use of modulation with high
efficiency coupled with a efficient forward error coding is required. Using intensity-
modulated modulation with a large number of states is irrelevant in practice since this
modulation yields very poor performance that a FEC can not counter-act.

Therefore working with Gaussian distribution for deriving capacity remains of interest
to obtain some insights on practical system behavior.

1.4.5 Numerical evaluations

In many papers [20, 21, 22, 18], the analysis of the capacity is only done through its
numerical evaluation, which means that the mutual information is obtained through
Monte-Carlo trials according to an pre-defined input distribution and an pre-defined
input-output relationship (sometimes, the NSE is solved numerically in order to obtain
this relationship as in [20, 21])

In this section, we only plot numerical evaluations of the closed-form expressions
provided in the state-of-the-art. The simulation setup is the following one: a single-span
fiber of length 80 km, the noise PN = 10−5 mW, γNL = 1.22 W/km, α = 0.2 dB/km,
β2 = −21.6ps2/km, and Nc = 81.

As already mentioned when [11] has been analyzed, the CD has a great influence
when non-linear effect occurs. The more dispersive the fiber is, the better the capacity
is. When Gaussian distribution is considered, the capacity is bounded and the maximum
value is obtained for standard input power per channel (' 1 mW). Moreover, when the
power is low enough, the capacity perfectly follows the linear regime. The true capacity
(by using the optimal input distribution) is actually unbounded since the bound derived
in [6] is monotonic with respect to the input power.

Nevertheless, as already said in Section 1.4.4, the derivations and analysis of the
capacity relying on Gaussian input capacity remains of interest for practical coherent
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Figure 1.2: Optical nonlinear channel capacity behavior

modulation based systems.

For completing our state-of-the-art, we display in Table 1.1 the pros and cons of each
existing framework and in particular which ones will be relevant for fixing our problem,
i.e., for analyzing the influence of the guard band on the capacity. We remark that
the framework developed under the input-noise correlation assumption [11, 12, 13, 14]
enables us to use different input spectrum and so enables us to insert quite easily the
guard band.

1.5 New derivations of the capacity in presence of the guard band

As explained in the introduction of this chapter, the influence of the guard band raises
when we would like to increase the spectral efficiency per WDM channel since we would
like to have closer channels. And, due to the non-linearities, closer channels lead to per-
formance loss. Therefore we would like to exhibit the trade-off between non-linear effect
mitigation (large guard band) and high spectral efficiency (small guard band). To do that,
we propose to use the information-theoretic tool, and especially, the channel capacity. As
alaready explained in previous section, our derivations will use the framework, devel-
oped in [11, 12, 13, 14]. This section is organized as follows: in Section 1.5.1, we briefly
introduce your system model. Then, our derivations are given and as in [11, 12, 13, 14],
the non-dispersive case (see Section 1.5.2) is done separately from the dispersive case (see
Section 1.5.3).
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CD
Kerr non-linearities

Multi-Span
Different

SPM XPM FWM input spectrum
Multiplicative noise (XPM)

× × ×
(Eq. (1.18))

Multiplicative noise (FWM)
× × ×

(Eq. (1.20))
Additive noise

× × × × ×
(Eq. (1.21))

Input-noise correlation
× × × × × ×

(Eqs. (1.26)-(1.32))
Perturbation theory

× × × × ×
(Eq. (1.34))

Table 1.1: Comparison of framework for capacity derivation (The symbol×marks the compatibility
of the framework with an impairment or an issue)

1.5.1 System model

We consider an optical coherent transmission system which contains Nc = 2N + 1 WDM
channels. For the sake of simplicity, we assume a mono-span amplified link. Since our
aim is to understand the influence on the guard band on non-linearities, each WDM
channel is assumed to have a flat spectrum over the bandwidth B, and a guard band Bg

between two consecutive WDM channels is introduced. Finally, Px is the input power
of each WDM channel. Such a spectrum is displayed in Fig. 1.3, and has the following
mathematical form

SX( f ) =
Px

B

N∑
k=−N

Π

(
f + k(B + Bg)

B

)
(1.36)

where x 7→ Π(x) is the rectangular function of width 1 and defined as

Π( f ) =

 1 if | f | < 1
2

0 otherwise
. (1.37)

The autocorrelation of signal X(t) is denoted by

RX(τ) = E[X(t + τ)X∗(t)]

and we have SX( f ) = FT(RX(τ)).

We remind that the capacity is calculated for the central channel which is the most
disturbed by non-linearities. Moreover, the input is assumed to be Gaussian distributed,
and the amplification noise is considered as AWGN.



1.5. New derivations of the capacity in presence of the guard band 21

−200 −100 0 100 200
0

Frequency (GHz)

P
o

w
er

Guard band
P

x
 /

B

Figure 1.3: Input signal spectrum

1.5.2 Non-dispersive case

Assuming non-dispersive fiber (i.e. β2 = 0), the NSE admits a closed-form solution and in
[11] (after simple algebraic manipulations), the capacity is given by

C =

∫ B/2

−B/2
log2

1 +

SX( f )
1+γ2

NLL2
eff

R2
X(0)

SN( f ) +
∑
∞

n=1
(n+1)γ2n

NLL2n
eff

FT(RX(τ)|RX(τ)|2n)

(1+γ2
NLL2

eff
R2

X(0))n+2

 d f . (1.38)

Then, considering that the total input power is low (i.e. NcPx ≤ 2.7W), one can only keep
the first term in the previous series expansion at the denominator. We have

C =

∫ B/2

−B/2
log2

1 +

SX( f )
1+γ2

NLL2
eff

R2
X(0)

SN( f ) +
2γ2

NLL2
eff

FT(RX(τ)|RX(τ)|2)

(1+γ2
NLL2

eff
R2

X(0))3

 d f . (1.39)

Unlike [11], we decide to keep the integral in the further expression for the capacity
since our spectrum is non flat due to the presence of the guard band. To complete the
derivations, we just need to obtain a closed-form expression for FT(RX(τ)|RX(τ)|2).

1.5.2.1 Derivations of FT(RX(τ)|RX(τ)|2)

As SX( f ) in Fig. 1.3 admits a Hermitian symmetry, the autocorrelation RX(τ) is a real-
valued function. Therefore deriving FT(RX(τ)|RX(τ)|2) is equivalent to deriving FT(R(τ)3).
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Thanks to the properties of the Fourier transform, the term can be calculated as follows:

TX( f ) = FT(RX(τ)3) = SX ? SX ? SX( f ). (1.40)

where ? stands for the convolution product. We will proceed into two steps: first we
derive v( f ) = SX ? SX( f ), and then TX( f ) = SX ? v( f ).

Derivations of v( f )

First of all, let U( f ) = Π ∗Π( f ) be the convolution between two rectangular functions. It
is well known that v2( f ) is the following triangle function

U( f ) =

 (1 − | f |) if | f | < 1
0 elsewhere

(1.41)

where the function x 7→ |x| is the absolute value function. As a consequence, we have

v( f ) =
P2

x

B

N∑
j=−N

N∑
k=−N

U
(

f + ( j + k)(B + Bg)
B

)
. (1.42)

The double sum can be simplified by using the indices ( j, ` = j + k) instead of ( j, k). Then,
we have −2N ≤ ` ≤ 2N and max(−N + `,−N) ≤ j ≤ min(N + `,N). Therefore we obtain

v( f ) =
P2

x

B2

2N∑
`=−2N

(2N + 1 − |`|)BU
(

f + `(B + Bg)
B

)
. (1.43)

Derivations of TX( f )

Let W( f ) = Π?Π?Π( f ) = Π?U( f ) be the double convolution of the rectangular function.
We have straightforwardly that

W( f ) =


3
4 − f 2 if | f | < 1

2
1
2 f 2
−

3
2 | f | +

9
8 if 1

2 < | f | <
3
2

0 otherwise
. (1.44)

As

Tx( f ) =

Px

B

N∑
k=−N

Π

(
f + k(B + Bg)

B

) ?


P2
x

B2

2N∑
`=−2N

(2N + 1 − |`|)BU
(

f + `(B + Bg)
B

)
︸                                                   ︷︷                                                   ︸

v( f )


,

we have

TX( f ) =
P3

x

B3

N∑
k=−N

2N∑
`=−2N

(2N + 1 − |`|)B2W
(

f + (k + `)(B + Bg)
B

)
. (1.45)
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We use again the substitution (`′ = k + `, `) instead of (k, `). Then we have −3N ≤ `′ ≤ 3N.
As −N ≤ k ≤ N, we obtain the following inequality on `

−N + `′ ≤ ` ≤ `′ + N.

Moreover, we have −2N ≤ ` ≤ 2N. So we obtain that

max(−N + `′,−2N)︸                   ︷︷                   ︸
a

≤ ` ≤ min(`′ + N, 2N)︸              ︷︷              ︸
b

. (1.46)

Then TX( f ) takes the following form

TX( f ) =
P3

x

B

3N∑
`′=−3N

 b∑
`=a

(2N + 1 − |`|)

︸                 ︷︷                 ︸
θ

W
(

f + `′(B + Bg)
B

)
. (1.47)

In order to handle easily the bounds for ` given by Eq. (1.46), we split our problem in
two categories

• For N < |`′| ≤ 3N :

θ =

2N∑
`=|`′|−N

(2N + 1 − |`|) =

3N+1−|`′|∑
`′′=1

`′′ =
(3N + 1 − |`′|)(3N + 2 − |`′|)

2
,

• For 0 ≤ |`′| ≤ N :

θ =

`′+N∑
`=`′−N

(2N + 1 − |`|) =

`
′+N≥0∑
`=1

(2N + 1 − |`|)

 +

N−`′≥0∑
`=0

(2N + 1 − |`|)


=

 2N∑
`′′=N+1−`′

`′′
 +

 2N+1∑
`′′=N+1+`′

`′′


= (2N + 1)2
−

(N + `′)(N + `′ + 1)
2

−
(N − `′)(N − `′ + 1)

2
.

By replacing θ in Eq. (1.47) with the previous expressions, we have

TX( f ) =
P3

x

B
T̃X( f )

with

T̃X( f ) =

3N∑
k=N+1

(3N + 1 − k)(3N + 2 − k)
2

(Wk( f ) + W−k( f ))

+

N∑
k=1

(
(2N + 1)2

−
(N + k)(N + k + 1)

2
−

(N − k)(N − k + 1)
2

)
(Wk( f ) + W−k( f ))

+ ((2N + 1)2
−N(N + 1))W0( f ) (1.48)

where the function f 7→Wk( f ) is defined as

Wk( f ) = W
(

f + k(B + Bg)
B

)
.
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1.5.2.2 Final expression for non-dispersive case

According to Eq. (1.39) and as SX( f ) = (Px/B) for f ∈ [−B/2,B/2] and SN( f ) = PN/B and
RX(0) = PxNc, we have the following closed-form expressions for the capacity

C =

∫ B/2

−B/2
log2

1 +

Px
1+(γNLLeffNcPx)2

PN + Px
2(γNLLeffPx)2T̃X( f )
(1+(γNLLeffNcPx)2)3

 d f . (1.49)

where T̃x( f ) is given in Eq. (1.48).
In this expression, the guard band is involved only in T̃X( f ). In Bg = 0, it is easy to

check our expression is that given in [11]. If Bg ≥ B, we have T̃( f ) = (N2
c−(N2

c−1)/4)W( f/B)
since Wk( f ) = 0 for any k , 0 as soon as | f | < B/2. As a consequence, we obtain that

CBg>B =

∫ B/2

−B/2
log2

1 +

Px
1+(γNLLeffNcPx)2

PN + Px
(3N2

c +1)(γNLLeffPx)2(3/4−( f/B)2)
2(1+(γNLLeffNcPx)2)3

 d f . (1.50)

This value CBg>B corresponds to the maximum value for the capacity since it is a non-
decreasing function with respect to Bg. In CBg>B, we only viewed the non-linear effect due
to intra-channel interference since the inter-channel effect has been completely removed
via the guard band.

1.5.3 Dispersive case

The dispersive case is much complicate to treat since there is no closed-form solution for
the NSE. To go further, once again, we use the framework developed in [13] Nevertheless,
we remind that the expressions given in the dispersive case in [13] does not take into
account the presence of a potential guard band, and was unfortunately flawed as already
explained in Section 1.4.2. Therefore we propose here to do the whole derivations by
correcting the expression of [13] and by inserting a guard band. For the sake of simplicity,
a single-span link is considered.

The main issue so lies in the absence of closed-form solution for the NSE. Therefore,
as in [13], we will consider that the Input/Output relationship is obtained by using a
truncated Volterra series expansion (cf. Eq. (1.27)). We remind that the output signal (in
time domain) can be split into two terms:

Y(t) ' YL(t) + YNL(t) (1.51)

where YL(t) represents the linear part of the received signal (its Fourier transform is given
in Eq. (1.28)), and YNL(t) represents the non-linear impairments and the noise (its Fourier
transform is given in Eq. (1.29)).

Using Pinsker’s formula (cf. Eq. (1.22)), we also remind that

C =

∫ B/2

−B/2
log2

(
P( f )
Q( f )

)
d f (1.52)
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where

P( f ) = det

 FT(E[X(t + τ)X∗(t)]) 0
0 FT(E[Y(t + τ)Y∗(t)])


and

Q( f ) = det

 FT(E[X(t + τ)X∗(t)]) FT(E[X(t + τ)Y∗(t)])
FT(E[Y(t + τ)X∗(t)]) FT(E[Y(t + τ)Y∗(t)])

 .
In the remainder of this chapter, we will use the following notation and definition for

the so-called inter-spectrum between signals a(t) and b(t):

Sa,b( f ) = FT(E[b(t + τ)a∗(t)]).

Then, by using Eq. (1.51), we have

P( f ) = SX( f )
(
SYL,YL( f ) + SYNL,YL( f ) + SYL,YNL( f ) + SYNL,YNL( f )

)
(1.53)

and
Q( f ) = P( f ) −Θ( f ) (1.54)

with

Θ( f ) = SX,YL( f )SYL,X( f ) + SX,YL( f )SYNL,X( f ) + SYL,X( f )SX,YNL( f ) + SX,YNL( f )SYNL,X( f ). (1.55)

As a consequence, Eq. (1.52) can be rewritten as follows

C =

∫ B/2

−B/2
log2

(
1 +

Θ( f )
P( f ) −Θ( f )

)
d f . (1.56)

Notice that in previous expression is clearly different from that of [13] since Θ( f ) is not
equal to SX( f ), and actually vanishes when an opaque channel is considered (as YL(t) = 0
and YNL(t) only depends on independent noise for such a channel).

In order to obtain closed-form expressions for P( f ) and Θ( f ), we need three simple
preliminary results given below and proven in Appendix A.

Preliminary result 1 (Spectral autocorrelation) We have

E[X( f )X∗( f ′)] = δ( f − f ′)SX( f )

where δ(.) is the Dirac distribution.

Preliminary result 2 (Interference formula) Let a(t) and b(t) be the outputs of two filters
having the same input x(t). So

a(t) = ha(t) ? x(t) and b(t) = hb(t) ? x(t).

We have
Sa,b( f ) = Ha( f )∗Hb( f )SX( f )

where Ha( f ) and Hb( f ) are the Fourier transform of a(t) and b(t) respectively.
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Preliminary result 3 (Permutation in inter-spectra) Let a(t) and b(t) be the random process.
We have

Sa,b( f ) = Sb,a( f )∗.

Thanks to preliminary Result 3, we have

P( f ) = SX( f )
(
SYL,YL( f ) + 2<[SYL,YNL( f )] + SYNL,YNL( f )

)
and

Θ( f ) = |SX,YL( f )|2 + 2<[SX,YL( f )SX,YNL( f )∗] + |SX,YNL( f )|2.

The inter-spectra involved in P( f ) and Θ( f ) can be split into two categories according
to the presence of the non-linear term YNL(t). Therefore, we have divided our derivations
in two parts: Section 1.5.3.1 (only linear terms) and Section 1.5.3.2 (with non-linear term).

1.5.3.1 Spectra derivations involving linear terms

As YL( f ) = HCD( f )X( f ), we have

SYL,YL( f ) = |HCD( f )|2SX( f ), and SX,YL( f ) = HCD( f )SX( f ).

Using the CD filter (cf. Eq. (1.13)), we finally obtain that

SYL,YL( f ) = SX( f ), and SX,YL( f ) = e2iπ2β2L f 2
SX( f ).

This enables us to simplify P( f ), θ( f ), and Q( f ) as follows

P( f ) = SX( f )(SX( f ) + 2<[SYL,YNL( f )] + SYNL,YNL( f )),

Θ( f ) = SX( f )2 + 2<[SX,YL( f )SX,YNL( f )∗] + |SX,YNL( f )|2,

and

Q( f ) = SX( f )(2<[SYL,YNL( f )] + SYNL,YNL( f )) − 2<[SX,YL( f )SX,YNL( f )∗] − |SX,YNL( f )|2.

1.5.3.2 Spectra derivations involving non-linear terms

• Derivations for SX,YNL( f )

We have
SX,YNL( f ) = FT

(
E

[∫
YNL( f )e2iπ f (t+τ)d f X∗(t)

])
= FT

(∫
E

[
YNL( f )X∗(t)

]
e2iπ f (t+τ)d f

) (1.57)

We will first focus on E
[
YNL( f )X∗(t)

]
. We have

E
[
YNL( f )X∗(t)

]
= E

[(
e2iπ2β2L f 2

(2iπ)γNL

$
δ( f − f1 + f2 − f3)X( f1)X∗( f2)X( f3)

× ν( f1, f2, f3)d f1d f2d f3 + N( f )
)
X∗(t)

]
.
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with

ν( f1, f2, f3) =
eL(−α+2iπ2β2(− f 2+ f 2

1− f 2
2 + f 2

3 )) − 1
−α + 2iπ2β2(− f 2 + f 2

1 − f 2
2 + f 2

3 )
.

As the noise is independent of the signal, we have

E
[
YNL( f )X∗(t)

]
= E

[(
e2iπ2β2L f 2

(2iπ)γNL

$
δ( f − f1 + f2 − f3)X( f1)X∗( f2)X( f3)

× ν( f1, f2, f3)d f1d f2d f3
)
X∗(t)

]
.

By moving the expectation only around the random terms, we obtain that

E
[
YNL( f )X∗(t)

]
= e2iπ2β2L f 2

(2iπ)γNL

$
δ( f − f1 + f2 − f3)E

[
X( f1)X∗( f2)X( f3)X∗(t)

]
× ν( f1, f2, f3)d f1d f2d f3. (1.58)

To go further, we need to calculate the expectation of a product of four random vari-
ables. Assuming that the (complex-valued) random variable are zero-mean circularly-
symmetric Gaussian, it is known (cf. [23] for more details) that

E
[
X( f1)X∗( f2)X( f3)X∗(t)

]
= E

[
X( f1)X∗( f2)

]
E

[
X( f3)X∗(t)

]
+ E

[
X( f1)X∗(t)

]
E

[
X∗( f2)X( f3)

]
Notice that the assumption of circularly symmetry is not restrictive since all the en-
countered modulations (PSK except BPSK, QAM) are second-order circularly symmetric.
Circularly symmetry at the second order means that the real part is independent of the
imaginary part and that the variance of the real part is identical to the variance of the
imaginary part.

As for the preliminary Result 1, it is easy to see that

E
[
X( f )X∗(t)

]
= E

[∫
∞

−∞
X(t′)e−2iπ f t′dtX∗(t)

]
=

∫
E [X(t′)X∗(t)] e−2iπ f t′dt′

=
∫

Rx(t′ − t)e−2iπt′dt′

= SX( f )e−2iπ f t,

(1.59)

Combining Eq. (1.59) and that dealing with the 4-th order moment decomposition
along with the preliminary Result 1 , we have

E
[
X( f1)X∗( f2)X( f3)X∗(t)

]
= e−2iπ f3tδ( f1 − f2)SX( f1)SX( f3)

+ e−2iπ f1tδ( f2 − f3)SX( f1)SX( f2).

Thanks to the previous expression, Eq. (1.58) can be rewritten as follows

E
[
YNL( f )X∗(t)

]
= e2iπ2β2L f 2

4iπγNLLeffSX( f )RX(0)e−2iπ f t (1.60)

with RX(0) =
∫

SX( f )d f . Moreover as RX(0) = NcPx, we have

SX,YNL( f ) = 4iπγNLLeffe2iπ2β2L f 2
NcPxSX( f ). (1.61)
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• Derivations for SYL,YNL( f )

Thanks to Eq. (1.28), we remind that

YL( f ) = e2iπ2β2L f 2
X( f ). (1.62)

Following the same approach than for the derivations of SX,YNL( f ), one can easily deduce
that

SYL,YNL( f ) = e−2iπ2β2L f 2
SX,YNL( f ).

and thus

SYL,YNL( f ) = 4iπγNLLeffNcPxSX( f ).

which corresponds to an imaginary number.
As a consequence, we can once again simplify strongly P( f ) and Q( f ) as follows

P( f ) = SX( f )2 + SX( f )SYNL,YNL( f ), (1.63)

Θ( f ) = SX( f )2 + 16π2γ2
NLL2

effN2
c P2

xSX( f )2, (1.64)

and

Q( f ) = SX( f )SYNL,YNL( f ) − 16π2γ2
NLL2

effN2
c P2

xSX( f )2. (1.65)

So it remains only to derive the term SYNL,YNL( f ) which is the most complicate one.

• Derivations for SYNL,YNL( f )

We obviously have that

SYNL,YNL( f ) = FT
(
E

[∫
YNL( f )e2iπ f (t+τ)d f

∫
Y∗NL( f ′)e−2iπ f ′(t)d f ′

])
.

By applying the expectation only on the random terms, we obtain

SYNL,YNL( f ) = FT
("

E
[
YNL( f )Y∗NL( f ′)

]
e2iπ f (t+τ)e−2iπ f ′td f d f ′

)
(1.66)

Let us focus on the term E
[
YNL( f )Y∗NL( f ′)

]
. According to Eq.(1.29), we have

E
[
YNL( f )Y∗NL( f ′)

]
=E

[
(e2iπ2β2L f 2

(2iπγNL)
$

δ( f − f1 + f2 − f3)X( f1)X∗( f2)X( f3)

v( f1, f2, f3)d f1d f2d f3] + N( f ))

× (e−2iπ2β2L f ′2(−2iπγNL)
$

δ( f ′ − f ′1 + f ′2 − f ′3)X∗( f ′1)X( f ′2)X∗( f ′3)

v( f ′1 , f ′2 , f ′3)∗d f ′1d f ′2d f ′3 + N( f ′)∗)
]
.
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Since the amplification noise is statistically independent from the signal, the previous
expression becomes (thanks to the preliminary Result 1)

E
[
YNL( f )Y∗NL( f ′)

]
=E

[
(e2iπ2β2L f 2

(2iπγNL)
$

δ( f − f1 + f2 − f3)X( f1)X∗( f2)X( f3)

v( f1, f2, f3)d f1d f2d f3])

× (e−2iπ2β2L f ′2(−2iπγNL)
$

δ( f ′ − f ′1 + f ′2 − f ′3)X∗( f ′1)X( f ′2)X∗( f ′3)

v( f ′1 , f ′2 , f ′3)∗d f ′1d f ′2d f ′3)
]

+ δ( f − f ′)SN( f ).

Once again, by applying the expectation only to the random terms, we obtain

E
[
YNL( f )Y∗NL( f ′)

]
=δ( f − f ′)SN( f ) + 4π2γ2

NLe2iπ2β2L( f 2
− f ′2)$ $

δ( f − f1 + f2 − f3)δ( f ′ − f ′1 + f ′2 − f ′3)

E
[
X( f1)X∗( f2)X( f3)X∗( f ′1)X( f ′2)X∗( f ′3)

]
v( f1, f2, f3)v( f ′1 , f ′2 , f ′3)∗d f1d f2d f3d f ′1d f ′2d f ′3

(1.67)

In order to go further, we need to treat the expectation involving the product of six random
variables. Once again, by assuming zero-mean circularly-symmetric Gaussian process,
we obtain (see [23])

E
[
X( f1)X∗( f2)X( f3)X∗( f ′1)X( f ′2)X∗( f ′3)

]
= E

[
X∗( f2)X( f3)

]
E

[
X∗( f ′1)X( f1)

]
E

[
X( f ′2)X∗( f ′3)

]
+ E

[
X( f1)X∗( f2)

]
E

[
X∗( f ′1)X( f3)

]
E

[
X( f ′2)X∗( f ′3)

]
+ E

[
X∗( f ′3)X( f3)

]
E

[
X∗( f ′1)X( f ′2)

]
E

[
X( f1)X∗( f2)

]
+ E

[
X∗( f ′3)X( f3)

]
E

[
X∗( f ′1)X( f1)

]
E

[
X( f ′2)X∗( f2)

]
+ E

[
X∗( f ′3)X( f1)

]
E

[
X∗( f ′1)X( f ′2)

]
E

[
X∗( f2)X( f3)

]
+ E

[
X( f ′2)X∗( f2)

]
E

[
X∗( f ′1)X( f3)

]
E

[
X∗( f ′3)X( f1)

]
(1.68)

We remark that the involved 6-th order moment is a sum of terms χ1 = E[X∗( f ′3)X( f3)]
×E[X∗( f ′1)X( f1)]E[X( f ′2)X∗( f2)] orE[X( f ′2)X∗( f2)]E[X∗( f ′1)X( f3)]E[X∗( f ′3)X( f1)] (in which one
find one frequency with the prime per second order moment) and χ2 equal to the four
other ones (in which one find at least one second-order moment with both frequencies
with the prime). These two types of terms (χ1 and χ2) have to be calculated separately as
follows.

• Let us focus on the types of term χ1. Let us first assume that χ1 = E[X∗( f ′3)X( f3)]
×E[X∗( f ′1)X( f1)]E[X( f ′2)X∗( f2)] The corresponding term in Eq.(1.67) is denoted by
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t1( f , f ′) and writes as follows

t1( f , f ′) = 4π2γ2
NLe2iπ2β2L( f 2

− f ′2)

×

$ $
δ( f − f1 + f2 − f3)δ( f ′ − f ′1 + f ′2 − f ′3)

× E[X∗( f ′3)X( f3)]E[X∗( f ′1)X( f1)]E[X( f ′2)X∗( f2)]

× v( f1, f2, f3)v( f ′1 , f ′2 , f ′3)∗d f1d f2d f3d f ′1d f ′2d f ′3

Using the preliminary Result 1 leads to

t1( f , f ′) = 4π2γ2
NLe2iπ2β2L( f 2

− f ′2)

×

$ $
δ( f − f1 + f2 − f3)δ( f ′ − f ′1 + f ′2 − f ′3)

× δ( f ′1 − f1)SX( f1)δ( f ′2 − f2)SX( f2)δ( f ′3 − f3)SX( f3)

× v( f1, f2, f3)v( f ′1 , f ′2 , f ′3)∗d f1d f2d f3d f ′1d f ′2d f ′3

Then we have

t1( f , f ′) = 4π2γ2
NLδ( f − f ′)

$
δ( f − f1 + f2 − f3)

× SX( f1)SX( f2)SX( f3)
∣∣∣v( f1, f2, f3)

∣∣∣2 d f1d f2d f3 (1.69)

Notice that the derivations done with the other expression of χ1 will lead to the
same final closed-form expression.

• Let us focus on the types of term χ2. Let us first assume that χ2 = E[X∗( f ′1)X( f ′2)]
×E[X∗( f ′3)X( f1)]E[X∗( f2)X( f3)]. The corresponding term in Eq.(1.67) is denoted by
t2( f , f ′) and writes as follows

t2( f , f ′) = 4π2γ2
NLe2iπ2β2L( f 2

− f ′2)

×

$ $
δ( f − f1 + f2 − f3)δ( f ′ − f ′1 + f ′2 − f ′3)

× E[X∗( f ′1)X( f ′2)]E[X∗( f ′3)X( f1)]E[X∗( f2)X( f3)]

× v( f1, f2, f3)v( f ′1 , f ′2 , f ′3)∗d f1d f2d f3d f ′1d f ′2d f ′3

Using the preliminary Result 1 leads to

t2( f , f ′) = 4π2γ2
NLe2iπ2β2L( f 2

− f ′2)

×

$ $
δ( f − f1 + f2 − f3)δ( f ′ − f ′1 + f ′2 − f ′3)

× δ( f ′1 − f ′2)SX( f ′1)δ( f ′3 − f1)SX( f1)δ( f2 − f3)SX( f3)

× v( f1, f2, f3)v( f ′1 , f ′2 , f ′3)∗d f1d f2d f3d f ′1d f ′2d f ′3

The sixtuple integral can be strongly simplified by using the Dirac delta distribution

t2( f , f ′) = 4π2γ2
NLe2iπ2β2L( f 2

− f ′2)

× δ( f − f ′)L2
effSX( f )

∣∣∣∣∣∫ SX( f1)d f1

∣∣∣∣∣2 .
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Then, we have

t2( f , f ′) = 4π2γ2
NLL2

effN2
c P2

xδ( f − f ′)SX( f ). (1.70)

Notice that the derivations done with the three other expression of χ1 will lead to
the same final closed-form expression.

Finally, incorporating in Eq. (1.67) the two terms associated with Eq. (1.69) and the
four terms associated with Eq. (1.70) leads to

E
[
YNL( f )Y∗NL( f ′)

]
= δ( f − f ′)SN( f )

+ 8π2γ2
NLδ( f − f ′)

$
δ( f − f1 + f2 − f3)

× SX( f1)SX( f2)SX( f3)
∣∣∣v( f1, f2, f3)

∣∣∣2 d f1d f2d f3

+ 16π2γ2
NLL2

effN2
c P2

xδ( f − f ′)SX( f ). (1.71)

As there is a Dirac distribution on f and f ′ for all terms in Eq. (1.71), according to Eq. (1.66),
the term SYNL,YNL( f ) is just equal to E[YNL( f )Y∗NL( f )]. Therefore, we have

SYNL,YNL( f ) = SN( f ) + 8π2γ2
NL

$
δ( f − f1 + f2 − f3)

× SX( f1)SX( f2)SX( f3)
∣∣∣v( f1, f2, f3)

∣∣∣2 d f1d f2d f3

+ 16π2γ2
NLL2

effN2
c P2

xSX( f ). (1.72)

1.5.3.3 Final closed-form expression for the capacity

Based on the simplified expression of Θ( f ) and Q( f ) given in Eqs. (1.64)-(1.65), the capacity
(given by Eq. (1.56)) writes now as follows

C =

∫ B/2

−B/2
log2

1 +
SX( f ) + 16π2γ2

NLL2
eff

N2
c P2

xSX( f )

SYNL,YNL( f ) − 16π2γ2
NLL2

eff
N2

c P2
xSX( f )

 d f (1.73)

Using Eq. (1.72), we have

C =

∫ B/2

−B/2
log2

1 +
SX( f )(1 + 16π2γ2

NLL2
eff

N2
c P2

x)

SN( f ) + MX( f )

 d f

with

MX( f ) = 8π2γ2
NL

$
δ( f − f1 + f2 − f3)SX( f1)SX( f2)SX( f3)

∣∣∣v( f1, f2, f3)
∣∣∣2 d f1d f2d f3.

Notice that [13] has almost the same denominator (we just have to replace the frequency
with the pulsation and to replace the power defined in [13] with 2π times ours). In contrast,
the numerator is different since [13] omitted the positive term equal to 16π2γ2

NLL2
eff

N2
c P2

x.
This additional term will improve the capacity and so the value of its maximum. Notice
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also that MX( f ) depends on the CD coefficient which proves that the non-linear capacity
is modified by the CD.

Once again we can simplify the capacity by forcing the input spectrum to satisfy the
model provided in Eq. (1.36). Then we have

C =

∫ B/2

−B/2
log2

1 +
Px(1 + 16π2γ2

NLL2
eff

N2
c P2

x)

PN + M̃X( f )

 d f (1.74)

with

M̃X( f ) = 8π2γ2
NL(P3

x/B
2)

N∑
k1,k2,k3=−N

$
δ( f − f1 + f2 − f3)

× Π

(
f1 + k1(B + Bg)

B

)
Π

(
f2 + k2(B + Bg)

B

)
Π

(
f3 + k3(B + Bg)

B

) ∣∣∣v( f1, f2, f3)
∣∣∣2 d f1d f2d f3.

1.6 Numerical illustrations

In the previous section, we have obtained closed-form expressions of the non-linear
optical channel capacity. Hereafter, we illustrate numerically the introduced expressions
in order to analyze them and to check them as well.

This section is split into three subsections: in Section 1.6.1, we introduce the simulation
setup. In Section 1.6.2, we check the accuracy of the obtained closed-form expressions
compared to a Monte-Carlo capacity evaluation. Finally, in Section 1.6.3 , we analyze the
influence of the guard band on the capacity.

1.6.1 Simulation setup

Parameters Value
Fiber loss α = 0.2 dB/km

Kerr coefficient γNL = 1.22 W−1
· km−1

CD coefficient βLEAF = −5.1 ps2/km
βSMF = −21.6 ps2/km

Fiber length L = 80 km
Number of channel Nc = 81
Useful bandwidth B = 50 GHz

Amplification noise power PN = 10−5 mW ·GHz−1

Table 1.2: Simulation setup

As for the derivations, we consider a mono-span amplified optical link. The amplifier
is at the receiver side and perfectly compensates for the fiber loss. Concerning the CD,
we consider three fiber types: non-dispersive fiber, LEAF fiber, and standard SMF fiber.
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The other parameters, such as fiber loss or Kerr coefficient, are assumed to be the same
for all fiber types and are displayed in Table 1.2. Moreover the amplifier only generates
AWGN.

1.6.2 Accuracy of the proposed closed-form expressions

First of all, we consider the non-dispersive case. In Fig. 1.4, we plot the capacity obtained
through numerical Monte-Carlo simulation of the Pinsker’s formula and through the
numerical evaluation of the closed-form expression of the capacity (i.e., Eq. (1.49)). The
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Figure 1.4: Capacity versus Px in non-dispersive case for different values of the guard band

closed-form expressions are very accurate, especially around the maximum capacity.
Indeed, when the input power is too high, a slight mismatch appears between the Monte-
Carlo simulation and the closed-form expression. This can be explain by the fact we have
neglected some terms in Eq. (1.38). This approximation is perfectly valid if the power is
small enough.

Let us now focus on the dispersive case. Unlike the non-dispersive case, the numerical
Monte-Carlo evaluation of Pinsker’s Formula is much more complicate because of the
lake of closed-form solution for the NSE. Therefore, rather than comparing our closed-
form expressions to Monte-Carlo simulations, we propose to compare numerically our
closed-form expressions with that of [13]. Therefore, in Fig. 1.5, we plot the numerical
evaluation of the proposed closed-form expression of the non-dispersive capacity (i.e.,
Eq. (1.49)) versus Px as well as the closed-form expression proposed in [13]. We assume
a guard band-free model (Bg = 0).
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Figure 1.5: Capacity and capacity from [13] versus Px in dispersive case

We remark that the non-dispersive capacity (evaluated through Eq. (1.74) and not
Eq. (1.49)) is the same as that provided in Fig. 1.4. So the approach developed for
dispersive case is also valid for the non-dispersive case although more terms have been
neglected. More important, we notice that the maximum obtained with our derivations
is slightly larger than that obtained in [13]. So the term omitted in [13] has a slight impact
on the numerical values of the capacity.

1.6.3 Influence of the guard band

In Fig. 1.6, we plot the spectral efficiency (defined as η = C/(B+Bg)) versus the guard band
in non-dispersive case. Similar figures have been obtained in dispersive case whatever
the fiber type. The capacity has been evaluated through its closed-form expression.

We show that the guard band has a bad influence on the spectral efficiency. This result
is quite logical since bandwidth is wasted by the guard band. In information-theoretical
point-of-view, it is well known that it is more efficient to use the full bandwidth (term out
of the log2) even if it is more disturbed (term within the log2). In practice, the conclusion
can be different: when practical coding scheme is used, the error probability has more
influence and the guard band enables us to prevent too high error probability and to
satisfy the required Quality of Service (QoS).

In order to better understand the influence of the guard band on non-linearities miti-
gation, we plot, in Fig. 1.7, the capacity gain (instead of the spectral efficiency) versus the
guard band in dispersive case. The capacity (also called "data rate") gain is defined as
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Figure 1.6: Spectral efficiency versus guard band in non-dispersive case

the ratio between the maximum capacity of the system with a given value of the guard
band over the maximum capacity of the same system but without guard band. This gain
is expressed in percentage.

We notice that the data rate gain is upper-bounded. This result has been predicted in
the Section devoted to the non-dispersive case (for Bg ≥ B, the capacity becomes constant
and actually maximum. Here, we remind that B = 50 GHz). We so here remark that
it remains true for the dispersive case. In addition, we remark that the more dispersive
the fiber is, the less the data rate gain is. In other words, the contribution of the CD to
mitigate the non-linearities is more significant than the contribution of the guard band.

1.7 Conclusion

In this chapter, after a review of the literature about the derivations of the optical non-
linear capacity, we have analyzed the influence of the guard band on the non-linear
capacity. To do that, we have developed closed-form expressions of this capacity taking
into account to the guard band for non-dispersive case (cf. Eq. (1.49)) as well as dispersive
case (cf. Eq. (1.74)). These closed-form expressions have been derived by using the
framework developed in [13].

Numerical evaluations of these capacities have been made and have confirmed that
CD has a great impact on the optical non-linear capacity. In contrast, the guard band has
a slight influence on these capacities which means that the inter-channel interaction is not
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Figure 1.7: Capacity gain versus the guard band in dispersive case

the most important drawback.
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Chapter 2

Outage Probability in presence of
Polarization-Dependent Loss

2.1 Introduction

As seen in Chapter 1, the increase of data rate in optical transmission systems can be
done by increasing the input power until a certain threshold. Beyond this threshold, the
nonlinear effects degrade the performance. Therefore, other ways for increasing the data
rate have to be explored. A simple idea (already implemented thanks to the coherent
detection) is to use more degrees of freedom offred by the fiber, such as, the polarization
(which leads to the so-called PDM transmission scheme.). Unfortunately, due to the
information spread over both polarizations, some effects, such as PMD and PDL now
occur and have to be compensate for.

Assuming OFDM based modulation, as PMD is an unitary perturbation (see Section
2.3.1 for more details), PMD can be completely compensated for and so does not degrade
the performance. Therefore, we only focus on the performance degradation due to PDL.

As PDL is a time-varying phenomenon and so can be modeled by a random variable,
the Shannon capacity can only be defined for a PDL realization and thus the Shannon
capacity for the optical fiber does not exist in strict sense. To analyze such random
channels, the most relevant information-theoretic tool is the so-called outage probability.
Therefore, this chapter is mainly devoted to the derivations of the outage probability.
In addition, we compare the fundamental limit provided by the outage probability to
practical communication schemes disturbed by the PDL.

This chapter has organized as follows: in Section 2.2, we introduce and justify care-
fully the PDL model used in this thesis. In Section 2.3, the derivations for the considered
PDL model is drawn and some numerical evaluations of the obtained closed-form expres-
sions are also conducted. In Section 2.4, the outage probability is compared numerically
to practical systems using different modulation format, FEC codes (for, instance, Low-
Density Parity-Check (LDPC) ones) , PT codes. In addition, some insights related to PDL
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mitigation in system design and optimization are provided. Concluding remarks are
given in Section 2.5.

2.2 PDL models

As PDL is a linear impairment combining both polarizations, it can be viewed as a 2−by−2
linear Multiple Input Multiple Output (MIMO) system, that is to say that, the bivariate
(on both polarizations) received signal, denoted by Y( f ) in the frequency domain, can be
written as follows

Y( f ) = HPDL( f )X( f ) + N( f ) (2.1)

where

• X( f ) is the transmitted signal,

• HPDL( f ) is the 2−by−2 matrix related to PDL.

• and N( f ) is the accumulated noise independent of the transmitted signal.

In this section, our purpose is to introduce models for

1. the structure of the matrix HPDL( f ),

2. and the structure of the correlation matrix of N( f ).

In this thesis, we present two models: the phenomenological one (see Section 2.2.1),
and the simplified one (see Section 2.2.2) which will be used later for doing the mathe-
matical derivations.

2.2.1 Phenomenological model

2.2.1.1 Input/Output matrix model

Assuming that the transmitted signal is narrow band compared to PDL frequency varia-
tion, we can remove in HPDL( f ) the dependency on the frequency. Generally, the link in
fiber communications is composed of several spans as in Fig. 2.1 Between two consecutive

Transmitter Receiver
Fiber

Ampli.

N x Spans

Figure 2.1: System model with amplifiers

spans, an amplifier is inserted. Therefore it is usual to consider that the transfer matrix is
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a concatenation of N elementary PDL slices [24, 25, 26, 27, 28]. Each slice may correspond
to a span. Thus, we have

H̃PDL =

N−1∏
`=0

(Rα`Dγ`Bφ`︸       ︷︷       ︸
M`

) (2.2)

where Rα` and Rβ` are 2−by−2 rotation matrices of random angles α` and β` respectively.
These rotations represent the polarization axis mismatch between the slice input and the
slice output. The matrix Dγ, defined as follows,

Dγ` =

 √
1 + γ` 0

0
√

1 − γ`

 (2.3)

represents the power mismatch between both polarizations. Finnally, Bφ` corresponds to
a 2−by−2 birefringence matrix:

Bφ` =

 eiφ` 0
0 e−iφ`

 . (2.4)

The matrix M` models the (` + 1)-th slice/span.

2.2.1.2 Noise matrix model

Let us now focus on the noise. We define the matrix T j as the transfer matrix between the
output of the j-th amplifier and the receiver. For j ∈ {0,N − 1}, we have

T j =

N−1∏
`= j

M`. (2.5)

As a consequence, T0 is the transfer matrix of the overall link and thus is equal to H̃PDL.
In addition, the matrix TN (not defined by Eq. (2.5)) is the 2−by−2 identity matrix. The
noise vector for the global link can so be written as follows

N( f ) =

N∑
j=1

T jN j( f ) (2.6)

where N j( f ) is the i.i.d. (with respect to j) white Gaussian noise vector coming from j-th
amplifier with variance σ2

N per complex dimension. We are interesting by the property
of the noise correlation. Therefore, we introduce the correlation matrix (which will be
independent of the frequency f ).

RN = E[N( f )N( f )H].

where the superscript (.)H stands for the transpose-conjugate operator. Then we have

RN = σ2
N

N∑
j=1

T jTH
j . (2.7)
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Clearly, this matrix RN is not diagonal, and the noise is thus spatially-correlated. Let us
denote PN = tr

(
E[N( f )N( f )H]

)
as the noise power. We obtain that

PN = σ2
N

N∑
j=1

Tr
(
T jTH

j

)
= σ2

N

N∑
j=1

‖T j‖
2
F

where Tr is the trace operator, and ‖ · ‖F is the Frobenius norm, defined as ‖A‖2F = Tr(AAH)
for any square matrix A.

2.2.1.3 Matrix diagonalization

As any complex-valued matrix, H̃PDL can be decomposed, according to the so-called
Singular Value Decomposition (SVD), as follows

H̃PDL = UH

 √λmax 0
0

√
λmin

 V (2.8)

where U and V are two unitary matrices, and where λmax and λmin are the maximum and
the minimum singular values of the matrix H̃PDL. The so-called PDL coefficient is usually
expressed in dB and defined as follows

Γ = 10 log10

(
λmax

λmin

)
. (2.9)

Actually, this coefficient represents the power mismatch between both polarizations.
Notice that this ratio is also called the condition number of the matrix.

The previous matrix decomposition can be re-written in a slightly different form which
will be very useful for our analysis. For going further, let us consider the total received
power (i.e. for the both polarization) in the frequency domain. This received power is
given by

Py = E[YH( f )Y( f )] (2.10)

where Y( f ) is defined as in Eq. (2.1). In noiseless case and assuming independent symbols
in each component of X( f ), we have

Py = Tr(H̃PDLE[X( f )X( f )H]H̃H
PDL)

= Tr(H̃PDLH̃H
PDL) Px

= ‖H̃PDL‖
2
F Px (2.11)

with Px the power/variance on each component of X( f ). We remark that the received
power is random since it depends on the realization of the PDL matrix, and is equal to

Py = (λmax + λmin)Px.
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By forcing the norm of the matrix H̃PDL to appear in Eq. (2.8), we obtain that

H̃PDL =

√
λmax + λmin
√

2
UH


√

2λmax
λmax+λmin

0

0
√

2λmin
λmax+λmin

 V

=
‖H̃PDL‖F
√

2
UH

 √
1 + γ 0
0

√
1 − γ

 V

=
‖H̃PDL‖F
√

2
UHDγV (2.12)

with

γ =
λmax − λmin

λmax + λmin
. (2.13)

The coefficient γ lies in the interval [0; 1].

Finally, by considering Z( f ) =
√

PN/2Y( f ) a properly normalized output vector, we
have

Z( f ) = ηUHDγVX( f ) + Ñ( f ) (2.14)

with

η =
‖H̃PDL‖F
√

PN
,

and Ñ( f ) the normalized but correlated noise.

Consequently, PDL gives rise to three main impairments when multi-span fiber are
considered:

1. SNR loss and dispersion: due to the random norm ‖H̃PDL‖F in Eq. (2.12), or alterna-
tively, due to the term η in Eq. (2.14).

2. Polarization mismatch: due to matrix Dγ in Eq. (2.12) or in Eq. (2.14).

3. Noise correlation: due to the form of RN in Eq. (2.7).

Notice that in [27], the author encompasses these three phenomena within an unique
parameter, called SNR compression, which corresponds to the loss in SNR on the BER
performance of an uncoded (no FEC code, no PT code) system.

For this phenomenological model, closed-form expressions for the outage probability
can not be found even if a priori probability densities are given for the elementary PDL
per splice/span. Consequently, only numerical evaluations of the outage probability
(via Monte-Carlo trials) can be performed. In order to exhibit approximate closed-form
expressions for the outage probability, simplification on Eqs.(2.7)-(2.12) have to be done.
Therefore, we would like hereafter inspect the real influence of these three impairments
on the outage probability value.
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2.2.1.4 Influence of the noise correlation

In order to only evaluate the influence of the noise correlation on the performance, we
have numerically evaluate the outage probability through Monte-Carlo runs assuming
Eqs. (2.2)-(2.6) and by normalizing the noise and the PDL matrix. This is then equivalent
to Eq. (2.14) by forcing η = 1. This normalization has been done in order to isolate the
impact of the noise correlation.

Except the noise correlation, the simulation setup is the same as in Section 2.4. In
Fig. 2.2, we plot the outage probability versus SNR (cf. Appendix Bv for more details
about SNR definition) for different number of spans when a mean global PDL (E[Γ]) is
fixed to 3dB.
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Figure 2.2: Outage probability vs Eb/N0 for different number of spans. (E[Γ] = 3dB)

We observe that the noise correlation has a very slight influence on the outage proba-
bility and tends to improve only incrementally the performance. This improvement can
be explained in the following way: assuming the noise was entirely correlated between
both polarizations, it could be completely removed by transmitting the signal on one
polarization and using the other as a noise reference. Therefore the correlation improves
the performance.

As a conclusion, without lot of generality, the noise correlation can be neglected.

2.2.1.5 Influence of the random SNR

First of all, in PDL-free case, it is easy to check that η is a deterministic value equal to
1/
√

N. Assuming here N = 20, we thus obtain η ≈ 0.22. Due to PDL, η becomes a random
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variable which, for instance, has a mean mη = E[η] and a variance vη = E[(η −mη)2].
In Fig. 2.3, we plot the histogram (simulated PDF) of η for four values of the mean

PDL.
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Figure 2.3: Histogram for η with E[Γ] = 1dB (NW) or E[Γ] = 3dB (NE), or E[Γ] = 6dB (SW),
or E[Γ] = 15dB (SE)

We observe two phenomena :

• the average SNR (so, the mean of the histogram) is less than 0.22 and decreases very
slowly with respect to the mean PDL. This assertion is also confirmed in Fig. 2.4
(left). As a consequence, without loss of generality, one can assume that the average
SNR loss can be neglected.

• the instantaneous SNR (measured at the receiver side) is random which means that
even if the average SNR is good, some channel realizations may lead to very poor
performance. We remark that the fluctuation of the SNR increases with respect to
the mean PDL. This can be also observed in Fig. 2.4 (right) where the variance of
the SNR is displayed versus the mean PDL. If the encountered mean PDL is less
than 3dB, the SNR dispersion is very small. Moreover, in many practical systems,
the maximum value for the mean PDL is around 3dB. As a consequence, with loss
of practical generality, the SNR dispersion can be neglected.

When the mean PDL is too large, we will see that we can continue to work without



44 2. Outage Probability in presence of Polarization-Dependent Loss

0 2 4 6 8 10 12 14 16 18 20
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Mean Γ (dB)

M
e
a
n

 |
|

H
P

D
L
|

|
/

|
|

B
|

|

 

 

10 elements

15 elements

20 elements

25 elements

30 elements

100 elements

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8
x 10

−3

Mean Γ (dB)

V
ar

ia
n

ce
 o

f η

 

 

10 spans
15 spans
20 spans
25 spans
30 spans
100 spans

Figure 2.4:
√

Nmη (left) and vη (right) versus E[Γ]

assuming the SNR loss and the SNR dispersion. The PDL impairment, even if random,
varies very slowly compared to the symbol period. In practical system, the information
symbol comes from a FEC code (typically a LDPC code), and so belongs to a codeword.
Actually, the PDL matrix varies even slowly compared to the codeword [29, 30]. Conse-
quently, it is reasonable to inspect the performance with respect to the SNR viewed by the
considered codeword and not by the average SNR calculated over all the transmission
duration. Therefore, in the rest of the chapter, the SNR will be calculated within a codeword
duration (and not within an entire transmission). This implies that the SNR dispersion will not
be considered hereafter whatever the value of the mean PDL.

2.2.2 Simplified theoretical model

We remind that the Input/Output relationship (see Eq. (2.14)) can be written as follows

Z( f ) = ηUHDγVX( f ) + Ñ( f ).

As the noise correlation can be neglected, we force Ñ( f ) to be white spatially. More-
over, as the SNR loss is small enough and the SNR dispersion can be removed (by
considering the SNR averaged over the codeword duration), one can force η = 1.

Consequently, by denoting the received signal (on which we will work) Y( f ), we have

Y( f ) = UHDγV︸   ︷︷   ︸
HPDL

X( f ) + N( f ) (2.15)

where N( f ) is assumed to be white spatially with variance N0 per real dimension [31].
This model is very close to that developed for one span [28]. Actually, when only one
span is considered, the PDL matrix takes the following form

HPDL = RαDγRβ (2.16)

where the unitary matrices have been replaced with rotation matrices of angle α and β
respectively. Notice that, as rotation matrices are unitary matrices as well, the outage
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probability is insensitive to this modification (see derivations in Section 2.3.1 for more
details). Nevertheless, in your simulations with real codes, we have used model given by
Eq. (2.16).

Let us go back to the phenomenological model given in Eqs. (2.2)-(2.6). First of
all, to simplify we wil consider that the noise is spatially white. Under this model,
the instantaneous SNR is not constant (since ‖H̃PDL‖F ,

√
2). In Eq. (2.16), in contrast,

‖HPDL‖F =
√

2 whatever the channel realization. To compare easily and fairly both
models, we have to normalize the matrix involved in the phenomenological ones as
follows:

HPDL = H̃PDL ·

√
2

‖H̃PDL‖F
(2.17)

Finally, our new phenomenological and theoretical model enables us to only inspect
the influence of the power mismatch between both polarizations. This restriction is mild
since the PT codes only combat this mismatch.

2.3 Derivations of the outage probability

2.3.1 Preliminary derivations

As defined in [31], the outage probability is the probability that the instantaneous channel
capacity C (i.e. for one channel realization) is below a given transmission rate r (expressed
in bits/s)

Po = Prob{C < r}. (2.18)

This outage probability is in fact a lower bound on the BER whatever the considered
encoder.

Assuming that the Input/output relationship is driven by Eq. (2.15) and that the input
X( f ) is a white Gaussian random variable, the instantaneous channel capacity (i.e., given
a channel realization) takes the following shape [32]

C(HPDL) = B log2

(
det

[
I2 + ρHPDLHH

PDL

])
(2.19)

where I2 is the 2-by-2 identity matrix, B is the transmitted signal bandwidth, and ρ =

Es/2N0 (cf. Appendix B for more details about SNR). Notice that only PDL has been
considered here, but the result will be the same by inserting the the CD and the PMD.
Recalling that CD and PMD are modeled by unitary matrices, and that the determinants
of such matrices are equal to 1, they do not modify the value of the capacity. In addition,
this is the reason why the unitary/rotation matrices exhibited in Eqs. (2.15)-(2.16) do not
modify the value of the capacity as well.

Using Eq. (2.16) for HPDL, we easily obtain that

C(HPDL) = B log2((1 + ρ)2
− ρ2γ2) (2.20)
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and so the outage probability given in Eq. (2.18) becomes

Po = Prob
{
log2

(
(1 + ρ)2

− ρ2γ2
)
< R

}
(2.21)

where R = r/B is the spectral efficiency.
Notice that the outage probability only depends on the PDF of γ. The previous

expression could be rewritten as follows:

Po = Prob{γ2 > f (R, ρ)} with f (R, ρ) = 1 −
1
ρ2 (2R

− 1 − 2ρ). (2.22)

Because of the properties of γ, one can exhibit two thresholds on the SNR denoted by
ρl (below which Po = 1) and ρu (beyond which Po = 0).

• If f (R, ρ) < 0, then Po = 1 since γ2 is always positive. This constraint on f (R, ρ)
holds iff ρ < ρl with

ρl =
√

2R − 1. (2.23)

• If f (R, ρ) > 1, then Po = 0 since γ2 is always less than 1. This constraint on f (R, ρ)
holds iff ρ > ρu with

ρu =
1
2

(2R
− 1). (2.24)

In the following subsections, we focus on the derivations in closed-form for the outage
probability. Different statistical models for the PDL coefficient coming from an exhaustive
survey of the literature have been considered. These models rely on either γ or Γ given
by

Γ = 10 log10

(
1 + γ

1 − γ

)
(2.25)

thanks to Eqs. (2.9)-(2.13).

2.3.2 γ constant

This very simple model assumes γ as a constant. It has been introduced in order to deeply
analyze the influence of PDL on advanced coding techniques [28, 33]. This constant value
of γ is denoted by µc. If µc > f (R, ρ), then Po = 1 and if µc < f (R, ρ), then Po = 0. Therefore
we are interesting to find the relationship between µc, R and ρ such that µc = f (R, ρ), i.e.,

µc = 1 −
1
ρ2 (2R

− 1 − 2ρ). (2.26)

We thus have to solve the following second-order polynomial with respect to ρ

ρ2
(
1 − µ2

c

)
+ 2ρ − 2R + 1 = 0. (2.27)

As |µc| ≤ 1 and R > 0, the discriminant of the previous second-order polynomial is strictly
positive and so this polynomial has two real-valued roots. One of them is negative and so
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has no physical meaning. The second one is given by (
√

1 + (1 − µ2
c )(2R − 1)− 1)/(1− µ2

c ).
Therefore, we have

Po =

 1 if ρ <
√

1+(1−µ2
c )(2R−1)−1

(1−µ2
c)

0 otherwise
. (2.28)
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Figure 2.5: Outage probability for model γ constant and R = 4bits/s/Hz

In Fig. 2.5, we plot the outage probability for a given spectral efficiency R = 4bits/s/Hz
and different values of Γ (or equivalently, of µc).

2.3.3 γ Gaussian

The model γ Gaussian has been roughly validated in [34, 24]. In [34, 24], the authors
asserted that it is valid for low values of the PDL. It has been justified by the concatenation
of some elementary PDL slices. Its probability density function is

p(g)
γ (x) =

1√
2πσ2

g

e
−

(x−µg)2

2σ2
g (2.29)

with µg = E[γ] and σ2
g the variance. In Fig. 2.6, such a PDF is displayed with µg = 0.3263

and σ2
g = 0.1240 for ensuring E[Γ] = 3dB.

Considering ρ > ρl, the outage probability, defined in Eq. (2.22), can be written as
follows

Po =

∫
−

√
f (R,ρ)

−∞

p(g)
γ (x)dx +

∫ +∞

√
f (R,ρ)

p(g)
γ (x)dx (2.30)

This probability distribution has a known Cumulated Density Function (CDF) based on
the Gaussian tail function

x 7→ Q(x) =
1
√

2π

∫
∞

x
e−t2/2dt.
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Figure 2.6: Example of γ Gaussian PDF

Consequently, Eq. (2.30) implies that

Po = 1 −Q

−
√

f (R, ρ) − µg

σg

 + Q


√

f (R, ρ) − µg

σg

 . (2.31)

Finally, the outage probability is:

Po =


1 if ρ < ρ`

Q
( √

f (R,ρ)+µg

σg

)
+ Q

( √
f (R,ρ)−µg

σg

)
otherwise

. (2.32)
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Figure 2.7: Outage probability for model γ Gaussian and R = 4bits/s/Hz

Some numerical examples of this outage probability have been plotted in Fig. 2.6 for
a fixed spectral efficiency and different values of the mean PDL. In our simulations, the
parameter µg has been fixed as E[Γ] = 10 log10((1 + µg)/(1 − µg)), then we have built a
lookup table to find the relationship between σ2

g and E[Γ].
Unfortunately this model has many drawback: firstly, it is quite realistic only in few

situations (low PDL); then, the evaluation of the distribution’s parameters for a given
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mean PDL (given by E[Γ]) is intractable; finally, as Fig. 2.6 shows for high values of the
mean PDL, the γ coefficient is not constrained to belong to the interval ]− 1, 1[ which has
no physical meaning. Therefore the outage is not zero even when ρ > ρu.

2.3.4 γ truncated Gaussian

We introduce this model in order to remove the main drawback of the γGaussian model:
we constraint γ to belong to [−1, 1]. Therefore the Gaussian distribution is truncated as
follows

p(tg)
γ (x) =


K√

2πσ2
tg

e
−

(x−µtg)2

2σ2
tg , |x| < 1

0 otherwise

(2.33)

where

K =
1

1 −Q
(

1+µtg

σtg

)
−Q

(
1−µtg

σtg

) (2.34)

is a normalization coefficient ensuring that p(tg)
γ is a PDF. An example of the PDF is plotted

in Fig. 2.8 with µtg = 0.3263 and σ2
tg = 0.1240.
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Figure 2.8: Example of γ truncated Gaussian PDF

According to Eq. (2.22), we just have to calculate the outage probability for ρ ∈ [ρ`, ρu]
since now γ lies in the interval ] − 1; 1[. Then the outage probability can be decomposed
as

Po =

∫
−

√
f (R,ρ)

−1
p(tg)
γ (x)dx +

∫ 1

√
f (R,ρ)

p(tg)
γ (x)dx. (2.35)

Like the previous model, the CDF of the normal distribution is known, and we obtain
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that

Po =


1 if ρ < ρ`

K
[
Q

( √
f (R,ρ)+µtg

σtg

)
+ Q

( √
f (R,ρ)−µtg

σtg

)
−Q

(
1+µtg

σtg

)
−Q

(
1−µtg

σtg

)]
if ρ` < ρ < ρu

0 otherwise
(2.36)
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Figure 2.9: Outage probability for model γ Gaussian and R = 4bits/s/Hz

In Fig. 2.9, we plot numerical illustrations of the closed-form expressions for a fixed
spectral efficiency and different values of the mean PDL. In our simulations, we have
used the same relationship between µtg and E[Γ] that between µg and E[Γ]. Similarly,
the relationship between σ2

tg and E[Γ] is obtained thanks to a lookup table. Although the
model is now constrained, some drawbacks still occur, especially, the lack of relationship
between µtg, σtg and the mean PDL.

2.3.5 Γ (positive) Gaussian

After some practical measurements, [35] has observed that the histogram of Γ fits quite
well with the positive part of a Gaussian distribution. Therefore, the authors have
suggested the following distribution.

p(pg)
Γ

(x) =


2√

2πσ2
pg

e
−

x2

2σ2
pg , x ≥ 0

0 otherwise

(2.37)

In order to obtain a relationship between the mean PDL and the distribution’s parameters,
we show, after some algebraic manipulations, that σ2

pg has to satisfy σpg = (
√

2/π)E[Γ]. In
Fig. 2.10, an example of the PDF is plotted for E[Γ] = 3dB.

Since the distribution is given on Γ, the inequality on γ of the Eq. (2.22) has to be
replaced with an inequality on Γ. As the relationship defined in Eq. (2.9) between γ and Γ

ensures that for any value of Γ the corresponding value of γ is within the interval ]− 1, 1[,
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Figure 2.10: Example of Γ positive Gaussian PDF

the bounds given in Eqs. (2.23) and (2.24) are still valid. Therefore, we only focus on
the case ρ ∈ [ρl, ρu]. Moreover, as the considered model assumes that Γ is positive, the
corresponding γ is then also positive which implies that Eq. (2.22) can be rewritten as
follows

Po = Prob
{
γ >

√
f (R, ρ)

}
. (2.38)

Remarking that Eq. (2.25) is equivalent to Γ = 20
log(10) artanh(γ), and that the function x 7→

artanh(x) is strictly increasing, we obtain

Po = Prob
{
Γ > T(R, ρ)

}
=

∫
∞

T(R,ρ)
p(pg)

Γ
(x)dx (2.39)

with

T(R, ρ) =
20

log(10)
artanh

(√
f (R, ρ)

)
. (2.40)

As the CDF of the Gaussian distribution is well known, we obtain the following
closed-form expression of the outage probability:

Po =


1 if ρ < ρ`

2Q
(

T(R,ρ)
σpg

)
if ρ` < ρ < ρu

0 otherwise

(2.41)

In Fig. 2.11, we show numerical illustrations of this closed-form expression for a given
spectral efficiency and different values of the mean PDL.

Notice that in [36], the authors proposed to consider that Γ is modeled by a zero-mean
Gaussian-distributed random variable. However, since Γ is defined as the ratio of the
maximum transmission coefficient over the minimum (Eq. (2.9)), Γ should be positive.
Therefore, such a distribution choice for Γ does not seem relevant and so has not been
considered in this Chapter.
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Figure 2.11: Outage probability for model Γ (positive) Gaussian and R = 4bits/s/Hz

2.3.6 Γ Rayleigh

This statistical model of Γ has been presented in [25] and has been obtained by considering
the concatenation of elementary PDL slices without taking the birefringence into account.
Then the PDF of Γ is given by the Rayleigh distribution as follows

p(r)
Γ

(x) =

 x
σ2

r
e
−

x2

2σ2
r , x ≥ 0

0 otherwise
(2.42)

where the parameter σr =
√

2/π · E[Γ]. In Fig. 2.12 an example of PDF is plotted for
E[Γ] = 3dB.
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Figure 2.12: Example of Γ Rayleigh PDF

Similarly to the Γ positive Gaussian case, the definition of the PDF induces γ positive.
So Eq. (2.39) can be used in order to evaluate the outage probability.

Po =

∫
∞

T(R,ρ)
p(r)

Γ
(x)dx. (2.43)
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Once again using the CDF of the Rayleigh distribution, the outage probability can be
written as follows

Po =


1 if ρ < ρ`

e
−

T(R,ρ)

2σ2
r if ρl < ρ < ρu

0 otherwise

(2.44)
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Figure 2.13: Outage probability for model Γ Rayleigh and R = 4bits/s/Hz

Numerical illustrations of the obtained closed-form expression for a given spectral
efficiency and different values of the mean PDL are plotted in Fig. 2.13.

2.3.7 Γ Maxwellian

Firstly, it has been shown in [25] that the Γ Maxwellian distribution offers the best fitting
with the simulated histogram of the PDL when the matrix HPDL is the concatenation
of elementary PDL slices taking the birefringence into account. Moreover this model
has been well-supported by mathematical calculations presented in [26]. We thus here
assume that Γ is Maxwellian distributed as follows

p(m)
Γ

(x) =


√

2
π

x2

σ3
m

e
−

x2

2σ2
m , x ≥ 0

0 otherwise
(2.45)

where σm =
√
π/8 · E[Γ]. In Fig. 2.14, an example of the PDF is plotted for E[Γ] = 3dB.

Derivations to obtain the outage probability in closed-form is very similar to the two
previous cases. The random variable Γ defined here is positive and so induces positive
values of γ. Therefore, Eq. (2.39) can be used.

Po =

∫
∞

T(R,ρ)
p(m)

Γ
(x)dx. (2.46)

Using the CDF of the Maxwellian distribution, the closed-form expression of the outage
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Figure 2.14: Example of Γ Maxwellian PDF

probability is

Po =


1 if ρ < ρ`

2Q
(T(R,ρ)

σm

)
+

√
2
πσ2

m
T(R, ρ)e

−T(R,ρ)2

2σ2
m if ρ` < ρ < ρu

0 otherwise

(2.47)
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Figure 2.15: Outage probability for model Γ Maxwellian and R = 4bits/s/Hz

In Fig. 2.15, numerical illustrations of the obtained closed-form expression for a given
spectral efficiency and different values of the mean PDL are plotted.

2.3.8 Numerical evaluations

In this section, we evaluate the accuracy of all previously-mentioned statistical models
of PDL through the closed-form expressions of the outage probability with respect to
the (normalized) phenomenological model introduced in Section 2.2.2. Then the most
relevant statistical model (in fact the Maxwellian one) is more deeply analyzed.
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Figure 2.16: Po versus SNR (Eb/N0 in dB) for various PDL models, including simulation of the
phenomenological model with N = 100, mean Γ = 3 dB, and R = 4 bits/s/Hz
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Figure 2.17: Po versus SNR (Eb/N0 in dB) for various PDL models, including simulation of the
phenomenological model with N = 100, mean Γ = 6 dB, and R = 4 bits/s/Hz
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In Figs. 2.16 and 2.17, we plot the numerical evaluations of all the obtained closed-form
expressions of the outage probability as well as the outage probability of the normalized
phenomenological one versus the SNR for a mean Γ equal to 3 dB and 6 dB respectively.
Firstly, we remark that all curves, except the γGaussian and the γ constant models, vanish
when the SNR is higher than the upper-bound ρu defined in Eq. (2.24). Moreover the γ
constant model is quite far away from other models and thus seems clearly inadequate.
Finally, as already asserted in [26] for the distribution, the Γ Maxwellian model is very
close to the phenomenological model for the outage probability. It is also the most relevant
one and will be next analyzed in depth in the rest of this Section.

Before going further, we define the so-called SNR penalty (on the outage probability)
as the ratio between the value of the SNR needed to yield a given outage probability
and the SNR needed for the same outage probability in a PDL-free transmission. In
Figs. 2.18 and 2.19, we plot the SNR penalty for the Γ Maxwellian model for different
outage probability targets and for two values of the spectral efficiency respectively
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Figure 2.18: SNR Penalty (in dB) for Maxwellian model and R = 4 bits/s/Hz

We remark that the SNR penalty is upper-bounded whatever the mean PDL and the
outage probability target. This bound depends only on the spectral efficiency R and has
the following closed-form expression

Penaltymax =
ρu

ρl
=

2R
− 1

2(
√

2R − 1)
. (2.48)

This bound represents the maximal loss due to the PDL assuming only the power mis-
match drawback due to the PDL. For reasonable value of the mean PDL (for instance,
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Figure 2.19: SNR Penalty (in dB) for Maxwellian model and R = 20 bits/s/Hz

3 dB), the maximal penalty is not reached and actually the SNR penalty is roughly between
1 dB and 3 dB.

In order to inspect the global effect of the PDL, we simulate in Fig. 2.20 the SNR
penalty when the phenomenological model is neither normalized nor noise whitening.
We remark that this new phenomenological model provides better SNR penalty at small
mean PDL (this is due to the noise correlation which improves the performance and
strongly worse SNR penalty at medium and high mean PDL (this is due to the SNR
dispersion).

2.4 Performance of simulated systems

We would like now to compare the outage probability (which is a lower-bound of the
BER of any transmission scheme) to the performance of practical systems when disturbing
only by PDL.

Concerning the PDL model, we have hereafter only consider the Maxwellian theo-
retical model as well as the (normalized-white) phenomenological model as described in
Sections 2.2.2 and 2.3.7. Consequently, only the influence of the power mismatch will be
analyzed by our simulations.

This Section is organized as follows: in Section 2.4.1, we introduce in details the
considered practical systems. Then, Section 2.4.3 is devoted to the performance when
QPSK modulation is employed. Finally, in Section 2.4.3, we consider higher spectral
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Figure 2.20: SNR Penalty (in dB) for Maxwellian model, Phenomenological model and Phe-
nomenological model (without normalization and noise whitening) and R = 4 bits/s/Hz

efficient modulation, i.e., 16-QAM.

2.4.1 Practical transmission schemes

As we would like to study only the impact of PDL, we consider that the other linear
impairments (attenuation, CD, PMD) do not occur. Actually, this assumption is not
restrictive at all. Indeed, assuming a OFDM transmission scheme, it is well known that
the CD and the PMD can be fully compensated for since they correspond to unitary
operators.

Therefore, we focus on transmission schemes based on OFDM transceiver. Then each
subcarrier fk of the considered OFDM can be modeled as follows

Y( fk) = HPDLX( fk) + N( fk) (2.49)

where the different terms have been completely described in Section 2.2.2. The number
of spans is fixed to N = 100.

In addition, we assume the channel transfer matrix HPDL is independent of the channel
numbering and has been perfectly estimated at the receiver side.

The practical transmission schemes simulated hereafter are summarized in Fig. 2.21.
Each block in Fig. 2.21 is explained just below.CW: Update

Fig. 2.21’s soft
decoder.

Let us start with the transmitter side: the information bit stream is encoded using a FEC
code. The objective of FEC code is to combat against the bit error generated by the channel
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Figure 2.21: Architecture of the simulated system

by adding redundancy to the transmitted information bits. The most popular codes are
the convolutive codes (used, for instance, in 2G), the Reed-Solomons (RS) codes (used, for
instance, in ADSL), the Turbo codes, the LDPC codes. The most powerful codes are the
Turbo codes and the LDPC codes [37, 38] which means that these codes offer performance
very close to the Shannon capacity in the context of AWGN channel. As our purpose is to
know if we are able to be close to the fundamental limit (given by the outage probability)
or not, we propose to focus on the LDPC code. More details about the design of these
codes are given in Section 2.4.1.1.

The output of the LDPC encoder associated with a packet of information bits following
with its redundancy is called a codeword. The obtained codeword then passes through
an interleaver in order to increase the robustness to burst errors by scrambling the bits
over time and polarization. As the codeword length is huge, we can choose a simple
row-column interleaver [39].

The interleaved codeword is modulated using QPSK or 16-QAM constellation. These
constellations are displayed in Fig. 2.22. We remind that QPSK has a spectral efficiency
of 2 bits/s/Hz and 16-QAM of 4 bits/s/Hz.

The symbols (belonging to either QPSK or 16-QAM) are then precoded thanks to a
PT code. This coding technique, which significantly improves the performance of PDL-
Disturbed systems [33, 40, 30, 41], is described in details in Section 2.4.1.2. Then each PT
symbol is assigned to one OFDM subcarrier randomly. As PDL channel is not frequency-
selective, the performance is independent of the random subcarrier assignment.

Let us move now on the receiver side: after the OFDM demodulation, two decoding
schemes have been implemented:

• A "Hard" decoding approach: a hard Maximum-Likelihood (ML) decoder for the
PT code is implemented, which transmits the detected symbol to the constellation
demodulator. Then the detected bits is passed through the de-interleaver and a
hard LDPC decoder.

• A "Soft" decoding approach: the PT decoder does not make decision on the transmit-
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Figure 2.22: QPSK (left) and 16-QAM (right)

ted bits but calculated the so-called Log-Likelihood Ratio (LLR) defined as follows

LLR(xi) = log
(

Prob
{
xi = 0|y

}
Prob

{
xi = 1|y

}) (2.50)

where yi is the received signal and xi the i-th transmitted bit. A LLR plays the role
of a detected bit and represents not only the bit value (information given by the sign
of the LLR), and also a confidence index on this bit value. This extra information
improves significantly the performance compared to the "Hard" approach. Never-
theless, the decoder is much more complex, which may be a crucial issue for very
high data rate transmission.

Finally, we assume that the PDL remains constant within an entire LDPC codeword.
In the simulations, we have tested the following combinations of PT and LDPC codes

in order to analyze the respective influence of each code and their concatenation.

• No code (neither FEC nor PT),

• PT code only,

• LDPC code only (with either hard or soft decoding),

• PT+LDPC codes with hard decoding,

• PT+LDPC codes with soft decoding.

2.4.1.1 LDPC codes

Introduced in 1962 by [42], the low-density parity-check codes (LDPC) have been forgotten
for a long time, because of their implementation complexity. They have been rediscovered
in 1992 by [37] and thus are well-renowned for their capacity-achieving behavior.
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The LDPC codes belong to the family of linear block codes [38]. They are characterized
by a sparse parity-check matrix which means that this matrix contains very few 1. The rate
of the code, denoted by rLDPC, is defined as the ratio between the number of information
bits in a codeword and the codeword length.

In the simulations, we have chosen an LDPC code based on the quasi-cyclic progres-
sive edge growth algorithm (QC-PEG) [36]. This kind of code is particularly well adapted
to the coherent optical communications as mentioned in [36]. As the code performance
depends on its length [38], we choose a long enough code by considering a codeword
length of 4320 and a coding rate rLDPC = 3/4. This rate is quite low for optical transmis-
sion systems (compared to that used currently) but enables us to improve significantly
the performance.

For the "Soft" approach, the decoder is based on the Sum-Product Algorithm [38]. For
the "Hard" approach, the used decoder is that proposed in [42].

2.4.1.2 PT codes

Polarization-Time (PT) codes are the adaptation to the optical channel of the space-time
coding techniques used in wireless communications. This coding techniques have been
developed in order to take benefit of all degrees of freedom of MIMO systems. The main
principle is to combine several symbols; let’s say s1, s2, · · · , sns , in an hyper symbol, called
PT symbol, for spreading information over time and space. Thus a PT code may modify
the global data rate according to this rate

rPT =
ns

T
(2.51)

where ns is the number of symbols in the PT symbol and where T is the number of channel
use (symbol time) needed to transmit a PT symbol.

As in optical transmission systems, the MIMO channel is 2 by 2 (due to both polariza-
tions), it is usual to spread the PT symbol over two symbol periods. In such a case, the
PT code will be called full rate if its rate is rPT = 2, in other words, 1 symbol / polarization
/ channel use. So the PT code could not add redundancy.

In wireless MIMO channel, some code design criteria [43, 31] exist in order to find
the best coding scheme. In addition, many space-time codes have been proposed for
this channel, such as, the Alamouti code [44], the Golden code [45] or the Silver code
[46]. The Golden code is optimal according to the criterion developed in [31]. Notice
that equivalent criterion does not exist in optical transmissions yet. Therefore we have
to re-use codes initially developed for wireless communications. In the simulations, we
consider the Golden code and the Silver code which are both full rate.

Golden Code: An hyper symbol XG associated with the Golden code has the following
shape

XG =
1
√

5

 α (s1 + θs2) α (s3 + θs4)
iα

(
s3 + θs4

)
α
(
s1 + θs2

)  (2.52)
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where θ = 1+
√

5
2 , θ = 1−

√
5

2 , α = 1 + i − iθ, α = 1 + i − iθ and s1, s2, s3, s4 are four symbols.
The rows of the matrix represent the polarizations and the columns the channel use.

Silver Code: this code has slightly smaller performance than the Golden code in the
context of wireless MIMO channel. An hyper symbol XS associated with the Silver code
has the following shape

XS =

 s1 −s∗2
s2 s∗1

 +

 1 0
0 −1

  z1 −z∗2
z2 z∗1

 (2.53)

where z1 and z2 are obtained by: z1

z2

 =
1
√

7

 1 + i −1 + 2i
1 + 2i 1 − i

  s3

s4

 (2.54)

and s1, s2, s3, s4 are four modulated symbols. As previously, the rows of the matrix
represent the polarizations and the columns the channel use.

The main advantage of the Silver code compared to the Golden code is its decoding
complexity. More surprisingly, as shown in [33, 40, 30, 41], performance of the Silver code
in the context of optical transmission systems is slightly better than those of the Golden
code.

2.4.2 Performance using QPSK

First of all, let us check that QPSK enables us to reach the standard target data rate
for next generation optical communications systems based on coherent detection. This
target data rate is 100 Gbit/s over a standard 50 GHz ITU channel. Because of filtering,
the effective bandwidth reduces to 40 GHz. Combining QPSK and PDM leads i) to i)
a spectral efficiency R = 4 bits/s/Hz and so a useful data rate of 160 Gbit/s in FEC-free
case (with or without PT code), and ii) to a spectral efficiency R = 3 bits/s/Hz and so
a useful data rate of 120 Gbit/s in FEC case (since the considered LDPC code has a rate
rLDPC = 3/4.

2.4.2.1 BER performance

In Fig. 2.23, outage probabilities (for the two spectral efficiency R = 3 and 4) and BER
for the above-mentioned coding schemes have been plotted versus SNR in the context
of Maxwellian model. In Fig. 2.24, same curves are considered but in the context of the
phenomenological model. For both figures, we choose a mean PDL equal to 3 dB.

First of all, we notice that the concatenation of PT code and LDPC code is quite close
to the fundamental limit, namely, around 1.5 dB. Consequently, even though optimizing
PT codes and LDPC codes for PDL mitigation could be of some interest, the existing
ones already yield remarkable performance. We also observe that performance of the
"Soft" approach significantly improves the performance compared to the "Hard" one. So
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Figure 2.23: Outage probability and BER for Maxwellian model (E[Γ] = 3 dB)
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Figure 2.24: Outage probability and BER for phenomenological model (E[Γ] = 3 dB)
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the implementation of the "Soft" approach will be a important milestone for the PDL
mitigation.

In addition we remark that, unlike the wireless MIMO channel, improvements offered
by the PT code and the LDPC code are cumulative. Thus FEC coding and PT coding
techniques are complementary in optical systems for combating the PDL efficiently.

Finally, as in [33, 40, 30, 41], we observe that the Silver code is slightly better than the
Golden code.

2.4.2.2 SNR gap

In order to better understand the loss in performance between the fundamental limit and
the practical schemes, we introduce the SNR gap which is defined as ratio between the
SNR needed for a given scheme to yield a given BER and the SNR needed to ensure
the outage probability equal to this given BER. Moreover, unlike Section 2.4.2.1, we
would like to analyze also the influence of the mean PDL value. Therefore, in Figs. 2.25
and 2.26, we plot the SNR gap versus the mean PDL for the Maxwellian model and the
phenomenological model respectively. According to Section 2.4.2.1, the "Hard" approach
is definitively too far away from the fundamental limit and this is omitted here.

0 2 4 6 8 10 12 14 15
0

5

10

15

20

25

30

35

Mean Γ (dB)

S
N

R
 G

ap
 (

d
B

)

 

 

LDPC + Silver
LDPC + Golden
LDPC
Silver
Golden
No code

Figure 2.25: SNR gap for Maxwellian model. (Po = 10−7 and BER = 10−7)

We remark that, for low mean PDL values, the LDPC alone succeeds to combat the
PDL (actually the polarization power mismatch) efficiently. However, for high mean PDL
values, its performance is poor. In contrast, the gain due to the PT codes is quasi-null for
low mean PDL (≤ 2 dB) but is significant for high mean PDL. Moreover the best way to
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Figure 2.26: SNR gap for the phenomenological model. (Po = 10−7 and BER = 10−7)

combat PDL is to concatenate these two coding techniques since the SNR gap (only due
to the polarization power mismatch, since the other effects have not been considered)
remains quite stable whatever the mean PDL value. Indeed, the gains provided by both
coding techniques are cumulative.

2.4.2.3 SNR penalty

The SNR penalty is the metric used for comparing a system with PDL with the PDL-free
case. So the SNR penalty provides insights different from those given by the SNR gap.
For practical schemes, the SNR penalty is the ratio between the SNR needed to achieve
a given BER and the SNR needed to achieve the same BER in a PDL-free transmission.
For the fundamental limit, the SNR penalty is defined in Section 2.3.8. In Figs. 2.27 and
2.28, we plot the SNR penalty versus the mean PDL for the Maxwellian model and the
phenomenological one respectively.

For a standard mean PDL of 3 dB, the SNR penalty is around a few dB if the PT codes
are used. Moreover, we notice that the SNR penalty for practical transmission schemes
based on the PT codes is quite the same as that for the outage probability. In contrast, the
schemes only using the LDPC codes offer a SNR penalty increasing rapidly with respect to
the mean PDL. Therefore, we show again that the PT codes are a crucial tool for the PDL
mitigation. Once again, the concatenation of the PT codes with the LDPC ones provide a
very low SNR penalty, especially for standard values of the mean PDL.
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Figure 2.27: SNR penalty for Maxwellian model. (Po = 10−7 and BER = 10−7)
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2.4.3 Performance using 16-QAM

In this Section, we plot figures equivalent to Figs. 2.23, 2.24, 2.25, 2.26, 2.27, and 2.28
but when 16-QAM is used. Then, using PDM, the spectral efficiency is R = 8 bits/s/Hz
without FEC and R = 6 bits/s/Hz with FEC. Thus, the data rate are 320 Gbit/s without FEC
and 240 Gbit/s with FEC over the standard 50 GHz ITU channel (we remind that 10 GHz
are used for the guard interval). As the "Hard" approach offers too poor performance, it
is omitted in next figures.

The remarks are almost the same as for QPSK. One can just see that the gains are
less cumulative than for QPSK. The LDPC codes for usual mean PDL valued, offers very
good performance. The improvement given by the PT codes really occurs at high mean
PDL value. In addition, the SNR gap and the SNR penalty is slightly worse. This is not a
surprise since it is much harder to counter-act the channel impairment when constellation
with high spectral efficiency is employed.

2.5 Conclusion

We have studied the fundamental performance limit for coherent optical communications
in the presence of PDL, which is one of the major impairments in such systems. This limit,
represented by the outage probability, was derived in closed-form expressions for some
PDL models; we then used BER simulations to evaluate how far from said limit simulated
systems could be.

Comparing the outage probability expressions under the usual PDL models with
the numerical evaluation of that associated with a phenomenological model, we have
observed that the Maxwellian model fits quite well with the phenomenological one in this
respect. Notice that our models only take into account the polarization power mismatch.
In this section, we have shown why the other source of performance degradation due to
the PDL can be omitted.

The outage probability has also been compared numerically to the BER offered by
simulated systems using several coding schemes: LDPC and/or PT Codes, or no coding.
These simulations have shown that PT codes are essential to PDL mitigation, and that the
concatenation of a PT code with an LDPC is even better (especially the QPSK is used).
Indeed, we have found that for a mean PDL of 3 dB, a simulated system based on PT
and LDPC codes (with soft decoding) performs with an SNR gap of only 1.5 dB to the
fundamental limit with QPSK and only 2 dB to the fundamental limit with 16-QAM.

While more powerful coding schemes could undoubtedly become closer to the limit,
the modest 1.5 dB gain that can be hoped for must be balanced against the computational
complexity, which is already the major drawback of LDPC soft decoding, especially at
the very high bit rates of modern optical communication systems.

Thus, a more interesting way for further study would be whether improved PT codes
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Figure 2.29: Outage probability and BER for Maxwellian model (top) and phenomenological
model (bottom) (16-QAM, E[Γ] = 3 dB)
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Figure 2.31: SNR penalty for Maxwellian model (top) and phenomenological model (bottom)
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might alleviate the need for powerful LDPC codes, allowing near-limit performance with
less-expensive codes.



72 2. Outage Probability in presence of Polarization-Dependent Loss



73

Chapter 3

Buffer-Assisted Optical Switching

3.1 Introduction

Historically, the optical transmission systems were deployed as transport solutions be-
tween network nodes. Indeed, first systems were installed to replace copper-based solu-
tions which seemed to reach their limits. Then, the WDM systems have enabled a better
use of the bandwidth of fibers by sharing it between independent traffics. Nowadays,
optics is the preferred solution for virtually all non-wireless data links above a few meters’
distance at bit rates from 1 to 100 Gbit/s per wavelength. In the most recent standard [47]
about the 100 Gbits/s Ethernet, copper-based solutions are only proposed for the back-
plane interconnections or for the very short links (less than 7 m).However, the current
optical transmission systems are almost only deployed as point-to-point links between
nodes; the optical network thus can be seen as a quasi-static circuit switching.

In contrast, the packet-switched Internet Protocol (IP) traffic is the main user of optical
transport networks today. Since its volume still increases, and the one from the legacy
traffic gradually decreases, it will eventually become the only user of optical transport net-
works. Yet, all the switching and routing required by IP packets are nowadays performed
electronically, requiring opto-electronic conversions of all the traffic carried optically, re-
peated all over the network. This separation between the optical transport and the IP
switching leads to the unsustainable growth of the size and the power consumption of
optical systems and electronic routers [48].

A cross-layer or hybrid equipment, in other words, an equipment which mixes the
transport function of the optical layer with the switching function of the IP layer, may offer
significant energy savings [49]. It may also decrease the buying cost and the maintenance
cost.

Sadly all-optical routing techniques have a major loss issue; under practical load
conditions, an optical packet switch has a high loss rate [50]. Indeed, several packets can
go through the switch to the same destination at the same time, and thus are competitors
for the output. In the electronic field, this problem has long been solved by the use of
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Figure 3.1: General architecture of carrier networks

buffers. Optical buffers exist [51], but have three main issues: a stored-burst can not be
randomly accessed which can be a problem for the re-emitting; the memory lifetime is
limited by the signal degradation over time; and they are very cumbersome, because they
require amplifiers and recirculating loops of fiber [52]. Furthermore, slow-light solutions
exist but are much less mature [53], especially, because of their fixed bandwidth-delay
product issue which dramatically limits their interest for high data-rates.

Therefore we propose here a hybrid switch architecture. It is defined as a rout-
ing/switching equipment where packets are optically routed as long as possible, but
where an electronic buffer exists in order to collect overflowed packets. We study in this
chapter the gain in term of loss probability of such an equipment, and we also focus on
the gauging and the impact of the electronic overflow system.

This chapter is organized as follows: Section 3.2 is dedicated to a brief overview of
optical transport networks. Then, in Section 3.3, we analyze the performance of the cross-
layer switch, as well as the performance of the overflow system itself. Section 3.4 deals
with analytic models of the loss probability of such an equipment. Concluding remarks
are given in Section 3.5.

3.2 Overview of optical transport network

3.2.1 A brief history

As illustrated in Fig. 3.1, the standard architecture of carrier’s optical transport networks
is divided in three areas. These different areas correspond to different aggregation levels
for the network layer and to different transmission distances for the transport layer:

• The Access Network:
These primary aggregation networks gather traffic from final network equipments
such as legacy phone nodes, radio equipments, FTTH cabinets, Digital Subscriber
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Line (DSL) nodes... They can also be the network inside a data-center. They
are connected to the metropolitan network and implements optical transmission
systems which cover distances between 0 and 100 km.

• The Metropolitan Network:
This network gathers traffics from several access networks. It allows them to ex-
change data and connects them to the core network. It also permits delivery of the
local traffic such as TV, or cached data. Its standard distance range is about few
hundreds of kilometers.

• The Core Network:
Also called backbone network, this network is the wide interconnection between
several metropolitan networks and/or core networks. The aggregation at the net-
work layer is as high as possible and the distance range for the optical transport
network is over 500 km and often exceeds 1000 km.

Optical transmission systems were firstly installed in the core network, before being
gradually deployed in the metropolitan network, then in the access network. As the
distance ranges are very specific to a network area, suppliers often propose distinct
solutions, which forces opto-electronic conversions at the border.

Since several kinds of traffic coexist in the network, choice were made to clearly sepa-
rate the transport layer from the network layer, as shown in Fig. 3.2. Optical transmission
systems thus are the universal transport network between nodes. The optical paths are
fixed, and the smarter functions such as dynamic routing or failure recovery are made
by the network layer. It leads to the deployment of more optical transponders than
necessary in order to be able to re-route traffic in case of failure. In this context, fixed
OADM were deployed, and physical interventions are required each time a change is
needed in the optical routing plane. This method was efficient for the legacy traffic such
as Sonet/Synchronous Data Hierarchy (SDH), since the changes in the optical routing
plane were rare, and thus well scheduled.

From the optical transport network point-of-view, this circuit-switching technique is
called Optical Wavelength Switching (OWS) [54]: A WDM channel from an ingress fiber
is sent to a pre-defined egress fiber. Its wavelength may be changed thanks to wavelength
converter.

Nowadays, the main part of the carried traffic comes from the IP network, and the
constant growth of its bandwidth needs forces the optical transport networks to become
more flexible. A first hurdle is past with the introduction of Reconfigurable Optical
Add/Drop Multiplexer (ROADM) [55]. This technique enables a dynamic reconfiguration
of optical paths, and may directly enable failure recoveries on the optical layer. An
extension of this technique has been proposed in [56], where the granularity is the OFDM
sub-band.
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Figure 3.2: Layers separation in optical transport network

This dynamic resource allocation is only useful if the control planes of the two layers
interact and collaborate. Most of time, the network layer is now based on MPLS [57].
This protocol allow a better use of the bandwidth than the IP protocol: it can transport IP
packets, as well as frames from other protocols, having a strong respect to the QoS and
the latency. Its control plane is decentralized, in other words, each node builds its own
routing table based on its network knowledge and predefined rules. The main strength
of MPLS is that it is widely used by all suppliers, and so it simplifies interconnections
between the equipments.

In contrast, the optical transport network suppliers often propose closed and central-
ized control planes. The Generalised MPLS (GMPLS) is a first attempt to offer a standard
communication framework between control planes [57]. From the optical transport net-
work point-of-view, it permits the reservation and the release of a complete optical path,
but also to find a cooperative solution between the layers and/or the equipments in case
of failures. In the future, this control plane will be replaced by the implementation of
the OpenFlow protocol [58]. Indeed, this protocol enables a better optimization of the
forwarding plane in the network and transport layers.

3.2.2 Cross-layer techniques

Although several control planes enable a better collaboration between layers, especially
for the failure recovery or the resources allocation, the bandwidth optimization is limited
and the energy saving too. In fact, transponders are deployed for the prevention and/or
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the further needs, and so are switched on although they transmit nothing. In this context,
it becomes very attractive to mix not only the two control planes but also the two layers.
This kind of equipment is called cross-layer or hybrid because the packets are as long as
possible optically routed.

On the contrary of the OWS, the switching fabric may be reconfigured between each
packet/burst. The working is very similar to this from an electronic switch. It allows a
better use of the total bandwidth per fiber. These techniques can be classified depending
on the aggregation level of data and how the destination is identified:

• Optical Packet Switching (OPS) [59]:
This is the direct transposition of the electronic implementation of packet switching.
Each time a packet arrives at a ingress node, a header is added to the packet, then
it is sent to the next node. At each node, the header is read, and the packet is
routed until its egress node. Because of the number of packets which transit on the
network, this technique has a big congestion/loss issue.

• Optical Burst Switching (OBS) [50]:
This technique is similar to the previous one, except that the ingress node aggregates
as much as possible the ingress packets depending on their destination in order to
construct bursts. Moreover, the control data are separately sent on a dedicated con-
trol channel. By reducing the load per node, this technique improves performance
compared to the previous one, but it remains unusable out of the laboratory.

Even though these switching techniques are different, their nodes have the same func-
tional architecture: a switching fabric with a control module in charge of its reconfigura-
tion depending on the destination of ingress data. This architecture can be implemented
in practice using e.g. semiconductor optical amplifier (SOA) gate matrices [60, 61], or fast
tunable wavelength converters and wavelength switches [62, 63]. Therefore it is possible
to build a global model for the switch. The different techniques are obtained by changing
parameters such as the packet/burst length, the delay due to switching fabric reconfigura-
tion, the delay at the entrance of the switch, the number of destinations and/or channels.
Since the general architecture of the different techniques is similar, we only consider here
an optical burst switch.

3.3 Optical Burst Switch with overflow system

As explained in [50], the OBS has a major loss issue. The simplest solution is to increase
the number of channels per destination. In this way, the probability that an ingress burst
find an egress channel increases. These extra-channels may be WDM channels with the
sufficient number of wavelength converters, or fiber cores from multi-core fibers, or even
parallel fibers [64]. The first solution is the most accurate one for current networks.
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Figure 3.3: General architecture of the considered optical burst switch

However, since wavelength converters usually are electronic systems, or even back-to-
back transponders, they do not enable significant energy savings or cost savings compare
to standard architecture. The other ones may enable substantial power savings, but the
number of extra-channels then is more limited.

Another way to improve the performance, is the use of buffers, just as in the electronic
switches. In practice, a buffer can be directly implemented in the optical field [51] or using
electronic systems. As explained in the introduction, an optical buffer is constructed using
recirculating-loop and fiber-delay-line [52]. This solution has a memory lifetime issue,
and is very cumbersome.

We choose here to consider electronic overflow systems. Although these buffers
consume more energy, they have a lot of advantages: they permit a random-access to
stored bursts, they avoid the life-time issue, and they occupy less space. This buffering
technique has been presented in [59] and implemented in [63, 65], but performance of
the architecture was not studied. We propose here to study that, using metrics and tools
from queuing theory. The overall performance is evaluated using the loss probability, and
we also evaluate the gain offered by this architecture compared to all-optical solutions.
Moreover, we study the gauging of the overflow system (required amount of Random
Access Memory (RAM)), and its influence on the performance (latency, collisions caused
by re-emitting).

3.3.1 System model

Let us consider an optical burst switch, working in asynchronous mode: bursts can arrive
at any instant. Its functional architecture is described in Fig. 3.3: the switch has na links
to remote switches, called azimuths; each azimuth is supposed to be bidirectional and
support nc independent channels in each direction. Furthermore, we assume that an
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egress burst can indifferently use any channel of an azimuth; although this assumption
is straightforward for multiple fibers or fiber cores per azimuth, it implies a sufficient
number of wavelength converters in the case of WDM channels.

In addition, our switch has a shared electronic buffer as overflow system. Thus, bursts
may be stored, if no channel is available on their egress azimuth. It is accessed through
ne input ports, ne output ports, and has an unlimited amount of RAM.

The switch operates in the following way. When a burst arrives, its egress azimuth
is read from e.g. its header, or its control channel. If a channel is available on the egress
azimuth, the burst is directly sent on its way over it. Otherwise, if an input port is
available on the overflow system, the burst is sent there. Otherwise, the burst is dropped.

We also set the following two rules: first, a burst cannot get back to its incoming
azimuth. Second, bursts which are stored in the electronic buffer, have priority when a
channel for their destination is released.

The traffic of each ingress channel is model as an on-off process, the “on” periods
corresponding to burst transmissions and the “off” periods to idle times between bursts.
The idle times are assumed to have independent, exponentially distributed durations.
But we consider two cases for the burst duration:

• Pure Chance Traffic where the burst durations are independent, exponentially dis-
tributed process. The mean burst duration is denoted tµ. This model is considered as
the worst-case scenario [66] but allows tractable derivations for the loss probability.

• Traffic Shaping where the burst duration is fixed to tµ. This technique really is
the burst switching. Indeed, it consists in delaying and grouping packets/bursts in
order to build bursts which have almost always the same size. It permits to reduce
the random aspect of the traffic (only the idle time remains random). This regulated
traffic improves performance of the system and is extensively used in practice.

During the simulations, the destinations of each ingress bursts is uniformly chosen
between all other azimuths than the ingress one. Furthermore, we set tµ = 10 µs. We
choose this value because it represents about 100 kbit for standard 10 Gbit/s systems, and
may correspond in a jumbo Ethernet frame or an aggregation of several standard Ethernet
packets (12.3 kbit). The relationship between the overall system load ρ, the mean burst
duration tµ, and the mean idle time tν, is given by:

ρ =
tµ

tµ + tν
(3.1)

3.3.2 Loss probability

In order to evaluate the influence of the overflow system on the performance, we fully
simulate the chosen architecture. Simulations were made under the two traffic assump-
tions: pure chance traffic and traffic shaping. Moreover, we have considered two broad
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cases, which seems to us as representative as possible of future optical transport network:
na = 10 azimuths and na = 5 azimuths.

3.3.2.1 Performance under the Pure Chance Traffic assumption

We present in this Section, results obtained under the pure chance traffic assumption. In
Fig. 3.4, we plot the burst loss probability versus the switch load for the two broad cases:
na = 10 azimuths, on the top, na = 5 azimuths on the bottom. In each case, we consider
nc = 10 channels per azimuth and different number of overflow ports: all-optical burst
switch (ne = 0) and ne = 5, 10, 15, 20.
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Figure 3.4: Loss probability vs system load in two cases: na = 10, nc = 10 (top) and na = 5,
nc = 10 (down)

Simulation results confirm that the burst loss is really significant at low load for the
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all-optical case: the sustainable load for a burst loss probability of 10−7 is around 0.1 for
the two broad cases. In contrast, they show that the electronic buffer brings a significant
gain, even for relatively small number of electronic ports: the sustainable load reaches
0.3 for the two broad cases with ne = 5 overflow ports. The sustainable load even exceeds
0.6 for ne = 20 ports for the first broad case and ne = 15 for the second one. As expected,
the higher the number of port on the overflow system is, the higher is this gain.

In Fig. 3.5, we display the maximum achievable system load with a loss probability
of 10−7, versus the number of electronic ports of the overflow system. We consider again
the two broad cases: na = 10 azimuths on the top, na = 5 azimuths on the bottom; and
different number of channels per azimuth in each broad case: nc = 1, 5, 10, 20, 50, 100.
The target loss probability of 10−7 corresponds to a threshold above which any switching
technology would be disregarded as an industrial solution.

First of all, the results confirm that the increase of the number of channels per azimuth
is another way to solve the congestion issue [64]: It is obvious when ne = 0. In addition,
we notice that, at low values of ne, the sustainable load curves for na = 5 and na = 10
are rather similar; then, the sustainable load increases with ne, as expected, and reaches 1
for ne = na × nc, since having as many electronic ports as ingress channels means that all
incoming bursts can always be collected. We also remark that, beyond a certain number
of overflow ports, curves are close, and an equilibrium thus exists between the number
of channels per azimuth and the number of electronic ports. Choosing, as a minimum
acceptable operating point, a target load of 0.6, we observe that ne = 20 overflow ports
are sufficient in the case na = 10 azimuths and ne = 15 overflow ports are sufficient in
the case na = 5. These values of ne will then be used for the performance analysis of the
overflow system.

In order to evaluate the gain offered by the overflow system, we plot in Fig. 3.6
the load gain versus the number of electronic ports. The load gain is defined as the
increase percentage of the sustainable load compared to the buffer-less case. This gain
has been plotted for nc = 1, 5, 10, 20, 50, 100 channels per azimuth, in the two broad cases
na = 10 azimuths on the top, and na = 5 azimuths on the bottom.

The gain is very high, especially for a small number of channels per azimuth: over
4000% for 15 overflow ports with nc = 5 and both broad cases. It is even more significant
when nc = 1. In contrast, although this gain grows with the number of overflow ports,
it is much more limited at high numbers of channels per azimuth, where the burst loss
issue is less severe. Therefore, this switch architecture is especially interesting when extra
channels are expensive.

3.3.2.2 Performance under the Traffic Shaping assumption

We performed simulations under the traffic shaping assumption, in order to evaluate its
discrepancy in term of performance with the pure chance traffic model.
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Figure 3.5: Sustainable system load vs number of electronic ports for two number of azimuths
na = 10 (top) and na = 5 (down), and for different number of channels nc = 1, 5, 10, 20, 50, 100

Fig. 3.7 shows the burst loss probability versus the system load for the two broad
cases: na = 10 azimuths on the top, and na = 5 azimuths on the bottom. We plot, on
the same figure, the simulation results under the traffic shaping assumption and under
the pure chance traffic assumption, for nc = 10 channels per azimuth and ne = 0, 5, 10, 20
overflow ports.

We notice that our hybrid switch has the same behavior whatever the traffic model.
Although we remark that for very high values of the load, the curves for traffic shaping
case are slightly better, pure chance traffic can be considered as a good hypothesis for the
performance evaluation.

Fig. 3.8 and Fig. 3.9 respectively are the same as Fig. 3.5 and Fig. 3.6, but under the
traffic shaping assumption. The first one plots the sustainable system load for a loss
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Figure 3.6: Gain in system load vs number of electronic ports for two number of azimuths na = 10
(top) and na = 5 (down), and for different number of channels nc = 1, 5, 10, 20, 50, 100

probability of 10−7, versus the number of electronic ports. The evaluation is done in
the two broad cases na = 10 azimuths on left, and na = 5 azimuths on right; and for
nc = 1, 5, 10, 20, 50, 100 channels per azimuth. The second one presents the load gain, as
previously defined, in the same context than the first curve.

Simulation results obtained with the traffic shaping model, are very similar to the
results obtained under the pure chance traffic assumption. The electronic buffer still offers
a significant gain in term of loss probability, especially when the number of channels per
azimuth is low. These similarities are interesting because, as explained in the system
model, frameworks exist for the derivations of the loss probability under the pure chance
traffic assumption.

Since the traffic model seems to have a slight influence on the system performance,
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Figure 3.7: Loss probability vs system load in two cases: na = 10, nc = 10 (Top) and na = 5,
nc = 10 (Bottom); and for two models of traffic



3.3. Optical Burst Switch with overflow system 85

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of electronic ports

Su
st

ai
na

bl
e 

sy
st

em
 lo

ad

 

 

1 channel
5 channels
10 channels
20 channels
50 channels
100 channels

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of electronic ports

Su
st

ai
na

bl
e 

sy
st

em
 lo

ad

 

 

1 channel
5 channels
10 channels
20 channels
50 channels
100 channels

Figure 3.8: Sustainable system load vs number of electronic ports for two number of azimuths
na = 10 (Left) and na = 5 (Right), and for different number of channels nc = 1, 5, 10, 20, 50, 100
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Figure 3.9: Gain in system load vs number of electronic ports for two number of azimuths na = 10
(Left) and na = 5 (Right), and for different number of channels nc = 1, 5, 10, 20, 50, 100
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we can draw a quick summary on energy savings of such a hybrid equipment. We can
compare the number of input/output electronic ports required by the overflow system (ne)
to that of a full-up electronic IP router (na × nc). Assuming a node with 10 azimuths with
10 channels each, a hybrid optical switch with ne = 20 overflow ports satisfies our target
load and loss probability values (a sustainable load of at least 0.6 for a loss probability of
10−7). And it may lead to a five-fold reduction of the energy consumption compared to
the 100 ports of an all-electronic switch. The energy savings are less clear in the case of
WDM channels, where the energetic cost of wavelength converters must be factored in.
There may be an optimum number of wavelength converters and overflow ports to be
found.

3.3.3 Performance of the overflow system

We interest now in gauging of the electronic buffer and in evaluating its influence on the
overall performance. As explained before, we consider that a loss probability of 10−7 for a
sustainable system load of 0.6 is acceptable. Therefore, we choose these two cases in next
simulations: na = 10 azimuths with nc = 10 channels per azimuth and ne = 20 ports on the
overflow system, and na = 5 azimuths with each nc = 10 channels and ne = 15 ports on
the overflow system. The measurements are made when the system is stationary—that
is, we consider that the transitory regime ends after the first burst loss occurs.

3.3.3.1 Memory consumption

In Fig. 3.10, we plot the mean and the maximum number of bursts stored in the buffer
versus the system load for the two cases: na = 10 azimuths on the left, and na = 5 azimuths
on the right. Since we want to evaluate the amount of memory needed by the switch,
we only take into account the bursts which are waiting to be re-emitted. Notice that
the results obtained for the maximum are preliminary, because they may depend on the
simulation duration. It would be more significant to evaluate the probability distribution
of the number of stored bursts using the percentile for a certain time; further simulations
will be performed to this end. Nevertheless, we believe that this preliminary results are
accurate, as the values do not vary much between different simulation durations.

Simulation results show that the mean number of stored bursts is low, even for high
values of the load. For instance, in the two configurations, for a load of 0.6, there is less
than one burst in memory on average. And the maximum is about tens bursts. When
the system load grows, the mean is about ten bursts in the two configurations, and the
maximum tends toward 50 bursts in the first case and 40 bursts in the second one. The
amount of memory required is also reasonable compare to the number of bursts which
can be simultaneously treated by the switch (na×nc). Considering a system with channels
at 10Gbit/s and where the mean burst duration is 10 µs, the required quantity of RAM is
about few megabytes for the two configurations.
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Figure 3.10: Memory consumption vs system load in two cases: na = 10, nc = 10, ne = 20 (Left)
and na = 5, nc = 10, ne = 15 (Right)

3.3.3.2 Latency

Fig.3.11 proposes the mean and the maximum latency experienced by the stored bursts
versus the system load, for the two study cases: na = 10 azimuths on the left, and na = 5
azimuths on the right. The latency experienced by a stored burst is defined as the time
that the burst is waiting before being re-emitted.
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Figure 3.11: Latency vs system load in two cases: na = 10, nc = 10, ne = 20 (Left) and na = 5,
nc = 10, ne = 15 (Right)

Simulation results show that even for high system loads, the mean latency is under the
mean burst duration. As in the previous Section, the curves for the maximum presented
here are just preliminary. However, as the values do not vary much between different
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simulation durations, we believe that these results are enough accurate. Therefore, we
can notice that the maximum latency is not so serious, up to 4 or 5 times the mean burst
duration, in the two configurations. The latency will also not have a great influence on
the global system performance.

3.3.3.3 Second order collision

On the contrary of first order collisions which occur when an incoming burst cannot be
directly routed whatever the reason, a second order collision is defined as a collision
between an incoming bursts and a re-emitted burst. It occurs when an incoming burst
cannot be directly routed because the egress azimuth is full, and at least a stored bursts
is being re-emitted over this azimuth. There are two kinds of second order collisions:
second order collisions which pass through the buffer; and second order collisions which
lead to burst losses.

Such phenomena could be avoided by refraining from re-emitting a stored burst, if
other bursts with the same destination are incoming, and would thus cause a second-
order collision. Detecting incoming bursts in advance would require an “observation
window”: a delay between, on the one hand, burst detection and destination processing;
and, on the other hand, the bursts being actually sent into the switching matrix. Practical
switches need this delay anyway, in order to give time to header-processing electronics
to reconfigure the switching matrix; typically, Fiber Delay Line (FDL) are inserted on the
ingress channel in order to delay bursts.

In the next simulations, we consider all the second-order collisions, and the ones
which could be avoided by two observation durations: 250 ns and 500 ns which corre-
spond respectively to 50 m and 100 m of standard SMF fiber [65]. Fig. 3.12 shows the
three probabilities described above as well as the overall burst loss probability obtained
previously versus the system load for the two study cases : na = 10 azimuth on the top
and na = 5 azimuth on bottom.

First, simulation results show that phenomenon is non-negligible. Second order
collisions exist even for relatively low values of the load (around 0.2). Most of time it
leads to a useless passing through the overflow system. In addition, the second order
collisions are the main issue of the overall system performance: in the two cases, the
overall burst loss probability and the blocked bursts probability due to second order
collisions are very close.

However, the curves obtained taking an “observation window” into account, show
that an “observation window”, before re-emitting stored bursts, will not only improve the
system performance by reducing the burst losses, but also reduce energy consumption of
the overall system by reducing the number of opto-electronic conversions. The gain in
terms of performance is noticeable, even for a relatively small observation duration: about
1/10 of the burst losses can be avoided in the 250 ns case. We also notice that the longer
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Figure 3.12: Second order collisions vs system load in two cases: na = 10, nc = 10, ne = 20 (Top)
and na = 5, nc = 10, ne = 15 (Down)
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the “observation window”, the bigger the performance improvements, as expected. Just
as the number of channels per azimuth, and the number of overflow ports, the duration
of the observation window plays an important role in the hybrid switch’s performance.

3.4 Analytical model for the loss probability

In the previous Section, we analyze by simulation the performance of an optical burst
switch with electronic buffer. However, an analytical model allows us to better under-
stand the overall problem, and the influence of each parameters. Moreover, it gives also
predictions faster than simulations, and then enables a faster gauging of practical systems.
Therefore, we propose here some closed-form expressions for the burst loss probability
of such an equipment: a very tight one for the all-optical OBS System case (ne = 0), and a
very loose upper-bound for the complete system.

3.4.1 All-optical burst switch

3.4.1.1 Model

From a queuing theoretical point-of-view, considering pure chance traffic, two main
frameworks exist for the loss probability: the Erlang one and the Engset one [66]. The
main difference between them comes from how the traffic sources are taken into account.
The Erlang framework is the most used, because it corresponds to a worst case in terms
of traffic intensity. Indeed, the traffic is modeled by a single Poisson process, which
corresponds to an infinite number of traffic sources. The Engset framework is equivalent
to the Erlang one, except that the traffic is offered by a limited number of sources. When
the number of sources is high, the two frameworks give similar results [66]. However, for
a relatively low number of sources, the Erlang framework induces an under-evaluation
of the performance; and some of the cases we simulated, e.g. na = 5 azimuths and
nc = 1 channels per azimuth, are few-source situations. Therefore, we choose the Engset
framework to build our analytical model. Notice that this framework was also used
in [67, 64] for a similar problematic.

In order to use the Engset formula we have to transpose our architecture in the frame-
work. The all-optical burst switch, as shown in Fig. 3.3, is equivalent to the architecture
proposed in Fig. 3.13. Indeed, each egress azimuth can be considered as an independent
system which receives bursts from (na − 1)nc sources (because of the non-return rule).
As the burst repartition between the egress azimuths is uniform, all these systems are
equivalent. And the global loss probability is equal to the loss probability of one of them.

An Engset system is defined by three parameters: its number of service channels, its
number of sources, and its calling rate (or traffic intensity) per source. Since we already
have the number of service channels and the number of sources of the equivalent system,
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Figure 3.13: Equivalent architecture of the all-optical burst switch

we need the calling rate per source in order to obtain the loss probability. It can be easily
deduced from the overall system load ρ defined in Eq. (3.1). We can reason on the offered
load A (total amount of traffic), equal to the product of the number of sources for the
overall switch and the calling rate per source (equal to the load in our case), of the overall
system:

A = ρ · nanc (3.2)

This offered load must also be equal to that in the equivalent architecture, that is, the
calling rate per source a′ multiplied by the number of sources per system, multiplied by
the number of systems:

A = a′ · (na − 1)nc · na (3.3)

Therefore:

a′ =
ρ

na − 1
. (3.4)

This expression is given as a function of the overall system load.

Thus, a closed form expression for the loss probability of an all-optical burst switch is
obtained. The Engset Formula [66] can be written taking system parameters into account:

Ploss(na,nc, ρ) =

 (na − 1)nc − 1
nc

 βnc

1 +
∑nc

i=1

 (na − 1)nc − 1
i

 βi

(3.5)

with β =
(

na−1
ρ − 1

)−1
.

In the case of a hybrid switch, this expression no longer represents the blocking
probability, but will be used in Section 3.4.2.1 as the part of the ingress traffic directed into
the buffer.
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Figure 3.14: Theoretical and simulated blocking probability of the all-optical burst switch versus
system load for na = 5 azimuths (Top) and na = 10 azimuths (Down) and different number of
channels.
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3.4.1.2 Numerical illustrations

In aim to evaluate the accuracy of the closed-form expression, we compare it with simu-
lations of the all-optical burst switch (without electronic ports) as the ones presented in
previous Section. Fig. 3.14 shows the theoretical and the simulated burst loss probabil-
ity versus the system load for different configurations: na = 5 azimuths on the top and
na = 10 azimuths on the bottom; and nc = 5, 10, 50, 100 channels per azimuth.

Apart from a slight deviation between theory and simulation for high values of the
load, we notice that theoretical curves fit well with simulated one. This deviation comes
from simulation, where the respect of pure chance traffic assumption becomes question-
able at high load value. Nevertheless, the closed-form expression presented here offers a
good evaluation of the loss probability of the all-optical burst switch, or of the probability
that an incoming burst tries to go in the buffer.

3.4.2 OBS with overflow system

3.4.2.1 Model

Although the Engset framework offers an expression of the loss probability of a system if
the ingress traffic is pure chance, it does not give any further information about statistics
of the blocked or overflowed traffic. Sadly, these inputs are required to evaluate the
blocking probability of the complete system. [51, 68] work on the blocking probability
of optical switch with optical buffer, but they do not take the number of channels per
azimuth into account.

In [69], a framework was developed in order to compute the loss probability of several
Engset systems which have a common overflow system. It corresponds to the general
architecture of our optical switch, except that re-sending of bursts is not taken into account.

A primary group is defined as an Engset system equivalent to an egress azimuth.
Considering a single primary group, the complete system is equivalent to an Engset
system, where the number of sources and their calling rate are the ones from primary
group; and where the number of channels is equal to the sum of channels from the primary
group with the number of channels of the overflow system.

If there are several primary groups, a method gives an equivalent primary group.
This method is similar to the standard Equivalent Random Theory (ERT) method from
the Erlang framework [70].

Fig. 3.15 sums up the problem for our architecture. We thus have to evaluate the
number of sources q∗, their traffic intensity a∗, and the number of channels n∗c of the
equivalent primary group. However, we notice that this equivalent primary group has
been evaluated in the previous Section. The parameters thus are: q∗ = (na − 1)nc sources,
with a traffic intensity a∗ =

ρ
na−1 , and a number of channels n∗c = nc. Thanks to these

equivalent parameters, we obtain the following closed-form expression for the blocking
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Figure 3.15: Equivalent architecture of the optical burst switch

probability of the complete system:

Ploss(na,nc,ne, ρ) =

 (na − 1)nc − 1
(nc + ne)

 β(nc+ne)

1 +
∑nc+ne

i=1

 (na − 1)nc − 1
i

 βi

, (3.6)

again with β =
(

na−1
ρ − 1

)−1
as in equation (3.5), to which equation (3.6) is manifestly

equivalent when ne = 0.

3.4.2.2 Numerical illustrations

Once again, we evaluate the accuracy of our closed-form expression by comparing it to
simulations proposed in Section 3.3. In Fig. 3.16, we plot the theoretical and the simulated
burst loss probability versus the system load for different configurations: na = 5 azimuths
on the bottom or na = 10 azimuths on the top. We also consider nc = 10 channels per
azimuth, and ne = 5, 10, 15, 20 ports on the overflow system.

We remark that a large gap exists between the analytical results and the simulated
one. Moreover, it grows with the system load and with the number of electronic ports. It
can be explained by the second order collisions in the simulation which are not taken into
account in the theoretical model. In other words, the analysis considers that our hybrid
switch is able to predict them and so to avoid them. Therefore, it is of interest to add an
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Figure 3.16: Analytical and simulated burst loss probability of the hybrid switch versus system
load for na = 5 azimuths (Top) and na = 10 azimuths (Down), nc = 10 channels and different
number of electronic ports.



96 3. Buffer-Assisted Optical Switching

anti-collision system in the re-sending process, in order to further improve performance
of the hybrid switch.

3.5 Conclusion

Since it decreases global cost and improves the flexibility, optical packet/burst switching
is a key enabling technique for the future transport network. Sadly, the lack of all-optical
buffers results in these techniques having a big packet/burst loss issue, especially when
few channels are available per azimuth. As multiplying these channels may not be
economically feasible, it seems better to look into buffering solutions.

In this chapter, we consider an optical burst switch assisted by an electronic buffer.
We analyze, by simulation, the performance in term of burst loss probability of such
an equipment. Simulation results lead to the identification of three key parameters for
the performance improvement: the number of channels per azimuth, the number of
electronics ports of the buffer, and the observation duration of the system against second
order collisions.

The electronic buffer enables a great increase of the sustainable load even with a
small number of overflow ports. Its combination with extra-channels on egress azimuth
improves even more the performance.

In addition, we shown that the second order collisions are responsible of the main
part of burst losses. Therefore, a well designed observation window before burst re-
emitting, will significantly improves the overall system performance, and the closed-form
expressions show us the maximum gain we can expect.

Finally, such a hybrid equipment may enable significant energy savings. Indeed,
an network of hybrid switches is less energy consuming than a standard two-layered
network. And a system which limits the second order collisions, may even more decrease
this consumption. Main issue of hybrid techniques also remains the financial and/or
energetic cost of extra-channels per azimuth.
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The work carried out in this thesis deals with the analysis of coherent optical transmission
systems, which will be one of the key techniques for future high data-rate networks. Since
commercial systems able to transmit 100 Gbit/s over thousands of kilometers now exist,
the main objective of the work was to find theoretical insights for the design of future
systems. Indeed, the use of more powerful modulation schemes, and digital signal
processing techniques, forces system suppliers to improve their theoretical knowledge of
the optical channel. But, the need of energy-efficient, transparent and flexible systems also
obliges them to combine these techniques with cross-layer solutions, in order to improve
the efficiency of networks. That is the reason why we have proposed in the thesis, not
only theoretical analysis of the propagation impairments in fiber, but also detailed studies
of hybrid switching techniques.

Chapter 1 has been dedicated to the study using the Shannon capacity of the main non-
linear impairment in optical fiber transmissions: the Kerr Effect. The data-rate increase
often induces an increase of the input power per channel. Therefore non-linearities, which
could be neglected until now, have to be considered. Moreover, the guard band between
channels is reduced in order to improve the overall spectral efficiency, and it seems to us
that studying its impact on system performance is relevant. The first part of the chapter
was dedicated to an extended state-of-the-art about non-linear Shannon capacity. It led to
the choice of a framework used for derivations of closed-form expressions of the optical
channel capacity taking guard-band into account. The second part of this Chapter has
been devoted to express the capacity in closed-form. Numerical illustrations of these
expressions have shown that guard-band has a slight influence on the capacity.

Since another way to improve the achievable data-rate is to use all the freedom de-
grees of fibers, the impairments related to the polarization such as PMD and PDL, have
now to be taken into account in the design. In the same spirit as previously, after a gen-
eral overview of the PDL impaired channel model, Chapter 2 focused on the derivations
of the outage probability due to PDL for different PDL models. Notice that the model
chosen in the derivations only takes the polarization mismatch into account, since the
other issues due to PDL can firstly be neglected, as shown in the chapter. Comparisons
of the closed-form expressions with phenomenological simulations shows that a model
(the Maxwellian one) is especially relevant with this respect. In addition, comparisons
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between the theoretical results and simulated systems have been also achieved. Indeed,
the outage probability is a bound of the achievable BER of practical transmission systems.
Simulations of practical systems have been done with a powerful FEC, several modula-
tions schemes and Polarization-Time codes. Simulation results confirm that PT codes are
essential for the PDL mitigation. However, their combination with a well-designed FEC
improves significantly the performance. At standard values of the mean PDL, the com-
bination of a PT code with a powerful soft-decoded FEC is only 1.5 or 2 dB of the outage
probability. Unfortunately, this powerful combination induces a high computational load
which still prevents its use to practical systems.

Another way to improve the performance of optical transmission systems has been
proposed in Chapter 3 with cross-layer techniques: the separation between the transport
layer, and the network layer was a good idea when the network layer was heteroge-
neous. However, IP traffic nowadays is the main user of the transport network and,
will eventually become the only one. Therefore, real synergies exist between the IP net-
work layer and the optical transport layer. However all-optical techniques have many
drawbacks. Therefore, the general architecture of a cross-layer equipment, also called
optical burst switch with electronic buffer, has been proposed and studied. Numerical
evaluations show the interest of such an equipment, because it significantly improves the
performance in term of bursts loss probability, even for a small number of access ports
on the buffer. Comparisons between simulations and the analytic model show that the
performance can still be improved by the implementation of a system which reduces the
number of collisions between re-sent bursts and ingress bursts (also called second-order
collisions). Finally, this kind of solutions not only improves the network transparency
and flexibility but also may allow significant energy savings by reducing the number of
opto-electronic conversions.

This thesis has raised several issues which deserve to be treated in the future. These
problems are listed below:

• The closed-form expressions in Chapter 1 have been established under the single po-
larization and the single span assumptions. Further works may focus on extending
the expressions in a more general setting.

• The general PDL model used for the derivations in Chapter 2 takes only the po-
larization mismatch into account. Although this model is accurate for standard
values of the mean PDL, a more advanced model, which considers the SNR com-
pression and/or the noise correlation, needs to be develop, and then to be applied
for the outage probability derivations in order to have a global view of the PDL
phenomenon.

• Moreover, numerical illustrations in Chapter 2 show a gap of about 1.5 even 2 dB
between the simulated BER and the outage probability. Further works should be to
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find better coding techniques in order to reduce this gap.

• The analytic model of Chapter 3 can be improved in order to take the second-order
collisions into account. It will enable a faster gauging of the whole equipment.

• The study about the hybrid switch and the related energy savings can be extended
by e.g. taking interest in the λ converters issue in the case of WDM channels.
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Appendix A

Proofs of Results 1, 2, and 3

A.1 Proof for Result 1

We consider X(t) a Gaussian distributed random variable which has a PSD denoted SX( f )
and an auto-correlation function denoted RX(t). X( f ) denotes the Fourier transform of
X(t). Let us derive E

[
X( f )X∗( f ′)

]
.

E
[
X( f )X∗( f ′)

]
= E

[∫
∞

−∞

X(t)e−2iπ f tdt
∫
∞

−∞

X∗(t′)e2iπ f ′t′dt′
]
.

By permuting the expectatino and the integrals and then by applying the expectatino only
on the random variables, we have

E
[
X( f )X∗( f ′)

]
=

"
E [X(t)X∗(t′)] e−2iπ f te2iπ f ′t′dtdt′

and so

E
[
X( f )X∗( f ′)

]
=

"
RX(t − t′)e−2iπ f te2iπ f ′t′dtdt′.

We will first integrate with respect to t. We thus have

E
[
X( f )X∗( f ′)

]
=

∫ (∫
RX(t − t′)e−2iπtdt

)
e2iπ f ′t′dt′

which simplifies as follows

E
[
X( f )X∗( f ′)

]
=

∫
SX( f )e−2iπ f t′e2iπ f ′t′dt′.

According to the property of the Dirac distribution, we obtain

E
[
X( f )X∗( f ′)

]
= δ( f − f ′)SX( f ),

where x 7→ δ(x) is the Dirac delta distribution.
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A.2 Proof for Result 2

Let us denote
Ra,b(τ) = E[b(t + τ)a∗(t)].

As
a(t) =

∫
A( f )e2iπ f td f

and
b(t) =

∫
B( f )e2iπ f td f ,

we have
Ra,b(τ) =

∫ ∫
E[A( f )∗B( f ′)]e−2iπ f te2iπ f ′(t+τ)d f d f ′.

Moreover, since A( f ) = Ha( f )X( f ) and B( f ) = Hb( f ), we obtain

Ra,b(τ) =

∫ ∫
Ha( f )∗Hb( f ′)E[X( f )∗X( f ′)]e−2iπ f te2iπ f ′(t+τ)d f d f ′.

Thanks to Result 1, we simplify as follows

Ra,b(τ) =

∫
Ha( f )∗Hb( f )SX( f )e2iπ fτd f

which implies that
Sa,b( f ) = Ha( f )∗Hb( f )SX( f ).

A.3 Proof for Result 3

It is easy to check that
Ra,b(τ) = Rb,a(−τ)∗.

As a consequence, we obtain that

Sa,b( f ) = Sb,a( f )∗.



103

Appendix B

Definition of Signal-to-Noise Ratio

In digital communication [31], the signal to noise ratio (SNR) is defined as

SNR =
Eb

N0
(B.1)

where

• Eb represents the consumed energy (at the carrier level) per information bit,

• N0 is the noise variance per real dimension.

Notice that we consider that if x(t) is the signal at the carrier and xe(t) is its corresponding
complex envelope, then x(t) =<[xe(t)e2iπ f0t] with f0 the carrier frequency.

According to the used practical transmission scheme, the term Eb can be expressed in
different way.

Let Es be the energy needed for transmitting one symbol (in baseband). We obviously
have that

Eb =
Es

2m
where m is the average number of bits per symbol.

Now, it is easy to check that

m = kcrFEC(rPT/nt)

where

• kc = log2(M) is the number of bits per symbol when a constellation of size M is
employed

• rFEC the FEC coding rate.

• rPT/nt corresponds to the number of symbols per polarization and per channel use
where rPT is the PT code rate and nt the number of inputs in the considered MIMO
system.
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Finally, we have

SNR =
ntEs

2kcrFECrPTN0
. (B.2)

and in our case (since nt = 2),

SNR =
Es

kcrFECrPTN0
. (B.3)

Notice that in the expression of the outage probability, the term ρ is actually equal to

ρ =
Es

2N0
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