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Abstract

Distributed systems form the backbone of modern computing applications, enabling collab-
orative and efficient task execution across multiple networked components. However, the
physical separation of system components introduces significant challenges in terms of com-
munication efficiency. This thesis addresses these challenges by investigating information-
theoretic limits and proposing practical schemes to enhance the performance of two types
of systems: distributed computing (DC) systems and distributed estimation systems.

DC systems exploit task parallelization to significantly reduce execution time of com-
putationally intensive tasks. A popular framework for DC systems, MapReduce, divides
computation into three phases: map, shuffle, and reduce. The shuffle phase, which in-
volves transferring intermediate values between nodes, is often the bottleneck in terms of
execution time. While various coding schemes have been proposed to optimize the shuffle
phase in wired networks, the growing adoption of wireless DC systems, necessitates new
solutions tailored to wireless environments.

Distributed estimation systems, on the other hand, aim to estimate a shared parameter
collaboratively across multiple nodes. These systems are widely used in sensor networks,
environmental monitoring, and distributed machine learning. Communication efficiency
is essential for accurate data fusion, since inaccurate data loss can degrade system per-
formance. This thesis focuses on two scenarios: systems with a fusion center and those
without.

The main contributions of this thesis are as follows:

• The thesis investigates partially connected wireless networks, introducing new cod-
ing schemes that optimize the computation-communication tradeoff for MapReduce
frameworks. Specifically, by analyzing the sum degrees of freedom (SDoF) of par-
tially connected channels, the work derives achievable lower bounds using interference
alignment (IA). An information-theoretic analysis is also provided in partially con-
nected wireless networks.

• The thesis extends IA techniques to optimize wireless MapReduce systems operat-
ing over full-duplex interference channels. By designing schemes tailored for specific
network configurations, the proposed methods achieve significant improvements in
execution time compared to traditional approaches. The work also establishes theo-
retical upper and lower bounds for the computation-communication tradeoff.

• For distributed estimation systems requiring a fusion center, the thesis develops a
framework to design multi-bit quantizers that minimize the Cramér-Rao bound under
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worst-case conditions. By applying signomial geometric programming, the proposed
quantizers outperform existing methods, particularly in the mid-to-high signal-to-
noise ratio regime.

• The thesis explores distributed estimation in graph-connected networks where nodes
exchange information with their neighbors to reach consensus. A synchronous algo-
rithm with stochastic activation is proposed, where nodes activate probabilistically
to minimize data collisions while ensuring convergence. By optimizing the activa-
tion probability using theoretical bounds, the algorithm achieves a balance between
convergence rate and communication efficiency.

In summary, these findings advance the understanding of information-theoretic limits
and practical coding strategies, enhancing the performance of distributed systems across
diverse applications.
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Résumé (Français)

Les systèmes distribués constituent la colonne vertébrale des applications informatiques
modernes, permettant l’exécution collaborative et efficace des tâches sur plusieurs com-
posants interconnectés. Cependant, la séparation physique des composants du système
introduit des défis majeurs en termes d’efficacité de communication. Cette thèse aborde
ces défis en étudiant les limites théoriques de l’information et en proposant des solutions
pratiques pour améliorer les performances de deux types de systèmes : les systèmes de
calcul distribué (DC) et les systèmes d’estimation distribuée.

Les systèmes de calcul distribué exploitent la parallélisation des tâches pour réduire
significativement les temps d’exécution des tâches intensives en calcul. Un cadre populaire
pour ces systèmes, MapReduce, divise le calcul en trois phases : map, shuffle et reduce. La
phase shuffle, qui implique le transfert de valeurs intermédiaires entre les nœuds, constitue
souvent un goulot d’étranglement en termes de temps d’exécution. Bien que diverses mé-
thodes de codage aient été proposées pour optimiser cette phase dans les réseaux câblés,
l’adoption croissante des systèmes DC sans fil nécessite de nouvelles solutions adaptées aux
environnements sans fil.

Les systèmes d’estimation distribuée, quant à eux, visent à estimer un paramètre com-
mun de manière collaborative entre plusieurs nœuds. Ces systèmes sont largement utilisés
dans les réseaux de capteurs, la surveillance environnementale et l’apprentissage machine
distribué. L’efficacité de la communication est cruciale pour une fusion de données précise,
car les pertes ou les retards de données peuvent dégrader les performances du système.
Cette thèse se concentre sur deux scénarios : les systèmes avec un centre de fusion et ceux
sans centre de fusion.

Les principales contributions de cette thèse sont les suivantes :

• Cette thèse étudie les réseaux sans fil partiellement connectés en introduisant de
nouveaux schémas de codage optimisant le compromis calcul-communication pour
les cadres MapReduce. En analysant les degrés de liberté globaux des canaux par-
tiellement connectés, ce travail établit des bornes inférieures réalisables en utilisant
l’alignement des interférences (IA). Une analyse théorique de l’information est éga-
lement fournie pour ces réseaux.

• La thèse étend les techniques d’alignement des interférences pour optimiser les sys-
tèmes MapReduce sans fil fonctionnant sur des canaux d’interférences en duplex
intégral. En concevant des schémas adaptés à des configurations spécifiques, les mé-
thodes proposées réalisent des améliorations significatives des temps d’exécution par

3



rapport aux approches traditionnelles. Ce travail établit également des bornes théo-
riques supérieures et inférieures pour le compromis calcul-communication.

• Pour les systèmes d’estimation distribuée nécessitant un centre de fusion, cette thèse
développe un cadre pour concevoir des quantificateurs multi-bits minimisant la borne
de Cramér-Rao dans les conditions les plus défavorables. En appliquant la program-
mation géométrique signomiale, les quantificateurs proposés surpassent les méthodes
existantes, en particulier dans les régimes de rapport signal-bruit moyen à élevé.

• La thèse explore les systèmes d’estimation distribuée dans des réseaux connectés par
des graphes où les nœuds échangent des informations avec leurs voisins pour parvenir
à un consensus. Un algorithme synchrone avec activation stochastique est proposé, où
les nœuds s’activent de manière probabiliste pour minimiser les collisions de données
tout en assurant la convergence. En optimisant la probabilité d’activation à l’aide de
bornes théoriques, l’algorithme équilibre le taux de convergence et l’efficacité de la
communication.

En résumé, ces résultats approfondissent la compréhension des limites théoriques de
l’information et des stratégies de codage pratiques, améliorant les performances des sys-
tèmes distribués dans des applications variées.
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摘摘摘要要要 (Abstract in Chinese)

分布式系统构成了现代计算应用的基础，其主要特征是支持多个网络组件之间的协作和

高效任务执行。然而，系统组件间的物理分离在通信效率方面引入了显著的挑战。本论

文通过研究信息论极限并提出实际可行的方案来应对这些挑战，并提升系统的性能。本

论文主要关注两种分布式系统：分布式计算（DC）系统和分布式估计系统。
DC 系统将任务并行化以减少计算密集型任务的执行时间。MapReduce 是 DC 系统中

的一种流行框架，其将计算分为三个阶段：map、shuffle 和 reduce。其中，shuffle 阶段
涉及节点间中间值的传输，而这一阶段往往成为执行时间的瓶颈。尽管已有多种编码方

案被提用于优化有线网络中的 shuffle 阶段，但随着无线 DC 系统的广泛采用，亟需针对
无线环境设计新的解决方案。

另一方面，分布式估计系统旨在通过多个节点协作对同一参数进行估计。这类系统广

泛应用于传感器网络、环境监测和分布式机器学习中。通信效率对准确的数据融合至关

重要，因为数据损失可能导致系统性能下降。本论文主要研究两种场景：具有融合中心

的系统和无融合中心的系统。

本论文的主要贡献如下：

• 本论文研究了部分连接的无线网络，提出了针对 MapReduce 框架的新型编码方
案，优化了计算-通信权衡。具体来说，通过分析部分连接信道的总自由度，利用干
扰对齐（IA）技术推导出可达的下界，并提供了部分连接无线网络的信息论分析。

• 本论文将 IA 技术扩展到全双工干扰信道下运行的无线 MapReduce 系统，通过为特
定网络配置设计方案，使所提方法在执行时间上相较于传统方法实现了显著改进。

此外，论文还为计算-通信权衡建立了理论上的上下界。

• 对于需要融合中心的分布式估计系统，本论文开发了一种框架，用于设计在最坏条
件下最小化 Cramér-Rao 下界的多比特量化器。通过应用信号几何规划，所提量化
器在中高信噪比范围内的性能优于现有方法。

• 本论文探索了图连接网络中的分布式估计，其中节点通过与其邻居交换信息以达成
共识。提出了一种具有随机激活的同步算法，其中节点以概率方式激活，以减少数

据碰撞并确保收敛。通过利用理论界优化激活概率，该算法在收敛速率与通信效率

之间实现了平衡。

总之，本研究深化了对信息论极限和实际编码策略的理解，提升了分布式系统在多种

应用场景下的性能。
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CHAPTER 1

General Introduction

1.1 Context and Objectives of the Thesis

Distributed systems are a category of computing systems in which components distributed
across multiple networked computers communicate and coordinate to achieve a shared
objective [1], [2]. These systems are fundamental to modern computing applications, in-
cluding Cloud Computing, Blockchain, and the Internet of Things. Two key motivations
for adopting distributed systems are their ability to enhance performance through parallel
processing and their facilitation of node autonomy. However, as the name suggests, the
components in a distributed system are physically separated, making communication ef-
ficiency a critical factor for their success. This thesis focuses on two types of distributed
systems: Distributed Computing (DC) systems and distributed estimation systems, which
respectively exploit the advantages of parallel processing and node autonomy.

DC Systems DC systems are computer networks that reduce execution times of complex
computing tasks through task-parallelization, such as data mining or computer vision.
MapReduce is a popular framework and runs in three phases [3], [4]. In the first map
phase, nodes calculate Intermediate Values (IVA) from their associated input files. In
the following shuffle phase, nodes exchange these IVAs in a way to inform each node
about all IVAs required for computing its assigned output function during the final reduce
phase. MapReduce is primarily applied to wired systems where it has been noticed that a
significant part of the MapReduce execution time stems from the IVA delivery time during
the shuffle phase [4], [5]. Various coding schemes [5]–[10] were proposed to reduce this IVA
delivery time, and consequently speed up execution time compared to naive approaches.
For example, [6] applied their Coded Distributed Computing (CDC) algorithm to sort
12GB of data by running TeraSort on 16 computing nodes of the Amazon EC2 clusters and
100 Mbps network speed. The traditional TeraSort algorithm spends 98% of the execution
time (945s/961s) for the Shuffle Phase, and when implementing CDC with replication
factor r = 3 this execution time can be reduced by a factor of 2.16 to 446s at the cost of
multiplying the required storage space by the factor r = 3. If one is willing to multiply the
available storage space by r = 5, then an even larger speed up by a factor of 3.39 to only
283s is possible.
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In recent years, MapReduce systems became increasingly popular also for wireless sce-
narios, such as vehicular networks [11], in-flight entertainment [12] or augmented reality
systems [13]s. Even in data centers, the wireless approach attracts a lot of attention since
operators would like to reduce the large number of cables [14]. Thus, these developments
create a need for coding schemes that perform well over wireless networks in the context
of MapReduce systems.

Communications over wireless channels inherently interfere with each other, except that
multiple access orthogonal schemes are employed, which however comes at the expense of
a degraded performance. Building coding schemes for DC that are adapted to wireless
channels and especially to the interference experienced in these channels is important for
wireless DC system.

Distributed Estimation Systems In many applications, multiple nodes, e.g., ma-
chines, sensors, devices [15]–[17], are deployed across different locations but aim to measure
the same phenomenon and estimate a common parameter. These nodes operate indepen-
dently while collaboratively fusing their observations to reach a consensus. This approach
enhances the system’s estimation accuracy and robustness. Such systems are commonly
referred to as distributed estimation systems.

Efficient data delivery is a fundamental requirement for the success of distributed esti-
mation systems. These systems rely on sharing and processing data across multiple nodes
to make accurate estimations, decisions or predictions.

When data from various sensors or sources is passed efficiently, a more accurate "fusion"
of this data can occur. This means that each node can make a more informed decision by
leveraging the collective knowledge from other parts of the system. However, delays, loss
of data, or inconsistent transmission can lead to poor fusion and, as a result, inaccurate
estimations. For instance, in distributed sensor networks for environmental monitoring
(such as detecting air pollution), different nodes may estimate air quality based on their
local measurements. For an accurate global estimation, these data points need to be
shared and passed efficiently. If data transfer is slow, some sensors may "time out" before
transmitting their data, leading to a less reliable overall estimation. Another example
can be found in distributed machine learning. Multiple devices or servers may participate
in training a model. Efficient data passing ensures that gradients, weights, and model
parameters are transmitted quickly between devices, which improves the accuracy of the
model in less time.

Objective Consequently, the objective of this thesis is to establish information-
theoretic limits and develop practical coding schemes for distributed computing
and estimation systems. The methods employed to address such problems naturally
depend on the system’s objectives and structure. This work concentrates on four distinct
yet interconnected problems.

• Developing novel coding schemes and theoretical analysis for partially-connected
channels, with applications to wireless distributed computing systems.
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• Developing coding schemes and theoretical analysis for wireless distributed comput-
ing systems under fewer assumptions on file placement.

• Developing a multi-bit quantizer specialized for distributed estimation systems op-
erating with a Fusion Center (FC).

• Developing a consensus algorithm for distributed estimation systems operating with-
out a FC, where sensors are interconnected via a graph.

1.2 Related Works

Related Works on DC DC is primarily applied in systems with wired communication
links, such as traditional data centers whose servers are connected through high-rate optical
fibers. Coding schemes for speeding up communication in such wired systems have been
proposed in [6]–[9], [18]–[21]. These scheme mainly rely on xor operations between packets.

Similarly to the wired case [6]–[8], delivery time in wireless MapReduce systems can
be decreased by sending appropriate linear combinations of the IVAs, from which the
receiving nodes can extract their desired IVAs by bootstrapping the IVAs that they can
compute from their locally stored input files. Further improvements are however possible
by exploiting the superposition nature of wireless networks, e.g., by cooperatively encoding
messages, zero-forcing transmissions at specific sets of nodes, or aligning interference at
nodes.

In this thesis, we focus on the high Signal-to-Noise Ratio (SNR) regime. There are two
critical metrics for wireless MapReduce systems. The first metric is the computation load,
which represents the average number of nodes to which each file is assigned. In other words,
it is the ratio of the total number of stored input files (including replications) to the total
number of original files. The second metric is the Normalized Delivery Time (NDT), which
refers to the duration of the wireless shuffle phase normalized by the number of output
functions, input files, and the transmission time of a IVA over a point-to-point channel in
the high SNR regime. We aim to investigate the minimal NDT for a given computation
load, a relationship we call the computation-NDT tradeoff.

Several works have analyzed computation-NDT tradeoffs for different wireless networks.
For example, [22], [23] studied the computation-NDT tradeoff of cellular networks, and
proposed schemes to reduce the NDTs by sending appropriate linear combinations of the
IVAs and applying simple interference cancellation (bootstrapping of known IVAs) at the
receiving nodes. (The energy-efficiency latency tradeoff in such cellular systems has been
studied in [24].) Interference networks were studied in [25]–[27]. More specifically, [25]
considered a half-duplex interference network and proposed a scheme that converted the
network into a fully-connected X-channel, while it applied the IA-scheme in [28]. The
computation-NDT tradeoff of full-duplex interference networks was considered in [26], [27].
The work [26] proposed a coding scheme based on one-shot beamforming and zero-forcing,
and showed that this scheme was optimal for this class of strategies. The works in [25]–[27]
all assumed perfect Channel State Information (CSI) at the transmitters. For scenarios
with imperfect (delayed) channel-state information, [29] proposed a coding scheme that
combines zero-forcing and interference cancellation with superposition coding.
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In the existing literature[25], [27], it has been found that the structure of the wireless
channel of the shuffle phase is similar to a well study wireless channel called X-channel. The
study of the Sum Degrees of Freedom (SDoF) for X-channels, where each transmitter com-
municates with each receiver, both with and without cooperation, has a well-established
history. It has been shown that the SDoF of a fully-connected K-user IC without coop-
eration is K/2 when the channel coefficients are independent and identically distributed
(i.i.d.) fading according to a continuous distribution [30] and the SDoF of the correspond-
ing X-channel is K2/(2K−1). Both these SDoFs were achieved with Interference Alignment
(IA) [31]. Meanwhile, numerical approaches to obtain approximate SDoF were also pro-
posed in [32]–[35]. Other research also considered imperfect Channel State Information
at Transmitters (CSIT) [36]–[39]. The advantages of IA [30] for DC systems were first
demonstrated in [27] within the context of full-duplex wireless networks. Specifically, [27]
proposed partitioning nodes into groups and employing a combination of IA and zero-
forcing techniques to ensure that signals intended for one node do not interfere with those
received by other nodes within the same group. However, the structure of the full-duplex
wireless network during the shuffle phase differs from the conventional IC or X-channel
models often discussed in the existing literature, necessitating further research.

Recently, distributed computing systems designed for associative functions (also known
as linearly separable functions) have garnered significant attention due to their wide-
ranging applications in machine learning. Coding schemes for wired channel and broadcast
channels were proposed in [40]–[42]. Research on other wireless channel are still needed.

Related Works on Distributed Estimation In many surveillance applications, sen-
sors are distributed across different locations to measure a common phenomenon, often
affected by noise, and estimate the same parameter [43]–[45]. Instead of estimating the
parameter locally, sensors transmit their quantized data through a propagation channel
to a FC, which performs the estimation. The design of effective multi-bit quantizers is a
critical challenge in such systems.

Fisher information and the Cramér-Rao Bound (CRB) are foundational concepts in
statistics and information theory, measuring the amount of information a random variable
contains about an unknown parameter. Fisher information quantifies how much the ran-
dom variable reveals about the parameter, while the CRB establishes a lower bound on
the variance of any unbiased estimator of the parameter, derived directly from the Fisher
information. Fisher information and the CRB for estimation system with a FC have been
derived under various assumptions [46]–[53]. However, the results provided in [52], [53]
independent of specific quantizers. On the other hand, other above-mentioned studies
focused on specified quantizers without optimizing their design.

Meanwhile, other works addressed quantizer optimization under different configurations
and assumptions. For example, [54] developed an optimal deterministic multi-bit quantizer
for low SNR scenarios. Similarly, [55] employed Bayesian CRB and dynamic programming
to optimize multi-bit quantizers for single-sensor setups. In [56], a deterministic quantizer
was optimized for low SNR using particle swarm algorithms. Multi-sensor scenarios were
considered in [57], where sensors used random one-bit quantizers with linear, piecewise,
data-dependent thresholds to minimize the worst-case CRB. [58] proposed an iterative
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method to optimize thresholds for minimizing the worst-case CRB in multi-sensor systems.
In [59], the same setup as [57] was considered but they found the best threshold distribution
without the linear-piecewise structure assumption. This setup was extended in [59], where
optimal threshold distributions were identified without linear-piecewise constraints. These
studies can be classified into two categories: those that assume a prior distribution on the
unknown parameter [54]–[56], [58], and those that do not [57], [59]. Among the latter,
most research focuses on one-bit quantizers, highlighting the need for further exploration
of multi-bit quantizers.

For distributed estimation systems without a FC, each node computes an estimation
based on its own data and the data received from its neighbors. These estimations are
often updated iteratively. Various algorithms have been proposed for different scenar-
ios. Some popular algorithms used in these systems include [45], [60]: consensus-based
algorithms, Kalman Filters and Particle Filters. Consensus-based algorithms involve each
node updating its estimation based on the information from neighboring nodes, aiming to
achieve consensus across the network (i.e., agreement on a common estimation) [61]–[65].
In certain distributed systems, Kalman filtering is used to estimation the state of a system
in real-time by considering both the local measurements and those shared by neighboring
nodes [66]–[68]. Particle Filters are used when the system’s state is highly non-linear or
non-Gaussian, and distributed versions of particle filters allow multiple agents to contribute
their local estimations to refine the global estimation [69], [70].

The problem of achieving consensus on the average of initial sensor measurements is one
of the most critical challenges in wireless distributed systems. Regarding node activation,
there are two primary approaches for algorithm design: the synchronous approach and the
asynchronous approach. In the synchronous approach, multiple sensors can be activated
simultaneously to exchange local data. In contrast, the asynchronous approach limits
activation to a single sensor or, at most, a pair of sensors at any given time.

Early research primarily focused on the asynchronous approach due to its simplicity
and stability. For instance, one of the earliest asynchronous algorithms was introduced
in [71] and later extended in [61]. This problem was addressed using the Random Gossip
algorithm, where a randomly selected sensor communicates with one of its neighbors at
each iteration. The two sensors exchanged their values and updated them by averaging the
received and previous values. Given the broadcast nature of wireless channels, it is also
promising to design algorithms that exploit this property. One example was the Broad-
cast Gossip algorithm [62], where an active node broadcasted its value to all neighbors,
which then updated their estimations by averaging the received value with their previous
estimations. Moreover, asynchronous algorithms have been studied extensively in various
network settings, including directed graphs [72], [73], link failures [74], [75], and unstable
sensors [76]. However, as network size increases, the asynchronous approach reveals its
drawback of slow convergence. At the same time, advancements in synchronous transmis-
sion techniques have mitigated many of their limitations [77]–[79], leading to a renewed
interest in the synchronous approach.
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1.3 Main Contributions and Organization

This thesis is structured into six chapters, beginning with this chapter, the General Intro-
duction. Chapters 2 and 3 focus on wireless DC systems, while Chapters 4 and 5 address
wireless distributed estimation systems. Chapter 6 provides the conclusions and perspec-
tives of the thesis. Additionally, an appendix is included to offer supplementary proofs for
the theorems presented. The publications resulting from the research conducted during
this thesis are summarized at the end. The specific contributions of Chapters 2 to 5 are
detailed below.

In Chapter 2, we begin by considering a general class of channels referred to as Partially-
connected Channel (PC). In this type of channel, Transmitters (Tx) and Receivers (Rx) are
grouped into sets of consecutive Txs and Rxs, with each set containing more than one Tx or
Rx. The connectivity between the Tx groups and Rx groups is represented by a connectivity
matrix. The message flow between the groups is described by a message flow matrix. Each
Rx observes a linear combination of signals from all connected transmitters, affected by
Gaussian noise. The Txs within the same group cooperate to send a single message to
the receivers in all intended groups, while the receivers decode their respective messages
independently of each other. We examine three subclasses of the PC: Non-cooperative
Partially-connected Channel (NPC), Cooperative Partially-connected X-Channel (CPXC),
and Cooperative Partially-connected Interference Channel (CPIC). First, we focus on NPC
where each group contains only one Tx or one Rx. We provide a SDoF lower bound for
NPC achieved by using IA for a network with a given connectivity matrix and message
flow matrix. To establish this result, we design an IA scheme that assigns precoding
matrices to the messages. Additionally, we formalize constraints on the assignment of
precoding matrices, simplifying the construction process. CPXC is a specific case of PC
where each Rx observes a linear combination of all Tx-signals in Gaussian noise, except
for the signals sent by its corresponding Tx-group, and Txs in the same group cooperate
to jointly transmit a message to each Rx in all other groups. For this network model, we
enhance the scheme by exploiting the partial connectivity of the channel. By redesigning
the precoding matrix allocation in accordance with the constraints we formalized, we reduce
the number of distinct precoding matrices, thereby decreasing the dimensionality of the
interference subspace. This improvement comes at the cost of transmitting slightly fewer
messages. Additionally, we derive an information-theoretic upper bound on the SDoF of
CPXC using model decomposition and a Multiple Access Channel (MAC) argument. CPIC
is similar to the CPXC with the distinction that the k-th Tx group only sends a message to
the k+1-th Rx group (the last Tx group sends to the first Rx group). In [80], authors proved
the CPIC shared the same SDoF lower bound of K/2 as the fully-connected interference
channel. By applying a similar MAC argument, we obtain an information-theoretic upper
bound that coincides with the lower bound.

We apply the SDoF bounds to improve the computation-NDT tradeoff which is defined
as the achievable NDTs for a given computation load. We first consider MapReduce frame-
works without making any assumption about the reduce functions, which we refer to as
generic wireless DC. We show further improvement in the computation-NDT tradeoff using
the new IA scheme for CPXC. We also consider a special case of MapReduce DC system
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where the reduce function can be written as a series of associative binary operations. In
this scenario, any subset of nodes can compute an intermediate reduce function using the
data within that subset while preserving the final result. And only the results of interme-
diate reduce function need to be exchanged between the subsets, which leads to reduced
communication costs. For the MapReduce setup, we propose a round-based scheme based
on the IA scheme for CPIC, which achieves a computation-NDT tradeoff improved lower
bound comparing to that of the time-sharing scheme.

In Chapter 3, we further improve the computation-NDT tradeoff of MapReduce over
full-duplex wireless interference channels with two novel IA schemes. Our first scheme is
inspired by the IA scheme in [28], where multi-cast messages are sent over a fully-connected
interference network. We however adapt this scheme to our DC setup, where nodes simul-
taneously act as transmitters and receiver, allowing to achieve improved performance. We
present a second IA-DC scheme for systems with an odd number of users K and com-
putation load r = K−1

2 , i.e., when each node can store almost half of the input files. In
this second scheme each node only sees interference pertaining to one of the K utilized IA-
precoding matrices, while all other non-intended transmissions at this node are zero-forced.
In this sense, the presented IA scheme implies minimum interference space (because any
non-trivial IA scheme has interference pertaining to at least one of the precoding matrices),
allowing to obtain improved performance compared to other IA schemes. In fact, we also
present an information-theoretic lower bound on the computation-NDT tradeoff based on
a MAC type argument that is applied in parallel to a set of well-selected sub-systems and
by solving a resulting linear program. For computation load r < K

2 the lower bound on
the NDT is close to the proposed upper bound, but they do not match. For r ≥ K

2 the
lower bound matches the upper bound in [26] thus establishing the exact NDT of wireless
MapReduce over full-duplex networks.

In Chapter 4, we consider multi-bit quantizers in multiple sensors scenarios for the
min-max approach. We assume that each sensor has a random quantizer coming from a
common distribution between sensors. And this common distribution is optimized when
the number of sensors is large enough. In [59], the same approach was considered but
for one-bit quantizer. Here, the challenge is to extend [59] to multi-bit quantizer. This
extension is not straightforward for two reasons: i) expressing our CRB in closed-form re-
quires order statistics, ii) the obtained optimization problem is not convex anymore. In the
asymptotic regime respect to the number of sensors, we propose a framework based on Sig-
nomial Geometric Programming (SGP) to obtain optimized quantizer for the worst-case of
the target parameter. Under the assumption that all thresholds of quantizers are generated
according to a distribution, we express the CRB with order statistics, and the goal of the
framework is to explore the optimal distribution for the CRB. After discretizing, we con-
vert the optimization problem into a SGP which can be solved by the algorithm proposed
in [81]. The obtained quantizer outperforms uniformly-distributed, regular deterministic
quantizers and those proposed in [55], [56] in the mid-to-high SNR regime. Another in-
teresting observation is that the quantizer performs well even with a limited number of
sensors, despite being designed under the assumption of a large number of sensors.

In Chapter 5, we explore distributed estimation systems that operate without a FC,
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and the sensors are connected by an undirected self-loop-free graph. Similar to the system
discussed in the previous chapter, each node observes an noised version of the target
parameter θ, and nodes exchange data with its neighbors in order to obtain a more precised
estimation of θ and achieve a consensus. The problem of achieving consensus on the
average of initial sensor measurements is one of the most critical challenges in wireless
distributed systems. Regarding node activation, there are two primary approaches for
algorithm design: the synchronous approach and the asynchronous approach. We focus on
the synchronous approach, assuming nodes operate in full-duplex mode. In each time slot,
a node can be either active, broadcasting its local data to neighbors, or inactive, remaining
silent. Regardless of state, nodes always attempt to receive data. However, collisions may
occur if too many neighboring nodes are active simultaneously, leading to data reception
failure. The parameter α quantifies collision sensitivity, with higher values indicating a
higher likelihood of failure. The goal is to design an algorithm that efficiently minimizes
the Mean Square Error (MSE) of estimations and achieves consensus. To address this issue,
we propose a synchronous scheme with stochastic activation, where each node can become
active with a probability of 1− γ. We assume γ is uniform across nodes for simplicity, but
refinements can be made in the future. By establishing a theoretical relationship between
the convergence rate and γ, we leverage previous work on upper bounds for convergence
rates [82], [83] to guide the design. Despite a gap between the actual and upper-bound
convergence rates, their monotonic behavior enables the efficient determination of the
optimal γ via one-dimensional search. Numerical results validate the optimized γ via the
upper bound and show that the averaged optimized γ performs comparably to a graph-
dependent γ, enabling practical use without precise graph knowledge.

1.4 Notations

This section provides the mathematical notations used in the thesis.

• We use bold for vectors and matrices, and calligraphic font for sets.

• The sets Z, Z+, R and C denote the sets of integers, positive integers, real numbers
and complex numbers.

• For a finite set A, |A| denotes its cardinality.

• For any n ∈ Z+, define [n] ≜ {1, 2, . . . , n}.

• The set [A]n denotes the collection of all subsets of A with cardinality n, i.e., [A]t ≜
{T : T ⊂ A, |T | = t}.

• ∥v∥ denote the Euclidean norm of vector v, and vi refers to the i-th element of vector
v.

• The transpose of v is written as vT .

• For any vector v, let diag(v) be the diagonal matrix with diagonal entries given by
the elements of the vector v.
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• For a matrix A, AT denotes the transpose of A, and vec(A) denotes the vector of
all elements of A taken column-wise.

• When writing [vi : i ∈ S] or [vi]i∈S we mean the matrix consisting of the set of
columns {vi}i∈S .

• We use IdK to represent a K ×K identity matrix.

• We use 0 and 1 to represent zero and one matrices/vectors of appropriate dimensions.

• A⊕B denotes the direct sum of matrices A and B, and A⊗B denotes their Kronecker
product.

• For any function f , we denote its convex lower envelope by lowc(f(ℓ)).

• The limit superior and inferior are denoted by lim and lim, respectively, with the
notation liml→p f(l) and liml→p f(l).
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CHAPTER 2

Degrees of Freedom of Channels with Applications
to Wireless Distributed Computing (DC)

2.1 Introduction

The exact capacity region of a multi-user channel with interference is generally unknown.
One way to provide insights on the capacity region is to resort to the SDoF of the channel,
which characterizes the pre-log approximation of the sum-capacity in the asymptotic regime
of infinite SNR [84], i.e., when the network operates in the interference-limited regime. The
study of the SDoF of Interference Channel (IC) and X-channels (where each Tx sends a
message to each Rx) with and without cooperation has a rich history, see e.g., [30], [31],
[33], [85]–[92]. In particular, it has been shown that the SDoF of a fully-connected K-
user IC without cooperation is K/2 when the channel coefficients are independent and
identically distributed (i.i.d.) fading according to a continuous distribution [30] and the
SDoF of the corresponding X-channel is K2/(2K− 1). Both these SDoFs are achieved with
interference alignment (IA) [31]. The essential part of the classic IA scheme presented
in [31] is the design of precoding matrices. For ICs, all codewords are assigned the same
precoding matrix. For X-channels, codewords intending to the same Rx group are assigned
the same precoding matrices. The precoding matrices are obtained with a specific method
such that all interfering codewords premultiplied by the same precoding matrix are aligned
into the same subspace while keeping useful codewords decodable. Although the total
number of communication channels stays constant, a larger proportion of these channels
are now available to transmit valuable messages to each user.

We consider a more general channel class called Partially-connected Channel (PC). In
this type channel, Txs/Rxs are gathered into groups of r > 0 consecutive Txs/Rxs, and
the number of group is denoted as K̃. The connectivity between Tx groups and Rx groups
is characterized by a matrix N ∈ {0, 1}(K̃×K̃), where the entry in row-k and column j

equals 1 if the signal sent by the k-th Tx group interferes at all Rxs in the j-th group.
The message flow is described by a matrix M ∈ {0, 1}(K̃×K̃), where the entry in row-k and
column j equals 1 if k-th Tx group cooperatively sends independent messages to each Rx
in group j. Each Rx observes a linear combination of all connected Tx-signals in Gaussian
noise. Txs in the same group cooperate to jointly transmit a message to each Rx in all
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intended groups, while Rxs decode their intended messages independently of each other.
For example, the following matrices represent the PC channel in Fig. 2.1.

M =


0 0 1

0 0 1

1 1 0

 , N =


0 0 1

1 0 1

1 1 0

 . (2.1)

Figure 2.1: An example of PC model for K = 6, r = 2 and the matrices M, N in (2.1). The
solid arrow represent the message passing, while the dash line indicates that the Tx group cause
interference to the Rx.

In this chapter, we explore three sub-classes of PC.

Non-cooperative Partially-connected Channel (NPC) We first examine the case
that r = 1. Since there is no cooperation between Txs, we classify this type of channels
as NPC. In Theorem 2.1 of Section 2.3, we demonstrate a lower bound for NPC that
is achievable through IA for the interference network with connectivity matrix N and
message flow matrix M. To prove the theorem, we construct an IA scheme that assigns
the precoding matrices to messages. We imply a matrix G ∈ (Z+)K×K to represent the
allocation of precoding matrices. Each entry of G indicates the index of the precoding
matrix applied to the corresponding message. Designing a new IA scheme is a challenging
task. Therefore, we establish two rules for G that ensure the validity of the IA scheme,
and enable a straightforward calculation of the achieved SDoF using G. This approach
provides a more intuitive method for designing new IA scheme for any given matrices M

and N.

Cooperative Partially-connected X-Channel (CPXC) We study a specific case
of PC where each Rx observes a linear combination of all Tx-signals in Gaussian noise,
except for the signals sent by its corresponding Tx-group, and Txs in the same group
cooperate to jointly transmit a message to each Rx in all other groups. That is to say
N = M = 1 · 1T − IdK . An example with K = 6 is shown in Fig. 2.2. For this network
model, comparing to the original IA scheme in [31], we further improve the scheme by
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Figure 2.2: CPXC model for K = 6, r = 2

exploiting the partially connectivity of the channel. By redesigning the precoding matrix
allocation method, we can decrease the number of different precoding matrices, which
reduces the dimension of the interference subspace, at the expense of sending slightly
fewer messages. The new IA scheme achieves SDoF (K(K− r)− r)/(2K− 3r) whenever the
ratio of K by r is an integer larger than 3, and achieves SDoF 2r when K/r ∈ {2, 3}.

In [31, Theorem 2], authors investigated CPXC for the special case r = 1. With the
original IA scheme, an lower bound K/2 is obtained. Our lower bound improves over this
result when K ≥ 3.

We further show a information-theoretic upper bound on SDoF of K(K−r)/(2K−3r). To
prove the upper bound, we select a series of subsystems, and each subsystem is equivalent
to a multi-access channel (MAC). The upper bound is obtained by linearly combining the
series of subsystems. For K/r = 2, the upper bound and lower bound are matched. For
K/r ≥ 3, there is a gap of r/(2K− 3r) between the two bounds.

Cooperative Partially-connected Interference Channel (CPIC) We also study
the SDoF of the Cooperative Partially-connected Interference Channel (CPIC). An example
with K = 6 is shown in Fig. 2.3. This channel is similar with the CPXC with the distinction

Figure 2.3: The cooperative interference channel model for K = 6, r = 2.

19



Chapter 2. Degrees of Freedom of Channels with Applications to Wireless Distributed
Computing (DC)

that the k-th Tx group only sends a message to the k + 1-th Rx group (the last Tx group
sends to the first Rx group). In [80], authors proved the CPIC shares the same SDoF lower
bound of K/2 as the fully-connected interference channel. By applying a similar MAC
argument, we obtain a information-theoretic upper bound that coincides with the lower
bound.

Mapreduce framework MapReduce is a popular framework to carry out heavy com-
putation tasks[3], [4]. The key feature of MapReduce is decomposing the original function
as map functions and reduce functions. The framework runs in three phases. In the first
map phase, nodes calculate intermediate values (IVA) from their associated input files and
map functions. In the subsequent shuffle phase, nodes exchange these IVAs to obtain all
IVAs required to run the final reduce phase where they compute the desired output with
reduce function. The largest part of the execution time in MapReduce systems stems from
the IVA delivery time during the shuffle phase. Several works proposed to reduce this
delivery time through smart coding. More specifically, in wired networks, delivery time is
decreased by sending appropriate linear combinations of the IVAs [6]–[8]. Over wireless
distributed system, we focus on two important metrics of the system:

• Computation load r: This metric is defined identically as the one in wired DC system,
representing the average number of nodes each file is assigned to. In other words, it
is the ratio of the total number of stored input files (including replicas) to the total
number of distinct files. 1

• Normalized Delivery Time (NDT) ∆: This is the duration of wireless shuffle normal-
ized by the total number of IVAs, and by the transmission time of one IVA over a
point-to-point channel in the high SNR regime.

The goal of coding schemes is to improve the computation-NDT tradeoff which is defined as
the achievable NDT for a given r. We first consider MapReduce frameworks without making
any assumption about the reduce functions, which we refer to as generic wireless DC. Over
cellular networks [22], [23], similar to the wired network, an improvement is achieved
through simple interference cancellation at the receiving nodes. And over wireless full-
duplex networks a gain was achieved by zero-forcing [26]. In this chapter, we show further
improvement in the computation-NDT tradeoff using the new IA scheme for CPXC.

We also consider a special case of MapReduce DC system where the reduce function
can be written as a series of associative binary operations. In this scenario, any subset
of nodes can compute an intermediate reduce function using the data within that subset
while preserving the final result. And only the results of intermediate reduce function need
to be exchanged between the subsets, which leads to reduced communication costs. This
type of associative functions are commonly used in distributed system, such as matrix
multiplication [40] and gradient descent [93], and are considered in [40] for wired channels

1We will demonstrate later that the communication channel of MapReduce with Computation load r

can be convert into a PC with the number Txs/Rxs in each group equals r. Therefore, we use the same
notation r for Computation load.
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and in [41], [42] for broadcast channels. For the MapReduce setup, we propose a round-
based scheme based on the IA scheme for CPIC, which achieves a computation-NDT
tradeoff improved lower bounded comparing to that of the TDMA scheme.

Contributions and organization To summarize, the main contribution of this chapter
are:

• For NPC, A new lower bound of the SDoF is obtained (Theorem 2.1).

• For CPXC, a new IA scheme is presented that improve the SDoF of CPXC, and an
information-theoretic upper bound for the SDoF of CPXC (Theorem 2.2).

• For CPIC, the exact SDoF of the channel is derived. (Theorem 2.3).

• For the generic wireless MapReduce system, an improved computation-NDT tradeoff
is obtained based on the new IA scheme for CPXC (Theorem 2.4).

• For wireless MapReduce system with associative reduce function, an improved computation-
NDT tradeoff is obtained based on the new IA scheme for CPIC (Theorem 2.5).

The rest of this chapter is organized as follows. In Section 2.2, we present in detail the
three channels: NPC, CPXC and CPIC. In Section 2.3, we present our main results on the
SDoF of these channels. The application of the CPXC to generic wireless DC is explained
in Section 2.4. The application of CPIC to wireless DC system with associative reduce
function is explained in Section 2.5. Proofs for the SDoF lower and the upper bounds are
given in Sections 2.6. Concluding remarks are drawn in Section 2.7.

2.2 System Models of Partially Connected Channels

Consider an interference network with K Txs and K Rxs labeled from 1 to K. Txs and Rxs
are divided into groups. For a given group-size r ≥ 1, where K is assumed divisible by r,
we define the group of Txs/Rxs

Tk ≜ {(k − 1)r + 1, . . . , kr}, k ∈ [K̃], (2.2)

where K̃ ≜ K/r.
In our network model, inter-group connectivity is represented by the binary matrix

N ∈ {0, 1}K̃×K̃. All Txs within the same group collaboratively transmit messages over a
complex channel, while messages from different Tx groups remain independent. Each Rx p
in Rx-group Tj receives a linear combination of signals transmitted by all Txs in Tx-group
Tk whenever N[j, k] = 1, with the received signals further corrupted by Gaussian noise.
Denoting Tx q’s slot-t input by Xq(t) ∈ C and Rx p’s slot-t output by Yp(t) ∈ C, the
input-output relation of the network is:

Yp(t) =
∑

q : q∈Tk,N[j,k]=1

Hp,q(t)Xq(t) + Zp(t), p ∈ Tj , (2.3)

where the sequences of complex-valued channel coefficients {Hp,q(t)} and standard circu-
larly symmetric Gaussian noises {Zp(t)} are both i.i.d. and independent of each other and
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of all other channel coefficients and noises. The real and imaginary parts of a coefficient
Hp,q(t) are i.i.d. according to a given continuous distribution on some bounded interval
[−Hmax,Hmax] and are known by all terminals even before communication starts.

Therefore, a partially connected channel can be represented by a tuple with parameters
(K, r,M,N). In this chapter, we focus on three specific partially connected channels.

2.2.1 Non-cooperative Partially Connected Channel (NPC)

We first consider the channel model where there is only one Tx/Rx in each group, i.e.
each NPC is represented by the tuple (K, 1,M,N). As Txs in different groups transmit
independent messages, we call this network a Non-cooperative Partially Connected Channel
(NPC). In this channel, the input-output relation in (2.3) is rewritten as:

Yp(t) =
∑

{q : N[p,q]=1}

Hp,q(t)Xq(t) + Zp(t), p ∈ [K], (2.4)

The message flow in this channel is represented by the matrix M, in the sense that
Tx q transmits an independent message ap,q to each Rx p for which M[p, q] = 1. When
communication is of blocklength T, each message is uniformly distributed over

[
2TRp,q

]
,

where Rp,q ≥ 0 denotes the rate of transmission, and it is independent of all other messages
and of all channel coefficients and noise sequences. As a consequence, Tx q ∈ [K] produces
its block of channel inputs Xq ≜ (Xq(1), . . . , Xq(T)) as

Xq = f (T)q ({ap,q : M[p, q] = 1}) (2.5)

by means of an encoding function f
(T)
q on appropriate domains and so that the inputs

satisfy the block-power constraint

1

T

T∑
t=1

E
[
|Xq(t)|2

]
≤ P, q ∈ [K]. (2.6)

Note that the encoding function is deterministic, and the expectation is taken over all
possible message realizations.

Given a power P > 0, the capacity region C(P) is defined as the set of all rate tuples
(Rp,q : p, q ∈ [K], M[p, q] = 1) so that for each blocklength T there exist encoding func-
tions {f (T)q }q∈[K] as described above and decoding functions {g(T)p,q } on appropriate domains
producing the estimates

âp,q = g(T)p,q (Yp(1), . . . , Yp(T)), p, q ∈ [K], M[p, q] = 1, (2.7)

in a way that the sequence of error probabilities

p(T)(error) ≜ Pr
[ ⋃
p∈[K]

⋃
{q : M[p,q]=1}

âp,q ̸= ap,q

]
(2.8)

tends to 0 as the blocklength T→∞.
Our main interest is in the Degrees of Freedom (DoF) of the channel:

SDoFNPC ≜ lim
P→∞

sup
R∈C(P)

∑
(p,q) : M[p,q]=1

Rp,q

logP
. (2.9)
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2.2.2 Cooperative Partially Connected X-Channel (CPXC)

Next, we consider CPXC, a channel characterized by the tuple (K, r,N,N), where

N = 1 · 1T − IdK .

In other word, each Rx p in Rx-group Tj observes a linear combination of the signals
sent by all Txs outside Tx-group Tj . All Txs in Tx-group Tk cooperatively transmit an
individual message ap,k to each Rx p ∈ [K]\Tk outside Rx-group k. When communication
is of blocklength T, this message is uniformly distributed over

[
2TRp,k

]
, where Rp,k ≥ 0

denotes the rate of transmission, and it is independent of all other messages and of all
channel coefficients and noise sequences. As a consequence, Tx q ∈ [K] produces its block
of channel inputs X(T)

q ≜ (Xq(1), . . . , Xq(T)) as

X(T)
q = f (T)q

({
ap,k : k =

⌈q
r

⌉
, p ∈ [K]\Tk

})
(2.10)

by means of an encoding function f
(T)
q on appropriate domains and so that the inputs

satisfy the block-power constraint

1

T

T∑
t=1

E
[
|Xq(t)|2

]
≤ P, q ∈ [K]. (2.11)

Given a power P > 0, the capacity region C(P) is defined as the set of all rate tuples
(Rp,k : k ∈ [K̃], p ∈ [K]\Tk) so that for each blocklength T there exist encoding functions
{f (T)q }q∈[K] as described above and decoding functions {g(T)p,k } on appropriate domains pro-
ducing the estimates

âp,k = g
(T)
p,k (Yp(1), . . . , Yp(T)), k ∈ [K̃], p ∈ [K]\Tk, (2.12)

in a way that the sequence of error probabilities

p(T)(error) ≜ Pr
[ ⋃
k∈[K̃]

⋃
p∈[K]\Tk

âp,k ̸= ap,k

]
(2.13)

tends to 0 as the blocklength T→∞.
Our main interest is in the SDoF, which characterizes the logarithmic growth in the

high power regime of the maximum sum of all rates tuples inside the capacity region:

SDoFCPXC ≜ lim
P→∞

sup
R∈C(P)

∑
k∈[K̃]

∑
p∈[K]\Tk

Rp,k

logP
. (2.14)

2.2.3 Cooperative Partially Connected Interference Channel (CPIC)

We consider CPIC, a channel with the tuple (K, r,M,N), where

M =



0 0 0 . . . 0 1

1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0


, N = 1 · 1T − IdK .
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In this channel, all Txs in Tx-group Tk cooperatively multicast a message ak to every
Rx p ∈ Tk+1 in Rx-group k + 1 (aK is sent ot Rx p ∈ T1). This message is uniformly
distributed over

[
2TRk

]
, where Rk ≥ 0 denotes the rate of transmission and T denotes the

blocklength, and it is independent of all other messages and of all channel coefficients and
noise sequences. Similar to the cooperative X-channel, the channel inputs of Tx q ∈ [K] is
produced as

X(T)
q = f (T)q

({
ak : k =

⌈q
r

⌉})
. (2.15)

The block-power constraint and capacity region are defined similarly to that of cooperative
X-channel, and the decoding functions {gTk } produces the estimates

âk = g
(T)
k (Yp(1), . . . , Yp(T)), k ∈ [K̃− 1], p ∈ Tk+1,

k = K, p ∈ T1 (2.16)

The encoding functions and decoding functions are well chosen so that the error prob-
abilities tends to 0 when the blocklength T tends to infinity. The SDoF of cooperative
interference channel is defined as

SDoFCPIC ≜ lim
P→∞

sup
R∈C(P)

∑
k∈[K̃]

Rk

logP
. (2.17)

2.3 Main Results

The main results of this section are lower bounds on the SDoFNPC of NPC described in
the previous Section 2.2.1, new upper and lower bounds on the SDoF of the cooperative
X-channel described in the previous Section 2.2.2, and the upper bound on the SDoF of
the cooperative interference channel described in Section 2.2.3. We restrict attention to
K/r > 1 for CPXC and CPIC, because for r = K the Rxs only observe noise and trivially
SDoF = 0 in this case.

To comprehend the results on NPC, we first present the definition of a valid precoding
index matrix.

Definition 2.1 For a given message matrix M ∈ {0, 1}K×K, a matrix G ∈ NK×K is called
a valid precoding index matrix if the following two requirements are satisfied:

• If M[p, q] = 0 then G[p, q] = 0;

• If G[p, q] = G[p′, q] for p ̸= p′, then G[p, q] = 0

Also denote by G(p) the submatrix of G obtained by removing the p-th row and the
columns q ∈ [K] for which N[p, q] = 0. More formally:

G(p) ≜ G[p′ ̸= p, {q : N[p, q] = 1}]. (2.18)

(Notice the dependence of G(p) on the connectivity matrix N, which is not represented in
the notation.) Let g(p) be equal to the number of different non-zero integers in the matrix
G(p).
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Theorem 2.1 (Lower bound for NPC) For an NPC, the SDoFNPC defined in Sec-
tion 2.2.1 is lower bounded by:

SDoFNPC ≥ SDoFLb, NPC ≜ max
G∈GM

∥G∥0
maxp∈[K]

{
∥G[p, :]∥0 + g(p)

} , (2.19)

where GM is the set of all valid precoding index matrices for the given M.

Proof: See Section 2.6.1.

Theorem 2.2 (Lower and upper bounds for CPXC) When K/r is an integer larger
than 1, the SDoFCPXC defined in Section 2.2.2 is lower bounded as:

SDoFCPXC ≥ SDoFLb, CPXC ≜

 2r if K/r ∈ {2, 3},
K(K−r)−r2

2K−3r if K/r ≥ 4,
(2.20)

and upper bounded as:

SDoFCPXC ≤ SDoFUb, CPXC ≜
K(K− r)

2K− 3r
. (2.21)

Proof: See Section 2.6.2 for the proof of the lower bound and Section 2.6.3 for the
proof of the upper bound.

For K/r ≥ 4, the additive gap between the lower and upper bounds in (2.20) and (2.21)
is r

2K−3r . This gap is decreasing in K and in the ratio K/r, and it is increasing in r.
For K/r ∈ {2, 3} the bounds (2.20) and (2.21) match and yield:

Corollary 2.1 For K/r ∈ {2, 3}, we have SDoFCPXC = 2r.

Proof: When K/r = 2, we have

SDoFUb, CPXC =
2r(2r − r)

4r − 3r
= 2r.

When K/r = 3, we have

SDoFUb, CPXC =
3r(3r − r)

6r − 3r
= 2r.

For r = 1, our lower bound (2.20) improves over the lower bound SDoF ≥ K/2 reported
in [31] for all values of K.

Theorem 2.3 (Lower and upper bounds for CPIC) When K/r is an integer larger
than 1, the SDoFCPIC defined in Section 2.2.3 is lower bounded as:

SDoFCPIC ≥ SDoFLb, CPIC ≜
K

2
(2.22)

and is upper bounded as

SDoFCPIC ≤ SDoFUb, CPIC ≜
K

2
(2.23)

Proof: The proof of the lower bound is provided in [80] and see Section 2.6.3 for
the proof of the upper bound.
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Table 2.1: Table of bounds for three channels.

Channel Lower bound Upper bound

NPC maxG∈GM

∥G∥0
maxp∈[K]{∥G[p,:]∥0+g(p)} —

CPXC (K/r ∈ {2, 3}) 2r 2r

CPXC (K/r ≥ 4) K(K−r)−r
2K−3r

K(K−r)
2K−3r

CPIC K
2

K
2

Corollary 2.2 For all K/r is an integer larger than 1, we have SDoFCPIC = K
2 .

In Table 2.1, we summarise the obtained bounds for the above mentioned channel.

Remark 2.1 By the symmetry of the setup and standard time-sharing arguments, the
bound in (2.20) implies the following bound on the Per-Message DoF (PMDoFCPXC)

PMDoFX ≜ lim
P→∞

sup
R∈C(P)

min
k∈[K̃]

p∈[K]\Tk

Rp,k

logP
≥

SDoFLb, CPXC

K(K/r − 1)
. (2.24)

And the bound in (2.22) implies the following bound on

PMDoFCPIC ≜ lim
P→∞

sup
R∈C(P)

min
k∈[K̃]

p∈[K]\Tk

Rp,k

logP
≥

SDoFLb, CPIC

K
. (2.25)

2.4 Application to Generic Wireless DC

2.4.1 The MapReduce System

Consider a DC system with K nodes labelled 1, . . . ,K; N input files W1, . . . ,WN; and Q

output functions h1, . . . , hQ mapping the input files to the desired computations. A Map-
Reduce System decomposes the functions h1, . . . , hQ as

hq(W1, . . . ,WN) = ϕq(aq,1, . . . , aq,N), q ∈ [Q], (2.26)

where ϕq is an appropriate reduce function and aq,i is an IVA calculated from input file
Wi through an appropriate map function:

aq,i = ψq,i(Wi), i ∈ [N]. (2.27)

For simplicity, all IVAs are assumed independent and consisting of A i.i.d. bits.
Computations are performed in 3 phases:
Map phase: A subset of all input files Mp ⊆ [N] is assigned to each node p ∈ [K].

Node p computes all IVAs {aq,i : i ∈Mp, q ∈ [Q]} associated with these input files.
Shuffle phase: Computations of the Q output functions is assigned to the K nodes,

where we denote by Qp ⊆ [Q] the output functions assigned to Node p.
The K nodes in the system communicate over T uses of a wireless network in a full-

duplex mode, where T is a design parameter and it depends on K, A, the encoding method
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and so on. During this communication, nodes communicate IVAs that they calculated in
the Map phase to nodes that are missing these IVAs for the computations of their assigned
output functions. So, Node p ∈ [K] produces complex channel inputs of the form

X(T)
p ≜ (Xp(1), . . . , Xp(T)) = f (T)p

(
{a1,i, . . . , aQ,i}i∈Mp

)
, (2.28)

by means of appropriate encoding function f (T)p satisfying the power constraint (2.6). Given
the full-duplex nature of the network, Node p also observes the complex channel outputs

Yp(t) =
∑
ℓ∈[K]

Hp,ℓ(t)Xℓ(t) + Zp(t), t ∈ [T], (2.29)

where noises {Zp(t)} and channel coefficients {Hp,ℓ(t)} are as defined in Section 2.2.
Based on its outputs Y (T)

p ≜ (Yp(1), . . . , Yp(T)) and the IVAs {aq,i : i ∈Mp, q ∈ [Q]} it
computed during the Map phase, Node p decodes the missing IVAs {aq,i : i /∈Mp, q ∈ Qp}
required to compute its assigned output functions {hq}q∈Qp as:

âq,i = g
(T)
q,i

(
{a1,i, . . . , aQ,i}i∈Mp , Y

(T)
p

)
, i /∈Mp, q ∈ Qp. (2.30)

Reduce phase: Each node applies the reduce functions to the appropriate IVAs cal-
culated during the Map phase or decoded in the Shuffle phase.

The performance of the DC system is measured in terms of its computation load

r ≜
∑
p∈[K]

|Mp|
N

, (2.31)

and the normalized delivery time (NDT)

∆ = lim
P→∞

lim
A→∞

T

A · Q · N
· logP. (2.32)

The computation load is defined identically as the one in wired DC system, representing
the average number of nodes each file is assigned to. In other words, it is the ratio of the
total number of stored input files (including replicas) to the total number of distinct files.
Therefore, the computation load is always greater than 1 and less than K. NDT is the
duration of wireless shuffle T the number of reduce functions Q and the number of input
files N, and by the transmission time of one IVA over a point-to-point channel in the high
SNR regime, i.e. A/ log(P). Here, the product Q · N corresponds to the total number
of IVAs. The NDT equals to 1 only in the extreme case where all input files are stored
on a single node, and the node broadcasts all IVAs using time-sharing, even when this is
unnecessary. For a well-designed scheme, the actual number of IVAs transmitted through
the channel is strictly less than total number of IVAs as many are only required locally.
Furthermore, with communication schemes more efficient than time-sharing, the NDT is
guaranteed to be less than 1.

We focus on the fundamental computation-NDT tradeoff ∆∗(r), which is defined as the
infimum over all values of ∆ satisfying (2.32) for some choice of file assignments {Mp},
transmission time T, function assignment {Qp}, and encoding and decoding functions
{f (T)p } and {g(T)q,i } in (2.28) and (2.30), all depending on A so that the probability IVA
decoding error

Pr
[ ⋃
p∈[K]

⋃
q∈Qp

⋃
i/∈Mp

âq,i ̸= aq,i

]
→ 0 as A→∞. (2.33)
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Figure 2.4: Illustrative Example with K = 6 and r = 2

2.4.2 An Illustrative Example with K = 6 and r = 2

In Fig. 2.4, we illustrates an example setup with K = Q = 6 and N = 3, where 6 nodes
are divided into three groups, with two nodes per group, i.e. T1 = {1, 2}, T2 = {3, 4}, and
T3 = {5, 6}, each containing two nodes.

Map phase: During the map phase, assign the same input file to one entire group: w1

to T1, w2 to T2 and w3 to T3. This setup clearly shows that the computation load r = 2,
which meets the requirement.

Shuffle phase: Assign output function Φp to node p, i.e. Qp = {p}. During the
shuffle phase, the nodes operate in full duplex, meaning that each node can act both
as a transmitter Tx and a Rx. To apply the result in (2.20), we need to confirm the
communication channel during the shuffle phase is equivalent to a CPXC. Consider Group
T1 as an example. Group T1 send one IVA to each node outside the group (sending a3,1
to node 3, a4,1 to node 4 and so on). Meanwhile, nodes in T1 can send IVAs cooperatively
as they issue the same input file w1. Nodes in Group T1 are able to cancel all interference
inside the group for the same reason. This way forming the CPXC structure necessary for
the lower bound to be applicable.

Therefore, the lower bound in (2.20) can be used to calculate the computation-NDT
tradeoff. We will give the calculation detail in the next subsection.

2.4.3 Results on Normalized Delivery Time (NDT)

We observe that the channel model of the MapReduce system during the shuffle phase can
be represented as a CPXC in Subsection 2.2.2 when a group input file assignment scheme
is applied. As we assume each node in the MapReduce system is full duplex, it functions as
both a Tx and a Rx simultaneously. Additionally, nodes in the same group can cancel the
internal links as the same files are assigned. This configuration forms the necessary CPXC
structure for the IA scheme to be applicable. Furthermore, it is straightforward to recognize
that the NDT is inversely proportional to the SDoF lower bound by definition. Based on
these insights, we provide the formal proof for the lower bound of the computation-NDT
tradeoff in this section. Based on the lower bound in (2.24) we obtain:
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Theorem 2.4 Assume N and Q are both multiples of K. If N is large enough, the funda-
mental computation-NDT tradeoff of the full-duplex wireless DC system is upper bounded
as

∆∗(r) ≤ lowc
(
(K, 0) ∪

{(
r,

1− r/K

SDoFLb, CPXC

)
: 1 ≤ r < K and r|K

})
, (2.34)

where lowc(·) denotes the lower-convex envelope, SDoFLb, CPXC is defined in Eq. (2.20),
and r|K indicates that r divides K.

Proof: We prove the result for integer values of r ∈ [K] that divide K. The final
result follows by time- and memory-sharing arguments when N is sufficiently large.

We reuse the group definition in Tk in (2.2).
Map phase: Choose the same file assignment for all nodes in group Tk:

Mp = M̃k ≜

{
(k − 1)

rN

K
+ 1, . . . , k

rN

K

}
,

p ∈ Tk, k ∈ [K̃], (2.35)

This file assignment satisfies the communication load r in (2.31).
Shuffle phase: Choose the output function assignment:

Qp ≜ {(p− 1)Q/K+ 1, . . . , pQ/K}, p ∈ [K]. (2.36)

Further, choose a sequence (in P > 0) of rates R(P) > 0 such that

lim
P→∞

R(P)

logP
=

SDoFLb

K(K/r − 1)
(2.37)

and such that for each P the symmetric rate-tuple (Rp,k = R(P), k ∈ [K̃], p ∈ [K]\Tk) lies
inside the capacity region C(P) for the setup in Section 2.2. Fix a power P and consider a
sequence (in T′) of coding schemes {f (T

′)
p }T′ and {g(T

′)
p,k }T′ for the chosen rate-tuple such

that p(T′)(error) in (2.13) tends to 0 as T′ →∞. By Theorem 2.2 and Remark 2.1, all the
mentioned sequences exist.

The shuffle phase is split into rounds, where in each round, each group of nodes Tk
communicates a different IVA aν,i to each node ℓ ∈ [K]\Tk, for chosen ν ∈ Qℓ and i ∈ M̃k.
To send all missing IVAs, rounds Φ are necessary with

Φ ≜ |Q1| · |M̃1| = (Q/K) · (Nr/K) (2.38)

Any node p ∈ Tk uses the chosen encoding function f
(T′)
p to send the IVAs in a given

round, for a blocklength T′ satisfying

A

T′ < R(P). (2.39)

Notice that all nodes in a group Tk compute the same IVAs in the Map phase, and
they can thus compute each others’ inputs. Therefore, after receiving its channel outputs
Y

(T′)
p in a given round, any Node p ∈ Tk first uses the IVAs it calculated during the Map

phase to reconstruct and mitigate the signals sent by Txs in the same group Tk:

Ỹp(t) ≜ Yp(t)−
∑
ℓ∈Tk

Hp,ℓ(t)Xℓ(t), p ∈ Tk, t ∈ [T′]. (2.40)
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Then, it applies the chosen decoding functions {g(T
′)

p,k : k ∈ [K̃]\⌈p/r⌉} to reconstruct the
IVAs sent to it in this round from all Tx-groups except for Tx-group ⌈p/r⌉.

Analysis: By our choice of the coding scheme and (2.39), the probability of error in
(2.33) tends to 0 as T′ → ∞. Since the total length of the shuffle phase is T ≜ ΦT′, and
by (2.38) and (2.39), the NDT of our scheme is:

lim
P→∞

lim
A→∞

T logP

A · Q · N
= lim

P→∞
lim
A→∞

ΦT′ logP

A · Q · N
= lim

P→∞
lim
A→∞

r

K2

T′ logP

A

≥ lim
P→∞

r

K2

logP

R(P)
=

1− r
K

SDoFLb
. (2.41)

This proves the desired achievability result.
The SDoF lower bound achieved by basic Time-Division Multiple Access (TDMA)

scheme is 1, as only one IVA is sent for given time slot. We obtain the upper bound

∆∗(r) ≤ lowc ({(1− r/K) : 1 ≤ r ≤ K}) . (2.42)

With the similar proof in Section 2.4, we can deduce that the SDoF achieved by classic
IA scheme in [30] is given by

SDoF′
Lb ≜

 2r if K/r ∈ {2, 3},

K/2 if K/r ≥ 4,
(2.43)

The lower bound is obtained by applying (2.34).
The one-shot scheme in [26], which applies zero-forcing and side information cancella-

tion, achieves the upper bound

∆∗(r) ≤ lowc
({(

r,
1− r/K

min(K, 2r)

)
: 1 ≤ r ≤ K

})
. (2.44)

It is straightforward to see that TDMA scheme is sub-optimal compared to all three
schemes for any given r and K, as they achieve SDoF greater than one. Meanwhile, the
new IA scheme consistently outperforms the classic IA scheme. This can be prove by
comparing SDoFLb in (2.20) with SDoF′

Lb in (2.43). These two bounds are identical when
K/r ∈ {2, 3}, and when when K/r ≥ 4,

SDoFLb, CPXC =
K(K− r)− r2

2K− 3r
≥ K

2
= SDoF′

Lb,

where the inequality holds because it can be rewritten as r(K− 2r) ≥ 0.
Therefore, it is sufficient to compare the bound derived by the one-shot scheme with

the bound derived by the new IA scheme. For fixed K and for r a value that divides K

but neither equals K/2 nor K/3, our new upper bound in (2.34) is strictly better (lower)
than the upper bound in (2.44). If K is even, the two bounds coincide on the interval
r ∈ [K/2,K], where they are given by the straight line (1− r/K)/K. If K is a multiple of 3,
the two bounds also coincide for r = K/3, where they are given by (1− r/K)/r. For other
values of r, the bound in (2.44) can be smaller. An improved upper bound on ∆∗(r) is thus
obtained by combining the two upper bounds, which results in the lower-convex envelope
of the union of the sets in (2.34) and (2.44).
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In Fig. 2.5, we numerically compare the bounds in (2.34) and (2.44) for K = 24. We
observe that on the interval r ∈ [0, 8] the bound in (2.34) performs better and on the
interval r ∈ [8, 12] the bound (2.44) performs better because (2.34) is simply given by a
straight line as r ∈ {9, 10, 11} does not divide 24. On the interval r ∈ [12, 24] both bounds
perform equally-well as explained in the previous paragraph.
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Figure 2.5: Upper bounds on ∆∗(r) for the TDMA scheme, the one-shot scheme in [26], the classic
IA scheme and our new IA scheme when K = 24.

2.5 Application to Wireless DC with Associative Reduce Func-
tion

In this section, we consider a special MapReduce setup wherein every node executes an
identical reduce function ϕ(a1, · · · , aN), i.e. Q = 1. We also require the function ϕ can be
rewrite as

ϕ(a1, · · · , aN) = a1 ∗ a2 ∗ · · · ∗ aN, (2.45)

where ∗ is an associative binary operation which means (a1 ∗ a2) ∗ a3 = a1 ∗ (a2 ∗ a3). For
instance, the operation ∗ could be addition, multiplication, finding the minimum or more
complex operations. Such a system is prevalent in decentralized distributed estimation and
decentralized machine learning, where each node endeavors to compute the same objective
function. Additionally, we assume r = 1 and N = K, as these systems typically operate on
local data sources.

2.5.1 An Illustrative Example with K = 6

As shown in Fig 2.6, we consider a MapReduce system with 6 nodes. Each node k ∈ [6]

calculates its only IVA ak, and the reduce function is simply the sum of all 6 IVAs. The
shuffle phase is split into 2 rounds. In the first round, the nodes 1 and 2 are grouped
together, node 3 and 4 are grouped, and node 5 and 6 are grouped. Then, the three groups
exchange the IVAs between the two nodes. As this channel is identical to cooperative
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Figure 2.6: Illustrative Example with K = 6

interference channel with K = 6 and r = 1, each IVA can be sent with the data rate
R1(P) =

1
2 logP according to Theorem 2.3 and Remark 2.1, and the blocklength satisfies

T1 > A/R1(P). In the second round, nodes 1 and 2 calculate a1+a2 and send cooperatively
the sum to nodes 3 and 4. Nodes 3 and 4 also calculate a3 + a4 and send cooperatively
the sum to nodes 3 and 4, while nodes 5 and 6 will be addressed later. As this channel
is identical to cooperative interference channel with K = 4 and r = 2, each sum can be
sent with the data rate R2(P) = logP. After IVAs are exchanged, nodes 5 and 6 broadcast
a5 + a6 to all the other nodes with the data rate R′

2(P) = 2 logP. The blocklength for the
second phase is T2 +T′

2 satisfying T2 > A/R2(P) and T′
2 > A/R′

2(P). Finally, nodes 1 to 4
are able to calculate the reduce function

∑6
i=1 ai and the final result is sent cooperatively

by nodes 1 and 2 to nodes 5 and 6 with the data rate Rf (P) = 2 logP and blocklength
Tf > A/Rf (P). Therefore, the total blocklength satisfies

T > A/R1(P) + A/R2(P) + A/R′
2(P) + A/Rf (P)

= 4 · A/ logP.

The computation-NDT tradeoff is thus 2/3.

2.5.2 General Results

Theorem 2.5 The fundamental computation-NDT tradeoff of the full-duplex wireless DC
system with associative reduce function is upper bounded as

∆∗ ≤ 1

K
·

(
4(1− 1

2Kn
) +

Kn−1∑
i=0

bi
2i

+ 1

)
, (2.46)

where Kn = ⌊logK⌋ and bKnbKn−1 · · · b1b0 represents the binary number of K.

Proof: As r = 1 and N = K, the file assignment scheme is straightforward. We
directly discuss the shuffle phase.

Shuffle phase: The shuffle phase is split into Kn = ⌊logK⌋ rounds.

• In the first round, we divide nodes into groups with group-size 2 if K is even, i.e.
b0 = 0. The two nodes inside the same group exchange the locally calculated IVA. As
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this channel is the same as the cooperative interference channel mentioned in Section
2.2.3, by Theorem 2.3 and Remark 2.1, we can deduce that the following date rate
is achievable

lim
P→∞

R(P)

logP
=

1

2
, (2.47)

and the IVAs are sent for a blocklength satisfying

A

T1
< R(P). (2.48)

Nodes in the same group calculate the intermediate result of the binary operation
using the two IVA. If K is odd, the last node broadcast its IVA to all other nodes for
a blocklength T′

1 satisfying

lim
P→∞

A

T′
1 logP

< A. (2.49)

Then we perform the operations mentioned above with K− 1 nodes.

• Similarly, in the i-th round, if the number of groups of the i − 1 round is even, i.e.
bi−1 = 0 , we combine two groups of the i − 1 round into one new group, and the
group-size is 2i. Without loss of generality, we can assume nodes in the j-th group
are {(j− 1)2i+1, (j− 1)2i+2, · · · , j2i}, and the first half of nodes possess the same
intermediate result from previous rounds, i.e. each nodes (j−1)2i+1, · · · , (j−1)2i+
2(i−1) knows

a(j−1)2i+1 ∗ a(j−1)2i+2 ∗ · · · ∗ a(j−1)2i+2(i−1) .

The other half of the nodes possess another intermediate result. Then, one interme-
diate result is transmitted cooperatively to the other half of group inside each group
for a blocklength Ti satisfying

lim
P→∞

A

Ti logP
<

2A

2(i−1)
. (2.50)

After the transmission, nodes in the same group calculate the new intermediate value
a(j−1)2i+1 ∗ · · · ∗aj2i . If the number of groups of the i−1 round is odd, the last group
of the i − 1 round broadcast their intermediate result to all other nodes with a
blocklength T ′

i such that

lim
P→∞

A

T′
i logP

<
A

2(i−1)
, (2.51)

and we perform the same operations with the rest groups.

• After Kn rounds, only one group remains, wherein nodes can calculate the reduce
function ϕ and broadcast it to all nodes outside the group with a blocklength Tf

such that

lim
P→∞

A

Tf logP
< A, (2.52)
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Analysis: By our choice of the coding scheme, (2.47)-(2.52), the probability of error
tends to 0 when the blocklength tends to infinity, the NDT of our scheme is

lim
P→∞

lim
A→∞

T logP

A · K

= lim
P→∞

lim
A→∞

∑Kn
i=1 (Ti + T′

i) + T′
Kn

A · K/ logP
(2.53)

≥ 1

K
·

(
Kn∑
i=1

2

2(i−1)
+

Kn∑
i=1

b(i−1)

2(i−1)
+ 1

)
(2.54)

=
1

K
·

(
4(1− 2−Kn) +

Kn∑
i=1

b(i−1)

2(i−1)
+ 1

)
(2.55)

This proves the desired achievability result.

Remark 2.2 From (2.46), we deduce that ∆∗ is upper bounded by O( 1K), as

(2.46) ≤ 1

K

(
4(1− 2−Kn) +

Kn−1∑
i=0

1

2i
+ 1

)
(2.56)

=
1

K

(
6(1− 2−Kn) + 1

)
(2.57)

≤ 1

K

(
6(1− 1

K
) + 1

)
(2.58)

This bound is significantly better compared to the simple TDMA scheme, which yields a
bound of O(1).

2.6 Proof of the SDoF Bounds for NPC, CPXC and CPIX

In this section, we demonstrate the proofs for Theorem 2.1 , 2.2 and 2.3. The SDoF
lower bound is proven by applying IA scheme. The SDoF upper bounds are proven by a
information theoretic MAC argument.

2.6.1 Proof of the SDoF Lower Bound for NPC (Theorem 2.1)

Coding Scheme We fix a parameter η ∈ Z+ and a valid precoding index matrix G.
Define

pmax = argmax
p∈[K]

{
∥G[p, :]∥0 + g(p)

}
. (2.59)

Choose

T = ηΓ∥G[pmax, :]∥0 + (η + 1)Γg(pmax). (2.60)

where we specify the value of Γ later in Eq. (2.65). We only send messages {ap,q} with
G[p, q] > 0. Each message is encoded using a circularly symmetric Gaussian codebook of
average power P/∥G[:, q]∥0 and codeword length ηΓ. Each codeword is sent over a block
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of T consecutive channel uses. More precisely, let {bp,q} denote the ηΓ-length codeword
symbol for message ap,q. Each Tx q form their inputs as:

Xq =
∑

{p : G[p,q]>0}

UG[p,q]bp,q, (2.61)

where matrices {Ug}g∈[gmax] are described shortly, and gmax is the maximal element in G.
Notice that messages ap,q and ap′,q′ are actually multiplied by the same precoding matrix
if G[p, q] = G[p′, q′] > 0.

We recall that Rx p only receives signals from connected Txs, i.e. from Tx q with
N[p, q] = 1, which allows to write the observed signal at each Rx p ∈ [K] as:

Yp =
∑

{q : G[p,q]>0}

Hp,qUG[p,q]bp,q︸ ︷︷ ︸
desired signal

+
∑

{q : N[p,q]=1}

∑
{p′ : p′ ̸=p
G[p′,q]>0}

Hp,qUG[p′,q]bp′,q

︸ ︷︷ ︸
Interference

+Zp,

(2.62)

where Hp,q ≜ diag([Hp,q(1), Hp,q(2) · · ·Hp,q(T)]), Yp ≜ (Yp(1), . . . , Yp(T))
T , and Zp are

the corresponding Gaussian noise vectors observed at Rx p.

IA Matrices {Ug} Inspired by the IA scheme in [89], we choose each T× ηΓ precoding
matrix Ug so that its column-span includes all power products (with powers from 1 to
η) of the channel matrices Hp,q that premultiply Ug in (2.62) when the coded symbol is
treated as interference for the receiver. That implies, for g ∈ [gmax]:

Ug =

 ∏
H∈Hg

Hαg,H ·Ξg : ∀αg ∈ [η]Γ

 , (2.63)

where {Ξg}g∈G are i.i.d. random vectors independent of all channel matrices, noises, and
messages,

Hg ≜
{
Hp,q : N[p, q] = 1 and ∃p′ ∈ [K]\{p}
such that G[p′, q] = g

}
, (2.64)

αg ≜ (αg,H : H ∈ Hg), and we assume the sizes of Hg for g ∈ [gmax] are equal 2 and

Γ = |Hg|. (2.65)

Analysis of Signal-and-Interference Subspaces Since the column-span of Ug con-
tains all power products of powers 1 to η of the channel matrices Hp,q that premultiply Ug

2If |Hg| varies for different g, additional i.i.d. diagonal random matrices can be added to Hg with fewer
element, and the rest of proof remains unchanged.
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in (2.62), the product of any of these matrices with Ug is included in the column-space of
the T× (η + 1)Γ-matrix

Wg =

 ∏
H∈Hg

Hαg,H ·Ξg : ∀αg ∈ [η + 1]Γ

,
g ∈ [gmax]. (2.66)

Formally, for each g ∈ [gmax] and H ∈ Hg, we have span(H · Ug) ⊆ span(Wg). As
a consequence, the signal and interference space at a Rx p ∈ [K] is represented by the
matrix:

Λp ≜ [Dp, Ip] . (2.67)

with the signal subspaces given by the T× (K̃− 1)ηΓ-matrices

Dp ≜
[
Hp,qUG[p,q] : G[p, q] > 0

]
. (2.68)

and the interference subspaces given by

Ip ≜
[
WG[p′,q] : N[p, q] = 1, p′ ̸= p,G[p′, q] > 0

]
(2.69)

By observing the signal subspace, we obtain the following property

Property 2.1 For matrix Hp,qUG[p,q] in the signal subspace Dp, we have Hp,q /∈ HG[p,q]

according to the second condition on the valid precoding index matrix.

Proof: The property can be proven by contradiction. We assume Hp,q ∈ HG[p,q].
By the definition of H in (2.64), we deduce that ∃p′ ∈ [K]\{p} such that G[p′, q] = G[p, q].
There is thus at least one non-zero integer repeats within a column of G, which violates
the second requirement of a valid precoding index matrix in Definition 2.1. This concludes
the proof.

We shall prove that all matrices {Λp} are of full column rank. This proves that the
desired signals intended for Rx p can be separated from each other and from the interference
space at this Rx. In the limits η →∞ (and thus T→∞) and P→∞, this establishes an
DoF of

lim
η→∞

∥G[p, :]∥0ηΓ

T
=

∥G[p, :]∥0
∥G[pmax, :]∥0 + g(pmax)

at Rxs p. The SDoF of the entire system is thus given by SDoFLb, NPC, which establishes
the desired result. In the following, we will explain in detail that the matrix Λp has the
same form as the matrix A in Lemma 2.1 and satisfy the two conditions mentioned in
Lemma 2.1. Then any square submatrix of Λp has the same form as A, which by Lemma
2.1 proves that the matrix Λp is full column rank with probability 1.

To see that Λp is of the form in (2.70), notice that all matrices involved in (2.67), i.e.
{Hp,q} , are diagonal, and their multiplications with an vector, i.e. {Ξg}, from the right
leads to a column-vector consisting of the non-zero entries of these diagonal matrices. More
precisely, the random variables in row t are given by the slot-t channel coefficients {Hp,q(t)}
and the t-th elements of vector {Ξg}, which by definition are independent of each other and
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of all random variables in the other rows. Therefore, the matrix Λp satisfies Condition i)
in Lemma 2.1. To see that it also satisfies Condition ii), notice that for any two distinct
columns v(1) and v(2) selected from Λp, the exponents in the corresponding columns differ
because:

1. If v(1) and v(2) are selected from the same signal subspace Hp,qUg or the same
interference subspace Wg, the two vectors have different exponents due to the con-
struction method of U and W.

2. If v(1) is selected from the signal subspace Hp,qUg, and v(2) is selected from the
signal subspace Hp,q′Ug′ or interference subspace Wg′ with g ̸= g′, the two vectors
have different exponents as they have distinct factors Ξg and Ξg′ .

3. If v(1) is selected from the signal subsapce Hp,qUg, and v(2) is selected from the
signal subspace Hp,q′Ug or interference subsapce Wg, we can deduce that Hp,q /∈ Hg

by Property 2.1. v(1) has the factor Hp,q while v(2) does not. The two vectors thus
have different exponents.

This concludes the proof.

Lemma 2.1 (Lemma 1 in [89]) Consider an M-by-M square matrix A with i-th row and
j-th column entry

aij =

L∏
ℓ=1

(
X

[ℓ]
i

)α[ℓ]
ij
, i, j ∈ M, (2.70)

for random variables {X [ℓ]
i }ℓ∈[L] and exponents

αij ≜
(
α
[1]
ij , α

[2]
ij , . . . , α

[L]
ij

)
∈ Z+L. (2.71)

If

1. for any two pairs (i, ℓ) ̸= (i′, ℓ′) the conditional cumulative probability distribution
P
X

[ℓ]
i |X[ℓ′]

i′
is continuous; and

2. any pair of vectors αi,j ̸= αi,j′ for i, j, j′ ∈ [M] with j ̸= j′;

then the matrix A is full rank with probability 1.

2.6.2 Proof of the SDoF Lower Bound for CPXC (Theorem 2.2)

We first consider the case that K̃ ∈ {2, 3}. Choose Tx/Rx-groups T1 and T2, and ignore
all Txs, Rxs, and messages in the other groups. This reduces the network into two non-
interfering r-user broadcast channels, one from Tx-group T1 to Rx-group T2 and the other
from Tx-group T2 to Rx-group T1, where SDoF r is achievable on each of them.

Then, we give the IA scheme for K̃ ≥ 4.
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Coding Scheme We fix a parameter η ∈ Z+, define

Γ ≜ K(K− 2), (2.72)

and choose

T = ηΓ(K̃− 2) + (η + 1)Γ(K̃− 1). (2.73)

Each message {ap,k} for k ∈ [K̃], p ∈ [K]\Tk—but not messages {ap,K̃}p∈T1 which are
not transmitted in our coding scheme—is encoded using a circularly symmetric Gaussian
codebook of average power P/(K − r) and codeword length ηΓ. Each codeword is sent
over a block of T consecutive channel uses. More precisely, let bp,k denote the ηΓ-
length codeword symbol for message ap,k and define for each j ∈ [K̃], k ∈ [K̃]\{j} and
(j, k) ̸= (1, K̃) the vector

b̃j,k ≜
(
bT
(j−1)r+1,k,b

T
(j−1)r+2,k, · · · ,b

T
j·r,k

)T
. (2.74)

Group the channel inputs and outputs into the vectors

Xq ≜ (Xq(1), . . . , Xq(T))
T , q ∈ [K], (2.75)

Yp ≜ (Yp(1), . . . , Yp(T))
T , p ∈ [K], (2.76)

and for each Tx-group k ∈ [K̃]:

X̃(k) ≜


X(k−1)·r+1

...

Xk·r,

 (2.77)

and Rx-group j ∈ [K̃]:

Ỹ(j) ≜


Y(j−1)·r+1

...

Yj·r

 =
∑
k ̸=j

H̃(j,k)X̃(k) + Z̃(j), (2.78)

where Z̃(j) is the corresponding Gaussian vector and H̃(j,k) is the rT× rT channel matrix

H̃(j,k) ≜


H(j−1)·r+1,(k−1)·r+1 · · · H(j−1)·r+1,k·r

...
...

Hj·r,(k−1)·r+1 · · · Hj·r,k·r

 (2.79)

and
Hp,q ≜ diag([Hp,q(1), Hp,q(2) · · ·Hp,q(T)]). (2.80)

Tx-groups form their inputs as:

X̃(1) =

K̃∑
i=2

Ṽ(i,1)Ũib̃i,1, (2.81)

X̃(k) =
∑

i∈[K̃]\{1,k}

Ṽ(i,k)Ũib̃i,k + Ṽ(1,k)Ũkb̃1,k,

k ∈ [K̃− 1]\{1}, (2.82)

X̃(K̃) =
∑

i={2,...,K̃−1}

Ṽ(i,K̃)Ũib̃i,K̃, (2.83)
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where
Ũi ≜ Idr ⊗Ui, i ∈ {2, 3, · · · , K̃}, (2.84)

and matrices {Ui} and {V(i,k)} are described shortly.
Notice that for i ∈ {2, 3, · · · , K̃}, messages {ãi,k}k∈[K̃]\{i} and ã1,i are multiplied by the

same precoding matrix Ũi.

Zero-forcing Matrices {Ṽ(i,k)} For each i, k ∈ [K̃] with i ̸= k, construct the T × T

diagonal matrices S
(i,k)
1 , · · · ,S(i,k)

r by picking the real and imaginary parts of all non-
zero entries i.i.d. according to a continuous distribution over [−Hmax,Hmax] and form the
diagonal matrix

S(i,k) ≜


S
(i,k)
1 0 0

0
. . . 0

0 · · · S
(i,k)

r

 . (2.85)

Choose the precoding matrices as:3

Ṽ(i,k) =
(
H̃(i,k)

)−1
S(i,k), i, k ∈ [K̃], i ̸= k, (2.86)

so that all information sent to any Rx in group Tj is zero-forced at all other Rxs in the same
group Tj . Defining for each triple (i, j, k) ∈ [K̃]3 with i ̸= j, j ̸= k, k ̸= i the “generalized"
channel matrix

G̃
(i,k)
j =


G

((i−1)·r+1,k)
(j−1)·r+1 · · · G

(i·r,k)
(j−1)·r+1

...
...

G
((i−1)·r+1,k)
j·r · · · G(j·r)

i·r,k

 (2.87)

≜ H̃(j,k) · Ṽ(i,k) = H̃(j,k)
(
H̃(i,k)

)−1
S(i,k), (2.88)

allows to write the signals at the various Rx-groups as:

Ỹ(1) =

K̃−1∑
k=2

S(1,k)Ũkb̃1,k︸ ︷︷ ︸
desired signal

+
K̃∑
i=2

∑
k/∈{1,i}

G̃
(i,k)
1 Ũib̃i,k + Z̃(1),

(2.89)

Ỹ(j) =
∑
k ̸=j

S(j,k)Ũjb̃j,k︸ ︷︷ ︸
desired signal

+
∑

i/∈{1,j}

∑
k/∈{i,j}

G̃
(i,k)
j Ũib̃i,k

+
∑

k/∈{1,j,K̃}

G̃
(1,k)
j Ũkb̃1,k + Z̃(j), j ∈ [K̃]\{1}.

(2.90)

The third sum in (2.90) has K̃ − 2 terms when j = K̃ but only K̃ − 3 terms otherwise.

3We assume that all matrices {H̃(i,k)} are invertible, which happens with probability 1. Otherwise, Txs
and Rxs immediately declare an error in the communication. This probability-0 event, does not change
the error probability of the system.
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IA Matrices {Ui} Inspired by the IA scheme in [30], we choose each T× ηΓ precoding
matrix Ui so that its column-span includes all power products (with powers from 1 to η) of
the “generalized" channel matrices G

(p,k)
p′ that premultiply Ui in (2.89) and (2.90). That

means:

Ui =

 ∏
G∈Gi

Gαi,G ·Ξi : ∀αi ∈ [η]Γ·r
2

 , i ∈ [K̃]\{1}, (2.91)

where {Ξi}Ki=2 are i.i.d. random vectors independent of all channel matrices, noises, and
messages, and

Gi ≜
{
G

(p,k)
p′ : p ∈ Ti, k ∈ [K̃]\Ti, p′ ∈ [K]\(Ti ∪ Tk)

}
∪
{
G(p′,i)

p : p ∈ T1, p′ ∈ [K]\{Ti ∪ T1}
}
, (2.92)

and αi ≜ (αi,G : G ∈ Gi).

Analysis of Signal-and-Interference Subspaces Since the column-span of Ui con-
tains all power products of powers 1 to η of the modified channel matrices G ∈ Gi that
premultiply Ui in (2.89) and (2.90), the product of any of these matrices with Ui is included
in the column-space of the T× ηΓ-matrix

Wi =

 ∏
G∈Gi

Gαi,G ·Ξi : ∀αi ∈ [η + 1]Γ·r
2

 , i ∈ [K̃]\{1},

(2.93)

where notice that |Gi| = Γ. Formally, for each i ∈ {2, 3, · · · , K̃} and G ∈ Gi, we have
span(G · Ui) ⊆ span(Wi). As a consequence, the signal and interference space at a
Rx p ∈ Tj , for j ∈ {2, . . . , K̃}, is represented by the matrix:

Λp ≜
[

Dp,︸︷︷︸
signal space

W2, · · · , Wj−1, Wj+1, · · · , WK̃︸ ︷︷ ︸
interference space

]
. (2.94)

with the signal subspaces given by the T× (K̃− 1)ηΓ-matrices

Dp ≜
[
S
(j,k)
p mod r ·Uj

]
k∈[K̃]\{j}

, p ∈ Tj . (2.95)

For a Rx p in the first group T1, the signal and interference spaces are represented by the
T× T-matrix:

Λp =
[
Dp,2, · · · , Dp,K̃−1,︸ ︷︷ ︸

signal space

W2, W3, · · · , WK̃︸ ︷︷ ︸
interference space

]
, (2.96)

where the signal subspace is given by the T× ηΓ-matrices

Dp,k ≜ S(1,k)
p ·Uk, k ∈ {2, ..., K̃− 1}, p ∈ T1.

We shall prove that all matrices {Λp} are of full column rank. This proves that the
desired signals intended for Rx p can be separated from each other and from the interference
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space at this Rx. In the limits η →∞ (and thus T→∞) and P→∞, this establishes an
SDoF of limη→∞

(K̃−1)ηΓ

T = K̃−1
2K̃−3

at Rxs p ∈ [K̃]\T1 and an SDoF of K̃−2
2K̃−3

for Rxs p ∈ T1.
The SDoF of the entire system is thus given by SDoFLb, which establishes the desired
achievability result.

To prove the full rankness of each matrix Λp, we introduce the following lemma.

Lemma 2.2 Consider positive integers n1, n2, · · · , nK̃ summing to C ≜
∑K̃

i=1 ni ≤ T,
and for each i ∈ [K̃] and k ∈ [ni] a diagonal T × T matrix Bi,k ∈ C so that all square
sub-matrices of the following matrices are full rank:

Bi ≜ [Bi,1 · 1,Bi,2 · 1, · · · ,Bi,ni · 1] , i ∈ [K̃]. (2.97)

Let {Ξi} be independent T-length vectors with i.i.d. entries from continuous distribu-
tions and define the T× ni-matrices

Ai ≜ [Bi,1 ·Ξi,Bi,2 ·Ξi, · · · ,Bi,ni ·Ξi] , i ∈ [K̃]. (2.98)

Then, the T×C-matrix Λ ≜
[
A1,A2, · · · ,AK̃

]
has full column rank with probability 1.

Proof: We present the proof for the case that the matrix Λ is square, i.e., C = T.
If T > C, we take a square C-by-C submatrix of Λ and perform the same proof steps on
the submatrix.

Define
F
(
Ξ1, . . . ,ΞK̃

)
≜ det(Λ) (2.99)

which is a polynomial of Ξ1,Ξ2, · · · ,ΞK̃ as the determinant is a polynomial of the entries
of Λ.

For the vectors

ξi = [ 0, · · · 0,︸ ︷︷ ︸
(n1+···+ni−1) 0s

1, · · · 1,︸ ︷︷ ︸
ni 1s

0, · · · 0︸ ︷︷ ︸
(ni+1+···+nK̃) 0s

]T , i ∈ [K̃], (2.100)

the polynomial evaluates to

F
(
ξ1, . . . , ξK̃

)
= det


B′

1 0 · · · 0

0 B′
2 · · · 0

...
...

. . .
...

0 0 · · · B′
K̃

 (2.101)

=

K̃∏
i=1

det(B′
i) ̸= 0 (2.102)

where B′
i is the ni×ni square sub-matrix of Bi consisting of its rows (n1 + · · ·+ni−1 +1)

to (n1 + · · ·+ ni−1 + ni). As all square sub-matrices of Bi are full rank, any matrix B′
i for

i ∈ [K̃] is also full-rank. This leads to det(B′
i) ̸= 0 for i ∈ [K̃]. Consequently (2.102) holds.

We conclude that F is a non-zero polynomial and thus F
(
Ξ1, . . . ,ΞK̃

)
equals 0 with

probability 0 because the entries of Ξ1,Ξ2, · · · ,ΞK̃ are drawn independently from contin-
uous distributions.
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Notice that each matrix Λp, for p ∈ [K], is of the form of the matrix Λ in Lemma 2.2
at the end of this section. Defining the matrices {Ûi}, {Ŵi}, {D̂p} and {D̂p,k} in the
same way as {Ui}, {Wi}, {Dp}, and {Dp,k} but with Ξi replaced by the all-one vector 1,
it suffices to show that with probability 1 all square submatrices of the following matrices
(which play the roles of {Bi} when applying Lemma 2.2) are full rank:

{D̂p}p∈[K̃]\T1 , {Ŵj}K̃j=2,
{[

D̂p,j , Ŵj

]}
p∈T1

j∈{2,...,K̃}
. (2.103)

For matrix D̂p, p ∈ T2, this proof is provided in Appendix A. The proofs for the other
matrices follow a similar argument.

2.6.3 Proof of the SDoF Upper Bounds for CPXC and CPIC (Theo-
rem 2.2 and 2.3)

The proof follows immediately by summing up the upper bound in the following Lemma
2.3 for the K̃(K̃− 1) distinct pairs (j, k) ∈ [K̃]× [K̃] with j ̸= k, and then dividing this sum
by 2K̃− 3, because each rate has been counted 2K̃− 3 times.

Lemma 2.3 Let
(
Rp,k(P) : k ∈ [K̃], p ∈ [K]\Tk

)
be a rate-tuple in C(P), for each P > 0.

Then, for any j, k ∈ [K̃] with j ̸= k:

lim
P→∞

∑
p∈Tj

∑
ℓ∈[K̃]\{j}

Rp,ℓ

logP
+

∑
p∈[K]\(Tk∪Tj)

Rp,k

logP

 ≤ r. (2.104)

Proof: Fix P > 0 and any rate tuple
(
Rp,k(P) : k ∈ [K̃], p ∈ [K]\Tk

)
in C(P). Then

consider a sequence of encoding and decoding functions {f (T)q } and {g(T)p,k } such that
p(T)(error) tends to 0 as T→∞.

Fix a blocklength T and indices j, k ∈ [K̃] with j ̸= k, and define

F ≜ [K]\(Tk ∪ Tj) (2.105)

Partition the set of messages into the following three sets

ar ≜ {ap,ℓ : p ∈ Tj , ℓ ∈ [K̃]\{j}} (2.106)

at ≜ {ap,k : p ∈ F} (2.107)

ac ≜ {ap,ℓ : p /∈ Tj , ℓ ̸= k}. (2.108)

Finally, denote by H the set of all channel coefficients in the system, and for any subset
S ⊆ [K] define YS ≜

(
Y

(T )
p : p ∈ S

)
and ZS ≜

(
Z

(T )
p : p ∈ S

)
.

Notice now that by the independence of the IVAs, the channel coefficients, and the
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noise sequences:∑
p∈Tj

∑
ℓ∈[K̃]\{j}

TRp,ℓ +
∑

p∈[K]\(Tk∪Tj)

TRp,k (2.109)

= H(ar,at) (2.110)

= H(at,ar|ac,H) (2.111)

= I(at,ar;YRj |ac,H) +H(at,ar|ac,YRj ,H) (2.112)

= h(YRj |ac,H)− h(ZRj )

+H(ar|ac,YRj ,H) +H(at|ar,ac,YRj ,H) (2.113)

≤ T · r log
(
1 + PH2

max(K− r)
)

+H(ar|ac,YRj ,H) +H(at|ar,ac,YRj ,H). (2.114)

If communication is reliable, it is possible to reconstruct ar from YTj with probability
of error tending to 0 as T→∞. Therefore, by Fano’s inequality

H(ar|ac,YRj ,H) ≤ T · ϵT, (2.115)

for some sequence {ϵT} tending to 0 as T→∞.
To bound the last summand in (2.114), we further notice that for reliable communica-

tion, Fano’s inequality also implies

H(at|ar,ac,YRj ,YF ,H) ≤ Tϵ̃T, (2.116)

for some sequence {ϵ̃T} tending to 0 as T→∞. Thus,

H(at|ar,YRj ,H)
≤ H(at|ar,YRj ,H)]−H(at|ar,acYRj ,YF ,H) + Tϵ̃T

(2.117)

= I(at;YF |ar,ac,YRj ,H) + Tϵ̃T (2.118)
(a)
= h(ỸF |ar,ac, ỸRj ,H)− h(ZF ) + Tϵ̃T (2.119)
(b)
= P(E = 1) · h(ỸF |ar,ac, ỸRj ,H, E = 1)

+P(E = 0) · h(ỸF |ar,ac, ỸRj ,H, E = 0)

−h(ZF ) + Tϵ̃T (2.120)
(c)
= h(ỸF |ar,ac, ỸRj ,H, E = 1)− h(ZF ) + Tϵ̃T (2.121)
(d)

≤ h(Z′
F |ar,ac, ỸRj ,H, E = 1)− h(ZF ) + Tϵ̃T (2.122)

(e)

≤ h(Z′
F )− h(ZF ) + T · ϵ̃T, (2.123)

where

• in (a) we defined for any S ⊆ [K] the tuple ỸS ≜
(
Ỹ

(T )
p : p ∈ S

)
with Ỹ

(T )
p ≜(

Ỹp(1), . . . , Ỹp(T)
)

and

Ỹp(t) ≜
∑
ℓ∈Tk

Hp,ℓ(t)Xℓ(t) + Zp(t), p ∈ S; (2.124)
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• in (b) we defined he random variable E equal to 1 if each input Xq(t), for q ∈ Tk
and t ∈ [T], can be obtained as a linear combination of the entries in ỸTj − ZTj . If
it exists, we write this linear combination as

Xq(t) = Lq,t(ỸTj − ZTj ). (2.125)

Notice that the entries in ỸTj −ZTj are themselves linear combinations of the inputs
inputs {Xq(t) : q ∈ Tk, t ∈ [T]}, and therefore the existence of linear functions Lq,t in
(2.125) is equivalent to a given square matrix of channel coefficients being invertible.

• (c) holds because h(ỸF |ar,ac,YRj ,H, E = 0) is bounded and because P(E = 1) = 1.
This latter fact holds because E = 1 whenever a specific square matrix of the random
channel coefficients is invertible (see (b) above), which happens with probability 1
since the channel coefficients are independently drawn from a continuous distribution;

• in (d) we defined the tuple Z′
j ≜ (Z ′

p(t) : p ∈ Tj , t ∈ [T]) and

Z ′
p(t) ≜ Zp(t)−

∑
q∈Tk

Hq,p(t)Lp,t(ỸTj − ZTj ), (2.126)

where Lq,t is from (b);

• in (e) we used the independence of the noise from the channel coefficients and the
fact that conditioning can only decrease differential entropy.

Finally, combining Eqs. (2.114), (2.115), and (2.123), we obtain∑
p∈Tj

∑
ℓ∈[K̃]\{j}

Rp,ℓ +
∑

p∈[K]\(Tk∪Tj)

Rp,k

≤ r log
(
1 + PH2

max(K− r)
)
+ ϵT

+
1

T
h(Z′

F )−
1

T
h(ZF ) + ϵ̃T. (2.127)

Letting T → ∞ and P → ∞ establishes the desired inequality in the lemma, because
h(Z′

F )/T and h(ZF )/T are both finite constants that do not depend on T nor P, and both
sequences ϵT and ϵ̃T tend to 0 as T→∞.

By replacing notations of X-channel by interference channel and shuffling indexes, we
obtain the following lemma for cooperative interference channel.

Lemma 2.4 Let
(
Rk(P) : k ∈ [K̃], p ∈ [K]\Tk

)
be a rate-tuple in C(P), for each P > 0.

Then, for any j, k ∈ [K̃] with j ̸= k:

lim
P→∞

[
Rj

logP
+

Rk

logP

]
≤ r. (2.128)

Then, the upper bound of Theorem 2.3 is proved by summing up the bound in (2.128) for
all K̃(K̃ − 1) distinct pairs (j, k) ∈ [K̃]2.
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2.7 Conclusion

In this chapter, We investigated the SDoF bounds for three subclasses of partially con-
nected channels: NPC, CPXC and CPIC. Specifically, We derived a new lower bound for
NPC, a improved lower bound and an information-theoretic upper bound for CPXC, and
the exact SDoF for CPIC. The proposed SDoF lower bounds of CPXC and CPIC were
utilized to achieve an improved NDT for wireless distributed Map-Reduce systems.
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CHAPTER 3

Bounds on NDT of Wireless DC

3.1 Introduction

In this chapter, we further improve the computation-NDT tradeoff of MapReduce over
full-duplex wireless interference channels with two novel IA schemes. Our first scheme is
inspired by the IA scheme in [28], where multi-cast messages are sent over a fully-connected
interference network. We however adapt this scheme to our DC setup, where nodes simul-
taneously act as transmitters and receiver, allowing to achieve improved performances. In
fact, the equivalence of transmitting and receiving terminals implies only a partial connec-
tivity in the corresponding interference network, which we can exploit through an improved
reutilization of IA precoding matrices compared to [28]. More in detail, the IA scheme in
[28] assigns a dedicated IA precoding matrix to each set of r receivers, and then uses this
precoding matrix for all transmissions that are intended exclusively for this set of receivers.
In our scheme we do not assign dedicated precoding matrices to receive sets containing
user 1, but instead reuse the other precoding matrices for these transmissions. This trick is
possible in our setup because transmitters coincide with receivers and thus the i-th receiver
does not observe any signal from the i-th transmitter. The advantage of reducing the num-
ber of precoding matrices is that nodes 2, . . . ,K suffer from fewer interference spaces (since
each interference space corresponds to a precoding matrix), thus leaving a larger part of
their receive dimensions as signal space and resulting in a improved performance. In the
special case of r = 1, i.e., when each file is stored only at a single node, the first scheme
coincides with the scheme of CPXC in the previous chapter.

We present a second IA-DC scheme for systems with an odd number of users K and
computation load r = K−1

2 , i.e., when each node can store almost half of the input files.
In this second scheme each node only sees interference pertaining to one of the K utilized
IA-precoding matrices, while all other non-intended transmissions at this node are zero-
forced. In this sense, the presented IA scheme implies minimum interference space (because
any non-trivial IA scheme has interference pertaining to at least one of the precoding
matrices), allowing to obtain improved performances compared to other IA schemes. To
achieve this minimum interference, in our scheme, all IVAs are cooperatively transmitted
by r = K−1

2 transmitters, and zero-forced at a set of r−1 receiving nodes. Since 2− r−1 =

K − 2, each transmission will thus only create interference at one of the non-intended
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receivers, the receiver that corresponds to the utilized IA-precoding matrix. We point
out that zero-forcing influences the construction of the precoding matrices. Under these
new constructions it is more complicated to prove that signals corresponding to a given
precoding matrix align at the receivers. Our contribution in this part is to carefully assign
the precoding matrices to the different transmissions, making the system amenable for a
proof and achieving good performance. This assignment is rather technical and we describe
it further when we present our scheme.

The upper bound on the NDT implied by our two new IA-schemes improves over the
previously proposed bounds in [26] and Theorem 2.4 in the previous chapter whenever the
computation load 1 < r < K

2 , i.e., when each file can be stored at more than one node, but
each node cannot store half of the total number of files. As already mentioned, for r = 1

our upper bound recovers the NDT-bound in Theorem 2.4, which for this value improves
over the NDT upper bound in [26]. Since [26] achieves the optimal NDT when restricting
to zero-forcing and interference cancellation, our results show that these techniques fail to
achieve the optimal NDT for all computation loads 1 ≤ r < K

2 , i.e., whenever nodes cannot
store half of the number of input files. On the contrary, in this manuscript we show that for
r ≥ K

2 the zero-forcing and interference cancellation scheme in [26] is even optimal among
all coding scheme (beyond the class of zero-forcing and interference cancellation schemes).

In fact, we also present an information-theoretic lower bound on the computation-NDT
tradeoff based on a MAC type argument that is applied in parallel to a set of well-selected
sub-systems and by solving a resulting linear program. For computation load r < K

2 the
lower bound on the NDT is close to the proposed upper bound, but they do not match. As
mentioned, for r ≥ K

2 the lower bound matches the upper bound in [26] thus establishing
the exact NDT of wireless MapReduce over full-duplex networks.

To summarize, the main contributions of this chapter are:

• Improved coding schemes based on IA for wireless MapReduce over full-duplex in-
terference networks. (Sections 3.4–3.6 and Theorem 3.1 and Corollary 3.2)

• A lower bound (converse) on the NDT of wireless MapReduce systems. (Theorem
3.1)

• The exact NDT of wireless MapReduce for computation loads r ≥
⌈
K
2

⌉
. (Corol-

lary 3.1)

• Proof that zero-forcing and interference cancellation cannot achieve the NDT tradeoff
for all computation loads 1 < r <

⌈
K
2

⌉
. (Remark 3.2)

This chapter is outlined as follows. We terminate this section with notation. The
following Section 3.2 describes the detailed system model, while Section 3.3 presents and
discusses our bounds on the NDT tradeoff. Sections 3.5 and 3.6 explain our two novel IA
schemes, where in Section 3.4, we first describe our first novel IA scheme using some simple
examples. Section 3.7 proves our NDT-lower bound.
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3.2 Wireless MapReduce Systems

The MapReduce system, introduced in Section 2.4.1 of the previous chapter, is revisited
in this chapter with slight modifications to some notations. We focus on the specific case
where the number of nodes equals the number of output functions and review some key
definitions in this section.

We consider a DC system consisting of a fixed number of K nodes, labeled 1, . . . ,K; a
large number N of input files, denoted as W1, . . . ,WN; and K output functions, h1, . . . , hK,
which map the input files to the desired computations. Each output function hk is assigned
to node k, where k ∈ [K].

The definitions of the reduce function ϕq and the IVA remain unchanged, as provided
in (2.26) and (2.27), respectively. For simplicity, we introduce new notation for the channel
input and output:

Xk ≜ (Xk(1), . . . , Xk(T))
T = f

(T)
k ({a1,p, . . . , aK,p}p∈Mk

) , (3.1)

Yk ≜ (Yk(1), . . . , Yk(T))
T , (3.2)

while preserving all other definitions for the wireless channel from (2.28) to (2.30).
We also recall two key performance metrics for wireless DC systems: the computation

load r, defined in (2.31), and the NDT, defined in (2.32). Our primary focus remains the
fundamental computation-NDT tradeoff ∆∗(r), whose definition was provided in the final
paragraph of Section 2.4.1.

3.2.1 Sufficiency of Symmetric File Assignments

Our model exhibits a perfect symmetry between the various nodes in the network in the
sense that the channels from any Tx-node to any Rx-node has same statistical behaviour
and the various channels are independent of each other. The optimal computation-NDT
tradeoff is therefore achieved by a symmetric file assignment where any subset of nodes
T ⊆ [K] of size i is assigned the same number of files to be stored at all nodes in T .
In fact, any non-symmetric file assignment can be symmetrized without decreasing the
computation-NDT tradeoff. It suffices to time-share K! instances of the original scheme for
a number of files N that is also multiplied by K!, where in each instance the K nodes are
relabeled according to a different permutation and a different subset of files is used. The
resulting scheme has a symmetric file assignment and achieves the same computation-NDT
tradeoff as the original scheme because |Mk|, N, and T are multiplied by K! while the other
parameters remain unchanged and because the new scheme still satisfies (2.33) whenever
the original scheme satisfies (2.33).

By the optimality of symmetric file assignments, the optimization problem over the
optimal file assignment reduces to finding the optimal fraction of files that should be
assigned to exactly i nodes, for any i ∈ [K]. It is well-known that when communication is
over noiseless broadcast links, then it suffices to assign some of the files to ⌊r⌋ nodes and
the remaining files to ⌈r⌉ nodes. We apply the same strategy in this chapter. For r <

⌈
K
2

⌉
however we cannot prove optimality of these file assignments.
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3.2.2 Relation to the Network’s SDoF with r-fold Cooperation

A well-studied property of wireless networks is the SDoF, which characterizes the maximum
throughput of a network. In this chapter we are specifically interested in the SDoF that
one can achieve over the wireless network described by (2.29), when the inputs are subject
to the average power constraints (2.6) and any set of r nodes T ∈ [K]r has a message M j

T
that it wishes to convey to Node j, for any j ∈ [K]\T . Each message M j

T is uniformly
distributed over a set {1, . . . , 2nR

j
T } ,and a rate-tuple (Rj

T : T ∈ [K]r, j ∈ [K]\T ) is called
achievable if there exists a sequence of encoding and decoding functions such that the
probabilities of error tend to 0 in the asymptotic regime of infinite blocklengths. The
SDoF is then defined as

SDoF(r) ≜ sup lim
P→∞

∑
T ∈[K]r, j∈[K]\T R

j
T (P)

1
2 logP

, (3.3)

where the supremum is over all sequences of rate tuples {(Rj
T (P) : T ∈ [K]r, j ∈ [K]\T )}P>0

so that for each P > 0 each tuple (Rj
T (P) : T ∈ [K]r, j ∈ [K]\T ) is achievable with power

P.
We have the following lemma, which we use in this chapter:

Lemma 3.1 For any r ∈ [K]:

∆(r) ≤
(
1− r

K

) 1

SDoF(r)
. (3.4)

Proof: We show how to construct a distributed computing scheme achieving the
NDT upper bound in (3.4). Assume a sequence (in P > 0) of rates (Rj

T : T ∈ [K]r, j ∈
[K]\T ) that achieves SDoF(r) and is completely symmetric with respect to indices j and
sets T . By the same time-sharing and relabeling arguments as described in Subsection 3.2.1
such a sequence must exist.

In the Map Phase we choose a regular file assignment. Partition the input files
{W1, . . . ,WN} into

(K
r

)
disjoint bundles and assign each bundle to a size-r subset T ∈ [[K]]r.

Since each file is stored at r nodes, our file assignment satisfies the constraint on the com-
putation load.

Each node computes all IVAs associated with its stored files. During the Wireless
Shuffle Phase, each transmit set T communicates to any receive node j /∈ T all IVAs that
can be calculated from its bundle using the encoding and decoding functions achieving
SDoF(r). Since there are N(K − r) IVAs to be sent (one from each file to each receiver
that does not store this file), the probability of error of these transmissions tends to 0 as
n→∞, whenever

lim
P→∞

lim
A→∞

A · N(K− r)

T · logP
≤ SDoF(r), (3.5)

which is equivalent to

lim
P→∞

lim
A→∞

T

A · K · N
· logP ≥ K− r

K

1

SDoF(r)
. (3.6)

This proves the desired achievability result.
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3.3 Main Results

The main results of this chapter are new upper and lower bounds on the computation-NDT
tradeoff of the wireless DC system described in Section 3.2.

For fixed K, define for each r ∈ [⌈K/2⌉ − 1]:

∆Ub,1(r) ≜
(
1− r

K

)
· r(K− 1) + K− r − 1

r(K− 1)2 + r(K− 2)
. (3.7)

Further, for K = 5 and r = 2, define

∆Ub,2(r) ≜
(
1− r

K

)
· 7
30

(3.8)

and for all odd values K ≥ 7 and r = (K− 1)/2, set:

∆Ub,2(r) ≜
1

K

(
1− r

K

)(
1 +

1

(K− r − 1)(K− 1)

)
. (3.9)

For all other values of r and K, set ∆Ub,2(r) =∞.1

Define for any integer value r ∈ [K]:

∆Ub(r) ≜

 mini∈{1,2}∆Ub,i(r) if r < K/2

1
K

(
1− r

K

)
if r ≥ K/2

. (3.10)

Also, let

∆Lb(r) ≜

1

K

(
2− 3

K

)
if r = 1,

1

K

(
1− r

K
+ max

t∈[⌊K/2⌋]
lowc (Ct(r))

)
if r ∈

(
1,

⌈
K

2

⌉)
,

1

K

(
1− r

K

)
if r ∈

[⌈
K

2

⌉
,K

]
,

(3.11)

where for any t ∈ [⌊K/2⌋]:

Ct(i) =


(K−i
t−i)
(Kt)·t

· (K− 2t), if i ∈ [t],

0, if i ∈ [K]\[t],
(3.12)

and recall that lowc (Ct(r)) denotes the lower convex envelope of {(r, Ct(r))}Kr=1.

Theorem 3.1 The computation-NDT tradeoff ∆∗(r) is upper- and lower-bounded as:

∆Lb(r) ≤ ∆∗(r) ≤ lowc (∆Ub(r)) . (3.13)
1The second upper bound is interesting and nontrivial only when K = 2r + 1 and r = 2, 3, . . ..
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Proof: For integers r ≥ K/2 achievability of the upper bound ∆Ub(r) is proved in
[26]. For integers r < K/2 achievability of the two upper bounds ∆Ub,1(r) and ∆Ub,2(r)

follows by Lemma 3.1 and the coding schemes described in Sections 3.5 and 3.6. (Section 3.4
illustrates simple special cases of the scheme in Section 3.5.) Achievability of the lower
convex envelope follows by selecting the best strategy for each value of r and by simple
time- and memory-sharing strategies. The lower bound is proved in Section 3.7.

Remark 3.1 The upper bound in (3.13) is convex and piece-wise constant. The lower
bound is piece-wise constant with segments spanning the intervals [i, i+1], for i = 2, . . . ,K−
1. On the interval [1, 2), the lower bound is constant over smaller sub-intervals only but
not over the entire segment.

For all r ≥ ⌈K/2⌉ the lower bound (3.10) and the upper bound (3.11) match.

Corollary 3.1 For all r ≥ ⌈K/2⌉:

∆∗(r) =
(
1− r

K

)
· 1
K
. (3.14)

Proof: For r ≥ ⌈K/2⌉ the upper bound lowc (∆Ub(r)) is equal to the lower bound
∆Lb(r) because C⌊K/2⌋(i) = 0 for all i ≥ ⌈K/2⌉.

Remark 3.2 The computation-NDT tradeoff in (3.14), is achieved with linear zero-forcing
and side-information cancellation, see [26]. These simple strategies are thus sufficient to
achieve the optimal computation-NDT tradeoff in the regime r ≥ ⌈K/2⌉. This statement
however does not apply for smaller values of r where more sophisticated strategies such as
interference alignment (IA) strategies are necessary to achieve the optimal computation-
NDT tradeoff. This follows from the converse result in [26] and our achievability part in
Theorem 3.1, see Corollary 3.2 ahead.

3.3.1 Comparison to Previous Upper Bounds

We compare the bound in Theorem 3.1 to the upper bounds in [26] and Theorem 2.4. The
upper bound in [26] is given as follows:

∆∗(r) ≤ ∆UB-BF(r) ≜ lowc
{(

r,
1− r/K

min(K, 2r)

)
: r ∈ [K]

}
, (3.15)

and is tight when restricting to zero-forcing, one-shot beamforming, and side-information
cancellation. We recall that The upper bound in Theorem 2.4 has the form:

∆∗(r) ≤ ∆Ub-Groups(r) ≜

lowc
(
(K, 0) ∪

{(
r,

1− r/K

SDoFLb, (r)

)
: 1 ≤ r < K, r|K

})
,

(3.16)
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where

SDoFLb, (r) ≜

 2r if K/r ∈ {2, 3},
K(K−r)−r2

2K−3r if K/r ≥ 4,
(3.17)

and coincides with the upper bound in Theorem 3.1 for r = 1, i.e., ∆Ub(1) = ∆Ub-Groups(1).
Notice that the sequences {∆UB-BF(r) : r = 1, . . . ,

⌈
K
2

⌉
} and {∆UB-Groups(r) : r = 1, . . . ,

⌈
K
2

⌉
}

are strictly convex and the lower convex-envelope of these points is piece-wise linear.

Corollary 3.2 (Strict Improvement) For all 1 < r <
⌈
K
2

⌉
:

∆∗(r) ≤ lowc (∆Ub(r)) < ∆Ub-Groups(r), (3.18)

and for all 1 ≤ r <
⌈
K
2

⌉
:

∆∗(r) ≤ lowc (∆Ub(r)) < ∆Ub-ZF(r), (3.19)

where notice the strict inequality on the two inequalities to the right.

Figures 3.1 and 3.2 show the bounds in Theorem 3.1 and compare them to the previous
upper bounds ∆Ub-Groups(r) and ∆Ub-ZF(r).

Proof of the Corollary: For r <
⌈
K
2

⌉
, our upper bound in Theorem 3.1 is strictly

better than the bounds in [26] and Theorem 2.4, as we argue in the following. We start by
noticing that for r =

⌈
K
2

⌉
all three upper bounds coincide:

∆Ub

(⌈
K

2

⌉)
= ∆Ub-Groups

(⌈
K

2

⌉)
= ∆Ub-ZF

(⌈
K

2

⌉)
. (3.20)

Consider now r <
⌈
K
2

⌉
. We first prove the strict inequality in (3.19). Comparing the new

upper bound in (3.7) with the previous upper bound in (3.15), we see that for any integer
computation load r the new bound is better (smaller) than the old one if

r(K− 1) + K− r − 1

r(K− 1)2 + r(K− 2)
<

1

2r
, (3.21)

which is equivalent to

2r ≤ K2 − K− 1

K− 2
. (3.22)

For K ≥ 4 and any integer computation load

r ≤ (K− 2)/2 (3.23)

the condition (3.22) is satisfied and thus also (3.21), proving the improvement of the new
bound. I.e., for K even and integer-valued r ≥ K

2 −1 as well as for K odd and integer-valued
r ≥ K−3

2 , the upper bound in Theorem 3.1 is strictly lower than the previous upper bound
∆Ub-ZF(r).

We next focus on K odd and r = K−1
2 . For K = 5 and r = 2 the bound (3.15) evaluates

to
(
1− r

K

)
· 14 and is thus strictly higher than bound (3.8), which is

(
1− r

K

)
· 730 . For K ≥ 7,

the new bound in (3.9) improves over the old bound in (3.15) if

1

K

(
1 +

1

(K− r − 1)(K− 1)

)
<

1

2r
=

1

K− 1
, (3.24)

53



Chapter 3. Bounds on NDT of Wireless DC

which is equivalent to (multiply both sides by K and (K− 1)):

K− 1 +
1

K− r − 1
< K (3.25)

and is satisfied for all valus of r ≤ K − 3 and thus for K ≥ 7 and r = K−1
2 . We have thus

shown that for all integers r ≤ K−1
2 the new bound is better than (3.15). Combined with

(3.20) and the piece-wise linearity of the bounds, this proves (3.19).
We continue to prove (3.18), and still focus on integers r satisfying 1 < r <

⌈
K
2

⌉
. For

these integers:
(r − 1)(K− 2r − 1) ≥ 0, (3.26)

which is equivalent to
r(2K− 3r) ≥ r(K− 1) + K− r − 1. (3.27)

Moreover, for all integers r > 1:

(K− 1)2 + (K− 2) > K(K− r)− r2, (3.28)

which combined with (3.27) establishes that

r(K− 1) + K− r − 1

r(K− 1)2 + r(K− 2)
<

2K− 3r

K(K− r)− r2
. (3.29)

This implies for all integers r satisfying 1 < r ≤ K−1
2 , that the new upper bound is better

than the upper bound (3.16). Combined with (3.20) and the piece-wise linearity of the
bounds, this proves (3.18), except when there is no integer r in the range (1, ⌈K2 ⌉) and thus
lowc (∆Ub(r)) and ∆Ub-Groups(r) are both given by the straight line between ∆Ub-Groups(1)

and ∆Ub-Groups
(⌈

K
2

⌉)
. In this case the statement (3.18) is void and there is nothing to

prove.

2 4 6 8 10
0

5 · 10−2
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IA scheme in Theorem 2.4
IA schemes in Theorem 3.1
Converse in Theorem 3.1

Figure 3.1: Bounds on ∆∗(r) from Theorem 3.1 compared to the optimal zero-forcing and interfer-
ence cancellation scheme in [26] and to the upper bound obtained by the IA scheme in Theorem 2.4
Theorem 2.4 for K = 11.

54



3.4. Examples of our IA Scheme without Zero-forcing (ZF)
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IA scheme in Theorem 2.4
IA schemes in Theorem 3.1
Converse in Theorem 3.1

Figure 3.2: Bounds on ∆∗(r) from Theorem 3.1 compared to the optimal NDT achieved by the
optimal zero-forcing and interference cancellation scheme in [26] and to the upper bound obtained
by the IA scheme in Theorem 2.4 for K = 20.

3.4 Examples of our IA Scheme without Zero-forcing (ZF)

We describe our first coding scheme based on IA but without zero-forcing, and we evaluate
the lower bound on SDoF(r) that it achieves. In this section we only present some simple
examples and attempt to build up intuition. The scheme and its corresponding upper
bound on the SDoF are described and analyzed in detail in the next-following Section 3.5.

3.4.1 Example 1: K ≥ 3, r = 1

Consider first the simple case with computation load r = 1, i.e., when each IVA can be
stored only at a single node. In our scheme we transmit the K(K − 1) − 1 Messages (or
IVAs)

{M j
k : j, k ∈ [K], j ̸= k, (j, k) ̸= (1,K)}. (3.30)

That means, each Node k transmits a message M j
k to each other node j ̸= k, except for

Node K that only transmits messages to Nodes 2, . . . ,K− 1 but not to Node 1.
All messages {M j

k}k intended for Node j, for j = 2, . . . ,K, are precoded by the precod-
ing matrix Uj , whose construction we shall present shortly. In contrast to the standard
IA-scheme in [30], here Node 1 does not have a dedicated IA precoding matrix. Instead,
each Node k precodes the message M1

k that it sends to Node 1 with the precoding matrix
Uk that is typically reserved to its own intended transmissions.

Table 3.1 depicts the precoding matrices used to transmit information from a given
Node k to another Node j. The entry “x" indicates that nodes do not transmit messages
to themselves. The entry “o" indicates that Node 7 chooses not to send a message to
Node 1. The motivation for our precoding assignment is to have no duplications in a given
row (because otherwise the corresponding receive nodes won’t be able to distinguish their
intended signals from interference) and to use as few precoding matrices as possible so as
to keep the nodes’ interference spaces small (this will become more clear shortly).
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Table 3.1: Table showing the precoding matrix used to send each message M j
k .

k\j 1 2 3 4 5 6 7

1 x U2 U3 U4 U5 U6 U7

2 U2 x U3 U4 U5 U6 U7

3 U3 U2 x U4 U5 U6 U7

4 U4 U2 U3 x U5 U6 U7

5 U5 U2 U3 U4 x U6 U7

6 U6 U2 U3 U4 U5 x U7

7 o U2 U3 U4 x U6 x

Node 1 thus transmits the signal

X1 =
∑

j∈[K]\{1}

Ujb
j
1, (3.31)

Nodes 2, . . . ,K− 1 transmit the signals

Xk = Ukb
1
k +

∑
j∈[K]\{1,k}

Ujb
j
k, k ∈ [K− 1]\{1}, (3.32)

and Node K transmits the signal

XK =
∑

j∈[K−1]\{1}

Ujb
j
k, (3.33)

where bj
k is a Gaussian codeword encoding Message M j

k .
Node 1 observes the receive signal

Y1 =
∑

k∈[K−1]\{1}

H1,kUkb
1
k︸ ︷︷ ︸

desired signal

+
∑

k,ℓ∈[K]\{1}
k ̸=ℓ

H1,kUℓb
ℓ
k

︸ ︷︷ ︸
interference

+Z1, (3.34)

and Nodes 2, . . . ,K the receive signals

Yj =
∑

k∈[K]\{j}

Hj,kUjb
j
k︸ ︷︷ ︸

desired signal

+
∑

ℓ,k∈[K]\{j}
ℓ̸=k,ℓ̸=1

Hj,kUℓb
ℓ
k

︸ ︷︷ ︸
interference

+
∑

k∈[K−1]\{1,j}

Hj,kUkb
1
k︸ ︷︷ ︸

interference

+Zj , (3.35)

where Hj,k denotes the diagonal T-by-T channel matrix consisting of the entries {Hj,k(t)}Tt=1.
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Remark 3.3 The K − 1 desired signals at any Node j ∈ [K]\{1} are precoded by the
same precoding matrix Uj, while its interference signals are precoded by the remaining
K − 2 precoding matrices U2, . . . ,Uj−1,Uj+1, . . . ,UK. In contrast, for Node 1, matrices
U2, . . . ,UK−1 precode both desired and interference signals while matrix UK only precodes
interference.

We choose the precoding matrices U2, . . . ,UK according to the IA principle [30]. That
means, we construct each column of matrix Uj using all channel matrices that pre-multiply
Uj in the interference terms of the receive signals Y1, . . . ,YK and exponentiate these
channel matrices with a different set of exponents for each column. More formally, we
choose2

Uℓ ≜

 ∏
H∈Hℓ

Hαℓ,H ·Ξℓ : ∀αℓ ∈ [η]Γ

 , (3.36)

where each column of the matrix is constructed using a different exponent-vector αℓ =

(αℓ,H : H ∈ Hℓ) ∈ [η]Γ; η is a large number depending on the blocklength T that tends
to ∞ with T; {Ξℓ}ℓ∈[K]\{1} are i.i.d. random vectors independent of all channel matrices,
noises, and messages; and

Hℓ = {Hj,k : j ∈ [K]\{1, ℓ}, k ∈ [K]\{ℓ}, j ̸= k}
∪{H1,k : k ∈ [K]\{1, ℓ}}, (3.37)

and Γ ≜ |Hℓ| does not depend on ℓ.
With the proposed construction, for any j ∈ [K] and ℓ ∈ [K]\{1, j}, the signals that are

precoded by matrix Uℓ and interfere at Node j lie in the column space of the matrix

Wℓ ≜

 ∏
H∈Hℓ

Hαℓ,H ·Ξℓ : ∀αℓ ∈ [η + 1]Γ

 . (3.38)

The signals that are desired at Node j ∈ {2, . . . ,K} lies in the subspace spanned by the
columns of the matrix

Dj ≜
[
Hj,kUj

]
k∈[K]\{j}

, j ∈ {2, . . . ,K}. (3.39)

The signals desired at Node 1 lies in the subspace spanned by the column space of the
matrix

D1 ≜
[
H1,kUk

]
k∈[K−1]\{1}

. (3.40)

As is proved in Section 2.6.2 and follows from our analysis in Section 3.5, with proba-
bility 1 (over the random channel matrices) the matrices

Λj = [Dj W2 · · ·Wj−1Wj+1 · · ·WK], j ∈ [K]\{1}, (3.41)

2By the memorylessness of the channel the matrices Hj,k are diagonal and their multiplications and
exponentiations are effectively multiplications and exponentiations of the corresponding diagonal elements.
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and

Λ1 = [D1 W2 · · ·WK] (3.42)

have full column-rank.
Since the matrices have full column-rank, a simple zero-forcing strategy at the receiving

nodes allows to achieve DoF
#columns(Dj)

#columns(Λj)
(3.43)

to each Node j. I.e., in the limit as η → ∞ (and thus η
η+1 → 1) a DoF K−1

2K−3 at Nodes
2, . . . ,K and DoF K−2

2K−3 at Node 1 is achievable, yielding a SDoF of

SDoFLB =
(K− 1)2 + K− 2

2K− 3
. (3.44)

3.4.2 Example 2: K = 4, r = 2

Consider now a computation load of r = 2 and only K = 4 nodes. (For this set of parameters
our scheme is simple to present. Other schemes however can perform better.)

For r = 2 and K = 4 our scheme transmits 22 different messages depicted in (3.45)
ahead. Here, Message M j

k,T is a message that is known by the set of nodes T and intended
to Node j /∈ T . Though known to the entire set T , Message M j

k,T is only transmitted by a
single Node k ∈ T . The remaining nodes in T \{k} do not participate in the transmission.
They however exploit their knowledge of M j

k,T to cancel the corresponding transmission
from their receive signal.

Notice that for certain sets T and receive nodes j /∈ T our scheme sends two messages
to the same node j: M j

k1,T and M j
k2,T for different indices k1, k2 ∈ T . (In (3.45) the two

messages M2
1,{1,4} and M2

4,{1,4} for example have this form.) These messages M j
k1,T and

M j
k2,T actually represent two independent submessages of Message M j

T as we defined it in
Section 3.2.2. For the sets T and Nodes j /∈ T for which there exists only a single Message
M j

k,T , this message is really the message M j
T . As we will only analyze the SDoF of our

scheme, this distinction between submessages and messages is not important and we shall
simply omit it in the following.

We send the following messages in our scheme. To Node 1, we send messages

M1
2,{2,3}, M

1
3,{2,3}, M

1
2,{2,4}, M

1
3,{3,4}; (3.45a)

to Node 2 we send messages

M2
1,{1,3}, M

2
3,{1,3}, M

2
1,{1,4}, M

2
4,{1,4}

M2
3,{3,4} M

2
4,{3,4}; (3.45b)

to Node 3 we send messages

M3
1,{1,2}, M

3
2,{1,2}, M

3
1,{1,4}, M

3
4,{1,4},

M3
2,{2,4}, M

3
4,{2,4}; (3.45c)
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and to Node 4 we send messages

M4
1,{1,2}, M

4
2,{1,2}, M

4
1,{1,3}, M

4
3,{1,3},

M4
2,{2,3}, M

4
3,{2,3}. (3.45d)

We observe that each Node j obtains two messages from each subset of nodes T of size 2
not containing j, where each node in T sends one of the |T | = 2 messages. An exception
are messages M1

4,{2,4} and M1
4,{3,4} which are not transmitted because in our scheme the

last Node K = 4 does not send any message to the first Node 1. (As we will see, this
omission allows to reuse some of the precoding matrices, similarly to the scheme for r = 1,
and thus achieve an improved SDoF.) Prior to transmission, each message M j

k,T is encoded
into a Gaussian codeword bj

k,T . We use the interference-alignment (IA) technique with
three precoding matrices U{2,3},U{2,4}, and U{3,4}. Precoding matrix U{2,3} is used to
send codewords

b2
1,{1,3}, b

3
1,{1,2}, b

2
4,{3,4}, b

3
4,{2,4}, (3.46)

b1
2,{2,3}, b

1
3,{2,3}, b

2
3,{1,3}, b

3
2,{1,2}, (3.47)

precoding matrix U{2,4} is used to send codewords

b2
1,{1,4}, b

4
1,{1,2}, b

2
3,{3,4}, b

4
3,{2,3}, (3.48)

b1
2,{2,4}, b

4
2,{1,2}, b

2
4,{1,4}, (3.49)

and precoding matrix U{3,4} is used to send codewords

b3
1,{1,4}, b

4
1,{1,3}, b

3
2,{2,4}, b

4
2,{2,3}, (3.50)

b1
3,{3,4}, b

3
4,{1,4}, b

4
3,{1,3}. (3.51)

Remark 3.4 The choice of precoding matrices is inspired by [28] where Message M j
k,T is

precoded by the matrix UR for R = T \{k} ∪ {j}. The idea behind the choice of precoding
matrices in [28] is that any node in R is either interested in learning Message M j

k,T or it
can compute it itself and remove the interference from its receive signal. A given node j
thus only experiences interference from precoding matrices UR for which j /∈ R.

In contrast to [28], in our IA scheme we de not use precoding matrices UR′ for sets R′

containing index 1, but reuse precoding matrices UR for sets R not containing 1. Specifi-
cally, we use the precoding matrix UR also to send the codewords (if they exist)

b1
k,R, bj

k,R∪{1}\{j}, ∀j, k ∈ R, j ̸= k. (3.52)

One can verify that the codewords in lines (3.47), (3.49), (3.51) are of the form in (3.52).

We illustrate our assignment of the precoding matrices also using the following table. The
entries in column 1 or in rows {1, 2}, {1, 3}, {1, 4} correspond to two submessages M j

k1,T
and M j

k2,T , where k1 and k2 denote the two entries in T . For all other entries in Table 3.2
not equal to “x", we have only one message per precoding matrix, see (3.46), (3.48), and
(3.50).
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Table 3.2: Messages M j
k,T precoded by the three precoding matrices U{2,3}, U{2,4}, and U{3,4}.

T \ j 1 2 3 4

{1, 2} x x U{2,3} U{2,4}

{1, 3} x U{2,3} x U{3,4}

{1, 4} x U{2,4} U{3,4} x

{2, 3} U{2,3} x x U{2,4},U{3,4}

{2, 4} U{2,4} x U{2,3}, U{3,4} x

{3, 4} U{3,4} U{2,3}, U{2,4} x x

During the shuffling phase, Nodes 1–4 send the following signals. Node 1 sends:

X1 = U{2,3}

(
b2
1,{1,3} + b3

1,{1,2}

)
+U{2,4}

(
b2
1,{1,4} + b4

1,{1,2}

)
+U{3,4}

(
b3
1,{1,4} + b4

1,{1,3}

)
. (3.53)

Node 2 sends:

X2 = U{2,3}

(
b1
2,{2,3} + b3

2,{1,2}

)
+U{2,4}

(
b1
2,{2,4} + b4

2,{1,2}

)
+U{3,4}

(
b3
2,{2,4} + b4

2,{2,3}

)
. (3.54)

Node 3 sends:

X3 = U{2,3}

(
b1
3,{2,3} + b2

3,{1,3}

)
+U{2,4}

(
b2
3,{3,4} + b4

3,{2,3}

)
+U{3,4}

(
b1
3,{3,4} + b4

3,{1,3}

)
. (3.55)

Node 4 sends:

X4 = U{2,3}

(
b2
4,{3,4} + b3

4,{2,4}

)
+U{2,4}b

2
4,{1,4} +U{3,4}b

3
4,{1,4}. (3.56)

As mentioned, each receiving node can subtract all the interference of the signals that it
can compute itself. We can rewrite the four receive signals after this interference elimination
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step as follows. Node 1 can construct:

Y′
1 = H1,2U{2,3}b

1
2,{2,3} +H1,3U{2,3}b

1
3,{2,3}︸ ︷︷ ︸

desired signal

+H1,2U{2,4}b
1
2,{2,4} +H1,3U{3,4}b

1
3,{3,4}︸ ︷︷ ︸

desired signal

+H1,2U{3,4}

(
b3
2,{2,4} + b4

2,{2,3}

)
+H1,3U{2,4}

(
b2
3,{3,4} + b4

3,{2,3}

)
+H1,4U{2,3}

(
b2
4,{3,4} + b3

4,{2,4}

)
+ Z1, (3.57)

Node 2 can construct:

Y′
2 = H2,1U{2,3}b

2
1,{1,3} +H2,1U{2,4}b

2
1,{1,4}︸ ︷︷ ︸

desired signal

+H2,3U{2,3}b
2
3,{1,3} +H2,3U{2,4}b

2
3,{3,4}︸ ︷︷ ︸

desired signal

+H2,4U{2,3}b
2
4,{3,4} +H2,4U{2,4}b

2
4,{1,4}︸ ︷︷ ︸

desired signal

+H2,1U{3,4}

(
b3
1,{1,4} + b4

1,{1,3}

)
+H2,3U{3,4}

(
b1
3,{3,4} + b4

3,{1,3}

)
+H2,4U{3,4}b

3
4,{1,4} + Z2, (3.58)

Node 3 can construct:

Y′
3 = H3,1U{2,3}b

3
1,{1,2} +H3,1U{3,4}b

3
1,{1,4}︸ ︷︷ ︸

desired signal

+H3,2U{2,3}b
3
2,{1,2} +H3,2U{3,4}b

3
2,{2,4}︸ ︷︷ ︸

desired signal

+H3,4U{2,3}b
3
4,{3,4} +H3,2U{3,4}b

3
4,{1,4}︸ ︷︷ ︸

desired signal

+H3,1U{2,4}

(
b2
1,{1,4} + b4

1,{1,2}

)
+H3,2U{2,4}

(
b1
2,{2,4} + b4

2,{1,2}

)
+H3,4U{2,4}b

2
4,{1,4} + Z3, (3.59)
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Node 4 can construct:

Y′
4 = H4,1U{2,4}b

4
1,{1,2} +H4,1U{2,4}b

4
1,{1,3}︸ ︷︷ ︸

desired signal

+H4,2U{2,4}b
4
2,{1,2} +H4,2U{3,4}b

4
2,{2,3}︸ ︷︷ ︸

desired signal

+H4,3U{2,4}b
4
3,{2,3} +H4,3U{3,4}b

4
3,{1,3}︸ ︷︷ ︸

desired signal

+H4,1U{2,3}

(
b2
1,{1,3} + b3

1,{1,2}

)
+H4,2U{2,3}

(
b1
2,{2,3} + b3

2,{1,2}

)
+H4,3U{2,3}

(
b1
3,{2,3} + b2

3,{1,3}

)
+ Z4. (3.60)

Remark 3.5 We remark that Node 2’s desired signals are all precoded by precoding matri-
ces U{2,3} and U{2,4} while all interference signals are precoded by matrix U{3,4}. Similar
observations hold for Nodes 3 and 4. Node 1 instead observes desired and interference
signals precoded by all three precoding matrices.

In more general terms, each node j ∈ [K]\{1}, observes desired signals multiplied by the
precoding matrices {UR}j∈R and interference signals multiplied by the precoding matrices
{UR}j /∈R. For Node 1, both desired and interference signals are multiplied by all possible
precoding matrices.

The IA matrices U{2,3}, U{2,4}, and U{3,4} are constructed based on the interference
alignment idea in [30] taking into account the channel matrices that premultiply the IA
matrices in the interference signals of (3.57)–(3.60). Specifically, we choose

UR ≜

 ∏
H∈HR

HαR,H ·ΞR : ∀αR ∈ [η]4

 , (3.61)

where each column of the matrix is constructed using a different exponent-vector αR =

(αR,H : H ∈ HR) ∈ [η]4; η is a large number depending on the blocklength T that tends
to ∞ with T; ΞR are i.i.d. random vectors drawn according to a continuous distribution,
and

H{2,3} ≜
{
H1,4, H4,1, H4,2, H4,3

}
, (3.62)

H{2,4} ≜
{
H1,3, H3,1, H3,2, H3,4

}
, (3.63)

H{3,4} ≜
{
H1,2, H2,1, H2,3, H2,4

}
. (3.64)

By this choice of the precoding matrices, all interference signals at a Node 2 will lie in
the columnspace of the matrix

W{3,4} ≜

 ∏
H∈H{3,4}

HαR,H ·Ξ{3,4} : ∀αR ∈ [η + 1]4

 ,
(3.65)
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while the desired signals will be separable from each other and from this interference space.
As we show in the following Section 3.5. The DoF achieved to this Node 2 is thus

6

7
. (3.66)

Similar observations hold for Nodes 3 and 4. Node 1 has a larger interference space and
smaller desired signal space and only achieves a DoF of 4/7. The SumDoF achieved by
the scheme is thus

SDoF = 22/7. (3.67)

3.5 The General IA-Scheme without ZF

We fix a large parameter η ∈ Z+ (which we shall let tend to ∞) and let

Γ ≜ K · (K− r − 1) (3.68)

T ≜ (K− 2) ·
(
K− 2

r − 1

)
· ηΓ +

(
K− 1

r

)
· (η + 1)Γ. (3.69)

The time of transmission T thus tends to ∞ as η → ∞ by (3.69). The parameters Γ

and η are used in our construction of the precoding matrices, as will become clear in the
following.

In our scheme, we send the following messages to any Node j ∈ [K]\{1}:{
M j

k,T : T ∈ [[K]\{j}]r, k ∈ T
}

(3.70)

and to Node 1 we send messages{
M1

k,T : T ∈ [[K]\{1}]r, k ∈ T \{K}
}
. (3.71)

Thus, as in the examples of the previous section, the last node K does not send any message
to the first node 1.

For each message, construct a Gaussian codebook of power P/
(K−1

r

)
and length ηΓ to

encode each Message M j
k,T into a codeword bj

k,T . As in the previous sections, we shall use
a linear precoding scheme, and thus Node i ∈ [K] can mitigate the interference caused by
the codewords {

bj
k,T
}
∀T : i∈T . (3.72)

As a consequence, for each setR ∈ [[K]]r, without causing non-desired interference to nodes
in R, we can use the same precoding matrix UR (whose choice we describe later) for all
the codewords: {

bj
k,R∪{k}\{j}

}
k∈[K]\R
j∈R

. (3.73)

This idea was already used in the related works [25], [28]. In contrast to these previous
works, here we do not introduce the precoding matrices UR for sets R containing 1.
Instead, for any R not containing 1 and any k ∈ R, we use the matrix UR also to precode
the set of codewords{

bj
k,R∪{1}\{j}

}
j,k∈R,j ̸=k

∪
{
bj
1,R∪{1}\{j}

}
j∈R

, (3.74)
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Table 3.3: Let r = 2. The table illustrates the codesymbols bj
k,T that are premultiplied by the

precoding matrix U{2,3}. Entries for sets T either equal to {2, 3} or containing 1, correspond to
r transmitted codewords, one from each node in T . All other entries correspond only to a single
codeword from the node not in {2, 3}.

T \ j 1 2 3

{1, 2} x x U{2,3}

{1, 3} x U{2,3} x

{2, 3} U{2,3} x x

{2, 4} o x U{2,3}

{2, 5} o x U{2,3}
...

...
...

...

{2,K} o x U{2,3}

{3, 4} o U{2,3} x

{3, 5} o U{2,3} x
... o

... x

{3,K} o U{2,3} x

{4, 5} o o o
... o

... o

{K− 1,K} o o o

and
{b1

k,R}k∈R\{K}. (3.75)

All non-intended nodes in R can subtract these interferences from their receive signals
because they know the codewords. This trick allows us to reduce the dimension of the
interference space and thus improve performance.

In Table 3.3 we illustrate which codewords bj
k,T are premultiplied by the precoding

matrix U{2,3} when r = 2 and K > 3. The entry "o" indicates that a given Node k chooses
not to send a message to a given Node j or the message is premultiplied by other matrices.
According to (3.73) the entry in column-3 and row-{k, 2}, for each k ∈ {1, 4, . . . ,K},
corresponds to the codeword b3

k,{k,2}, and the entry in column-2 and row-{k, 3}, for each
k ∈ {1, 4, . . . ,K}, corresponds to codeword b2

k,{k,3}. According to (3.74), the entries in rows

T containing index 1 correspond to the r codewords {bj
k,T }k∈T . And finally, according to

(3.75), the entry in column-1 and row-{2, 3} corresponds to the two codewords b1
2,{2,3} and

b1
3,{2,3}. We thus conclude that all entries of the table in rows T containing index 1 and

in row {2, 3} correspond to r = 2 different codewords, while all other entries correspond
to only a single codeword. Similar tables can be drawn for all pairs (k1, k2) ∈ [K], where
recall however that node K does not send any information to node 1.

Similarly, Table 3.4 illustrates which codesymbols bj
k,T are premultiplied by the pre-

coding matrix U{2,3,4}, when r = 3 and K ≥ 5. The entries in rows T containing index
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Table 3.4: Let r = 3. The table illustrates the codesymbols bj
k,T that are premultiplied by the

precoding matrix U{2,3,4}. Entries for sets T either equal to {2, 3, 4} or containing 1, correspond
to r transmitted codewords, one from each node in T . All other entries correspond only to a single
codeword from the node not in {2, 3, 4}.

T \ j 1 2 3 4

{1, 2, 3} x x x U{2,3,4}

{1, 2, 4} x x U{2,3,4} x

{1, 3, 4} x U{2,3,4} x x

{2, 3, 4} U{2,3,4} x x x

{2, 3, 5} o x x U{2,3,4}
...

...
...

...
...

{2, 3,K} o x x U{2,3,4}

{2, 3, 5} o x U{2,3,4} x
...

...
...

...
...

{2, 3,K} o x U{2,3,4} x

{3, 4, 5} o U{2,3,4} x x
...

...
...

...
...

{3, 4,K} o U{2,3,4} x x

1 correspond to r = 3 different codewords bj
k,T , one for each k ∈ T , see (3.74). Simi-

larly, the entry in column-1 and row {2, 3, 4} corresponds to the r codewords b1
k,{2,3,4}, for

each k ∈ {2, 3, 4}. Any other entry of the table showing U{2,3,4} corresponds to a single
codeword bj

k,T , where k is the single element in T \{2, 3, 4}.
We now describe encodings and decodings.
Encoding: Define the T-length vector of channel inputs Xk ≜ (Xk(1), . . . , Xk(T))

T for
each Node k. Nodes 1, . . . ,K form the channel inputs as:

X1 =
∑

R∈[[K]\{1}]r

∑
j∈R

URb
j
1,R∪{1}\{j}, (3.76)

Xk =
∑

R∈[[K]\{1,k}]r

∑
j∈R

URb
j
k,R∪{k}\{j}

+
∑

R∈[[K]\{k}]r :
1∈R

∑
j∈R

UR∪{k}\{1}b
j
k,R∪{k}\{j},

k ∈ [K− 1]\{1}, (3.77)

XK =
∑

R∈[[K−1]\{1}]r

∑
j∈R

URb
j
K,R∪{K}\{j}

+
∑

R∈[[K−1]]r :
1∈R

∑
j∈R\{1}

UR∪{K}\{1}b
j
K,R∪{K}\{j}, (3.78)

where the precoding matrices {UR}R∈[[K]\{1}]r are described shortly.
Decoding: After receiving the respective sequence of T channel outputs Yj ≜ (Yj,1, . . . , Yj,T),
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for j ∈ [K], each node removes the influence of the codewords corresponding to the mes-
sages that it can compute itself. The nodes’ “cleaned" signals can then be written as:

Y′
1 =

∑
R∈[[K]]r :

1∈R

∑
k∈[K−1]\R

H1,kUR∪{k}\{1}b
1
k,R∪{k}\{1}

︸ ︷︷ ︸
desired signal

+
∑

R∈[[K]\{1}]r

∑
k∈[K]\R

H1,kURvR,k + Z1, (3.79a)

Y′
j =

∑
R∈[[K]\{1}]r :

j∈R

∑
k∈[K]\R

Hj,kURb
j
k,R∪{k}\{j}

︸ ︷︷ ︸
desired signal

+
∑

R∈[[K]]r :
1,j∈R

∑
k∈[K]\R

Hj,kUR∪{k}\{1}b
j
k,R

︸ ︷︷ ︸
desired signal

+
∑

R∈[[K]\{1}]r :
j /∈R

∑
k∈[K]\R :

k ̸=j

Hj,kURvR,k

+
∑

R∈[[K]]r :
1∈R,j /∈R

∑
k∈[K]\R

Hj,kUR∪{k}\{1}vR,k + Zj ,

j ∈ [K]\{1}, (3.79b)

where for ease of notation we defined for Nodes k ∈ [K− 1]:

vR,k ≜
∑
j∈R

bj
k,R∪{k}\{j}, ∀R ∈ [[K]\{k}]r, (3.80)

and for the last Node K, since its signal to Node 1 is absent:

vR,K ≜
∑

j∈R\{1}

bj
k,R∪{k}\{j}, ∀R ∈ [[K− 1]]r. (3.81)

Each Node j zero-forces the non-desired interference terms of its “cleaned" signal and
decodes its intended messages {M j

k,T }.

Choice of IA Matrices {UR} and Analysis of Signal and Interference Spaces: Inspired
by the IA scheme in [30], we choose each T× ηΓ precoding matrix UR so that its column-
span includes all power products (with powers from 1 to η) of the channel matrices Hj,k that
premultiply UR in (3.79) in the non-desired interference terms. Thus, for R ∈ [[K]\{1}]r:

UR ≜

 ∏
H∈HR

HαR,H ·ΞR : ∀αR ∈ [η]Γ

 , (3.82)

where {ΞR}R∈[[K]\{1}]r are i.i.d. random vectors independent of all channel matrices, noises,
and messages,

HR ≜
{
Hj,k : j ∈ [K]\R, k ∈ [K]\{j}

}
\
{
H1,k : k ∈ R

}
,

(3.83)
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and αR ≜ (αR,H : H ∈ HR). Notice that |HR| = Γ for any R ∈ [[K]\{1}]r.
Since the column-span of UR contains all power products of powers 1 to η of the

channel matrices H ∈ HR, we have

span(H ·UR) ⊆ span(WR), H ∈ HR, (3.84)

where we defined the T× (η + 1)Γ-matrix

WR =

 ∏
H∈HR

HαR,H ·ΞR : ∀αR ∈ [η + 1]Γ

,
for R ∈ [[K]\{1}]r . (3.85)

The signal and interference space at Rx 1 is represented by the matrix:

Λ1 =
[

D1︸︷︷︸
signal space

, [WR]R∈[[K]\{1}]r︸ ︷︷ ︸
interference space

]
, (3.86)

where

D1 ≜
[
H1,kUR

]
k∈[K−1]\{1},
R∈[[K]\{1}]r :

k∈R

. (3.87)

The matrix D1 represents the receiver’s signal subspace and consists of (K − 2) ·
(K−2
r−1

)
matrices of dimension T × ηΓ. Matrix D1 is thus of dimension T × (K − 2) ·

(K−2
r−1

)
· ηΓ.

Since the interference space consists of
(K−1

r

)
matrices of dimension T× (η + 1)Γ, and by

the choice of T in (3.69), Receiver 1’s receive matrix Λ1 is square T× T.
The receive space at Rx j ∈ [K]\{1} is represented by the matrix:

Λj ≜
[

Dj︸︷︷︸
signal space

, [WR]R∈[[K]\{1}]r : j /∈R︸ ︷︷ ︸
interference space

]
. (3.88)

where the signal subspace Dj is given by a collection of (K−1)·
(K−2
r−1

)
matrices of dimension

T× ηΓ:

Dj ≜ [Hj,kUR]R∈[[K]\{1}]r :
j∈R,

k∈[K]\{j}

. (3.89)

Matrix Dj represents the Receiver j’s signal subspace, consists of (K− 1) ·
(K−2
r−1

)
matrices

of dimension T× ηΓ, and is thus itself of dimension T× (K− 1) ·
(K−2
r−1

)
· ηΓ. Receiver j’s

interference space consists of a collection of
(K−2

r

)
matrices of dimension T× (η+1)Γ, and

thus the receive matrix Λj is of dimension T× T̃, where

T̃ ≜ (K− 1) ·
(
K− 2

r − 1

)
· ηΓ +

(
K− 2

r

)
· (η + 1)Γ. (3.90)

According to Lemmas 3.2 and 3.3 below, matrices {Λj}Kj=1 are full column-rank if each
column has different exponent vector α, which follows by the way we constructed the
matrices UR and WR. Indeed:
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• For each R ∈ [[K]\{1}]r, matrices UR and WR are constructed using a dedicated
i.i.d. vector ΞR that is independent of all other random variables in the system and
thus the vectors ΞR can play the roles of the vectors Ξi in Lemma 3.3.

• For each term HUR in (3.87) and (3.89), we have H /∈ HR. Thus H is not used
in the construction of neither UR nor WR and induces a unique exponent on the
corresponding columns in the signal space which is 0 in all columns of the interference
space WR.

This proves that based on the “cleaned" signal (3.79), each receiving node j can separate
the various desired signals from each other as well as from the non-desired interfering
signals. Since each codeword bj

k,T occupies ηΓ dimensions out of the T dimensions, we
obtain that whenever

|bj
k,T |
T
≤ ηΓ

T
logP+ o(logP), (3.91)

for an appropriate function o(logP) that grows slowlier than logP, each codeword bj
k,T

can be decoded with arbitrary small probability of error as η →∞.
Since (K− 2) ·

(K−2
r−1

)
codewords are sent to Node 1, and r

(K−1
r

)
codewords to any other

Node j = 2, . . . ,K, and since

lim
η→∞

ηΓ

T
=

1

(K− 2)
(K−2
r−1

)
+
(K−1

r

) , (3.92)

we conclude that a SDoF of

SDoF =
(K− 2) ·

(K−2
r−1

)
+ (K− 1)r

(K−1
r

)
(K− 2)

(K−2
r−1

)
+
(K−1

r

)
=

r(K− 1)2 + r(K− 2)

r(K− 2) + K− 1
(3.93)

is achievable over the system. This establishes achievability of (3.7).

Lemma 3.2 Let s1, s2, ..., sm be independent random vectors with i.i.d. entries drawn
according to continuous distributions. for any L ≤ m and L different exponent vectors

αj = (αj,1, . . . , αj,m) ∈ Zm
+ , j ∈ [L],

the m× L matrix M with row-i and column-j entry

Mi,j =
m∏
k=1

(si,)
αj,k , i ∈ [m], j ∈ [L], (3.94)

is full rank almost surely.

Lemma 3.3 Consider numbers {n1, n2, · · · , nK̃} ∈ ZK̃
+ so that their sum C ≜

∑K̃
i=1 ni ≤ T.

Assume that for each i ∈ [K̃] and k ∈ [ni], Bi,k ∈ CT×T is a diagonal matrix so that all
square sub-matrices of the following matrices {Bi}i∈K̃ are full rank:

Bi ≜
[
Bi,1 · 1T,Bi,2 · 1T, · · · ,Bi,ni · 1T

]
, i ∈ [K̃], (3.95)
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where 1T denotes a T-dimensional all-one column vector.
Let further {Ξi}i∈K̃ be independent T-vectors with entries drawn i.i.d. from continuous

distributions and define the T× ni-matrices

Ai ≜ [Bi,1 ·Ξi,Bi,2 ·Ξi, · · · ,Bi,ni ·Ξi] , i ∈ [K̃]. (3.96)

Then, the T× C-matrix
Λ ≜

[
A1,A2, · · · ,AK̃

]
(3.97)

has full column rank almost surely.

Proof: We assume that the matrix Λ is a square matrix i.e. C = T. If T > C, we
take a square submatrix of Λ and perform the same proof steps on the submatrix.

Define
F
(
Ξ1, . . . ,ΞK̃

)
≜ det(Λ) (3.98)

which is a polynomial of Ξ1,Ξ2, · · · ,ΞK̃ as the determinant is a polynomial of the entries
of Λ.

For the vectors

di = [ 0, · · · 0,︸ ︷︷ ︸
(n1+···+ni−1) 0s

1, · · · 1,︸ ︷︷ ︸
ni 1s

0, · · · 0︸ ︷︷ ︸
(ni+1+···+nK̃) 0s

]T , i ∈ K̃, (3.99)

the polynomial evaluates to

F
(
d1, . . . ,dK̃

)
= det


B′

1 0 · · · 0

0 B′
2 · · · 0

...
...

. . .
...

0 0 · · · B′
K̃

 (3.100)

=

K̃∏
i=1

det(B′
i) ̸= 0 (3.101)

where B′
i is the ni×ni square sub-matrix of Bi consisting of its rows (n1+ · · ·+ni−1+1) to

(n1+ · · ·+ni−1+ni). The inequality holds by our assumption that all square sub-matrices
of Bi are full rank.

We conclude that F is a non-zero polynomial and thus F
(
Ξ1, . . . ,ΞK̃

)
equals 0 with

probability 0 because the entries of Ξ1,Ξ2, · · · ,ΞK̃ are drawn independently from contin-
uous distributions.

3.6 A Scheme with IA and ZF for K odd and r = (K− 1)/2

Our second scheme is also based on the IA idea. However, now each message is coop-
eratively transmitted by a size-r set of transmitters T so that it is received at a given
node j ∈ [K]\T while zero-forced at a group S of r − 1 nodes in [K]\{T ∪ {j}}. Since
r+ r−1+1 = K−1, there is only a single remaining node ℓ ∈ [K]\{S ∪T ∪{j}} where the
signal is experienced as interference.We choose to precode all Messages that cause interfer-
ence at a given Node ℓ by the same precoding matrix Uℓ, for ℓ ∈ [K]. As we explained, each
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message will interfere only at a single receiving node, and thus this index ℓ is well-defined
for each message. We construct the precoding matrix Uℓ so that all interferences at this
Node ℓ align, thus leaving the remaining space for signaling dimensions. To summarize,
if we use precoding matrix Uℓ for the transmission of a message from group T to Node
j, then we zero-force this signal at all nodes in [K]\{T ∪ {j, ℓ}} and we ensure that this
signal aligns with all other interference signals at Node ℓ, the only node where it causes
interference.

Given above idea, the main design parameter of our scheme is to choose for each message
the receiving Node ℓ where it will cause interference, or equivalently the precoding matrix
Uℓ employed for this message. Table 3.5 indicates the precoding matrix used to transmit
each Message M j

T , for the case K = 5 and r = 2. We observe that in this case our scheme
transmits a message for each set T ∈ [[K]]r and each j ∈ [K]\T . The table is thus full in
the sense that all meaningful entries show a precoding matrix. Moreover, each meaningful
entry describes the transmission of a single message M j

T . The table implicitly also indicates
how to zero-force the transmit codewords. For example, Message M3

{1,2} is precoded by
matrix U5 and its transmission is thus zero-forced at the remaining node 4 which neither
transmits the message nor receives it, nor is chosen to handle it as interference.

Our task is to choose similar tables for any odd number K ≥ 7. In the choice that
we propose shortly for general K ≥ 7, not all meaningful entries will be associated with
a precoding matrix and some entries will be associated with more than one precoding
matrix. (In this latter case, the corresponding message will have to be split into different
submessages, one for each assigned precoding matrix.). It will then be more convenient to
illustrate the usage of each precoding matrix in a separate table. For K = 7 (and r = 3),
Table 3.6 indicates the messages precoded by the matrix U7 and thus causing interference
to Node 7. The general rule for K ≥ 7 with K odd, is that we use precoding matrix Uℓ

exactly K− r − 1 = r times in each column j, namely for the sets

T ∈ {{j − r + 1, . . . , j − 1, t} : t ∈ [K]\{j − r + 1, . . . , j, ℓ}} , (3.102)

where the indices in (3.102) need to be understood with omission of the index ℓ and then
taken modulo K − 1. For example, as depicted in Table 3.6, for K = 7, r = 3, and j = 2

the following sets T send a message to Node 2 using precoding matrix U7:

T ∈ {{1, 6, t} : t ∈ [7]\{1, 2, 6, 7}}
= {{1, 3, 6}, {1, 4, 6}, {1, 5, 6}}, (3.103)

where here we associated the index 1 with j − 1, the index 6 as j − 2, and t runs over
the remaining set [7]\{1, 2, 6, 7}. For the same parameters K = 7, r = 3, and now column
j = 3, the following sets send a message to node 3 using precoding matrix U7:

T ∈ {{1, 2, t} : t ∈ [7]\{1, 2, 3, 7}}
= {{1, 2, 4}, {1, 2, 5}, {1, 2, 6}}. (3.104)

The choice of the tables in (3.102) is based on the following properties:
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Remark 3.6 1. Consider the r rows T1, . . . , Tr that contain precoding matrix Uℓ in a
given column j. Notice that they share r − 1 elements in common: the elements
j − r + 1, . . . , j − 1 in (3.102), i.e., elements (1, 6) in (3.103) and elements (1, 2) in
(3.104). The remaining element (namely the t in (3.102)) in each set is distinctive in
the sense that it is not contained in any of the other transmit sets used in the same
column.

2. In each row there is a single precoding matrix Uℓ. I.e., for each set T there is a
unique column-index j with entry Uℓ in the table.

3. For each ℓ ∈ [K], precoding matrix Uℓ occurrs K − r − 1 = r times in each column,
except in column ℓ where it does not occurr at all. I.e., each node in [K]\{ℓ} receives
K− r − 1 = r different codewords that are precoded with matrix Uℓ.

Items 1) and 2) apply also to the precoding matrix assignment in Table 3.5 for K = 5

and r = 2.

To see item 2) in above remark, notice that for r ≥ 3 the tuple of r−1 consecutive (omitting
index ℓ and modulo K − 1) numbers (j − r + 1, . . . , j − 1) can only be present in a set T
that we use in column j but not in other columns.

Using above rule, for large values of K there are transmit sets T ∈ [[K]]r and receiving
Nodes j so that two different precoding matrices Uℓ and Uℓ′ , for ℓ, ℓ′ ∈ [K]\(T ∪ {j})
and ℓ ̸= ℓ′, are assigned to the same row-T and column-j entry of the table. For ease of
notation, we capture this phenomena in the set LjT , which for each T ∈ [[K]]r and j ∈ [K]\T
contains all indices ℓ so that the row-T and column-j entry contains matrix Uℓ. We can
then rephrase above observation as the remark that |LjT | can be larger than 1. If this is
the case, in our scheme Message M j

T needs to be split into two submessages, which are
then precoded by the matrices Uℓ and Uℓ′ , respectively. We shall therefore introduce the
general notation M j,ℓ

T to denote the message that a transmit set T sends to the receiving
Node j using precoding matrix Uℓ. With some slight abuse of notation, we assume that
the message M j,ℓ

T either denotes M j
T or a submessage thereof.

We now describe the encoding and decodings and analyze the signal and interference
spaces.

We fix a large parameter η ∈ Z+ (which we shall let tend to ∞) and define

Γ ≜ r(K− 1) (3.105)

T ≜ r(K− 1) · ηΓ + (η + 1)Γ. (3.106)

For each message M j,ℓ
T , construct a Gaussian codebook of power P and length ηΓ to encode

each Message M j,ℓ
T into a codeword bj,ℓ

T .

Encoding Tx q ∈ [K] forms its inputs as:

Xq =
∑

T ⊆[[K]]r :
q∈T

∑
j∈[K]\T

∑
ℓ∈Lj

T

Vq
[K]\{j,ℓ},T Uℓ b

j,ℓ
T , (3.107)
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Table 3.5: Choice of precoding matrices in our scheme for K = 5 and r = 2. Each signal that is
precoded with matrix Uℓ is zero-forced at the unique Node i ̸= ℓ that is neither the intended Node
j nor part of the transmitting set T .

T \ j 1 2 3 4 5

{1, 2} x x U5 U3 U4

{1, 3} x U5 x U2 U4

{1, 4} x U5 U2 x U3

{1, 5} x U4 U2 U3 x

{2, 3} U4 x x U5 U1

{2, 4} U5 x U1 x U3

{2, 5} U3 x U4 U1 x

{3, 4} U5 U1 x x U2

{3, 5} U4 U1 x U2 x

{4, 5} U2 U3 U1 x x

where U1, . . . ,UK denote the precoding-matrices that we will construct shortly and VR,T

denotes the node-q component of a matrix that zero-forces the signals emitted by the set
of nodes T at the receiving nodes R\T but not at the other nodes. This precoding matrix
is also scaled in a way to satisfy the block-power constraint for all channel input signals.
(Implicitly here we assume that T and R\T are of sizes r and r − 1, respectively, so that
the desired precoding matrix exists with probability 1.) For any set T = {q1, . . . , qr} and
R, define

VR,T ≜


Vq1

R,T
...

Vqr
R,T

 . (3.108)

With the proposed precoding matrices, and after each receive Node p removes the
signals it can produce itself (i.e., the signals stemming from sets T containing p), we can
rewrite Node p’s equivalent receive signal as:

Y′
p =

∑
T ⊆[[K]]r :

p/∈T

Hp,T
∑
ℓ∈Lp

T

V[K]\{p,ℓ},T Sp
T Uℓ b

p,ℓ
T

+
∑

j∈[K]\p

∑
T ⊆[[K]\{j,p}]r :

p∈Lj
T

Gj,p
T Upb

j,p
T + Zp. (3.109)

with

Gj,p
T ≜ Hp,T V[K]\{j,p},T Sj

T (3.110)

Remark 3.7 Notice that all interfering signals at receiving Node p are precoded by the
same matrix Up.
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IA Matrices {Uℓ} Inspired by the IA schemes in [30], [90], we choose each T × ηΓ

precoding matrix Uℓ so that its column-span includes all power products (with powers
from 1 to η) of the “generalized" channel matrices Gj,ℓ

T that premultiply Uℓ in (3.109):

Gℓ ≜
{
Gj,ℓ

T : ∀j ∈ [K]\{ℓ}, ∀T s.t. ℓ ∈ LjT
}
. (3.111)

Since the network is memoryless, the “generalized" channel matrices Gj,ℓ
T are diagonal T-

by-T matrices. Then, for each k ∈ [K] construct the T-by-ηΓ matrix Uℓ by selecting each
of its columns as a product of the elements in Gℓ multiplied with an independent i.i.d.
random vector Ξℓ:

Uℓ =

 ∏
G∈Gℓ

Gαℓ,G ·Ξℓ : ∀αℓ ∈ [η]Γ

 , (3.112)

where αℓ ≜ (αℓ,G : G ∈ Gℓ) are exponent vectors of length Γ.

Decoding at Rx p The way we constructed our precoding matrices, we have:

span(G ·Up) ⊆ span(Wp), G ∈ Gp, (3.113)

where we defined the T× (η + 1)Γ-matrix

Wp =

 ∏
G∈Gp

Gαp,G ·Ξp : ∀αp ∈ [η + 1]Γ

 . (3.114)

The signal subspace at Rx p is given by:

Dp ≜
[
Hp,T V[K]\{p,ℓ},T Sp

T Uℓ

]
T ∈[K]r : p/∈T

ℓ∈Lp
T

(3.115)

and its interference subspace is included in Wp.
For each column of the signal space Dp, Rx p projects its receive signal Y′

p onto a
vector that is orthogonal to all columns in the interference space Wp and also to all other
columns of Dp. It can then decode the desired messages in an interference-free manner
based on the various projections.

Analysis of Signal and Interference Subspaces If the columns of the matrix Dp

are linearly independent of each other and of the columns of Wp, the following DoF is
achievable to each Node p when we let η →∞:6/7, K = 5

r(K−1)
r(K−1)+1 , K ≥ 7

. (3.116)

Remark 3.8 Notice the difference in our expressions (3.116) for K = 5 and K ≥ 7. In
fact, for K = 5, we fill all

(K−1
r

)
rows of each column with one of the precoding matrices.

For K ≥ 7 however we use each precoding matrix only K− r− 1 times in each column, and
since in each row we can use (K − 1) precoding matrices and (K − r − 1)(K − 1) ≤

(K−1
r

)
for K ≥ 7, some of the entries in the table remain empty.
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Accordingly, the SDoF of the entire system is given by

SDoF =

30/7, K = 5
Kr(K−1)
r(K−1)+1 , K ≥ 7

. (3.117)

In the remainder of this section, we prove that for each p the columns of Dp are
independent of each other and of the columns ofWp. The way we constructed the precoding
matrices and by Lemma 3.3 at the end of the previous Section 3.5, it suffices to show that
for each ℓ ̸= p the matrix

Λp,ℓ =

[
Ḡp,ℓ

T

∏
i∈[K]\{ℓ}

T̃ ∈[[K]\{i,ℓ}]r :
ℓ∈LT̃ i

(
Gi,ℓ

T̃

)αℓ,i,T̃
1T :

∀αℓ ∈ [η]Γ
]
T ∈[[K]\{ℓ,p}]r

ℓ∈Lp
T

(3.118)

has only full-rank square submatrices, where

Ḡp,ℓ
T ≜ Hp,T V[K]\{p,ℓ},T Sp

T (3.119)

is a diagonal T-by-T matrix.
By construction and the diagonal structure of the “generalized" channel coefficients,

any square sub-matrix of the matrix Λp,ℓ, for ℓ ̸= p, has the same form as matrix M

in Equation (3.120) of Lemma 3.4 ahead, when one considers the diagonal entries of the
“generalized" channel matrices

{
Ḡp,ℓ

T
}
T : ℓ∈Lp

T
and

{
Gi,ℓ

T }i∈[K]\{ℓ}
T : ℓ∈Li

T

as the outcomes of the

functions f1, . . . , fL. The inputs of these functions are the random channel coefficients
{Hp′,q(t)} and the entries of the diagonal matrices {Sj

T } which in Lemma 3.4 can thus
play the role of the i.i.d. random variables in the vector xt. By Lemma 3.4 it thus
suffices to show that the “generalized" channel matrices

{
Ḡp,ℓ

T
}
ℓ∈Lp

T
and

{
Gi,ℓ

T }ℓ∈Li
T

are
algebraically independent functions of the channel coefficients {Hp′,q(t)} and the entries
of {Sj

T }. In our proof, we will exploit the structure that we imposed for our choice of
the precoding matrices, see Remark 3.6. Especially observation 1) in Remark 3.6 that for
given j ̸= ℓ precoding matrix Uℓ is used to send messages to Receiver j from transmit sets
T1, . . . , Tr that each have one distinct index that is not present in the other transmit sets.

Notice that
{
Ḡp,ℓ

T
}
ℓ∈Lp

T
and

{
Gi,ℓ

T }ℓ∈Li
T

are all diagonal matrices with the t-th elements
only depending on the time-t channel coefficients {Hp′,q(t)} and the t-th components of the
diagonal matrices {Sj

T }. We restrict to a single time-instance t ∈ {1, . . . ,T} and drop this
time-index for convenience. Henceforth, the random variables

{
Ḡp,ℓ

T
}
ℓ∈Lp

T
and

{
Gi,ℓ

T }ℓ∈Li
T
,

and {Sj
T } refer to the t-th diagonal elements of the corresponding matrices and {Hp′,q} to

the corresponding time-t channel coefficients.
Recall that p and ℓ are fixed and notice the following:

• Since each transmitted codeword interferes only at a single node, each element Gi,ℓ
T ,

with T and i so that ℓ ∈ LiT , depends on a different auxiliary random variable Si
T .

The functions {Gi,ℓ
T }ℓ∈Li

T
are thus algebraically independent because the factors in
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front of these auxiliary random variables Hℓ,T V[K]\{i,ℓ},T are non-zero with proba-
bility 1.

• Each function Ḡp,ℓ
T only depends on Sp

T but not on the other S-random variables.

• Each set T for which ℓ ∈ LpT has a distinct element t (see (3.102) and Item 1) of
Remark 3.6). For a given such set T for which ℓ ∈ LpT , the two functions Ḡp,ℓ

T and Gp,ℓ
T

thus each depends on a different channel coefficient Hp,t and Hℓ,t, respectively, that
does not influence any of the other functions Ḡp,ℓ

T̃ and Gp,ℓ

,T̃ for sets T̃ ̸= T satisfying
ℓ ∈ Lp,T̃ . Again, with probability 1 the factors in front of the distinct channel
coefficients Hp,t and Hℓ,t are non-zero, which establishes algebraic independence of
our functions.

All these considerations can be combined to conclude that the functions
{
Ḡp,ℓ

T
}
ℓ∈Lp

T
and{

Gi,ℓ
T }i∈[K]\{ℓ}

ℓ∈Li
T

are algebraically independent.

Lemma 3.4 (Lemmas 3 and 4 in [90]) Let f = (f1f2, ..., fm) ∈ Cm be a vector of ra-
tional functions and let x1,x2, ...,xτ be i.i.d. random vectors with i.i.d. entries drawn
according to continuous distributions. Define

si ≜ f(xi), i ∈ [τ ].

For any L ≤ τ and L different exponent vectors

αj = (αj,1, . . . , αj,m) ∈ Zm
+ , j ∈ [L],

the T × L matrix M with row-i and column-j entry

Mi,j =
m∏
k=1

(si,k)
αj,k, i ∈ [τ ], j ∈ [L], (3.120)

is full rank almost surely, if and only if the functions f are algebraically independent, i.e.,
if and only if the Jacobian [∂fn∂xi

](i,n) is of rank m.

3.7 Proof of the NDT Lower Bound in Theorem 3.1

Consider a fixed file assignment (map phase), and for any positive power P a sequence (in
T) of wireless distributed computing systems satisfying (2.33) for the given file assignment.
(Since for finite N there are only a finite number of different file assignments irrespective
of P and T, we can fix the assignment.) The following limiting behaviour must hold.

Lemma 3.5 Consider two disjoint sets T and R of same size

|T | = |R|, (3.121)

and define F ≜ [K]\(R∪T ). LetM⊆ [N] be the set of files known only to nodes T but not
to any other node and partition the set of all IVAs A it into the following disjoint subsets:

Wr ≜ {aj,m} j∈R
m∈[N]\Mj

, (3.122)
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Wt ≜ {aj,m} j∈T
m∈M\Mj

. (3.123)

For any sequence of distributed computing systems:

d ≜ lim
P→∞

lim
T→∞

A

T logP
≤ |T |
|Wt|+ |Wr|

(3.124)

(Notice thatWr denotes the set of all IVAs intended to nodes in R andWt the set of IVAs
deduced from files inM and intended for nodes not in R.)

Proof: Denote by H the set of all channel coefficients to all nodes in the system and
define Wc ≜ A\(Wr ∪Wt). Since channel coefficients and IVAs are independent, we have

H(Wt,Wr) = H(Wt,Wr|Wc,H) (3.125)

= I(Wt,Wr;YR|Wc,H)
+H(Wt,Wr|Wc,YR,H) (3.126)

= h(YR|Wc,H)− h(ZR)

+H(Wr|Wc,YR,H) (3.127)

+H(Wt|Wr,Wc,YR,H) (3.128)

≤ h(YR|Wc,H)− h(ZR)

+TϵT +H(Wt|Wr,Wc,YR,H), (3.129)

where we defined YA ≜ [Yj ]j∈A for a set A ⊆ [K] and ϵT is a vanishing sequence as
T → ∞. Here the inequality holds by Fano’s inequality, because Wr is decoded from YR

and Wc, and because we impose vanishing probability of error (2.33).
Again by Fano’s inequality and by (2.33), there exists a vanishing sequence ϵ′T such

that

H(Wt|Wr,Wc,YR,H)
≤ I(Wt;YF |Wr,Wc,YR,H) + Tϵ′T (3.130)

= h(YF |Wr,Wc,YR,H) (3.131)

−h(YF |Wr,Wt,Wc,YR,H) + Tϵ′T (3.132)

≤ h(ȲF |ȲR,H)− h(ZF ) + Tϵ′T, (3.133)

where ȲA ≜ [Ȳj ]j∈A and Ȳj denotes Node j’s “cleaned" signal without the inputs that do
not depend on files inM but only on IVAs Wr ∪Wc:

Ȳj ≜ Hj,T XT + Zj , j ∈ T ∪ F .

Here, HA,B denotes the channel matrix from set B to set A.
To bound the first term in (3.133), we introduce a random variable E indicating whether

the matrix HR,T is invertible (E = 1) or not (E = 0). If this matrix is invertible and
E = 1, then the input vector XT can be computed from ȲR up to noise terms. Based on
this observation and defining the residual noise terms

Z̄j ≜ Zj −Hj,T H
−1
R,T ZR, if E = 1, (3.134)
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we obtain:

h(ȲF |ȲR,H)
≤ P(E = 1) · h

(
Z̄F |ȲR,H, E = 1

)
+P(E = 0) · h

(
ȲF |ȲR,H, E = 0

)
(3.135)

≤ h
(
Z̄F
)
+ P(E = 0)h

(
ȲF |ȲR,H, E = 0

)
. (3.136)

Since the channel coefficients follow continuous distribution, HR,T is invertible almost
surely, implying P(E = 0) = 0. By the boundedness of the entropy term h

(
ȲF |ȲR,H, E = 0

)
(since power P and channel coefficients are bounded), this implies

h(Ȳ(F∪T )|ȲR,H) ≤ h(Z̄F ),

which combined with (3.129) and (3.133) yields:

H(Wt,Wr) ≤ h(YR|H)− h(ZR) + h(Z̄F )

−h(ZF ) + T(ϵT + ϵ′T)

≤ T|R| log(P) + TCT,H, (3.137)

where CT,H is a function that is uniformly bounded over all realizations of channel matrices
and powers P. Noticing

H(Wt,Wr) = A(|Wt|+ |Wr|), (3.138)

dividing (3.137) by T log(P), and letting P→∞, establishes the lemma because |R| = |T |
and TCT,H is bounded.

For each subset T ⊆ [K], let BjT denote the set of IVAs that are computed exclusively
at nodes in set T and intended for reduce function j. Define bT = |BjT |, which does not
depend on the index of the reduce function j ∈ [K]\T .

Choose two disjoint subsets T and R of same size |T | = |R|. By Lemma 3.5, and
rewriting the sets Wt and Wr in the lemma in terms of the sets {BjT }, we obtain:

|T |
d
≥
∑

T ⊆[K]

∑
j∈R\T

|BjT |+
∑
G⊆T

∑
j∈[K]\(R∪T )

|BjG | (3.139)

=
∑

T ⊆[K]

|R\T | · bT +
∑
G⊆T

(K− |R| − |T |) · bG . (3.140)
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Summing up Equality (3.140) over all sets T and R of constant size t ≤ K/2, we obtain:(
K

t

)
·
(
K− t
t

)
· t
d

≥
∑

T ∈[[K]]t

∑
R∈[[K]\T ]t

∑
T ⊆[K]

|R\T | · bT

+
∑

T ∈[[K]]t

∑
R∈[[K]\T ]t

∑
G⊆T

(K− 2t) · bG (3.141)

=
∑

T ⊆[K]

·
(
K− t
t

) ∑
ℓ∈[K]\T

∑
R∈[[K]]t

1ℓ∈RbT

+
∑

G⊆[K] :
|G|≤t

(
K− |G|
t− |G|

)
·
(
K− t
t

)
· (K− 2t)bG (3.142)

=
∑

T ⊆[K]

(
K

t

)
·
(
K− t
t

)
· (K− |T |) t

K
bT

+
∑

G⊆[K] :
|G|≤t

(
K− |G|
t− |G|

)
·
(
K− t
t

)
· (K− 2t)bG (3.143)

=

(
K

t

)
·
(
K− t
t

)
· t
(
N− rN

K

)
+
∑

G⊆[K] :
|G|≤t

(
K− |G|
t− |G|

)
·
(
K− t
t

)
· (K− 2t)bG , (3.144)

where we define
(
a
0

)
= 1 for any positive integer a. The second equality holds because for

a given element ℓ, there are
(K−1
t−1

)
=
(K
t

)
t
K admissible sets R and the last equality holds

because ∑
T ⊆[K]

bT = N,
∑

T ⊆[K]

|T | · bT ≤ r · N. (3.145)

Dividing both sides of (3.144) by
(K
t

)(K−t
t

)
t, and defining bi ≜

∑
T ∈[[K]]i bT , for any t ∈

[⌊K/2⌋] we obtain:

1

d
≥ N− r · N

K
+ min

b1,...,bK∈Z+ :∑K
i=1 bi=N∑K
i=1 ibi≤rN

t∑
i=1

Ct(i)bi, t ∈ [⌊K/2⌋], (3.146)

where Ct(i) is defined in (3.12).
For any t ∈ [⌊K/2⌋], the sequence of coefficients Ct(1), Ct(2), . . . , Ct(t) is convex and

non-increasing, see Appendix B.1. Based on this convexity, it can be shown (see Ap-
pendix B.2) that for any r < t + 1 there exists a solution to the minimization problem in
(3.146) putting only positive masses on b∗⌊r⌋ and b∗⌈r⌉ in the unique way satisfying

b∗⌊r⌋ + b∗⌈r⌉ = N (3.147)

⌊r⌋b∗⌊r⌋ + ⌈r⌉b
∗
⌈r⌉ = rN. (3.148)
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3.8. Conclusion

For r ≥ t+1 an optimal solution consists of setting b∗⌊r⌋ = N, in which case the minimization
in (3.146) evaluates to 0.

For r ≥ 2, the lower bound on the NDT in the theorem is then obtained by plugging
these optimum values into bound (3.146) for the choice t = ⌊K/2⌋. For r = 1 we choose
t = 1, and for r ∈ (1, 2) we maximize over the value of t.

3.8 Conclusion

This chapter presents an improved upper bound and the first information-theoretic lower
bound on the computation-NDT tradeoff of full-duplex wireless MapReduce systems. The
upper bound is obtained by zero-forcing and a novel IA scheme that is tailored to the
information cancellation capabilities of the nodes in a MapReduce system. As a conclusion
of this work, we observe that linear beamforming, zero-forcing, and interference cancellation
are optimal when each node can store at least half of the files, but suboptimal otherwise.
It’s worth noting that IA algorithms require large precoding matrices, leading to significant
storage and computational costs. The design of a practical IA algorithm for a MapReduce
system could be an interesting topic for future research.
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Table 3.6: Codewords precoded by matrix U7 when K = 7 and r = 3. Each codeword is zero-forced
at the two nodes not belonging to the transmit T and not equal to the receive node j or to 7.

T \ j 1 2 3 4 5 6 7

{1, 2, 3} x x x U7 o o o

{1, 2, 4} x x U7 x o o o

{1, 2, 5} x x U7 o x o o

{1, 2, 6} x x U7 o o x o

{1, 2, 7} x x o o o o x

{1, 3, 4} x o x x U7 o o

{1, 3, 5} x o x o x o o

{1, 3, 6} x U7 x o o x o

{1, 3, 7} x o x o o o x

{1, 4, 5} x o o x x U7 o

{1, 4, 6} x U7 o x o x o

{1, 4, 7} x o o x o o x

{1, 5, 6} x U7 o o x x o

{1, 5, 7} x o o o x o x

{1, 6, 7} x o o o o x x

{2, 3, 4} o x x x U7 o o

{2, 3, 5} o x x U7 x o o

{2, 3, 6} o x x U7 o x o

{2, 3, 7} o x x o o o x

{2, 4, 5} o x o x x U7 o

{2, 4, 6} o x o x o x o

{2, 4, 7} o x o x o o x

{2, 5, 6} U7 x o o x x o

{2, 5, 7} o x o o x o x

{2, 6, 7} o x o o o x x

{3, 4, 5} o o x x x U7 o

{3, 4, 6} o o x x U7 x o

{3, 4, 7} o o x x o o x

{3, 5, 6} U7 x o x x o o

{3, 5, 7} o o x o x o x

{3, 6, 7} o o x o o x x

{4, 5, 6} U7 o o x x x o

{4, 5, 7} o o o x x o x

{4, 6, 7} o o o x o x x

{5, 6, 7} o o o o x x x
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CHAPTER 4

Multi-bit Quantizer Optimization for Distributed Es-
timation

4.1 Introduction

In numerous surveillance applications, sensors are positioned in various locations with the
aim of measuring a common phenomenon and, consequently, the same parameter [43]–
[45]. The sensors do not individually carry out the final parameter estimation due to
the fact that the local data often suffer from noises. Instead, they transmit their data
after quantization through a propagation channel to a FC, which conducts the estimation.
Discovering multi-bit quantizers constitutes a key issue in estimation.

More precisely, most works consider that i) the quantized version of a new arrival
sample is sent at the FC according to a sequential Round-Robin technique, ii) then the FC
collects all the quantized samples during one round to perform the estimation, and iii) so
the performance is evaluated for one round. In that context, Fisher information and the
CRB have been calculated under different assumptions [46]–[53]. In [52], [53], information-
theoretic tools are used and the conclusion is independent of any quantizer but finally,
the provided bounds are loose. In other above-mentioned papers, only performances with
specified quantizers are considered but without quantizer optimization.

In [54], [55], [57]–[59], the authors propose quantizer optimization for different config-
urations and assumptions. For instance, [54] proposes an optimal deterministic multi-bit
quantizer for one sensor in low SNR case. In [55], Bayesian CRB and a dynamic program-
ming approach are considered to exhibit the optimal multi-bit deterministic quantizer in
a single sensor context. In [56], the authors propose a deterministic quantizer which is
obtained by minimizing the CRB when the parameter vanishes (i.e., at low SNR) with
a particle swarm optimization algorithm. In [57], multi-sensors are considered but each
is equipped with a one-bit quantizer. The quantizer is assumed to be random at each
sensor but the related threshold cumulative density function is linear piece-wise and data-
depending. The criterion is minimax in the sense they minimize the worst CRB with
respect to the parameter range. In [59], the same setup as [57] is considered but they find
the best threshold distribution without the linear-piecewise structure assumption. Finally,
in [58], multiple-sensor scenario is considered. Mathematically, the authors propose to
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optimize the worst case CRB in an iterative way with respect to the thresholds.
In the chapter, we consider multi-bit quantizers in the multiple-sensor scenario for the

min-max approach. We assume that each sensor has a random quantizer coming from a
common distribution between sensors. And this common distribution is optimized when
the number of sensors is large enough. In [59], the same approach was considered but
for one-bit quantizer. Here, the challenge is to extend [59] to multi-bit quantizer. This
extension is not straightforward for two reasons: i) expressing our CRB in closed-form
requires order statistics, ii) the obtained optimization problem is not convex anymore. In
the asymptotic regime with respect to the number of sensors, we propose a framework based
on SGP to obtain an optimized quantizer for the worst-case of the target parameter. Under
the assumption that all thresholds of quantizers are generated according to a distribution,
we express the CRB using order statistics, and the goal of the framework is to explore the
optimal distribution for the CRB. After discretizing, we convert the optimization problem
into a SGP and can be solved by the algorithm proposed in [81]. The obtained quantizer
outperforms uniformly distributed, regular deterministic quantizers and those proposed
in [55], [56] in the mid-to-high SNR regime. Another interesting observation is that the
quantizer performs well even with a limited number of sensors, despite being designed
under the assumption of a large number of sensors.

The rest of this chapter is organized as follows. In Section 4.2, we review the framework
of Geometric Programming (GP) and SGP. In Section 4.3, we introduce the system model
for distributed estimation system with a FC. In Section 4.4, we derive the CRB for the
general case. Then, the asymptotic CRB is derived in Section 4.5. The discretizing methods
and the optimization framework with SGP are also given in the section. The experiment
results are presented in Section 4.6 . Finally, Section 4.7 concludes this chapter.

4.2 Preliminaries

4.2.1 Geometric Programming (GP)

In this section, we present of the definition of GP, which is the method to solve a class
of optimization problem. Let x1, · · ·xN denote N positive variables, and the vector x =

(x1, · · ·xN ). We introduce two definitions

Definition 4.1 (Monomial functions) A monomial g(x) is a function which takes the
form,

g(x) = c ·
N∏

n=1

xann , (4.1)

with the coefficient c is an strict positive real number and an are real numbers.

For example, 2 · x1.51 x
−1/3
2 is a monomial.

Definition 4.2 (Signomial functions) A signomial f(x) is a function which takes the
form,

f(x) =
M∑

m=1

(
cm ·

N∏
n=1

x
am,n
n

)
, (4.2)
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with cm and am,n are real numbers.

Signomials can be thought as the multivariable version of polynomials, and a signomial
is called a posynomial if all coefficients cm are positive, which imply a posynomial is the
sum of monomials. It is easy to deduce that any signomial can be written as the difference
between two posynomials. Posynomials are also closed under addition, multiplication, and
nonnegative scaling. If a posynomial is multiplied or divided by a monomial, the result is
a posynomial.

A GP is an optimization problem of the following form

Problem 4.1 (GP)

min
x

f0(x) (4.3)

s.t. fi(x) ≤ 1, i ∈ {1, · · · p1} (4.4)

gi(x) = 1, i ∈ {1, · · · p2} (4.5)

where fi(x) are posynomials and gi(x) are monomials.

GP problems are not generally convex. However, solving a GP is much easier comparing to
other nonlinear programming as they can be converted into convex optimization problem
by logarithmic transformation of the objective function and constraints, as well as by
the change of variables. The positivity assumption on x, as well as on fi(x) and gi(x),
guarantees that this logarithmic transformation is valid. The converted problem has the
form

Problem 4.2

min
x

log f0(e
y) (4.6)

s.t. log fi(e
y) ≤ 1, i ∈ {1, · · · p1} (4.7)

log gi(e
y) = 1, i ∈ {1, · · · p2} (4.8)

where yn = log xn, y = (y1, · · · yN ), and ey is element-wise exponentiation.

The new problem is convex due to that fact that log f(ey) is convex if f is posynomials.
Therefore, the problem can be solved efficiently. As the exact method for solving a GP is
not the focus of this thesis, we would not delve into detail on the GP solvers. Numerous
tutorials and programs on this topic can be found in [94]–[97]. We will explore an extension
of GP in the next section.

4.2.2 Signomial Geometric Programming (SGP)

SGP is a extension of GP, which contains signomial inequality constraints and signomial
equality constraints. A SGP yields the following form:

Problem 4.3 (SGP)

min
x

f0(x) (4.9)

s.t. fi(x) ≤ 1, i ∈ {1, · · · p1}, (4.10)

fi(x) = 1, i ∈ {p1 + 1, · · · p2}, (4.11)

where fi(x) are signomials.
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We recall that each signomial can be rewritten as the difference between two posyno-
mials. It follows that ∀i ∈ {1, · · · p2}, we have fi(x) = f+i (x)− f−i (x), where both f+i (x)

and f−i (x) are posynomials. The original SGP has the equivalent form

Problem 4.4

min
x

f+0 (x)− f−0 (x) (4.12)

s.t. f+i (x)− f−i (x) ≤ 1, i ∈ {1, · · · p1} (4.13)

f+i (x)− f−i (x) = 1, i ∈ {p1 + 1, · · · p2} (4.14)

We introduce a variable x0 to bound the original objective function as follows:

f+0 (x)− f−0 (x) +M ≤ x0 + 1,

where M is a sufficiently large constant ensuring that f+0 (x) − f−0 (x) +M > 1, which
guarantees x0 > 0. This allows us to express the objective function in a linear form and
rewrite all constraints as ratios of posynomials. Consequently, the optimization problem
can be reformulated in an equivalent form.

Problem 4.5

min
x0,x

x0 (4.15)

s.t.
f+0 (x) +M

f−0 (x) + x0 + 1
≤ 1, (4.16)

f+i (x)

f−i (x) + 1
≤ 1, i ∈ {1, · · · p1}, (4.17)

f+i (x)

f−i (x) + 1
= 1, i ∈ {p1 + 1, · · · p2}. (4.18)

The constraints in the above optimization problem involves ratios between two posynomi-
als. This type of optimization problems is categorized as as Complementary Geometric
Programming (CGP) [98], [99], which is nonconvex optimization problem. In [81], authors
proposed a successive convexification framework that converts the original problem into a
series of basic GP. It is shown in several experience that a local optimal is found efficiently
by this framework. In each iteration, there are two important transformation for the orig-
inal problem in this framework. First, auxiliary variables ti are introduced to relax the
equality constraints, and define t = (tp1+1, · · · tp2). The problem is rewritten as
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Problem 4.6

min
x0,x,t

x0 +

p2∑
i=p1+1

wi · ti (4.19)

s.t.
f+0 (x) +M

f−0 (x) + x0 + 1
≤ 1, (4.20)

f+i (x)

f−i (x) + 1
≤ 1, i ∈ {1, · · · p1}, (4.21)

f+i (x)

f−i (x) + 1
≤ 1, i ∈ {p1 + 1, · · · p2}, (4.22)

f+i (x)

f−i (x) + 1
≥ 1− ti, i ∈ {p1 + 1, · · · p2}, (4.23)

0 ≤ ti ≤ 1, i ∈ {p1 + 1, · · · p2}, (4.24)

where wi is sufficiently large weighting coefficient.

The goal is to find solutions with small t, which is achieved by progressively increasing
the weighting coefficients {wi}p2i=p1+1 while solving the series of optimization problems.
Meanwhile, to reduce the number of constraints on t, variables ti are replaced by si =

1/(1− ti), and s = (sp1+1, · · · sp2). Then, we obtain

Problem 4.7

min
x0,x,s

x0 +

p2∑
i=p1+1

wi · si (4.25)

s.t.
f+0 (x) +M

f−0 (x) + x0 + 1
≤ 1, (4.26)

f+i (x)

f−i (x) + 1
≤ 1, i ∈ {1, · · · p1}, (4.27)

f+i (x)

f−i (x) + 1
≤ 1, i ∈ {p1 + 1, · · · p2}, (4.28)

s−1
i (f−i (x) + 1)

f+i (x)
≤ 1, i ∈ {p1 + 1, · · · p2}, (4.29)

s−1
i ≤ 1, i ∈ {p1 + 1, · · · p2}, (4.30)

The second transformation is to replace all denominators in the constraints by its best
local monomial approximation with arithmetic geometric mean approximation [96]. For a
posynomial f(x) =

∑
m gm(x) with terms gk(x) being monomials, the best local monomial

approximation around point y is

f̂y(x) =
∏
m

(
gm(x)

βm(y)

)βm(y)

, (4.31)

with βm(y) ≜ gm(y)/f(y). Finally, we derive the GP approximation of the original prob-
lem as follows:
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Problem 4.8 (GP Approximation)

min
x0,x,s

x0 +

p2∑
i=p1+1

wi · si (4.32)

s.t.
f+0 (x) +M

f̂−0,y(x, x0)
≤ 1, (4.33)

f+i (x)

f̂−i,y(x)
≤ 1, i ∈ {1, · · · p2}, (4.34)

s−1
i (f−i (x) + 1)

f̂+i,y(x)
≤ 1, i ∈ {p1 + 1, · · · p2}, (4.35)

s−1
i ≤ 1 i ∈ {p1 + 1, · · · p2}, (4.36)

where f̂+i,y(x) and f̂−i,y(x) are monomial approximations for the corresponding denomina-
tors calculated by (4.31), and f̂−0,y(x, x0) is the monomial approximation for the function
f−0 (x) + x0 + 1.

The entire process of the successive convexification framework is summarized in Algorithm
1. As the iterative algorithm moves toward the final point, the increasing weighting co-
efficient wi will force the auxiliary variables si to reach one. Thus the series of solutions
of Problem 4.8 converge to a point satisfying the KKT conditions of the original SGP
problem [81], [100].

Algorithm 1: Successive convexification framework for solving SGP
Data: p1, p2, {fi}i∈{0,···p2}, wstep ≥ 0, ϵ ≥ 0

Result: Optimized solution x∗

Find a feasible solution of problem x1;
r ← 1;
wi ← 1 for i ∈ {p1 + 1, · · · p2};
E ← ϵ+ 1;
Rewrite optimization problem into the form of Problem 4.7;
while E ≥ ϵ do

r ← r + 1 ;
wi ← wi + wstep for i ∈ {p1 + 1, · · · p2};
Calculate monomial approximations f̂0,xr−1(x, x0), f̂

+
i,xr−1

(x) and f̂−i,xr−1
(x) for

denominators in Problem 4.7;
Find the optimal solution of GP Problem 4.8;
E ← ∥xr − xr−1∥2;
x∗ ← xr;

end

4.3 System Model

We consider a distributed estimation system with K sensors and one single FC. The goal
of the system is to estimate a scalar parameter θ. Sensor k ∈ {1, · · · ,K} collects a noisy
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sample yk. This sample is transmitted after a quantization process with B bits (described
later). The FC so receives KB bits. We assume that the transmission channels between
the sensors and the FC are reliable.

For the sake of simplicity, we consider the following model between θ and yk:

yk = θ + wk, (4.37)

where wk is a zero-mean white Gaussian noise with variance σ2w and θ is assumed to be
within the finite support I ⊂ R.

The output of the quantizer Qk at sensor k, denoted by qk, is

qk = Qk (yk) . (4.38)

This quantizer Qk transforms the continuous scalar yk into B bits in such a way

Qk(u) ≜


0 if u < τk,1,

L if u ≥ τk,L,
i if τk,i ≤ u < τk,i+1, for i ∈ {1, · · · , L− 1}.

where L = 2B − 1 and τk ≜ (τk,1, · · · τk,L) is a strictly increasing sequence of thresholds.
The aim of this section of the thesis is to establish an effective method for constructing a

threshold sequence for each sensor. To achieve this, we base our approach on the derivation
of the CRB for θ at the FC.

4.4 Non-asymptotic Cramer-Rao Bound

The Cramer-Rao Bound for any unbiased estimation at the FC can be written as

E[(θ̂ − θ)2] ≥ CRB(θ) =
1

F (θ)
, (4.39)

where F (θ) is the Fisher information associated with quantized bits q ≜ {qk}k∈{1,··· ,K}
and writes as

F (θ) ≜ EQ|θ

[(
∂ log pQ|θ(q|θ)

∂θ

)2
]

(4.40)

with pQ|θ the distribution of q for the parameter value θ. As qk is independent in k, we
have

F (θ) =

K∑
k=1

Fk(θ), (4.41)

where Fk(θ) is the Fisher information provided by one quantized sample for the k-th sensor
and

Fk(θ) ≜ EQ|θ

[(
∂ log pQ|θ(qk|θ)

∂θ

)2
]
. (4.42)
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According to [48], the Fisher information can be expressed as

Fk(θ) =

L∑
i=0

1

pQ|θ(qk = i|θ)
·
(
∂pQ|θ(qk = i|θ)

∂θ

)2

(4.43)

where pQ|θ(qk = i|θ) can be decomposed as follows

pQ|θ(qk = i|θ) =
∫
pQ|Y (qk = i|yk)pY |θ(yk|θ)dyk (4.44)

since the value of qk depends only on yk according to Eq. (4.38). As yk|θ follows a Gaussian
distribution with mean θ and variance σ2w, we deduce

pQ|θ(qk = i|θ) =


Ψ(τk,1, θ) if i = 0

1−Ψ(τk,L) if i = L

Ψ(τk,i+1, θ)−Ψ(τk,i) otherwise.

where

Ψ(τ, θ) ≜ Φ

(
τ − θ
σw

)
(4.45)

with Φ the cumulative distribution function for standard normal distribution.
Then, we have

∂pQ|θ(qk = i|θ)
∂θ

=


− ψ(τk,1, θ) if i = 0,

ψ(τk,L, θ) if i = L,

− ψ(τk,i+1, θ) + ψ(τk,i, θ) otherwise.

where

ψ(τ, θ) ≜
1

σw
ϕ

(
τ − θ
σw

)
(4.46)

with ϕ the probability density function for standard normal distribution.
Finally, we obtain that

Fk(θ) = η1(τk,1, θ) + ηL(τk,L, θ) +

L−1∑
i=1

η(τk,i, τk,i+1, θ) (4.47)

with

η1(τ, θ) ≜
(ψ(τ − θ))2

Ψ(τ − θ)
, (4.48)

ηL(τ, θ) ≜
(ψ(τ − θ))2

1−Ψ(τ − θ)
, (4.49)

η(τ, τ ′, θ) ≜
(ψ(τ ′ − θ)− ψ(τ − θ))2

Ψ(τ ′ − θ)−Ψ(τ − θ)
. (4.50)
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4.5 Asymptotic Cramer-Rao Bound

By considering large number of sensors, the CRB can be approximated by

CRB(θ) ≈ 1

K · F (θ)
(4.51)

where

F (θ) ≜ lim
K→∞

1

K

K∑
k=1

Fk(θ) (4.52)

= lim
K→∞

1

K

K∑
k=1

(
η1(τk,1, θ) + ηL(τk,L, θ) +

L−1∑
i=1

η(τk,i, τk,i+1, θ)
)
. (4.53)

Like in [59], the evaluation of the term F (θ) will be done by assuming that the thresholds
{τk,i}k,i correspond to a realization of a random variable. The realizations on k are iid but
the realizations on i have to be ranked since τk,i ≤ τk,i+1 by construction. Therefore, we
rely on the order statistics [101]. Let λ be the probability distribution for the L ordered
threshold for any sensor (the distribution is assumed to be the same whatever the sensor,
so we skip the index k). We also define the marginal probability distribution for the
first threshold (actually, τk,1 for any sensor) as λ1, the marginal probability distribution
for the last threshold (actually, τk,L for any sensor) as λL. Finally, the joint probability
distribution between two consecutive thresholds (actually, (τk,i, τk,i+1) for any sensor with
i ∈ {1, · · · , L− 1}) as λi. We thus obtain

F (θ) =

∫ ∞

−∞
η1(τ, θ)λ1(τ)dτ +

∫ ∞

−∞
ηL(τ, θ)λL(τ)dτ

+

L−1∑
i=1

∫ ∞

−∞

∫ τ ′

−∞
η(τ, τ ′, θ)λi(τ, τ

′)dτdτ ′. (4.54)

The ordered thresholds are obtained thanks to a unique random variable whose probability
density function is g and the cumulative distribution function G. More precisely, for
each sensor, we collect L realizations related to the random variable driven by g. Then
these variables are ranked in order to provide the ordered thresholds. Consequently, the
distributions for the ranked variables are given by

λ1(τ) = c[1−G(τ)]L−1g(τ), (4.55)

λL(τ) = c[G(τ)]L−1g(τ), (4.56)

λi(τ, τ
′) = ci[G(τ)]

i−1[1−G(τ ′)]L−ig(τ)g(τ ′), (4.57)

with c = L and ci = L(L− 1)
(
L−2
i−1

)
.

4.5.1 Optimized Quantizer with SGP

Our goal is to minimize the worst cast asymptotic CRB with respect to g. According to
Eq. (4.51), minimizing the CRB is equivalent to maximizing F . Therefore by integrating
Eqs. (4.55)-(4.57) into Eq. (4.54) and over the infimum of θ, we obtain the following
minimax optimization problem.
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Problem 4.9 (Functional optimization problem) Assuming g(τ) ≥ 0, we solve

max
g

inf
θ

f(g, θ)

s.t.
∫
g(τ)dτ = 1, with

f(g, θ) =

∫
η1(τ, θ) · c[1−G(τ)]L−1g(τ)dτ +

∫
ηL(τ, θ) · c[G(τ)]L−1g(τ)dτ

+
L−1∑
i=1

∫∫ τ ′

η(τ, τ ′, θ) · ci[G(τ)]i−1 · [1−G(τ ′)]L−ig(τ)g(τ ′)dτdτ ′. (4.58)

We propose to transform this functional optimization problem into a vector search by
discretizing g. Before going further, we assume that the support of θ is symmetric about
the origin, i.e. I = [−W0,W0], with W0 > 0. Then, we discretize the interval I into
N(> 0) regular subintervals {Jj ≜ [uj−1, uj ]}j∈{1,··· ,N} with u0 = −W0 and uN = W0

whose the middle of each interval is mj for j ∈ {1, . . . , N}. The discrete version of g at
mj is given by its normalized value i.e.,

aj =
g (mj)∑N

j′=1 g
(
mj′
) ∀j ∈ {1, · · · , N}. (4.59)

We now define the cumulative sequence of a ≜ {aj}j∈{1,··· ,N} as

Aℓ =
ℓ∑

j=1

aj ,

and the complement cumulative sequence as Rℓ = 1 − Aℓ. By convention, we also put
A0 = 0. Define also the sequence {θj}j∈{1,··· ,M} with θ1 = −W0 and θM =W0 representing
a quantization of the parameter range.

We discretize the function f(g, θ) into a set of functions f̃j(a) as follows

f̃j(a) =

N∑
ℓ=1

d
(1)
ℓ,jR

L−1
ℓ aℓ +

N∑
ℓ=1

d
(L)
ℓ,j A

L−1
ℓ aℓ

+

L−1∑
i=1

N∑
ℓ2=1

ℓ2∑
ℓ1=1

d
(i)
ℓ1,ℓ2,j

Ai−1
ℓ1
aℓ1R

L−i
ℓ2

aℓ2 (4.60)

with d(1)ℓ,j = c·η1(uℓ, θj), d
(L)
ℓ,j = c·ηL(uℓ, θj), and d(i)ℓ1,ℓ2,j

= ci ·η(uℓ1 , uℓ2 , θj). The discretized
version of Problem 4.9 is straightforward. But in terms of optimization, we have the
following objective function to maximize minj f̃j(a). In order to handle the minimum
operator easily, we introduce a new variable x bounding all functions f̃j(a). We then
obtain the following optimization problem.

Problem 4.10 (Discretized optimization problem) Assuming aℓ ≥ 0 for ℓ ∈ {1, · · · , N}
and x ≥ 0, we solve

max
a,x

x (4.61a)

s.t. f̃j(a) ≥ x ∀j ∈ {1, · · · ,M}, (4.61b)
N∑
ℓ=1

aℓ = 1. (4.61c)
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We can find a stationary point of Problem 4.10 by SGP. However, as we mentioned
in Section 4.2.2, extra variables are needed to relax equality constraints in the origi-
nal optimization problem. We thus change the optimization variables from a to A ≜

{A1, A2, · · · , AN−1} (A0 and AN are excluded from the variable vector as they are always
equal to 0 and 1 respectively) to bypass the equality constraint (4.61c). Functions in (4.60)
are rewritten as

fj(A) =

N∑
ℓ=1

d
(1)
ℓ,jR

L−1
ℓ (Aℓ −Aℓ−1) +

N∑
ℓ=1

d
(L)
ℓ,j A

L−1
ℓ (Aℓ −Aℓ−1)

+

L−1∑
i=1

N∑
ℓ2=1

ℓ2∑
ℓ1=1

d
(i)
ℓ1,ℓ2,j

Ai−1
ℓ1

(Aℓ1 −Aℓ1−1)×RL−i
ℓ2

(Aℓ2 −Aℓ2−1). (4.62)

The function fj is a signomial and can be written as a difference of two posynomials [102].
Let’s write this decomposition below

fj(A) ≜ fj,d(A)− fj,n(A), (4.63)

where fj,d and fj,n are two posynomials.
Thanks to Eqs. (4.62)-(4.63), Problem 4.10 can be rewritten as Problem 4.11 which is

a SGP and so can be solved easily.

Problem 4.11 (Final optimization problem) Assuming Aℓ ≥ 0 for ℓ ∈ {1, · · · , N}
and x ≥ 0, we solve

min
A,x

x−1 (4.64a)

s.t.
x+ fj,n(A)

fj,d(A)
≤ 1,∀j ∈ {1, · · · ,M}, (4.64b)

Aℓ−1

Aℓ
≤ 1, ∀ℓ ∈ {2, · · · , N − 1}, (4.64c)

Aℓ ≤ 1, ∀ℓ ∈ {1, · · · , N − 1}. (4.64d)

This optimization problem can be solved by the recurrence algorithm given in Algorithm 1.
A more detailed description of the algorithm specified for Problem 4.10 is provided below.

• Initialization Choose A(0)
i = i/n, ∀i ∈ [n− 1]. Calculate x(0) = minj{f̃j(A(0))} and

x
(0)
0 = −x(0) + C. Write each functions f̃j,d(A) into a sum of monomial functions
{mj,i(A)}i, i.e.

f̃j,d(A) =
∑
i

mj,i(A) (4.65)

• Step 1 At round r ≥ 1, for each j ∈ [M ], calculate

β(r) =
x(r−1)

x(r−1) + x
(r−1)
0

, (4.66)

β
(r)
0 =

x
(r−1)
0

x(r−1) + x
(r−1)
0

, (4.67)

β
(r)
j,i =

mj,i(A
(r−1))

f̃j,d(A(r−1))
, (4.68)
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• Step 2 Solve the following optimization problem with GP by replacing functions on
the denominator in Problem 4.11 by its local monomial approximation.

min
A,x0,x

x0 (4.69a)

s.t.
C

f̂ (r)(x, x0)
≤ 1 (4.69b)

x+ f̃j,n(A)

f̂
(r)
j,d (A)

≤ 1, ∀j ∈ [M ] (4.69c)

Aℓ−1

Aℓ
≤ 1, ∀ℓ ∈ [N − 1]\{1} (4.69d)

0 ≤ Aℓ ≤ 1, ∀ℓ ∈ [N − 1]. (4.69e)

where

f̂ (r)(x, x0) ≜ (x/β(r))β
(r) · (x0/β(r)0 )β

(r)
0 , (4.70)

f̂
(r)
j,d (A) ≜

∏
i

(
mj,i(A)

β
(r)
j,i

)β
(r)
j,i

, (4.71)

• Step 3 Repeat Step 1 and Step 2 until the required precision is achieved.

Once Problem 4.11 is solved, we obtain the points {a⋆ℓ}ℓ=1,··· ,N . Then we compute g(τ)
by doing a Lagrangian-polynomial interpolation on the set {(mℓ, a

⋆
ℓ )}ℓ=1,··· ,N followed by

a normalization step. Finally, each sensor builds its quantizer as follows: it obtains (L−1)

realizations from the random variable whose distribution is g(τ). Each sensor sorts its
realizations to be employed as its thresholds.

4.5.2 Integral-preserving Discretization

Note that Problem 4.11 includes fractional posynomial constraints in (4.64b), which in-
creases the complexity of the problem. These fractional posynomial constraints arise when
converting the maximization problem in Problem 4.10 into the minimization problem in
Problem 4.11. This conversion inevitably introduces negative terms, regardless of whether
variables a or A are applied. In this subsection, we propose an alternative discretization
method as an attempt to overcome this challenge.

To gain insight, we revisit the objective function in (4.58) and observe that constants
can be added to the coefficients without altering the optimization problem. This is because
λ1, λL, and λi represent a probability distribution (as shown in (4.55)-(4.57)). For instance,
when L = 3, (4.58) can be rewritten into four terms, where the second term is:∫

τ
η3(τ, θ) · 3[G(τ)]2g(τ) dτ.

The optimization problem remains unchanged if this term is replaced by:∫
τ
(η3(τ, θ) + c0) · 3[G(τ)]2g(τ) dτ,

where c0 is a constant. All negative coefficients arising from converting the maximization
problem into a minimization problem can be transformed into positive ones by adding a
sufficiently large constant. We would like the discrete analogue of f(g, θ) still conserve this
integral property so that we are allowed to adjust coefficients.
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Discrete analogue related to λL We first would like to discretize the term

TL ≜
∫
ηL(τ, θ) · c[G(τ)]L−2g(τ)dτ.

Actually, on TL, we have two integrals since G is an integral of g. For calculating TL, we
may directly discretize both integrals with two discretization uniform schemes and then

T̂L ≜
N∑
ℓ=1

d
(L)
ℓ AL−2

ℓ aℓ (4.72)

with d
(L)
ℓ,j = c · ηL(uℓ, θj), and we recall that the sequences {uℓ}, {aℓ}, {Aℓ} and {θj} are

defined in Section 4.5.1. As shown in Fig. 4.1, it requires a large amount of discretization
levels N for the discrete analogue to converge. In the rest of paragraph, we attempt another
way to proceed to work with smaller N and so less variables to optimize.

Let us focus on the case ηL(τ, j) = 1 and so d(L)ℓ,j = 1 for the explanation. Then, by
applying integral by parts, we have TL = 1/(L−1). Usually the value of T̂L is different from
1/(L− 1) when N is different from +∞ due to the presence of the term AL−1

ℓ . Therefore
the idea is to modify the term related to the cumulative function by designing another one
Ã

(L−2)
ℓ such that T̃L ≜

∑N
ℓ=1 Ã

(L−2)
ℓ aℓ = 1/(L− 1). Thanks to the so-called Abel’s lemma

on the sequences, we get
N∑
ℓ=1

Aℓ−1(A
L−2
ℓ −AL−2

ℓ−1 ) +

N∑
ℓ=1

aℓA
L−2
ℓ = ANAN+1 −A2

0

with A0 = 0 and AN = AN+1 = 1. Consequently, by regrouping the sums and dividing by
L− 1, we obtain

N∑
ℓ=1

Ã
(L−2)
ℓ aℓ =

1

L− 1
(4.73)

with

Ã
(L−2)
ℓ =

1

L− 1

L−2∑
i=0

AL−2−i
ℓ Ai

ℓ−1.

Therefore, we have
∫
G(τ)L−2g(τ)dτ ≈

∑N
ℓ=1 Ã

(L−2)
ℓ aℓ and by extension we consider

that

TL ≈
N∑
ℓ=1

d
(L)
ℓ Ã

(L−2)
ℓ aℓ. (4.74)

Discrete analogue related to λ1 Similarly, we would like to discretize

T1 ≜
∫
η1(τ, θ)[1−G(τ)]L−2g(τ)dτ.

By following the same approach, we obtain that

T1 ≈
N∑
ℓ=1

d
(1)
ℓ,j R̃

(L−2)
ℓ aℓ (4.75)

with d(1)ℓ,j = η1(uℓ, θj) and

R̃
(L−2)
ℓ ≜

1

L− 1

L−2∑
i=0

RL−2−i
ℓ Ri

ℓ−1.
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Discrete version related to λi We now focus on the following term which is more
complicated than the previous ones due to the double integrals.

Ti =

∫∫ τ ′

η(τ, τ ′, θ) · ci[G(τ)]i−2

·[1−G(τ ′)]L−i−1g(τ)g(τ ′)dτdτ ′

To provide an insight on how discretizing the previous integrals in Ti, we look at the term
with the integral on τ and without Ci. Therefore, we consider

Ui =

∫ τ ′

[G(τ)]i−2 [1−G(τ ′)]L−i−1
g(τ)g(τ ′)dτ. (4.76)

After integration by parts, we have

Ui = [G(τ ′)i−1 −
L−i−1∑
j=1

(
L− i− 1

j

)
(−1)i+jG(τ ′)j+i−1]g(τ ′),

which leads to the following discrete version by replacing G(τ ′)i and g(τ ′) with Ã
(i)
ℓ and

aℓ respectively

Ui(ℓ) ≈ [Ã
(i−1)
ℓ −

L−i−1∑
j=1

(
L− i− 1

j

)
(−1)j+iÃ

(j+i−1)
ℓ ]aℓ,

or equivalently,
Ui(ℓ) ≈ Ã(i−1)

ℓ R̃
(L,i)
ℓ aℓ,

with

R̃
(L,i)
ℓ ≜ 1−

L−i−1∑
j=1

(
L− i− 1

j

)
(−1)j+i Ã

(j+i−1)
ℓ

Ã
(i−1)
ℓ

. (4.77)

We can deduce that the sum of the discrete version of Ui(ℓ) over ℓ is a constant, since it
can be written as the sum of terms

∑
ℓ Ã

(i′)
ℓ aℓ which are constants as we have shown in

(4.73).
For the rest of the derivations, we prefer to write Ui(ℓ) as a sum since it should mimick

an integral. For doing that, we sum increments of the primitive function. Therefore, we
have

Ui(ℓ) =
ℓ∑

ℓ2=1

(Ã
(i−1)
ℓ2

R̃
(L,i)
ℓ2

aℓ2 − Ã
(i−1)
ℓ2−1 R̃

(L,i)
ℓ2

aℓ2)

=
ℓ∑

ℓ2=1

[
Ã

(i−1)
ℓ2

− Ã(i−1)
ℓ2−1

]
R̃

(L,i)
ℓ aℓ. (4.78)

By going back to the approximation of Ti, we finally obtain

Ti =
N∑

ℓ1=1

ℓ1∑
ℓ2=1

d
(i)
ℓ1,ℓ2

Ui(ℓ1) (4.79)

with d(i)ℓ1,ℓ2,j
= ci · η(uℓ1 , uℓ2 , θj) and Ui(ℓ1) given by Eq. (4.78).
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Final result Plugging Eqs. (4.74), (4.75) and (4.79) into Eq. (4.58) leads to the discrete
optimization problem which becomes the main goal of the paper.

Problem 4.12 (Equivalent vector optimization problem)

min
a

max
j
f̃j(a)

s.t. aℓ ≥ 0, and
∑N

ℓ=1 aℓ = 1, with

f̃(a) =

N∑
ℓ=1

γ
(1)
ℓ R̃

(L−2)
ℓ aℓ +

N∑
ℓ=1

γ
(L)
ℓ Ã

(L−2)
ℓ aℓ

+

L−1∑
i=2

N∑
ℓ1=1

ℓ1∑
ℓ2=1

γ
(i)
ℓ1,ℓ2

(
Ã

(i−1)
ℓ1

− Ã(i−1)
ℓ1−1

)
R̃

(L,i)
ℓ2

aℓ2 (4.80)

where γ(1)ℓ ≜ −d(1)ℓ +c0, γ
(L)
ℓ ≜ −d(L)ℓ +c0, γ

(i)
ℓ1,ℓ2

≜ −d(i)ℓ1,ℓ2
+c0 with c0 chosen large enough

s.t. γ(1)ℓ , γ
(L)
ℓ , γ

(i)
ℓ1,ℓ2

are strictly positive.

We can verify the improvement of our discretizing method over the intuitive method
by a simple example. Choose g(τ) = 2τ · 1{0≤τ≤1}, and

∫
η1(θ, τ)pΘ(θ)dθ = τ . It is easy

to calculate accurately the integral∫
τ

(∫
θ
η1(θ, τ)dθ

)
λL(τ)pΘ(θ)dτ =

2

2L− 1
. (4.81)

The numerical results represented in Fig. 4.1 show that our discretizing method produces
a better approximation than the intuitive discretization.

5 10 15 20 25 30 35 40 45 50

0.3

0.35

0.4

0.45

0.5

0.55

Accurate integral for L=3

Accurate integral for L=4

Figure 4.1: Comparison between the intuitive quantization and our method of quantization with
L = 3 and L = 4

Unfortunately, it is not possible to eliminate all fractions when L ≥ 4, as shown in
(4.77). For L = 3 (and similarly for L = 2), we can derive an optimization problem
without fractional polynomial constraints, using discrete analogues as follows:

Ã
(2)
ℓ ≜

1

3

(
A2

ℓ−1 +Aℓ−1Aℓ +A2
ℓ

)
,
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R̃
(2)
ℓ ≜

1

3

(
R2

ℓ−1 +Rℓ−1Aℓ +R2
ℓ

)
.

However, since this discretization method does not simplify the optimization problem in
general cases, we will not use it in our simulations.

4.6 Numerical Results

We assume that each sensor sends 2 bits (L = 3), and M = 8. We also assume the
support of the parameter I = [−1, 1]. Problem 4.11 has been numerically solved by
algorithm described in [81]. Two cases for discretization problem have been computed:
N = 3 or N = 10. We also examine the performance of the uniformly-distributed (i.e.
aℓ = 1/N,∀ℓ ∈ {1, · · · , N}) and the regular deterministic quantizers.

In Fig. 4.2, we plot the optimized continuous distribution g(τ) by doing a polynomial
fitting of discrete solution for Problem 4.11. Two cases have been considered: N = 3 and
N = 10. We observe that the solutions are different from the uniform distribution, which
implies the necessity of the optimization. Moreover, N = 3 does not match with N = 10

exhibiting better performance, as shown later in Fig. 4.3 and Fig. 4.4. This implies that
N = 3 is insufficient.

(a) N = 3 (b) N = 10

Figure 4.2: Optimized distribution g(τ) obtained by polynomial fitting based on discrete solution
of Problem 4.11.

In Fig. 4.3, we plot the average CRB per sensor (obtained as the inverse of the average
Fisher information minj′

1
K

∑K
k=1 Fk(θ

′
j′) where the set {θ′j′}j′∈{1,··· ,M ′} with M ′ = 100

covers the parameter range well, and actually much more than the set chosen for optimiza-
tion) versus K. The SNR (defined as 1/σ2w) is put at 8dB. For each sensor, we build its
quantizer as follows: we obtain 3 realizations from the random variable whose distribution
is g(τ). Then they are ranked to be employed as the three thresholds. This evaluation is
executed 20 times for each configuration. Then we plot the average and the standard devi-
ation of each configuration. We observe that even for small values of K, our optimization
obtained through an asymptotic approach is still valid. The information provided by each
sensor at the system is higher with the optimized version of the random quantizer. Only
the standard deviation decreases with K.

We also compare our quantization method with existing works in [55], [56]. In [56], a
heuristic algorithm for quantizer optimization in detection problem is proposed based on
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Figure 4.3: Average CRB vs K (SNR=8dB).

Particle Swarm Optimization Algorithm (PSOA). This algorithm evaluates large amount
of randomly generated quantizers to approximate locate the optimal quantizer. While the
objective in [56] differs from ours, we utilize an adapted version of the original algorithm
for comparison, making minimal changes. The PSOA gives an identical quantizer for all
sensors, and authors in [56] assumed θ is around zero, the objective function is thus changed
as

max
τ1<τ2···<τL

fpsoa(τ1, · · · , τL) (4.82)

with

fpsoa(τ1, · · · , τL) ≜ η1(τ1, 0) + ηL(τL, 0) +

L−1∑
i=1

η(τi, τi+1, 0). (4.83)

Actually, this is the same Fisher information defined in (4.53), but with the assumptions
that θ = 0 and a deterministic quantizer is applied. We give a brief description of the
algorithm. Initially, a sequence of thresholds τ 0

k are independently initialized for each
sensor according to a uniform distribution on the support I = [−1, 1]. The initial velocity
vector v0

k are generated according to a uniform distribution in [−1, 1]. To follow the order
constraint in (4.83), we reorder τk with the mechanism described as follows:

If τk,i−1 > τk,i, then τk,i = τk,i + ϵ, i ∈ {2, · · · , L}. (4.84)

where ϵ is an arbitrary small positive real number. Based on the initialization {τ 0
k }k∈[K],

the initial personal best quantizer pbest0k of the k-th sensor to be

pbest0k = τ 0
k . (4.85)

Substituting the initial quantizer {τ 0
k }k∈[K] into the objective function in (4.83), we obtain

a set of values {fpsoa(τ 0
k )}k∈[K], and then set the initial global best quantizer gbest0 to be

gbest0 = argmax
τ∈{τ0

k }k∈[K]

{fpsoa(τ )} . (4.86)
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At the t-th iteration, the velocity vector vt
k and quantizer τ t

k of the k-th sensor is updated
respectively as,

vt
k = c0

[
vt−1
k + c1r

t
k,1(pbestt−1

k − τ t−1
k ) + c2r

t
k,2(gbestt−1 − τ t−1

k )
]
, (4.87)

and
τ t
k = τ t−1

k + vt
k, (4.88)

where rki,1 and rki,2 are random numbers uniformly distributed within [0, 1]; the positive
constants c1 and c2 represent the acceleration coefficients. The algorithm then reorders
each quantizer with the same mechanism in (4.84), and updates personal best quantizer for
this iteration, and evaluates the global best quantizer. The algorithm repeats this process
until the norm of the velocity vector is sufficiently small. The entire algorithm is presented
in Algorithm 2.

Algorithm 2: Particle Swarm Optimization Algorithm (PSOA) [56]
Input: K, L, vtol, I, fpsoa(τ ), c0, c1, c2
Result: Optimized solution τ ⋆ = {τ∗1 , · · · , τ∗L}
Randomly initialize τ 0

k ∈ IL and v0
k ∈ IL for k ∈ [K];

Reorder the initial quantizer τ 0
k by (4.84);

pbest0k ← τ 0
k ;

gbest0 ← argmaxτ∈{τ0
k }k∈[K]

{fpsoa(τ )};
t← 0;
while ∥(vt

1, . . .v
t
K)∥2 > vtol do

t← t+ 1;
for k ∈ [K] do

Calculate the velocity vt
k by (4.87);

τ t
k ← τ t−1

k + vt
k;

Reorder the quantizer τ t
k by (4.84);

pbesttk ← argmaxτ∈{pbestt−1
k ,τ t

k}
{fpsoa(τ )};

end
gbestt ← argmaxτ∈{pbesttk}k∈[K]

{fpsoa(τ )};
end
τ ⋆ ← gbestt;

In [55], the authors proposed a quantizer optimization algorithm based on dynamic
programming called Interval Design for Enhanced Accuracy (IDEA)1. The authors assumed
that a prior knowledge of the parameter θ was available, and similar to our method, a grid
(u1, . . . , uN ) was applied to discretize the continuous feasible region of each threshold τi.
The grid was assumed to be the same for all thresholds for simplicity.

We rewrite the algorithm with our notations. The objective is

max
τ1<τ2···<τL∈{u1,··· ,uN}

fdp(τ1, · · · , τL) (4.89)

1The authors proposed two algorithms in [55]. Here, we refer specifically to the algorithm presented in
Section V.
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with

fdp(τ1, · · · , τL) ≜
∫
θ

(
η1(τ1, θ)s(θ) + ηL(τL, θ)s(θ) +

L−1∑
i=1

η(τi, τi+1, θ)s(θ)

)
dθ.(4.90)

As each term only depends on at most two thresholds, it is straightforward to convert the
optimization problem into a dynamic programming. To initiate, the following function is
calculated

DP1(τ1) ≜
∫
θ
η1(τ1, θ) · s(θ)dθ (4.91)

For i ∈ {2, · · · , L− 1}, the previous results {DPi−1(τ)}τ∈{u1,...uL} is used to calculate

DPi(τi) ≜ max
τi−1∈{u1,···uN}

τi−1<τi

{∫
θ
η(τi−1, τi, θ) · s(θ)dθ + DPi−1(τi−1)

}
(4.92)

Define also τ̂i−1(τi) the solution for DPi(τi), i.e.

τ̂i−1(τi) ≜ argmax
τi−1∈{u1,···uN}

τi−1<τi

{∫
θ
η(τi−1, τi, θ) · s(θ)dθ + DPi−1(τi−1)

}
(4.93)

When i = L, calculate

DPL(τL) ≜ max
τL−1∈{u1,···uN}

τL−1<τL

{∫
θ
ηL(τL, θ) · s(θ)dθ + DPL−1(τL−1)

}
(4.94)

τ̂L−1(τL) ≜ argmax
τL−1∈{u1,···uN}

τL−1<τL

{∫
θ
ηL(τL, θ) · s(θ)dθ + DPL−1(τL−1)

}
(4.95)

The final result is obtained by searching τ∗L = argmaxτL∈{u1,...uL}{DPL(τL)} and then
backtracking using functions τ̂i−1(τ

∗
i ) for i ∈ {2, . . . , L}. The algorithm is summarized in

Algorithm 3.
In Fig. 4.4, we plot the CRB (obtained as the inverse of the Fisher information

minj
∑K

k=1 Fk(θ
′
j)) versus SNR for six quantizers including those of [55], [56]. The op-

timized random quantizer with N = 10 gives a significant improvement compared to the
other ones. For instance, at mid/high SNR, the gain is around 2dB.

4.7 Conclusion

Our work proposed a worst-case optimized random quantizer in the context of quantized
communications of observations to a FC in order to estimate a common parameter. Follow-
ing an asymptotic approach with respect to the number of sensors, we obtained after a few
steps a vectorial optimization problem which writes as signomial programming. The pro-
posed quantizer outperformed uniformly distributed, regular deterministic and previously
proposed quantizers for mid/high SNR scenarios.
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Algorithm 3: Interval Design for Enhanced Accuracy (IDEA) [55]
Data: L, s(θ), η1(τ, θ), η(τ, τ ′, θ), η1(τ, θ), {u1, · · · , uN}
Result: Optimized solution {τ∗1 , · · · , τ∗L}
Compute and store DP1(τ1) in (4.91) for all τ1 ∈ {u1, · · · , uN};
i← 2;
while i ≤ L do

Compute and store DPi(τi) defined in (4.92) and (4.94) for all
τi ∈ {u0, · · · , uN};

Store τ̂i−1(τi) for all τi ∈ {u0, · · · , uN};
i← i+ 1;

end
Find τ∗L ← argmaxτL {DPL(τL)};
i← L;
while i ≥ 2 do

τ∗i−1 ← τ̂i−1(τ
∗
i );

end
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Figure 4.4: CRB versus SNR (K = 2000).
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CHAPTER 5

Stochastic Activation Broadcast Sum-weight for Dis-
tributed Estimation

5.1 Introduction

In this chapter, we continue to explore distributed estimation systems. Unlike the previous
chapter, we concentrate on the systems that operate without a fusion center, and the
sensors are connected by an undirected self-loop-free graph. Similar to the system discussed
in the previous chapter, each node observes a noisy version of the target parameter θ, and
nodes exchange data with their neighbors to obtain a more precise estimate of θ and achieve
consensus.

The problem of achieving consensus on the average of initial sensor measurements is
one of the most critical challenges in wireless distributed systems. Regarding node acti-
vation, there are two primary approaches for algorithm design: the synchronous approach
and the asynchronous approach. In the synchronous approach, multiple sensors can be
activated simultaneously to exchange local data. In contrast, the asynchronous approach
limits activation to a single sensor or, at most, a pair of sensors at any given time. Early
research primarily focused on the asynchronous approach due to its simplicity and stability.
For instance, one of the earliest asynchronous algorithms was introduced in [71] and later
extended in [61]. This problem is addressed using the Random Gossip algorithm, where a
randomly selected sensor communicates with one of its neighbors at each iteration. The
two sensors exchange their values and update them by averaging the received and previous
values. Given the broadcast nature of wireless channels, it is also promising to design
algorithms that exploit this property. One example is the Broadcast Gossip algorithm
[62], where an active node broadcasts its value to all neighbors, which then updates their
estimates by averaging the received value with their previous estimates. Moreover, asyn-
chronous algorithms have been studied extensively in various network settings, including
directed graphs [72], [73], link failures [74], [75], and unstable sensors [76]. However, as net-
work size increases, the asynchronous approach reveals its drawback of slow convergence.
At the same time, advancements in synchronous transmission techniques have mitigated
many of their limitations [77]–[79], leading to a renewed interest in the synchronous ap-
proach.
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In this chapter, we thus focus on the synchronous approach and assume that nodes
operate in full-duplex mode. For a given timeslot, each node can be in one of two states:
active or inactive. When a node is active during a time slot, it broadcasts its local data to
its neighbors; when inactive, it remains silent. Regardless of state, nodes always attempt to
receive data from their neighbors. However, nodes may fail to receive data due to potential
collisions if too many neighboring nodes are active simultaneously during a timeslot. In
the special case of a collision-free system, as shown in [103] and [104], no activation policy
is required. Under general assumption, a stochastic activation policy becomes necessary
to balance data transmission with the risk of collisions. The objective of this chapter is
to design an algorithm that minimizes the MSE of the estimations efficiently and achieves
consensus among the nodes.

To address this issue, we propose a synchronous scheme that integrates stochastic
activation, where each node can become active with a probability of 1−γ, as determined by
the initial algorithm. For simplicity, we currently assume that γ is uniform across all nodes,
with the potential for future refinements. To determine the optimal activation probability,
we establish a theoretical relationship between the convergence rate and γ. This analysis
builds on the upper bound for convergence rates derived in [82] for the asynchronous
approach and later generalized in [83], which, to the best of our knowledge, represents
the tightest available bound. Although numerical tests reveal a gap between the actual
convergence rate and the upper bound, their monotonic behavior is consistent. This insight
enables us to efficiently determine the optimal γ using simple one-dimensional search in a
short amount of time. The numerical results confirm the effectiveness of the optimized γ

through the upper bound. Additionally, they demonstrate that the performance of applying
the averaged optimized γ is comparable to that of applying a graph-dependent γ. This is
particularly advantageous in practice, as the algorithm is allowed to operate without the
precise knowledge of the graph.

The rest of this chapter is organized as follows: Section 5.2 introduces useful definitions
for this chapter. Section 5.3 presents the system model for distributed estimation without
a fusion center. In Section 5.4, we propose our synchronous algorithm with stochastic
activation. Section 5.5 analyzes the algorithm’s convergence rate. Experimental results
are discussed in Section 5.6. The chapter concludes in Section 5.7.

5.2 Preliminaries

Let A be a K × K matrix. The matrix A is referred to as non-negative if ∀(k, ℓ) ∈
[K]2,A[k, ℓ] ≥ 0, and as positive if ∀(k, ℓ) ∈ [K]2,A[k, ℓ] > 0.

A non-negative K ×K matrix A is called row-stochastic if the sum of each row equals
one, that is:

A · 1 = 1.

Similarly, A is called column-stochastic if the sum of each column equals one, expressed
as:

1T ·A = 1T .
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If a non-negative K ×K matrix A is both row-stochastic and column-stochastic, it is
called doubly-stochastic.

Finally, the spectral radius of a square matrix is defined as the largest absolute value
of its eigenvalues.

5.3 System Model

5.3.1 Graph-based Network

Consider a network of K sensors modeled as a graph G = (K, E) where

• K represents the set of sensors, which correspond to the vertices in terms of graph
theory;

• E = {(k, ℓ) ∈ K2 and k ̸= ℓ} is the set of links between sensors, and the edges of the
graph represented as an ordered pair (k, ℓ) if there is a link from sensor k to sensor
ℓ.

This type of object may be called precisely a directed simple graph. If a graph satisfies the
above definition and additionally meeting the condition that (k, ℓ) ∈ E ⇒ (ℓ, k) ∈ E , it is
called undirected simple graph. A loop is an edge that links a sensor to itself, and multiple
edges are edges that link the same sensors. Under the above definitions, neither loop
nor multiple edges are allowed, which corresponds to the nature of the sensor network.
In this chapter, we only focus on simple graph and we will use the term "graph" and
"simple graph" interchangeably. As the main objective of this chapter is to study the
performance related to the structure of graphs, we assume that each link is error-free. Let
Kk = {ℓ : (k, ℓ) ∈ E} denote the set of neighbors of sensor k, and Kk = |Kk|.

In directed graphs, we define a graph as weakly connected if, for any pair (k, ℓ) ∈ K2,
there exists either a path from k to ℓ or a path from ℓ to k. A graph is strongly connected
if, for any pair (k, ℓ) ∈ K2, there exists both a path from k to ℓ and a path from ℓ to
k. In undirected graphs, these two concepts are equivalent, so we simply refer to them as
connected. Define the adjacency matrix A for the graph G as

ak,ℓ ≜ A[k, ℓ] =

{
1 if (k, ℓ) ∈ E
0 if (k, ℓ) /∈ E

(5.1)

As we assume the graphs are loop-free, all diagonal entries are null. It is easy to deduce
that the adjacency matrix is symmetric if the graph is undirected. For undirected graphs,
we also define the degree vector

d ≜ (d1, d2, . . . dK), (5.2)

with

dk =
K∑
ℓ=1

ak,ℓ.

The degree matrix D is defined as the K ×K diagonal matrix such that

D = diag(d).
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Finally, we define the Laplacian matrix of the graph as

L = D−A. (5.3)

The eigenvalues of this matrix play a fundamental role in algebraic graph theory, if G is
connected, then the second smallest eigenvalue of the Laplacian λ2 is strictly positive [105,
Lemma 1.7].

5.3.2 Node Activation

The network operates synchronously. In each time slot, a subset of nodes becomes active
while others are censored, and active sensors communicate with their neighbors. Details of
the communication scheme will be discussed later in this chapter. It is important to note
that all nodes estimate the parameter θ using their own data and data received only from
neighbors, regardless of whether they are active or not. We define the activation matrix
Ct ∈ {0, 1}K×K as

Ct ≜ diag(ct), (5.4)

where, ct ∈ {0, 1}K is a vector where the k-th entry equals 1 if sensor k is activated at
time t, and 0 otherwise. For a sensor k, we denote the K̃k,t ⊆ Kk the activated neighbor
of the sensor, and K̃k,t = |K̃k,t|.

5.3.3 Communication Failure

Different from the asynchronous setting where only one node is activated for a given time
slot, multiple nodes are communication simultaneously in our model. Nodes may experi-
ence data reception failures due to potential collisions if too many neighboring nodes are
active within a single time slot. We denote pk,t the probability of this communication
failure for sensor k at the timeslot t. We define the collision-free matrix St ∈ {0, 1}K×K

St ≜ diag(st), (5.5)

where st ∈ {0, 1}K is a vector where the k-th entry equals 1 if sensor k is collision-
free at time t, and 0 otherwise. Thus, the k-th diagonal entry of St follows a Bernoulli
distribution with success probability 1 − pk,t. We also assume that each entry of St is
generated independently and the probability pk,t is determined by a function of the active
neighborhood size f(K̃k,t), and thus

pk,t = 1− f(K̃k,t). (5.6)

In general, f(K̃k,t) is a monotonically decreasing function bounded in [0, 1], and we also
assume perfect transmission if a node only has one active neighbor, i.e. f(0) = f(1) = 1.
The exact form of f(K̃k,t) depends on the applied protocol, which is not the focus of this
chapter.

To obtain an representation of the actual data exchange at time t, we define a new
matrix Ãt based on A, Ct and St as

Ãt ≜ StACt. (5.7)
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We also assume that a sensor experiencing a collision broadcasts a special message to
all its neighboring nodes. This message enable its neighbors to become aware of the
communication failure. Define K′

k,t ⊆ Kk the set of collision-free nodes neighboring to
node k at time t, and K ′

k,t = |K′
k,t|.

5.3.4 Sensor Observation and Estimation

Similar to the previous chapter, we consider K sensor having one noised measurement

yk = θ + εk (5.8)

However, there is no fusion center in the system. We assume that εk are iid and follows
a zero-mean normal distribution with variance σ2. The goal of the estimation algorithm
is to evaluate the parameter θ with linear operations. Let xk,t be the estimation given by
the sensor k at the t-th iteration with xk,0 = yk. The MSE of the estimation is defined as

MSEt ≜ E

{
1

K
∥xt − θ · 1∥2

}
, (5.9)

where xt ≜ (x1,t, . . . xK,t)
T . We introduce the average value of all estimation

xavg,t ≜ 1/K

K∑
k=1

xk,t

as an intermediate measurement to simplify the analysis of MSEt. Then, MSEt can be
rewritten as

MSEt = E

{
1

K
∥xt − (xavg,t + xavg,t − θ) · 1∥2

}
(5.10)

= E

{
1

K
∥xt − xavg,t · 1∥2

}
+ E

{
1

K

K∑
k=1

2(xk,t − xavg,t)(xavg,t − θ)

}
+E
{
|xavg,t − θ|2

}
(5.11)

= E

{
1

K
∥xt − xavg,t · 1∥2

}
+ E

{
|xavg,t − θ|2

}
(5.12)

The cross term in (5.11) is null as
∑K

k=1(xk,t − xavg,t) = 0 by the definition of xavg,t. To
simplify the discussion, we assume the applied estimation algorithm conserve the average
for each iteration, i.e.

xavg,t = xavg,0, ∀t > 0.

We recall that εk follows normal distribution. Therefore, we deduce that

E
{
|xavg,t − θ|2

}
= E


∣∣∣∣∣ 1K

K∑
k=1

εk

∣∣∣∣∣
2
 =

σ2

K
. (5.13)

Meanwhile, it is crucial for the estimation algorithm to reach consensus, meaning that the
first term in (5.12) tends to zero as t becomes large. The estimation algorithm should thus
satisfy two properties: i) Average conservation; ii) Consensus. Next, we will introduce an
estimation algorithm that satisfies these two properties and analyze its convergence ratio
in detail.
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5.4 Broadcast Sum-weight Framework with Stochastic Acti-
vation

5.4.1 Average Conservation and Consensus

One approach to design the estimation algorithm involves exchanging local data between
sensors and performing linear operations. Specifically, this can be expressed as

xt+1 = Gt · xt.

The requirements in the previous section can be fulfilled by carefully selecting the matrix
Gt as an doubly-stochastic matrix. This design is feasible because the graphs considered
in these studies are undirected, making the adjacency matrix A symmetric. Since Gt

shares the same support as A, the doubly-stochastic property of Gt can be achieved by
appropriately selecting its diagonal entries and normalizing them. However, in our setup,
Gt shares the support of Ã, as defined in (5.7), rather than that of A. Unlike A, Ã is
not necessarily symmetric, as communication failures only impact message reception. As
a result, we can only ensure that Gt is either row-stochastic or column-stochastic, but not
doubly-stochastic.

Therefore, we introduce a two variables framework called sum-weight framework. The
sum-weight framework, originally introduced in [106] and later adapted for wireless net-
works in [107], relies on the joint update of two variables per node. Specifically, at each
node k and time step t, two variables, sk,t (representing the sum, initialized with xk,0) and
wk,t (representing the weight, initialized with 1), are maintained and updated. At each
iteration, the two variables sk,t and wk,t are updated using the same update matrix. Then,
the estimation xk,t is obtained by dividing sk,t by wk,t, assuming wk,t ̸= 0. In matrix form,
we define

st = (s1,t, s2,t, · · · sK,t)
T (5.14)

wt = (w1,t, w2,t, · · ·wK,t)
T . (5.15)

Then, the update process of the sum-weight framework can be expressed as

st+1 = Gt · st, (5.16)

wt+1 = Gt ·wt, (5.17)

xt+1 = st+1/wt+1. (5.18)

The division in (5.18) is element-wise.
To ensure sum conservation and consensus, the algorithm requires the update matrices

Gt to satisfy the following conditions [82].

Property 5.1 The update matrices Gt must verify:

i. The update matrices are non-negative, column-stochastic, and have positive diagonal
entries;
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ii. The update matrices are chosen through an independent and identically distributed
process;

iii. E [Gt] is primitive.

The column-stochasticity in Property 5.1-i ensures that the sum conservation. Prop-
erty 5.1-ii can be easily achieved by selecting Gt independently and identically distributed
between iterations. Property 5.1-iii holds if Supp(E{G}) = (IdK +A) and A is the adja-
cency matrix of the graph. The detailed design of the update matrix will be given later in
this section.

5.4.2 Framework Design

Similar to sum-weight framework, sensors exchange and update two variables sk,t and
wk,t in every timeslot. In addition to considering the convergence of the algorithm, it is
crucial to address potential communication failures caused by collisions. As mentioned
at the beginning of this chapter, one common approach to mitigate such failures is the
use of asynchronous algorithms, which allow only one node to transmit local data during
a given time slot. While these methods are collision-free, they typically result in slower
convergence. To overcome this limitation, we implement a more flexible scheme where each
node is active with probability 1− γ, a parameter authorized by the initial algorithm. For
simplicity, we assume that γ is independent of the individual nodes.

At time 0, we have sk,0 = yk and wk,0 = 1. For time slot t,

• With probability (1− pk,t), node k update the local data as

sk,t+1 =
∑

ℓ∈K̃k,t∪{k}

gk,ℓ,t · sℓ,t, (5.19)

wk,t+1 =
∑

ℓ∈K̃k,t∪{k}

gk,ℓ,t · wℓ,t. (5.20)

• With probability pk,t (which corresponds to communication failure), node k updates
the local data as

sk,t+1 = gk,k,t · sk,t, wk,t+1 = gk,k,t · wk,t. (5.21)

We recall that Kk is the number of neighbors of Node k, K′
ℓ,t the set of collision-free

nodes neighboring to node k and K ′
ℓ,t = |K′

ℓ,t|. For a given ℓ ∈ [K] and k ∈ K′
ℓ,t, the

parameter gk,ℓ,t is defined as

gk,ℓ,t ≜


1/(Kℓ + 1) if k ̸= ℓ,

(Kk −K ′
k,t + 1)/(Kk + 1) if k = ℓ, and node k activated

1 if k = ℓ, and node k non-activated

(5.22)

Also define the matrix Gt with Gt[k, ℓ] = gk,ℓ,t. We recall that the diagonal matrix
Ct defined in (5.4) is the activation matrix, the diagonal matrix St defined in (5.5) is the
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collision-free matrix, and in (5.7), we define Ãt = StACt. With these matrices, we obtain
the expression in matrix form of Gt as

Gt ≜
(
diag(1TA+ 1T − 1T Ãt) + Ãt

)
N, (5.23)

where N is the diagonal normalization matrix that ensures the matrix Gt is column-
stochastic, and the k-th entry on the diagonal is

N[k, k] =
1

Kk + 1
.∀k ∈ [K].

Notice that 1TA is the degree vector of the adjacency matrix A, and 1T ·Ã is the out-degree
vector of the matrix Ã.

Example 5.1 Consider the graph in Fig. 5.1. The adjacency matrix is given by

Figure 5.1: Example graph

A =


0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

 (5.24)

We assume that only node 3 does not transmit in the time slot t, so Ct = diag([1, 1, 0, 1]).
The numbers of activated neighbors for each sensor are

K̃1,t = 1, K̃2,t = 2, K̃3,t = 2, K̃4,t = 1.

The communication failure probabilities for each sensor are

p1,t = 1− f(1) = 0, p2,t = 1− f(2), p3,t = 1− f(2), p4,t = 1− f(1) = 0.

In this case, nodes 2 and 3 may experience potential communication failures. Suppose only
node 2 encounters collisions, represented as St = diag([1, 0, 1, 1]). The resulting message
flow graph is depicted in Fig. 5.2, with the corresponding matrix given as:

Ãt = StACt =


0 1 0 0

0 0 0 0

0 1 0 1

0 1 0 0

 . (5.25)
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Figure 5.2: Actual message flow graph

The numbers of collision-free neighbors for each sensor are

K ′
1,t = 0, K ′

2,t = 3, K ′
3,t = 1, K ′

4,t = 1.

Substituting the above results into (5.22), we obtain

Gt =


1 1

4 0 0

0 1
4 0 0

0 1
4 1 1

3

0 1
4 0 2

3

 (5.26)

It is straightforward to observe that the matrix Gt satisfies Property 5.1-i, as the update
matrices are non-negative, column-stochastic, and have positive diagonal entries.

5.5 Convergence Rate Analysis

In this section, we analyze the convergence rate of MSEt with the algorithm proposed in
the previous section. Since the update matrix Gt is column-stochastic, and is thus average-
conserving for each iteration, the expectation of the 2nd term in (5.12) is a constant as it
is the variance of 1/K

∑
εk. We thus focusing on the first term of MSEt, and denote

MSE′
t ≜ E

{
∥xt − xavg,t∥2

}
.

The goal is to identify an optimal probability γ of not transmitting that is adapted to the
failure error, thereby maximizing the convergence rate. To achieve this, we establish an
relation between the probability γ and MSE′

t in this section. Accroding to the Proposition
3.16 in [82], the important factor for the convergence speed of MSE′

t is

ω ≜ − log
(
ρ
(

E [Gt ⊗Gt] · (J⊥ ⊗ J⊥)
))

, (5.27)

where ρ(·) is the spectral radius of a matrix, and

J⊥ ≜ IdK −
1

K
11T .

As the majority of the expression in (5.27) is deterministic except the term E [Gt ⊗Gt],
we focus on the calculation of this expectation. For simplicity, we omit the index t as we
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assume all matrices are independent between different timeslots. We obtain

gk,ℓ =


ãk,ℓ

Kℓ + 1
if k ̸= ℓ

1−
∑K

k1=1 ãk1,ℓ

Kℓ + 1
if k = ℓ

, (5.28)

with ãk,ℓ = Ã[k, ℓ] = skak,ℓcℓ, and we recall that the communication failure probability
pk = 1− f(K̃) with K̃k =

∑K
ℓ=1 ak,ℓcℓ.

By the definition of Kronecker product, we have (G⊗G)[K ·k+k′,K ·ℓ+ℓ′] = gk,ℓ ·gk′,ℓ′ .
There are 3 different cases for E

[
gk,ℓ · gk′,ℓ′

]
.

• When k ̸= ℓ and k′ ̸= ℓ′, we have

E
[
gk,ℓ · gk′,ℓ′

]
=

1

(Kℓ + 1)(Kℓ′ + 1)
· E
[
ãk,ℓ · ãk′,ℓ′

]
(5.29)

• When k = ℓ and k′ ̸= ℓ′ ( or the case when k ̸= ℓ and k′ = ℓ′ is similar), we have

E
[
gℓ,ℓ · gk′,ℓ′

]
=

1

Kℓ′ + 1
· E
[
ãk′,ℓ′

]
− 1

(Kℓ + 1)(Kℓ′ + 1)
·

K∑
k1=1

E
[
ãk1,ℓ · ãk′,ℓ′

]
(5.30)

• When k = ℓ and k′ = ℓ′ , we have

E
[
gℓ,ℓ · gℓ′,ℓ′

]
= 1− 1

Kℓ + 1
·

K∑
k1=1

E [ãk,ℓ]−
1

Kℓ′ + 1
·

K∑
k′1=1

E
[
ãk′1,ℓ′

]

+
1

(Kℓ + 1)(Kℓ′ + 1)
·

K∑
k1=1

K∑
k′1=1

E
[
ãk1,ℓ · ãk′1,ℓ′

]
(5.31)

According to (5.29)-(5.31), we need to calculate E[ak,ℓ] and E[ak,ℓ · ak′,ℓ′ ]. Let’s begin
with the term E[ak,ℓ]. For a given pair of (k, ℓ) ∈ [K]2, we have

E[ãk,ℓ] = ak,ℓ · E [sk|cℓ = 1] · P(cℓ = 1) (5.32)

We recall that sk follow the Bernoulli distribution with a success probability determined
by the number of neighboring active nodes K̃k and the function in (5.6). We only calculate
E [sk|cℓ = 1] for the case where ak,ℓ = 1 as E[ãk,ℓ] is non-zero only when ak,ℓ = 1, we thus
obtain

E [sk|cℓ = 1] =

Kk∑
m=1

E
[
sk|cℓ = 1, K̃k = m

]
· P(K̃k = m|cℓ = 1).

The summation starts with 1 because we assume that node ℓ is active and that node k and
ℓ are connected. The random variable sk|K̃k = m follows a Bernoulli distribution with
success probability f(m), so E

[
sk|cℓ = 1, K̃k = m

]
= f(m). Also recall that for ℓ ∈ [K]

the activation of node ℓ follows the Bernoulli distribution with success probability 1 − γ.
Therefore, K̃k follows the binomial distribution B(Kk, 1− γ), i.e.

P(K̃k = m|cℓ = 1) =

(
Kk − 1

m− 1

)
(1− γ)(m−1)γ(Kk−m), for 1 ≤ m ≤ Kk.
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Then, we deduce that

E [sk|cℓ = 1] =

Kk∑
m=1

(
Kk − 1

m− 1

)
f(m)(1− γ)(m−1)γ(Kk−m) (5.33)

To simplify the equation, we define

F1(K) ≜
K∑

m=1

(
K − 1

m− 1

)
f(m)(1− γ)(m−1)γ(K−m). (5.34)

By combining (5.32) and (5.33), we obtain

E[ãk,ℓ] = ak,ℓ · F1(Kk) · (1− γ). (5.35)

Then, we calculate the term E[ãk,ℓ ·ãk′,ℓ′ ]. For two pairs (k, ℓ) ∈ [K]2 and (k′, ℓ′) ∈ [K]2,
we have

E[ãk,ℓ · ãk′,ℓ′ ] = ak,ℓak′,ℓ′ · E [sksk′ |cℓcℓ′ = 1] · P(cℓcℓ′ = 1). (5.36)

Since sk and sk′ are independent when k ̸= k′, and cℓ and cℓ′ are independent when ℓ ̸= ℓ′,
we have

E[ãk,ℓ · ãk′,ℓ′ ] =



ak,ℓak′,ℓ · E[sk|cℓ = 1]E[s′k|cℓ = 1] · (1− γ) if k ̸= k′, ℓ = ℓ′

ak,ℓ · E[sk|cℓ = 1] · (1− γ) if k = k′, ℓ = ℓ′

ak,ℓak′,ℓ′ · E[sk|cℓcℓ′ = 1]E[s′k|cℓcℓ′ = 1] · (1− γ)2 if k ̸= k′, ℓ ̸= ℓ′

ak,ℓak,ℓ′ · E[sk|cℓcℓ′ = 1] · (1− γ)2 if k = k′, ℓ ̸= ℓ′

,

(5.37)
As E[sk|cℓ = 1] is calculated in (5.33), we only need to calculate E[sk|cℓcℓ′ = 1]. Similarly,
we only calculate for the case ak,ℓ = 1 and ak′,ℓ′ = 1. We first consider the case that k ̸= k′

and ℓ ̸= ℓ′. If node k and ℓ′ are not connected, i.e. ak,ℓ′ = 0, we obtain

E[sk|cℓcℓ′ = 1] = E[sk|cℓ = 1] = F1(Kk). (5.38)

Otherwise, node k has at least two active neighbors, then

E [sk|cℓcℓ′ = 1] =

Kk∑
m=2

(
Kk − 2

m− 2

)
f(m)(1− γ)(m−2)γ(Kk−m). (5.39)

And define

F2(K) ≜
K∑

m=2

(
K − 2

m− 2

)
f(m)(1− γ)(m−2)γ(K−m). (5.40)

The two expression can be combined and rewritten as

E [sk|cℓcℓ′ = 1] = F1+ak,ℓ′ (Kk). (5.41)

When k = k′ and ℓ ̸= ℓ′, we have ak,ℓ′ = ak′,ℓ′ = 1, so

E [sk|cℓcℓ′ = 1] = F2(Kk). (5.42)
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By (5.33), (5.37), (5.41) and (5.42), we obtain

E[ãk,ℓ · ãk′,ℓ′ ] =



ak,ℓak′,ℓ · F1(Kk)F1(Kk′) · (1− γ) if k ̸= k′, ℓ = ℓ′

ak,ℓ · F1(Kk) · (1− γ) if k = k′, ℓ = ℓ′

ak,ℓak′,ℓ′ · F1+ak,ℓ′ (Kk)F1+ak′,ℓ(Kk′) · (1− γ)2 if k ̸= k′, ℓ ̸= ℓ′

ak,ℓak,ℓ′ · F2(Kk) · (1− γ)2 if k = k′, ℓ ̸= ℓ′

,

(5.43)
Finally, we can calculate the term E [Gt ⊗Gt] by applying the results from (5.35) and

(5.43) to (5.29)-(5.31), and subsequently derive ω as defined in (5.27).

Example 5.2 To better illustrate the application of Proposition 3.16 in [82], we outline
the method for computing ω in the case study presented in Example 5.1. We assume an
activation probability of 1− γ = 1

2 and a communication success probability function given
by f(K) = min

(
1
2K
, 1
)
. Using these values, we compute F1 from (5.34) and F2 from (5.40),

yielding:

F1(K) =
3K−1

22K−2
, F2(K) =

3K−2

22K−2
.

As stated in the example, the values of Kk are:

K1 = 1, K2 = 3, K3 = 2, K4 = 2.

Next, we determine E[ãk,ℓ] and E[ãk,ℓ · ãk′,ℓ′ ] using (5.35) and (5.42), respectively.
Additionally, we compute E[g̃k,ℓ · g̃k′,ℓ′ ] based on (5.29)-(5.31), incorporating E[ãk,ℓ] and
E[ãk,ℓ · ãk′,ℓ′ ]. Finally, the lower bound on the convergence speed of MSE′

t is derived using
(5.27).

5.6 Numerical Results

The graphs applied in the simulation are Random Geometric Graph (RGG), which are
generated as follows: first, select K points uniformly within the unit square [0, 1]× [0, 1] to
represent the locations of the sensors. Then, connect any two sensors with an undirected
edge if they are within a specified radius r, which defines the communication range. This
radius determines which sensors are close enough to communicate and thus have an edge
between them. RGG is suitable for modeling wireless sensor networks and aligns closely
with our setup. In Fig. 5.3, we present three curves in each sub-figure: i) The proportion
of connected graph in all graphs; ii) The empirical edge density, defined as the average
ratio between the number of connected sensor and K − 1; iii) The empirical edge density
for connected graphs. Each sub-figure presents the results for a specific number of sensors.

Notice that the connectivity is not guaranteed in RGG. Simulations are conducted with
the number of nodes K = 10 and communication range r = 0.4, as this setting yields a
sufficiently large proportion of connected graphs according to the results in Fig. 5.3b. We
generate RGGs in the way described in the previous sub-section, discarding non-connected
graphs until we obtain 100 connected RGG. For each graph, simulations are conducted
for 2000 iterations, carried out 100 times, with sensors initialized each time using newly
generated noisy observation vectors x0 as defined in (5.8). We choose the parameter θ = 2
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(b) Number of sensors K = 10
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(c) Number of sensors K = 15
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Figure 5.3: Connectivity and edge density with different r and K

and the variance of noise σ2 = 1. For the function of communication success probability
in (5.6), we choose

f(K̃) = exp
(
−αmax{K̃ − 1, 0}

)
(5.44)

The parameter α is a coefficient to quantify the collision strength of the system (or the
low quality of the receiver). The higher α is, the higher the failure at the receiver occurs.
We obtain the numerical form of (5.35) as follows:

E[ãk,ℓ] = ak,ℓ · β(Kk−1)(1− γ), (5.45)

where
β ≜ exp(−α) · (1− γ) + γ. (5.46)

And the numerical for of (5.35) is given as follows:

E[ãk,ℓ · ãk′,ℓ′ ] =



ak,ℓak′,ℓ · β(Kk+Kk′−2) · (1− γ) if k ̸= k′, ℓ = ℓ′

ak,ℓ · β(Kk−1) · (1− γ) if k = k′, ℓ = ℓ′

ak,ℓak′,ℓ′ · exp
(
−α(ak,ℓ′ + ak′,ℓ)

)
· β(Kk+Kk′−2−ak,ℓ′−ak′,ℓ) · (1− γ)2 if k ̸= k′, ℓ ̸= ℓ′

ak,ℓak,ℓ′ · exp(−α) · β(Kk−2) · (1− γ)2 if k = k′, ℓ ̸= ℓ′

, (5.47)
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In the simulations, we focus on the following metrics:

• Slope: The experimental convergence rate for each simulation is determined by
performing linear regression on log(∥xt− xavg · 1∥2) for the points with values below
−2. We refer to this value as the Slope.

• ω: The value of ω is computed using the results from (5.27), (5.28), (5.45) and (5.47),
which do not require any simulation results.

• Empirical ω: The empirical value of ω is calculated by applying (5.27) with the
empirical mean of the matrices Gt and Gt ⊗Gt obtained in each iteration of simu-
lations.

We compare the slope and ω for different (α, γ) pairs in Fig. 5.4. The figure shows
scatter plots for each combination of α ∈ {0, 0.5, 1} and γ ∈ {0, 0.2, . . . , 0.8} with K = 10

nodes. Each point in the scatter plots represents a (slope, ω) pair obtained from one graph.
The diagonal line y = x is added to each plot for reference.

We observe that all points are close to the line y = x, suggesting that ω is a good
approximation for the slope. Furthermore, for α ∈ {0.5, 1}, most points lie above the
y = x line, indicating that the slope is generally greater than ω in these cases. This is
expected since ω serves as the lower bound for the convergence rate. For α = 0, the
points are closer to the y = x line, implying that the difference between ω and the slope
is influenced by α. This observation could provide insight into how to improve the bound
on the convergence rate.

Then, we compare the average slope, the average ω and the average empirical ω over
all graphs for different value of γ in Fig 5.5. The curves of ω and of the empirical ω well
coincide, which validates our calculation of E [G⊗G]. Additionally, we observe similar
effect in Fig. 5.4 that ω coincides with the slope when α = 0 and positioned slightly below
the curve of slope when α ∈ {0.5, 1}. Even though the existence of the gap, ω effectively
indicates the variance of convergence speed with γ. Therefore, the optimal γ for a given
graph and α can be obtained by one-dimensional search.

In Fig 5.6 and Fig 5.7, we present MSE′
t and MSEt respectively with different values of

γ. The optimal line is obtained by applying the optimized γ for each graph, rather than
using a fixed value. The "Average Optimal γ" line is obtained by applying the average of
the optimized γ values across all graphs.

The optimal lines in both figures highlight the advantages of using a dynamic approach.
However, the performance of employing the averaged optimized γ is comparable to that
of applying a dynamic γ. Moreover, using a fixed γ enables the algorithm to function
without requiring precise knowledge of the graph’s structure. Consequently, the averaged
optimized γ is preferred from a practical standpoint. Additionally, as shown in Fig. 5.7,
all MSE values converge to σ2/K, which aligns with the result in (5.13).

In Fig. 5.8, we present the average optimal γ over all graphs versus communication
range r. As edge density is nearly "proportional" to r. Figure 5.8 highlights the impact
of the communication range r on the average optimal γ under varying α values. The
two curves illustrate that the optimal γ grows with increasing r, and the effect is more
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Figure 5.4: Slope versus ω for different γ and α with K = 10

pronounced when α = 1.0, indicating a stronger preference for balancing tradeoffs in
systems with higher α.

5.7 Conclusion

In conclusion, this chapter addresses the challenge of achieving consensus in distributed
estimation systems operating without a fusion center, where nodes are connected by an
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Figure 5.5: Average slope, ω and empirical ω over graphs versus γ for different α with K = 10
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Figure 5.6: Simulation results of Broadcast Sum-Weight on MSE′
t with different α, γ with K = 10.

undirected, self-loop-free graph. By focusing on the synchronous approach, we assume
nodes work in full-duplex mode, allowing them to either broadcast data or remain silent
during each time slot. Although node collisions can occur when too many nodes are active
simultaneously, we introduce a stochastic activation scheme to mitigate this issue. By
allowing each node to become active with a probability of 1− γ, we establish a theoretical
relationship between the convergence rate and γ, leveraging prior research on upper bounds
to guide algorithm design. This approach allows for efficient optimization of γ, ensuring
minimal MSE in the estimation process and enabling consensus.
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Figure 5.7: Simulation results of Broadcast Sum-Weight on MSEt for different α, γ with K = 10.
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Figure 5.8: The average of the optimal γ versus the communication range r.
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CHAPTER 6

Conclusions and Perspectives

This thesis investigated distributed computation and estimation algorithms, along with
their theoretical limits, to enable networks to achieve consensus on values of interest. By
addressing different systems and objectives such as SDoF, NDT, CRB, and convergence
rate, various algorithms were proposed and analyzed, providing insights into the funda-
mental and practical aspects of these systems.

In Chapter 2, we derived and analyzed SDoF bounds for three subclasses of partially
connected channels: NPC, CPXC, and CPIC. The results include a new lower bound for
NPC, improved bounds for CPXC, and the exact SDoF for CPIC. These findings were
applied to improve the NDT performance of wireless distributed MapReduce systems.

Chapter 3 extended this analysis by presenting the first information-theoretic lower
bound and an improved upper bound on the NDT tradeoff in full-duplex wireless MapRe-
duce systems. Using zero-forcing and a novel interference alignment scheme, we demon-
strated that linear beamforming, zero-forcing, and interference cancellation are optimal
when nodes can store at least half the files. However, the suboptimality of these methods
in other cases and the high computational cost of interference alignment highlight avenues
for future research, such as designing practical IA algorithms for MapReduce systems.

In Chapter 4, we addressed the challenge of quantized communication for distributed
estimation. By proposing a worst-case optimized random quantizer, we formulated a vec-
tor optimization problem, solved as signomial programming. The resulting quantizer out-
performed existing methods in mid/high SNR scenarios, offering a robust solution for
quantized communications to a fusion center.

Finally, Chapter 5 tackled consensus in distributed estimation systems without a fu-
sion center, focusing on synchronous approaches in undirected, self-loop-free graphs. A
stochastic activation scheme was introduced to mitigate node collisions during simulta-
neous activation. By relating the convergence rate to the activation probability, γ, we
optimized this parameter to minimize the MSE in estimation, facilitating efficient consen-
sus across the network.

Overall, this work contributes to the theoretical understanding and practical design
of distributed computation and estimation systems. It provides a foundation for future
advancements, such as more efficient algorithms for interference alignment and refined
techniques for consensus in large-scale networks.
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Perspectives

We present in the sequel some future perspectives to extend the work of this thesis.

A Unified Lower Bound for PC In Chapter 2, we derived the lower bound for NPC,
a specific subclass of PC that restricts each group to a single user. The methodology
used to obtain the lower bound for NPC could potentially be generalized to establish a
unified and extended bound for PC, encompassing all lower bounds presented in Chap-
ter 2. Specifically, for a given receiver, interference from other groups can be managed
using IA, while interference within the group can be managed using ZF. The precoding
matrices assignment could follow the approach developed for NPC. The main challenge
lies in demonstrating the independence of the useful signal subspace and the interference
subspace.

Reevaluating the Assumption of Full CSI In Chapter 2 and Chapter 3, we devel-
oped IA schemes based on the assumption of full CSI. While full CSI provides an idealized
scenario for theoretical analysis, its practicality in real-world networked systems is ques-
tionable. Given the inherent grouping structure in CPXC and CPIC, a more realistic
assumption would be partial CSI, where each node only has access to the channel in-
formation within the group. This raises important considerations regarding the trade-off
between performance and the overhead required to obtain and distribute CSI. Specifically,
maintaining full CSI necessitates extensive signaling and feedback mechanisms, which may
introduce significant communication overhead and delay, particularly in large-scale or dy-
namically changing networks. A deeper investigation into the feasibility of partial CSI
and its impact on system performance could provide valuable insights into designing more
efficient and scalable communication protocols.

Develop Heuristic Approaches for NPC Lower Bound The lower bound for NPC
presented in Theorem 2.1 is implicit. To derive a practical bound for NPC, integer pro-
gramming can be employed for specific wireless system configurations. By formulating the
problem as an integer program, the allocation of precoding matrices can be optimized to
achieve the best possible performance.

Furthermore, numerical results obtained through integer programming can serve as
benchmarks for developing heuristic algorithms. These algorithms can approximate the
optimal solutions with significantly reduced computational complexity, making them more
suitable for large-scale systems.

Extended Distributed Estimation Systems and Algorithms In Chapters 4 and 5,
we focused on estimation models where a single parameter was estimated from sensor data.
However, more complex scenarios—such as those involving non-linear parameters, multiple
parameters, or sensor networks divided into clusters—require the development of new dis-
tributed estimation algorithms. In these cases, the system must not only estimate multiple
parameters simultaneously but also handle the fact that sensors within each cluster may
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be responsible for estimating different objective parameters, adding a layer of complexity
to the estimation process.

Additionally, the assumptions underlying the algorithms presented, such as those re-
lated to consensus, provided a solid foundation for solving optimization problems in dis-
tributed estimation. Nevertheless, relaxing these assumptions could improve the practical-
ity and scalability of the methods, particularly in real-world applications where network
conditions are often less ideal and more variable. Future work could focus on exploring
more general or flexible assumptions, which could unlock new possibilities for enhancing
distributed estimation systems, making them more adaptable to a wider range of settings
and network conditions.

Theoretical Analysis of Distributed Estimation Systems In the numerical results
presented in Chapter 5, it was observed that the parameter ω, defined in (5.27), effectively
reflects the relationship between the variance of convergence speed and the activation
probability γ. A promising direction for future work would be to formally establish that
ω and the convergence speed exhibit the same monotonicity. Furthermore, demonstrating
that ω is a convex function of γ could further simplify the search for the optimal activation
rate by enabling the use of convex optimization techniques. Additionally, recent findings
on Markov Random Geometric Graphs [108] may offer valuable theoretical insights for
analyzing and understanding the properties of the system.
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APPENDIX A

Supplementary Proof of Theorem 2.2: Full-Rank Prop-
erty for Submatrices of D̂p

We aim to prove that submatrices of D̂p, for p ∈ T2, are full-rank with probability 1.
Consider any square sub-matrix D̂′

p of D̂p and define the function

F
({

S
(2,k)
p mod r : k ∈ [K̃]\{2}

}
, G2

)
≜ det

(
D̂′

p

)
, (A.1)

which is a polynomial in the entries of the matrices
{
S
(2,k)
p mod r : k ∈ [K̃]\{2}

}
and G2. Ac-

cording to (2.79), (2.87), (2.88), and (2.92), F is a rational function in the entries of the
matrices {Hp,q} and {S(i,k)

ℓ }, where the polynomial in the denominator (which consists of
products of determinants of matrices H̃(1,2) and {H̃(2,k) : k ∈ [K̃]\{2}}) is bounded and
non-zero by our assumption that all channel matrices H̃(i,k) are invertible. The zero-set
of the rational function F is thus of Lebesgue measure 0 unless F is equal to the all-zero
function. (This can be seen by noting that the zeros of F are the zeros of the polynomial in
its numerator, which have Lebesgue measure 0 except when the polynomial is the all-zero
polynomial, i.e., when F is the all-zero function.) Since real and imaginary parts of all
entries of matrices {Hp,q} and {S(i,k̄)

ℓ } are drawn independently from continuous distribu-
tions, we conclude that the function F evaluates to 0 with probability 0 (over the matrices
{Hp,q} and {S(i,k)

ℓ }), except for the case where it is the all-zero function.
In the rest of this section, we show that F is not the all-zero function, or equivalently

that the determinant of D̂′
p is non-zero for at least one realization of the random matrices.

In fact, we show the stronger statement that for the realizations

H̃(1,2) = IdTr (A.2a)

H̃(2,k) = IdTr, k ∈ [K̃]\{2}, (A.2b)

the determinant of D̂′
p is non-zero with probability 1. To this end, notice that for the

realizations in (A.2), for any distinct triple (̄i, j̄, k̄) ∈ [K̃]3 with either (̄i, k̄) = (1, 2) or
ī = 2:

G̃
(̄i,k̄)

j̄
= H̃(j̄,k̄)S(̄i,k̄), (A.3)

which implies that for any p̄ = (̄i − 1)r + ℓ̄ in group Tī and p′ = (j̄ − 1)r + ℓ in group Tj̄ ,
for ī and j̄ as above:

G
(p̄,k̄)
p′ = Hp′,(k̄−1)r+ℓ̄ S

(̄i,k̄)
ℓ , (A.4)
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because S(̄i,k̄) is diagonal and H̃(j̄,k̄) consists of r2 blocks of T-dimensional block matrices.
As a consequence, for the realizations in (A.2), the matrix D̂p is given by (A.6) on top of
the next page. In the following, we explain in detail that the matrix in (A.6) has the same

D̂p

∣∣∣
(A.2)

=

[
S
(2,k)
p mod r ·

∏
(k̄,p̄,p′) : p̄∈T2
k̄∈[K̃]\{2},

p′∈[K]\(T2∪Tk̄)

(
G

(p̄,k̄)
p′

)α2,(k̄,p̄,p′)

·
∏
p̄∈T1,

p′∈[K]\{T1∪T2}

(
G

(p′,2)
p̄

)α2,(p̄,p′) · 1 : k ∈ [K̃]\{2}, {α2,p̄,p′}, {α2,(k̄,p̄,p′)} ∈ [η]

]

(A.5)

=

[
S
(2,k)
p mod r ·

∏
(k̄,p̄,p′) : p̄∈T2
k̄∈[K̃]\{2},

p′∈[K]\(T2∪Tk)

(
Hp′,(k̄−1)r+(p̄ mod r) · S

(2,k̄)
p′ mod r

)α2,(k̄,p̄,p′)

·
∏
p̄∈T1,

p′∈[K]\{T1∪T2}

(
Hp̄,r+(p′ mod r) · S

⌊p′/r⌋,2
p′ mod r

)α2,(p̄,p′) · 1 : k ∈ [K̃]\{2}, {α2,p̄,p′}, {α2,(k̄,p̄,p′)} ∈ [η]

]
.

(A.6)

form as matrix A in Lemma 2.1 at the end of this section. Trivially, then also any square
submatrix of D̂p has the same form, which by Lemma 2.1 proves that for the realizations
in (A.2) the determinant of D̂′

p is non-zero with probability 1.
To see that D̂p is of the form in (2.70), notice that all matrices involved in (A.6) are

diagonal, and their multiplications with an all-one vector from the right leads to a column-
vector consisting of the non-zero entries of these diagonal matrices. More precisely, the
random variables in row t are given by the slot-t channel coefficients {Hq,p(t)} and the t-th
diagonal elements of S(i,k)

ℓ , which by definition are independent of each other and of all
random variables in the other rows. Therefore, the matrix (A.6) satisfies Condition i) in
Lemma 2.1. To see that it also satisfies Condition ii), notice that there is a one-to-one map-
ping between the columns of D̂p and the parameter tuples v = (k, {α2,(k̄,p̄,p′)}, {α2,(p̄,p′)})
and that for any two distinct tuples

v(1) = (k(1), {α(1)

2,(k̄,p̄,p′)
}, {α(1)

2,(p̄,p′)}) and v(2) = (k(2), {α(2)

2,(k̄,p̄,p′)
}, {α(2)

2,(p̄,p′)})

the exponents in the corresponding columns differ because:

1. If α(1)
2,(p̄,p′) ̸= α

(2)
2,(p̄,p′), then Hp̄,r+(p′ mod r) has different exponents in the two columns.

2. If α(1)

2,(k̄,p̄,p′)
̸= α

(2)

2,(k̄,p̄,p′)
, then Hp′,(k̄−1)r+(p̄ mod r) has different exponents in the two

columns.
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3. If α(1)
2,(p̄,p′) = α

(2)
2,(p̄,p′) and α

(1)

2,(k̄,p̄,p′)
= α

(2)

2,(k̄,p̄,p′)
, but k(1) ̸= k(2), then both S

(2,k(1))
p mod r

and S
(2,k(2))
p mod r have different exponents in the two columns.

This concludes the proof.
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APPENDIX B

Supplementary Proofs of Theorem 3.1

B.1 Proof of Monotonicity and Convexity of values C
(t)
i

We shall prove monotonicity and convexity of the values

D
(t)
i ≜

C
(t)
i(K−t

t

)
(K− 2t)

(B.1)

=

(
K− i
t− i

)
, i ∈ [t]. (B.2)

The monotonicity can be proven by the recurrence relation of binomial coefficients:

D
(t)
i−1 =

(
K− i+ 1

t− i+ 1

)
(B.3)

=

(
K− i
t− i

)
+

(
K− i

t− i+ 1

)
> D

(t)
i . (B.4)

To prove convexity, we apply the same recurrence relation to obtain:

D
(t)
i+1 +D

(t)
i−1

= 2

(
K− i
t− i

)
−
(
K− i− 1

t− i

)
+

(
K− i

t− i+ 1

)
(B.5)

= 2

(
K− i
t− i

)
+

(
K− i− 1

t− i+ 1

)
(B.6)

≥ 2D
(t)
i , (B.7)

which concludes the proof.

B.2 Proof of Structure of Minimizer

Start with any feasible vector b1, . . . , bK and consider two indices i < j with non-zero
masses, bi > 0 and bj > 0. Updating this vector as

b′i = bi −∆, and b′i+1 = bi+1 +∆, (B.8)

b′j−1 = bj−1 +∆, and b′j = bj −∆, (B.9)
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for any ∆ ∈ [0,min{bi, bj}], results again in a feasible solution vector, which has smaller
objective function due to the convexity of the coefficients {C(t)

i }.
Applying this argument iteratively, one can conclude that there must exist an optimal

solution vector where all entries are zero except for two masses bk > 0 and bk+1 ≥ 0.
Since

∑K
i=1 ibi ≤ rN, the index k cannot exceed r. By the decreasing monotonicity of the

coefficients C(t)
i , the optimal solution must then be to choose b⌊r⌋ > 0 and b⌊r⌋+1 ≥ 0 and

all other masses equal to 0. Since there is a unique such choice satisfying
∑K

i=1 ibi ≤ rN

and
∑K

i=1 bi = N, this concludes the proof.
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Résumé : Les systèmes distribués sont au cœur
des applications informatiques modernes, permettant
l’exécution collaborative des tâches sur des compo-
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