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1

General Introduction

The work presented in this Ph.D. thesis has been produced thanks to the collaboration between
the “Communications et Électronique” (COMELEC) department at Télécom Paris (France) and the
“Huawei Technologies France” (Paris, France), within the framework of “Convention Industrielle
de Formation par la Recherche” (CIFRE). It has been carried out since January 2017 under the
supervision of Prof. Philippe Ciblat and Prof. Marios Kountouris.

Problem statement
The new generation of wireless systems 5G is not designed in order to just be a faster ver-

sion of the predecessor LTE. It is designed to expand the utilities of the wireless networks and
enable new applications. Under this scope, contrary to LTE which support only a single use case,
namely Mobile broadband access (MTC), 5G expands the number of use cases and it includes
the “enhanced Mobile BroadBand” (eMBB), the “massive Machine Type Communication” (mMTC)
and the “Ultra-Reliable Low Latency Communications” (URLLC). The first type of connectivity, i.e.
eMBB, aims to support high data rates, the second to facilitate the connection of a large number of
devices to a single base station (BS) and the third to enable tasks that must be reliably performed
within very short time constraints.

Even for eMBB, the new generation 5G is set to surpass the latency provided by the LTE’s
single use case. From more than 10ms that MTC of LTE provides, the eMBB is restricted to
around 4ms1[1]. As the name suggests, URLLC aims to go beyond and support communication
of under one millisecond [1]. This thesis main objective is to propose schemes to facilitate
the achievement of such low delays or optimize performance under stringent latency con-
straints. We will first take a look at the lowest level of telecommunications which is the physical
layer (PHY) and then go up one level to the Medium Access Control (MAC).

Before going further into how to accomplish such impressive latency constraints, a step back
needs to be taken to pose the critical question: Is there any benefit for the communication delays
to be so low? After all, 5G is a new product whose solid success depends on the existence of
applications actually needing it and using it. So it is worth mentioning the deployment scenarios
where acquiring so low latency is vital. In Figure 1 we see the Radiocommunication Sector of
International Telecommunication Union (ITU-R) envision for the International Mobile Telecommu-
nications of 2020 (IMT 2020).

Figure 1 encapsulates the fundamental trade-off between latency, data rate and number of

1The latency is measured counting only the communication between the device and the Base station (i.e. not con-
sidering delays concerning the generation or fetching the data) and assuming no time restriction due to Discontinuous
reception (DRX)(i.e. both Base station and device are assumed to be fully active at any time).



2 General Introduction

Figure 1: Designing the International Mobile Telecommunications of 2020 (Source: ITU-R IMT-
2020).

devices that can be simultaneously served. The closer to the low right corner the lower latency
and higher reliability but compromising on the delivered data rate and spectral efficiency is un-
avoidable. Concentrating a bit more on the most latency demanding application, Table 1 shows
some typical values of latency that mission critical applications will require.

After establishing the necessity of low latency systems we turn to the main goal of the the-
sis which is estimating the amount of resources necessary to succeed under these strict
latency constraints and optimize possible schemes. The scheme we focused on was the
retransmission protocol. According to the Hybrid Automatic ReQuest (HARQ) protocol, the trans-
mitter sends the requested packet to the receiver and then waits for. If the receiver successfully
decodes it then,it sends an ACKnowledgment(ACK) back to the transmitter, otherwise a Negative
ACKnowledgment (NACK). The NACK forces the transmitter to send additional information to help
the receiver’s decoding procedure and improving the reliability of the communication. Obviously
this introduces additional delays and when operating in very limited time intervals, it is quite ques-
tionable that breaking them into smaller sub-intervals to allow a retransmission protocols remains
a valid approach.

We first take a look on the lowest level of telecommunications, i.e. the physical layer (PHY).
We inspect when time delays have to be very low, whether it is still beneficial the HARQ scheme
and if yes how to manage the physical layer resources, i.e. the number of symbols and power
each transmission should have. This problem is at first investigated under a simple setting of point
to point communication where the signal is distorted only by Gaussian noise. Then we extend to
the more realistic scenario of the signal experiencing fading since it can travel simultaneously
through different paths so what finally arrives at the receiver is a mixture of many versions of the
same signal interfering with one another. Under these multi-path phenomena is the exchange of
additional information to learn the behavior of the channel, i.e. using Channel State Information
(CSI), useful? It is an interesting question posed within the strict latency constraints. Finally going
up to the MAC layer we move from point to point scenario to a multi user one. Many user come
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Use Case Latency Data Rate Remarks

Factory
Automation

0.25-10 ms
[2]

1 Mbps [3] • Generally factory automation applications
require small data rates for motion and remote
control.

• Applications such as machine tools operation
may require latency as low as 0.25ms.

Intelligent
Transport
Systems (ITS)

10-100 ms
[2]

10-700
Mbps [4]

• Road safety of ITS requires latency on the
order of 10 ms.

• Applicatinos such as virtual mirrors require
data rates on the order of 700 Mbps

Robotics and
Telepresence

1 ms [5] 100 Mbps
[6]

• Touching an object by a palm may require
latency down to 1 ms.

• VR haptic feedback requires data rates on the
order of 100 Mbps.

Virtual Reality
(VR)

1 ms [7] 1 Gbps [6] • Hi-resolution 360oVR requires high rates on the
order of 1Gbps while allowing latency of 1 ms.

Health care 1-10 ms [8] 100 Mbps
[6]

• Tele-diagnosis, tele-surgery and
tele-rehabilitation may require latency on the
order of 1 ms with data rate of 100 Mbps

Gaming 1 ms [7] 1 Gbps [6] • Immersive entertainment and human’s
interaction with the high-quality visualization
may require latency of 1 ms and data rates of 1
Gbps for high performance

Smart Grid 1-20 ms
[2],[7]

10-1500
Kbps [9]

• Dynamic activation and deactivation in smart
grid requires latency on the order of 1 ms.

• Cases such as wide area situational awareness
require date rates on the order of 1500 Kbps.

Education and
Culture

5-10ms [7] 1 Gbps [6] • Tactile Interent enabled multi modal
human-machine interface may require latency
as low as 5 ms.

• Hi-resolution 360o and haptic VR may require
data rates as high as 1 Gbps.

Table 1: Typical latency and data rate for different mission critical services (Source: [10])

and go and each wants to be satisfied within its own delay tolerance. We search for efficient
resource allocation schemes that will satisfy the maximum number of users with the minimum
amount of resources.

Outline and contributions

This thesis is composed of three chapters. In the first chapter we first set the system model
describing a point to point communication where a fixed number of information bits has to be
transmitted under requirements for low latency and high reliability. We allow the possibility the
HARQ protocol with M transmissions (rounds) to be used, i.e. M − 1 possible retransmissions,
but always within the latency constraints. The goal is to assess if HARQ is useful, i.e. M > 1.
The small time interval does not allow a large number of symbols to be transmitted, compelling to
avoid standard Shannon, theory which assumes infinite number of symbols, and to resort to finite
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blocklength theory. After describing the implications using this theory we cast the optimization
problem to enable answering if M > 1 is beneficial. First we check the potential benefits under
the scope of energy consumption and later of throughput. To be able to fully exploit HARQ we
allow both the blocklength and power of each round of HARQ to be optimized. Since the problem
does not exhibit any convenient property like convexity, we have to first mathematically analyze
it to find some simplifications. Then we manage to find an algorithm to tackle using a dynamic
programming based solution.

The first chapter uses the simple channel model where the signal is only distorted by Gaussian
noise. Even though it provides intuition, we want proceed in the second chapter to more realistic
but more complicated channel model. So under the same setup where high reliability is required
even though the acceptable time delay is very low, the signal additionally to Gaussian noise it
experiences fading due to multi-path interference. We separate two cases: in the first one, defined
full CSI, the transmitter knows exactly the value of the channel and the second one, defined
statistical CSI, only statistical properties of the channel are known. We succeed given a specific
amount of resources and some statistical properties of the channel to mathematically analyze the
feasibility region where it is possible to send a fixed number of information bits under a given low
latency constraint. Interestingly it turns out that finding a scheme optimally exploiting the full CSI
is very tough and a sub-optimal scheme can easily have smaller feasibility region than the one
with statistical CSI, and without even accounting for the need of sending pilots to get a full CSI.

Finally on chapter 3 we introduce the possibility of many users simultaneously asking ser-
vice from a provider. We keep the setup where a user to be satisfied, must get the demanded
packet within a strict time constraint (whose value is not necessary low). Within that time interval
again retransmissions are allowed. Also since 5G also categorize the users into classes (eMBB,
mMTC,URLLC) which define different requirements, we introduce also in our traffic model set of
classes and every user belongs to one of those. We investigate again the two separate cases
where either full knowledge of the channel is provided to the transmitter for each user and every
time slot or only statistical properties. To find good scheduling algorithms under those conditions
we rely on tools from various fields, combinatorics (transforming the problem to a Knapsack one),
Integer Linear Programming (ILP) and Optimization (by approaching as an optimization problem
and either use ILP solving algorithm or Frank-Wolfe). We compare those traditional approaches
against to a more recent one using the combination of Reinforcement learning and Neural Net-
works.

Publications

The work conducted during the years of the Ph.D. has led to the following publications. The
main work of this thesis is linked to the publications [C3, C4, C5, J1] and therefore are the ones
developed in this manuscript.
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Chapter 1

IR-HARQ Optimization for Ultra
Reliable, Low Latency
Communications

1.1 Introduction

Wireless networks have traditionally been designed for increasing throughput and for improv-
ing coverage, focusing mainly on human-centric communication and delay-tolerant content. The
emergence of the Internet of Things (IoT) we are experiencing nowadays, enables a transition
towards device-centric communication and real-time interactive systems. Various socially useful
applications and new uses of wireless communication are currently envisioned in areas such as
industrial control, smart cities, augmented/virtual reality (AR/VR), automated transportation, and
tactile Internet. Emerging communication systems and architectures will enable real-time connec-
tions between people and objects/machines and will be instrumental for supporting low-latency,
high-fidelity, control-type applications, such as telesurgery, remote driving, and industrial remote
monitoring [11], [12].

A key feature for realizing such delay-sensitive and/or mission critical applications is a network
supporting very low end-to-end latency and extreme reliability. Ultra reliable, low latency com-
munications (URLLC) is the key technology pillar in emerging mobile networks. Next-generation
wireless systems (3GPP 5G) envision to support URLLC scenarios with strict requirements in
terms of tolerable latency (1 millisecond) and reliability (higher than 99.999%)[13], [14].

Guaranteeing the URLLC requirements is a challenging task since the performance is con-
strained by fundamental tradeoffs between delay, throughput, energy, and error probability. Re-
ducing drastically the latency imposes the use of very short messages and time-slots (mini slots).
The reduced packet duration and number of channel uses lead to small blocklength channel
codes, which yield faster decoding times. On the other hand, short channel codes result in a
rate penalty term and transmission rates with non-zero error probability, revisiting key insights
obtained via asymptotic information theoretic results. Recent progress has quantified the effect
of finite blocklength, providing tight bounds and accurate normal approximation for the maximum
coding rate to sustain the desired packet error probability for a given packet size [15], [16].

In order to compensate for the reliability loss introduced by short packets, reliable communica-
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tion mechanisms creating diversity have to be carried. A standard technique to improve transmis-
sion reliability, which has been adopted in various wireless standards, is incremental redundancy
(IR) hybrid automatic repeat request (HARQ). However, the benefits of time diversity could be
rather limited under stringent latency constraints as the number of transmission rounds and chan-
nel uses is rather limited. Moreover, the benefit of feedback-based retransmissions, even with
error-free but delayed feedback, is questionable since each transmit packet is much smaller due
to the strict total latency constraints, thus more prone to errors.

At the expense of additional power or permitting substantial throughput degradation, it is rel-
atively easy to shorten the delay without any compromise to meet the reliability and latency con-
straints. High power usage and reducing the information bits to be delivered can render even a
very short transmission reliable. In the short-packet regime, this interplay is more pronounced
as latency is minimized when all packets are jointly encoded, whereas power is minimized when
each packet is encoded separately.

In this chapter, we investigate the interplay between latency, reliability, throughput, and en-
ergy, and investigate whether IR-HARQ can be optimized in order to be beneficial for URLLC
systems. First, we fix a lower desirable throughput and analyze the fundamental tradeoff between
latency (in terms of feedback and retransmission delay) and average consumed energy in the
finite blocklength regime for URLLC systems with IR-HARQ. Considering that packets have to
be decoded with a certain error probability and latency, we provide an answer whether it is ben-
eficial to do one-shot transmission (no HARQ) or split the packet into sub-codewords and use
IR-HARQ. Second, we propose a dynamic programming algorithm for energy efficient IR-HARQ
optimization in terms of number of retransmissions, blocklength, and power per round. Further-
more, the impact of feedback delay on the energy consumption and IR-HARQ performance is also
investigated. Finally, we reformulate the problem for maximizing the throughput and after some
mathematical manipulations and using the same dynamic programming scheme, we derive the
optimal IR-HARQ parameters that maximize throughput. The material presented in this chapter
has been published in [C3, C4, J1].

1.2 Related work

Prior work has considered the problem of throughput maximization in [17] by adjusting solely the
blocklength of each IR-HARQ round with only one retransmission and the optimization is done
through an exhaustive search. Throughput maximization in [18] is performed via rate refinement
over possibly infinite number of retransmissions of equal-sized and constant energy packets. Im-
posing as well a reliability constraint [19] performs rate maximization. In [20], sphere packing is
used for optimizing the blocklength of every transmission with equal power. In [21], power and
blocklength, as in our work but for only one packet transmission (without HARQ), are jointly tuned
to minimize the energy consumed by packets scheduled in a FIFO manner. Also with rate and
power adjustments [22] maximizes energy efficiency in SIMO systems. Throughput maximization
for IR-HARQ problem is considered in [23] assuming infinitely large blocklength and performing
blocklength adaptation.

In [24] for a variable-length stop feedback coding scheme, delay violation and peak-age vio-
lation probabilities are analyzed. Under quality of service and energy efficiency requirements the
authors of [25] use full CSI to optimize the power that maximizes the effective capacity. In [26],
the authors optimize the blocklength in order to maximize the rate. However, the optimization
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problem considered therein is not subject to reliability and latency constraints and can easily be
solved using sequential differential optimization. Finally, [27] proposes a new family of protocols
and compares its throughput with a dynamically optimized IR-HARQ.

Many other work exists for optimizing HARQ mechanism but the vast majority of them con-
sider infinite packet length, see for instance [28]–[30]. In [28], they consider a type-I HARQ with
capacity-achieving codes and the blocklength is adapted for improving the throughput without
any constraint on the packet reliability or latency. In [30], the authors assume infinite blocklength
and consider length adaptation in order to maximize the throughput; the energy efficiency of the
optimal solution is checked afterwards.

1.3 System Model

We consider a point-to-point communication link, where the transmitter sends B information bits
within a certain predefined latency, which can be expressed by a certain predefined maximum
number of channel uses, denoted by N . If no ARQ/HARQ mechanism is utilized, the packet
of B bits is transmitted only once (one-shot transmission) and its maximum length is N . When
a retransmission strategy is employed, we consider hereafter IR-HARQ with M transmissions
(rounds), i.e., M − 1 retransmissions. Setting M = 1, we recover the no-HARQ case as a special
case of the retransmission scheme. We denote nm with m ∈ {1, 2, ...,M} the number of channel
uses for the m-th transmission.

The IR-HARQ mechanism operates as follows: B information bits are encoded into a parent
codeword of length

∑M
m=1 nm symbols. Then, the parent codeword is split into M fragments of

codeword (sub-codewords), each of length nm. The receiver requests transmission of the m-th
sub-codeword only if it is unable to correctly decode the message using the previous 1 to (m− 1)
fragments of the codeword. In that case, the receiver concatenates the first until m-th fragments
and attempts to jointly decode it. We assume that the receiver knows perfectly whether or not
the message is correctly decoded (through CRC) and ACK/NACK is received error free but with
delay. The effect of feedback error is discussed in Section 1.10. Every channel use (equivalently
the symbol) requires a certain amount of time, therefore we measure time by the number of
symbols contained in a time interval. The latency constraint is accounted for by translating it into
a number of channel uses as follows: we have

∑M
m=1 (nm +D(~nm)) ≤ N where ~nm is the tuple

(n1, n2, ..., nm) and D(·) is a penalty term introduced at the m-th transmission due to delay for
the receiver to process/decode the m-th packet and send back acknowledgment (ACK/NACK).
The penalty D(·) on the m-th round may depend on the previous transmissions, i.e., ~nm−1, since
IR-HARQ is employed and the receiver applies a decoding processing over the entire ~nm.

The channel is considered to be static within the whole HARQ mechanism, i.e., there is only
one channel coefficient value for all the retransmissions associated with the same bytes. This
is a relevant model for short-length packet communication and IoT applications. Indeed, for a
system operating at carrier frequency fc = 2.5 GHz, for a channel coherence time Tc = 1 ms
(so equal to the URLLC latency constraint, i.e., the maximum duration of all the retransmissions
associated with the same bytes), the maximal receiver speed to satisfy the static assumption is
v = cBd/fc ≈ 180 km/h, where Bd = 0.423/Tc [31, (8.20)] is the Doppler spread and c is the
speed of light. So for any device whose speed is smaller than 180 km/h, the channel is static
during the HARQ process. This is a relatively high speed for most mission-critical IoT or tactile
Internet applications. Therefore, our communication scenario consists of a point-to-point link with
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additive white Gaussian noise (AWGN). Specifically, in m-th round, the fragment (sub-codeword)
cm ∈ Cnm is received with power Pm = ||cm||2

nm
and distorted by an additive white circularly-

symmetric complex Gaussian random process with zero mean and unit variance. As the channel
is static along with the transmission, the channel gains are constant and the noise variance is
assumed equal to one without loss of generality. The power allocation applied during the first m
rounds is denoted by ~Pm = (P1, ...Pm).

1.4 Problem Statement and Preliminaries

We first fix the number of information bits B to be delivered with a given packet error probability
and under a certain latency constraint (URLLC requirements) and try to derive the best HARQ
mechanism that minimizes the average consumed energy by optimally tuning both ~nM and ~Pm

for a prefixed M (number of transmissions per HARQ mechanism). Then we consider M to
be variable and aim to find the optimal number of transmission rounds M for different feedback
delay models. Finally, we alleviate even the assumption of the fixed number of information bits B,
viewing it as an optimizable parameter so as to maximize the throughput.

The first step for reaching the above objectives is to characterize the probability of error in
the m-th round of the HARQ mechanism as a function of ~nm and ~Pm. To derive the packet
error probability in short-packet communication, we resort to results for the non-asymptotic (finite-
blocklength) regime [15].

In IR-HARQ with (m−1) retransmissions, the packet error probability or equivalently the outage

probability, denoted by εm, can be expressed as εm = P

(
m⋂
i=1

Ωi

)
where Ωm is the event “the

concatenation of the first m fragments of the parent codeword, with length ~nm and energy per
symbol ~Pm, is not correctly decoded assuming optimal coding”.

When an infinitely large blocklength is assumed, an error occurs if the mutual information is
below a threshold and for IR-HARQ, it can easily be seen that for k < m we have Ωm ⊆ Ωk

[32], [33], which leads to εm = P(Ωm). In contrast, when a real coding scheme (and so finite
blocklength) is used, the above statement does not hold anymore and an exact expression for
εm seems intractable. Therefore, in the majority of prior work on HARQ (see [33] and references
therein), the exact outage probability εm is replaced with the simplified εm defined as εm = P(Ωm),
since εm and εm perform quite closely when evaluated numerically. Note that for m = 1 the
definitions coincide and ε1 = ε1 = P(Ω1). In the remainder of this chapter, we assume that this
approximation is also valid in the finite blocklength regime as in [17], [26]. Then, εm can be upper
bounded [15, Lemma 14 and Theorem 29] and also lower bounded as in [34] by employing the
κβ-bounds proposed in [15]. Both bounds have the same first two dominant terms and the error
probability is approximately given by

εm ≈ Q


m∑
i=1

ni ln(1 + Pi)−B ln 2√√√√ m∑
i=1

niPi(Pi + 2)

(Pi + 1)2

 (1.1)

where Q(x) is the complementary Gaussian cumulative distribution function. For the sake of
clarity, we may show the dependency on the variables, i.e., εm(~nm, ~Pm) or εm(n1, n2, ..., P1, P2, ...)
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instead of εm, whenever needed.
Notice that some works have tried to approximate more accurately the term εm or εm [35]–

[37]. For instance, in [35], the authors provide more involved expressions for εm, but the feedback
scheme considered is different from ours; the feedback time index in [35] is not predefined (it
is a random variable) and is adapted online. In [26], [36], justifications for the approximation
εm ≈ εm when using non-binary LDPC codes or tail-biting convolutinoal code can be found. In
[37], the authors used saddlepoint approximation to find a tight approximation of εm, especially
for binary erasure channels (BEC). Unfortunately, no closed-form expressions are provided for
AWGN channel and significant effort is required in order to adapt the saddlepoint approximation
of [37] to AWGN channels and even more (if not intractable) to adopt to our problem. Therefore,
we consider that using the Gaussian approximation of [15] provides a very good tradeoff between
analytical tractability and tightness of the approximations.

1.5 Energy Minimization Problem

We employ an IR-HARQ with M − 1 retransmissions with variable blocklengths and powers over
rounds. We first address the problem of minimizing the average energy consumed to achieve a
target reliability Trel (e.g. Trel = 99.999% in 3GPP URLLC or equivalently an outage probability
Pout = 1 − Trel = 10−5) without violating the latency constraint

∑M
m=1 (nm +D(~nm)) ≤ N by

properly setting ~nM and ~PM .

1.5.1 Optimization Problem

Letting ε0 = 1, the problem of minimization of the average energy consumed by a HARQ mecha-
nism is mathematically formulated as follows:

Problem 1.

min
~nM , ~PM

M∑
m=1

nmPmεm−1 (1.2)

s.t.
M∑
m=1

(nm +D(~nm)) ≤ N (1.3)

εM ≤ 1− Trel (1.4)

~nM ∈ NM+ (1.5)
~PM ∈ RM+ (1.6)

where N+,∗ is the set of positive integers, and R+ corresponds to the set of non-negative real-
valued variables.

To illustrate how feedback delay can impact the performance, we consider two different mod-
els:

• The first model assumes a constant delay per retransmission, i.e., D(~nm) = d. This simple
model corresponds to the current real communication systems (e.g., 3GPP LTE) where the
feedback is sent back through frames that are regularly spaced in time.
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• The second model assumes a non-constant delay per retransmission and that feedback is
sent right after the decoding outcome at the receiver side. In that case, the limiting factor
to send back the feedback is the processing time required by the receiver to decode the
message. We consider this time to be proportional to the size of the set of sub-codewords
the receiver has already received. Therefore, after the m-th transmission, we have D(~nm) =

r
∑m
i=1 ni with r a predefined constant.

We stress that forcing the same number of symbols per transmission, i.e. nm = n, ∀m, is just a
sub case of the general problem where we chose to only optimize the power per transmission. But,
except otherwise stated, we hereafter we mainly focus on the general case of variable blocklength
per transmission (nm 6= nm′ , ∀m,m′) as a means to study the maximum capability of IR-HARQ to
improve the performance.

Figure 1.1: Average consumed energy versus (n1, P1)
for N = 400, B = 32 bytes, and Trel = 99.999%. The
red asterisk marks the minimum.

Problem 1 is a Mixed Integer Nonlin-
ear Programming (MINLP) problem and a
first approach to overcome its hardness
is to relax the integer constraint by look-
ing for ~nM ∈ RM+,∗ instead of ~nM ∈ NM+,∗.
Even with that relaxation, the problem re-
mains hard in the sense that the non-
linearity cannot be managed through con-
vexity properties of the relaxed problem.
Indeed, in Figure 1.1 we plot the objec-
tive function of Problem 1 for M = 2,
D(~nm) = 0 and equality in the latency
and reliability constraints, i.e., (1.3) and
(1.4) in order to have only a 2D search on
variables (n1, P1). We observe that the
objective function is neither convex nor
quasi-convex nor biconvex, consequently standard convex optimization methods cannot be used.

Therefore, our objective is not providing a closed-form optimal solution for Problem 1 but de-
riving a low complexity algorithm finding the optimal solution. But let’s first start simplifying by
showing that Problem 1 can be written with equality in its constraints.

1.5.2 Equality Constraints

We first start with the simple case where no delay penalty is considered D(~nm) = 0,∀m and
afterwards it will be incorporated. For this case we obtain the following result.

Result 1. When D(~nm) = 0,∀m, the optimal solution of Problem 1 satisfies the latency constraint
given by (1.3) and the reliability constraint given by (1.4) with equality.

This result has two consequences:

(i) Equality in (1.3) and (1.4) enables us to reduce the number of variables since one nm and
one Pm can be removed from the unknown variables, i.e., we search over 2(M − 1) instead
of 2M variables.

(ii) Equality in (1.3) has a conceptual meaning. It implies that it is advantageous to send as
many symbols as possible during transmission but with less energy used for each symbol.
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In other words, given an energy budget, it is preferable to spread this budget into many
symbols with low power rather than to few ones with high power.

Proving the above result requires the following lemmas:

Lemma 1. The optimal solution of Problem 1, denoted by (~n?M ,
~P ?M ), satisfies εM−1 > εM .

Proof. See Appendix of A.1

Lemma 2. If (~n†M ,
~P †M ) satisfies εM−1 > εM , then the function P 7→ εM (~n†M ,

~P †M−1, P ) is decreas-
ing in the neighborhood of P †M .

Proof. See Appendix A.2.

Lemma 2 enables us to force the constraint (1.4) to be satisfied in equality, and so proves
the second part of Result 1. To prove that, we assume that the optimal point (~n?M ,

~P ?M ) satisfies
εM < 1 − Trel. According to Lemma 1, we know that εM−1 > εM . Consequently, according to
Lemma 2, P ?M can be decreased to P ′M such that εM < 1 − Trel is still true (due to continuity of
the function). This implies that (~n?M ,

~P ?M−1, P
′
M ) is a better solution than the optimal one, which

leads to contradiction preventing εM < 1− Trel at the optimal point.
Passing to the second constraint (1.3), to prove that the optimal point satisfies it with equality

we firstly need to establish the following result.

Lemma 3. Let B = {(n1, · · · , nM , P1, · · · , PM ) ∈ R2M
+,∗ : 0.5 > ε1(n1, P1) > εM (n1, · · · , nM ,

P1, · · · , PM ) > Q(
√

2B ln 2/3)}. As long as (an1, n2, · · · , nM , P1/a, P2, · · · , PM ) ∈ B, it is true that
both ε1(an1, P1/a) and εM (an1, n2, · · · , nM , P1/a, P2, · · · , PM ) are decreasing with respect to a.

Proof. See Appendix A.3.

Lemma 3 enables us to force the constraint (1.3) to be satisfied in equality, and so proves
the first part of Result 1 as soon as the optimal point belongs to B, i.e., satisfies 0.5>ε1>εM=1−
Trel>Q(

√
2B ln 2/3). To prove that, we assume that the optimal point (~n?M ,

~P ?M ) satisfies
∑M
m=1 n

?
m <

N . For any a > 1 such that (an?1, n
?
2, .., n

?
M , P

?
1 /a, P

?
2 , ..., P

?
M )∈B and an?1 +

∑M
m=2 n

?
m ≤ N yields

a better solution. And there exists at least one a > 1 in B by continuity of ε1 and εM with respect
to a. Actually an?1 may belong to R+,∗ instead of N+,∗. To overcome this issue, we assume that
the scheme with a = (n?1 + 1)/n?1 is still in B, i.e., increasing the blocklength of the first fragment
by one symbol does not bring us out of B.

We consider now the case of D 6= 0. The nonzero feedback delay does not modify Result 1
for the reliability constraint (1.4). For the latency constraint (1.3), the extension of Result 1 is less
obvious, and the reasoning depends on the type of delay feedback model:

• For D(~nm) = d,∀m, we can simply consider Problem 1 with blocklength N ′ = N − dMde,
where d·e stands for the ceiling operator, and no delay penalty. Therefore the latency con-
straint is equivalent to the following equality:

M∑
m=1

nm = N − dMde. (1.7)

• For D(~nm) = r
∑m
i=1 ni,∀m, lemma 3 should be cautiously employed. Indeed, increasing

the blocklength of the first fragment by one leads to an increase in the feedback delay at
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each fragment by dre. After M transmissions, the additional delay is at most Mdre. We
know that the optimal solution lies in the following interval

N −Mdre ≤
M∑
m=1

(nm +D(~nm)) ≤ N, (1.8)

since the right-hand side (RHS) inequality in (1.8) ensures the latency constraint, and the
left-hand side inequality in (1.8) is necessary for the optimal solution. Indeed, without this
inequality, it is still possible to expand the first round by one without violating the latency
constraint, hence obtaining a better solution than the optimal one, which leads to a contra-
diction.

1.6 Simple case of M = 2 transmissions

We first will concentrate on the simpliest case of only one possible retransmission, i.e. M = 2, to
get a basic sense of the behavior of the problem. We will address (i) fully optimized IR-HARQ, (ii)
partially optimized IR-HARQ when n1 = n2 = N/2, and (iii) no HARQ (n1 = N and n2 = 0).

1.6.1 Optimized IR-HARQ

The problem is stated as follows:

Problem 2.

min
n1,P1,n2,P2

n1P1 + n2P2ε1 (1.9)

s.t. n1 + n2 = N (1.10)

ε2 = 1− Trel (1.11)

The constraints (1.10) and (1.11) are presented as equalities since the result 1 holds and the
original form with inequalities can be replaced with one of equalities. The only concern that will
be resolved later is that if it is restrictive or reasonable the optimal solution belonging to the set
B, i.e. the optimal point (n?1, P

?
1 , n

?
2, P

?
2 ) satisfies 0.5 > ε1 > ε2 > Q(

√
2B ln 2/3), but this indeed

applies in practice. Therefore the four optimization variables in Problem 2 are reduced to only two
since indeed given (n1, P1), we can induce the values for (n2, P2). This is exactly how we created
the previous Fig. 1.1, where we plot the objective function given by (1.9) with respect to (n1, P1)

in the feasible domain defined by constraints (1.10) and (1.11).

As no convexity or quasi-convexity properties are observed and the optimization problem is
reduced to simply finding a two-dimensional (2D) bounded parameter, an exhaustive search can
easily do the job. More precisely, we need to quantize the power P1 with an approximation error
θ and afterwards perform a 2D search over (n1, P1) with n2 = N − n1 and a bisection method to
retrieve P2 (with the same approximation error θ). The bisection method is efficient since the out-
age probability ε is a decreasing function with respect to P2. The complexity is O(Nθ−1 log(1/θ)),
where θ is the approximation error.
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1.6.2 Partially optimized IR-HARQ

We consider here the case where the retransmission packet has the same blocklength as the
first packet (n1 = n2). That case is referred to as partially optimized IR-HARQ, where the sole
parameters to optimize are the power P1 and P2.

Problem 3.

min
P1,P2

N

2
(P1 + P2ε1)

s.t. ε2 = 1− Trel

Only one-dimensional exhaustive search over P1 is needed since, once again, P2 can be found
through a bisection method solving ε = 1− Trel. The complexity is O(θ−1 log(1/θ)).

1.6.3 No HARQ

Finally, if we assume that n1 = N and n2 = 0 to get the one-shot transmission. As the outage is
a decreasing function with P1 (see lemma 2)), we just have to find the root in P of the equation

ε1(N,P ) = 1− Trel. (1.12)

A bisection method can be used, whose complexity is O(log(1/θ)).

1.6.4 Asymptotic Regime for M = 2

As discussed previously the latency constraint (1.10) is in equality because it is preferable to
exploit the complete available blocklength N . That means if the resource N was to increase to
N + 1 then the optimal solution will surely change to include the additional spare channel use.
Hence, the consumed energy for sending a fixed number of B information bits, as seen in Problem
2, is a non-increasing function with respect to the latency N . The question raised is whether this
decreasing behavior has an asymptotic floor, which as seen in Fig.1.2 there is one as N → ∞.
Below we characterize it.

Proposition 1. Let (n?1, P
?
1 , n

?
2, P

?
2 ) be the optimal point of Problem 2, Ei = n?iP

?
i the energy spent

on the i-th fragment and β = n?1/N ∈ (0, 1). The minimum average consumed energy under the
constraints given by Problem 1 is independent of β when N → ∞ and equals to the solution of
the following optimization problem:

min
E1,E2

E1 +Q

(
E1 −B ln 2√

2E1

)
E2

s.t. E1 + E2 = E∞No−HARQ

with E∞No−HARQ= (Q−1(1−Trel))
2

2

(
1+
√

1+ 2B ln 2
(Q−1(1−Trel))2

)2
.

Proof. In result 3 the general case of M ∈ N+ ,∗ is provided and a simple substitution M = 2

yields this proposition.

Notice that E∞No−HARQ corresponds to the required average energy when N →∞ for the case
of no HARQ. We will later extend the result to the general case of M > 2.
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1.6.5 Numerical Results and Discussion for M = 2

For the simplified case of M = 2, we provide here numerical results based on our analysis as a
means to shed light to whether or not it is beneficial from an energy point of view to split in two
the packet transmission in URLLC systems. Except otherwise stated, we set B = 32 bytes and
Trel = 99.999%. According to these values, we have 1 − Trel � Q(

√
2B ln 2
3 ) ≈ 1.7 · 10−10 and

it is reasonable to consider design parameters n1 and P1 such that ε1 < 0.5. Thus forcing the
parameters (n1, P1, n2, P2) to be in B, defined by 3, is not restrictive at all; hence we consider the
constraints of the optimization problems as equalities.

In Fig. 1.2, we plot the minimum average consumed energy versus N (with D = 0) for the two
HARQ and no HARQ schemes. As stated in Proposition 3, the consumed energy for sending a
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Figure 1.2: Minimum average energy versus latency N (with D = 0).

packet of B information bits decreases for any configuration when N increases. Nevertheless, the
gain is less substantial when N is large enough since an asymptotic floor occurs. In the asymp-
totic regime, we have E∞noHARQ = 278 for no HARQ and as anticipated both other configurations
converge to the same smaller value E∞HARQ = 210. Clearly, for D = 0, IR-HARQ always performs
not worse than no HARQ. The reason is the feedback of the IR-HARQ mechanism enables, at
times, to only need a portion of the total available blocklength N , i.e. n1 channel uses, and thus
saving energy by not using the remaining n2. Of course all these due to the free of charge use of
feedback as D = 0.

The effect of feedback delay D on the performance it is possible to be observed in Fig. 1.2
by taking two example points A(NA, EA) and B(NB , EB) where NA (resp. NB) is the minimum
satisfied latency for a given consumed energy EA, (resp. EB) when no HARQ is used. Using
optimized IR-HARQ can lead to lower the necessary latency N ′A = NA − DA (resp. N ′B =

NB − DB) for the same amount of energy. Consequently, DA (resp. DB) is the latency gain
of optimized IR-HARQ against no HARQ. In other words, optimized IR-HARQ can support a
feedback delay D < DA (resp. D < DB) while offering gain in terms of energy consumption when
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this energy is upper bounded by EA (resp. EB). It can also be seen that as the initial available
increases from NA to NB the acceptable maximum delay grows much faster going from DA to
DB . This will be reconfirmed from Fig. 1.4.
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Figure 1.3: Power allocation for minimum average energy in both optimized and partially optimized
IR-HARQ.

In Fig. 1.3, we show the optimal power allocation (P ?1 , P
?
2 ) versus the latency N for both IR-

HARQ configurations. We see that in optimized IR-HARQ we always have P ?1 < P ?2 , and on the
contrary in partially optimized IR-HARQ, we have P ?1 > P ?2 for large N but P ?1 = P ?2 for small N .
But P ?1 = P ?2 is the equivalent case to no HARQ and this explains the blue and black curves of
Fig. 1.2 to coincide for small N . The reason of this behaviour is based on the fact that HARQ has
the benefit of early termination offering the possibility of no retransmission, thus saving power-
blocklength resources. The advantage of HARQ, as compared to no HARQ, is more pronounced
when early termination occurs very frequently, i.e. low ε1, but without sacrificing a large amount of
energy for doing so, i.e. when both ε1 and n1P1 are small. In the no HARQ case, a smaller error
can be achieved even by decreasing the energy (increasing the available blocklength leads to even
less needed energy - see the curve for no HARQ in Fig. 1.2 as N grows). Therefore, both n1P1

and ε1 can be kept small by increasing n1 and decreasing P1 in the optimized IR-HARQ. That’s
why we get that the optimal (n?1, n

?
2) leads to n?1 > n?2 (specifically n?1 ≈ 0.89N for almost any value

of N ), and that P ∗1 is small compared to P ∗2 . In contrast, in the partially optimized IR-HARQ, one
cannot adapt n1. Therefore, decreasing ε1 depends on the available N . If N is inadequate, then
decreasing ε1 requires excessively high P1, which yields to an inefficient solution. That is why
for small N , ε1 is almost 1 (i.e. retransmission should always be employed) and the behavior of
IR-HARQ is similar to no HARQ. When N becomes sufficiently large, then the only solution for
decreasing ε1 is increasing P1. That is why P ?1 > P ?2 in the partially optimized IR-HARQ case.

In Fig. 1.4, we plot the difference (in percentage) between the energy consumed in no HARQ
and the optimal average energy consumed in IR-HARQ versus D. Positive gains mean that an
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IR-HARQ mechanism performs better than no HARQ. We observe that the splitting approach
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Figure 1.4: (E?no HARQ − E?HARQ)/E?no HARQ in % versus D for NA = 350 and NB = 900.

(optimized IR-HARQ) is better than one-shot transmission (no splitting) for a large amount of
feedback delay D (around N/2 or even more). As N increases, the amount of feedback delay that
optimized IR-HARQ can support while being more energy efficient also increases. For example,
when N = NA = 330, we have DA = 0.42NA, whereas when we increase to N = NB = 900

we have DB = 0.69N . Therefore, as N grows, IR-HARQ becomes a more robust solution with
respect to feedback delay. We note also that an unoptimized or partially optimized IR-HARQ does
not necessarily provide better performance than no HARQ, even with almost zero feedback delay
especially as the available N shrinks which is the case of URLLC systems.

1.7 Is increasing M further a good idea?

Before proceeding with tackling the general case of M > 2, we need some indication that this
could be beneficial. For that we prove the following result, but which only holds when D(~nm) =

0,∀m.

Result 2. When D(~nm) = 0,∀m, and given Trel and N , increasing the number of retransmissions
M always yields a lower optimal average energy.

Proof. See Appendix A.4.

Result 2 implies that when ideal feedback and no delay are guaranteed, a HARQ mechanism
is always advantageous, i.e., it is always preferable to split the sub-codewords into even smaller
sub-codewords.
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1.8 Low Complexity Algorithm with Dynamic Programming

Until now, we have managed to reduce the set of feasible points without losing optimality (as es-
tablished from Result 1) and as a consequence, the search for the optimal solution of Problem 1
has been simplified. Nevertheless, due to the lack of convexity or other favorable properties for
the objective function, an exhaustive search seems to be required as has be done in the simple
case of M = 2. That involves the need for power quantization, which introduces an approximation
error (denoted by θ). The procedure is as follows: first, ~nM−1 and ~PM−1 are fixed; then, nM is
obtained through (1.3) with equality, and PM is subsequence obtained through a bisection method
for solving (1.4) with equality. The bisection method is possible since Lemma 2 establishes the
monotonicity of εM . Finally, it remains to perform a 2(M − 1)-D exhaustive search to solve Prob-
lem 1. The described brute force algorithm yields a complexity in O(NM−1(1/θ)M−1 log(1/θ)). If
M is small enough (typically less than 3), the algorithm can be implemented. However, when M is
large, performing exhaustive search is prohibitively costly and an alternative approach is required.
For that, we propose an algorithm based on dynamic programming (DP). We start from the case
of zero delay feedback.

We assume the optimal solution to belong in B (as stated in Lemma 3) so (1.3) and (1.4)
become equalities. Let the state at the end of the round m

Sm = (Nm, Vm, cm)

with Nm =
∑m
i=1 ni, Vm =

∑m
i=1 niPi(Pi + 2)/(Pi + 1)2, and cm = Q−1(εm). The state sequence

forms a Markov chain, i.e., p(Sm|Sm−1, · · ·S1) = p(Sm|Sm−1) since we have

Nm = Nm−1 + nm (1.13)

Vm = Vm−1 + nm

(
1− 1

(Pm + 1)2

)
(1.14)

cm =
cm−1

√
Vm−1 + nm ln(1 + Pm)

√
Vm

(1.15)

and the way to go from Sm−1 to Sm depends only on the current round m through nm and Pm. No-
tice that the assumption in Lemma 3 ensures cM = Q−1(1− Trel) and 0 ≤ c1 ≤ cM ≤

√
2B ln 2/3,

while Result 1 ensures NM = N .

The idea comes from the fact that the m first components of the objective function can be
written as follows

m∑
i=1

niPiεi−1 =

m−1∑
i=1

niPiεi−1 + ∆E(Sm−1, Sm) (1.16)

where ∆E(Sm−1, Sm) = nmPmεm−1. Let E?(Sm) be the minimum average energy going to the
state Sm. According to (1.16), it is easy to prove that

E?(Sm)= min
∀ possible Sm−1

{∆E(Sm−1, Sm) + E?(Sm−1)} (1.17)

since our problem boils down to the dynamic programming framework, and so Viterbi’s algorithm
can be used.

Compared to the exhaustive search, the complexity is significantly reduced, but can be still
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very large depending on the number of states Sm−1 and Sm that has to be tested in (1.17). First,
we see that the set of states Sm for m ∈ {1, · · · ,M} is not R3 but a much smaller set. Indeed:

Nm ∈ Nd = {1, 2, ..., N} (1.18)

Vm ∈ Vd = (0,min(Nm, cm+
√
c2m+2B ln 2)) (1.19)

cm ∈ Cd = [0, Q−1(1− Trel)] (1.20)

The (1.19) holds as a combination of
∑m
i=1 ni ln(1+Pi)−B ln 2 = cm

√
Vm and

∑m
i=1 ni ln(1+Pi) ≥

Vm/2 (which stems from the inequality P (P + 2)/(1 + P )2 < 2 ln(1 + P )). Now we can assert
Vm/2−B ln 2 ≤ cm

√
Vm and so Vm ≤ cm +

√
c2m + 2B ln 2. For (1.20), we need the next Lemma:

Lemma 4. If D(~nm) = 0 then the optimal solution (~n?M ,
~P ?M ) satisfies ε1 > ε2 > ... > εM , and so

c1 < c2 < ... < cM .

Proof. See Appendix A.5.

Now focusing on the Sm−1 case, we straightforwardly have

(m−1)nmin ≤ Nm−1 ≤ Nm−nmin (1.21)

Vm − nm ≤ Vm−1 ≤ min{Vm, Nm−1} (1.22)

where nmin is the minimum blocklength of the transmitted packets. Finally, given the target Sm
and (Nm−1, Vm−1) there is at most one feasible cm−1 which emerges from (1.14)-(1.15)

cm−1 =
cm
√
Vm+2(Nm−Nm−1) ln

(
1− Vm−Vm−1

Nm−Nm−1

)√
Vm−1

. (1.23)

Let us now focus on the initialization. When M = 1, the states S1 are 2D since given (N1, c1)

there can be only one feasible P1 (and so V1) which satisfies the equation ε1(N1, P1) = Q(c1).
Therefore we start from M = 2. To find E?(S2), we need to minimize over only one variable (N1),
which renders this case computationally easier. Formally,

E?(N2, V2, c2) = min
N1

N1P1 + n2P2ε1(N1, P1) (1.24)

s.t. n2 = N2 −N1

V2 =
N1P1(P1 + 2)

(P1 + 1)2
+
N2P2(P2 + 2)

(P2 + 1)2

ε2(N1, P1, n2, P2) = Q(c2).

The DP-based algorithm is summarized at algorithm 1 where some technicalities, such as the
dependence of Vd from Nm and cm are neglected for simplicity and exposition clarity.

Letting the approximation error due to quantization of V and c be θV and θc, respectively,
then the complexity is of order O(MN2( 1

θV
)2 1
θc

). In other words, the complexity of the dynamic
programming algorithm is linear with respect to M , whereas the complexity of exhaustive search
is exponential in M .

Extension of the above algorithm to the case of non-zero delay is easy when D(~nm) = d

since we can simply reconsider the problem as having available blocklength N ′ = N − dMde
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Algorithm 1 DP-based Avg. Energy Minimization (N,Trel,M )

quantize Nd, Cd,Vd into Nq, Cq, Vq
create structure E of dimensions |Nq|×|Cq|×|Vq|×(M−1)
for all S2 ∈ Nq×Cq×Vq do

E(S2, 1)←∞
if (1.24) is feasible then

E(S2, 1)← E?(N2, c2, V2)
end if

end for
for m := 3 to M do

for all Sm ∈ Nq×Cq×Vq do
E(Sm,m−1)←∞
for all (Nm−1,Vm−1)∈Nq×Vq satisfying (1.21) and (1.22) do

use (1.23) to find cm−1 and after Pm, nm
let c̃m−1 ∈ Cq be the closest to cm−1
Etemp←nmPmQ(cm−1)+E((Nm−1,Vm−1,c̃m−1),m−2)

if Etemp<E(Sm,m−1) then
E(Sm,m−1)← Etemp

end if
end for

end for
end for
Output min

V
{E((N,Q−1(1−Trel),V),M−1)}

and no delay penalty. When D(~nm) = r
∑m
i=1 ni more changes are required: first, Nm now

represents the available latency at the m-th round, second, an additional data structure Nnet is
needed which stores the number of symbols sent disregarding the delays, and third to find every
E?((Nm, Vm, cm)) an additional search within the states (N,Vm, cm),∀N ∈ [Nm −mdre, Nm − 1]

is employed.

1.9 Asymptotic Regime (M ∈ N+,∗)

In the section 1.6.4 we argued that the minimum average energy for sending a fixed number of B
information bits is a decreasing function with respect to the latency N in the case of M = 2. The
same reasoning stands also to the general case of M ∈ N+,∗). A different way to confirm it is
that, as seen in Problem 1, the optimal solution for a given N is a feasible solution of (N + 1) and
so equal or worse than the optimal solution for the latency (N + 1). In following result, we extend
the lemma 1 regarding the asymptotic regime of N →∞.

Result 3. When N →∞, the minimum average energy of Problem 1 for fixed M is given by

E?as(M,B, Trel) = min
(E1,··· ,EM )

r(E1, · · · , EM )

s.t.
M∑
m=1

Em = E∞No−HARQ (1.25)
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with

r(E1, · · ·, EM )=E1+

M∑
m=2

Q

∑m−1
i=1 Ei−B ln 2√

2
∑m−1
i=1 Ei

Em (1.26)

and E∞No−HARQ= (Q−1(1−Trel))
2

2

(
1+
√

1+ 2B ln 2
(Q−1(1−Trel))2

)2
.

Proof. See Appendix A.6.

Again E∞No−HARQ corresponds to the required average energy when N → ∞ for the case of
no HARQ and can also be obtained from [15, eq.(4.309)]. It is worth mentioning when N → ∞,
a non-zero delay feedback D > 0 - irrespectively of the model considered - does not impact the
asymptote value since the latency constraint (1.3) vanishes and with it the terms D(~nm), which
makes Result 3 still hold.

Allowing M to also grows to infinity, yields an additional result.

Result 4. When M → ∞, the asymptotic minimum average energy stated in Result 3 behaves
as follows:

lim
M→∞

E?as(M) =

∫ E∞No−HARQ

0

Q

(
E −B ln 2√

2E

)
dE. (1.27)

Proof. See Appendix A.7.

As an illustration, in Figure 1.5 we plot E?as(M,B, Trel) versus M for different B and Trel. We
also plot two curves corresponding to the minimum energy, one given in [35, Theorem 3] for no
feedback (“no-fb” in the figure) and the other (“stop-fb” in the figure) given in [35, Theorem 10]
where ACK/NACK feedback is sent after the transmission of each symbol. Actually, the “no-fb”
line corresponds to our case M = 1 when removing its third-order term. The “stop-fb” line is
close to our eq.(1.27) since its adaptive feedback can be mimicked in our case if infinite available
number of transmissions are considered.

Given B, increasing Trel to a new value T rel also increases E∞No−HARQ to E
∞
No−HARQ. This

in turn implies limM→∞E?as(M) < limM→∞E
?

as(M). In Figure 1.5, these limit values cannot
be distinguished and seem to coincide since they are very close to each other. This happens
because, as it easily can be shown, limM→∞E

?

as(M)− limM→∞E?as(M) < (1−Trel)(E
∞
No−HARQ−

E∞No−HARQ) and Trel is close to zero.

1.10 Numerical Results and Discussion

We now provide numerical results to validate our analysis in the general case of M ∈ N+,∗. As
in section 1.6.5 for M = 2, we consider B ≥ 32 bytes and Trel > 99.99999%, i.e., 1 − Trel �
Q(
√

2B ln 2/3) ≥ 1.7 ·10−10 always holds, and (n1, P1) such that ε1 < 0.5 so as the assumption on
B in Lemma 3 is again not restrictive. The latency constraint (1.3) is expressed either according
to (1.7) for fixed delay feedback model (including D = 0) or according to (1.8) for the linear delay
feedback model.

First, we assume D = 0. In Figure 1.6, we plot the minimum average energy versus N and
reconfirm the energy for sending B information bits decreasing as N increases. Additionally, the
energy attains the asymptotic value predicted by Result 3. Moreover, we confirm Result 2, since
the minimum average energy decreases when M increases for the case of zero delay feedback;
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Figure 1.5: Minimum average energy (when N →∞) versus M .

however, the gain becomes negligible when M is large enough. In Figure 1.7 we reformulate
Figure 1.6. For the same B and Trel, we plot the energy gain by using HARQ with M rounds over
M = 1 (denoted as ENo−HARQ). We observe that the energy gain monotonically increases when
N grows. As the latency constraint becomes more stringent, the benefit from employing HARQ
diminishes.

In Figure 1.8, we plot the energy gain for different values of M versus B when N → ∞. The
energies and the corresponding gains are derived using Result 3. The higher the reliability or the
lower B, the higher the gain. This remark also holds for non-zero delay feedback since we are in
the asymptotic regime.

We pass now to the more realistic case where feedback delays are taken into account, i.e.
D(~nM ) 6= 0. In Figure 1.9, we plot the minimum average energy versus M for different delay
feedback models (solid lines for fixed delay and dashed line for the linear delay model). When
D > 0, splitting the packet/transmission in many rounds is not always advantageous. Of course
if now M grows too much then the negative impact of feedback delays will be overwhelming as it
will squeeze significantly the available blocklength resources for the transmitted packets. On the
other hand, for small values of M , the delay penalty is small and so we can exploit further the
gains of splitting. Hence, we observe that an optimal bounded value of M , denoted by M?, exists.
The same statement holds when the linear delay feedback model is applied.

In Figure 1.10, we plot M? versus N restricting M ≤ 8. The delay penalties become more
significant when N decreases when eventually prevents from using an HARQ mechanism. There-
fore, M? increases with respect to N . In the case of linear delay feedback model, M? increases
much slower than in the fixed delay feedback model since the effect of delay in the energy con-
sumption is higher when M increases.

The effect of feedback error is investigated assuming that the feedback error is modeled by
a binary symmetric channel (BSC) with error probability p as in [38]. Ef (p) denotes the average
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Figure 1.6: Minimum average energy vs. N for B = 32 Bytes, Trel = 99.999% and D(~nm) = 0.

]

Figure 1.7: Energy gain of M rounds over no HARQ (M=1) vs. N for B = 32 Bytes, Trel=99.999%
and D(~nm) = 0.

consumed energy and εf denotes the overall error probability when feedback error p is consid-
ered. Closed-form expressions with respect to p can be obtained for Ef and εf (not reported
here due to space limitation) using results from [38]. In Figure 1.11 for some optimal configuration
(~n?M ,

~P ?M ) we plot (i) the relative loss in energy, i.e., (Ef (p) − Ef (0))/Ef (0) and (ii) εf versus p.
We observe that there is only a slight increase of the consumed energy, even for bad feedback
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Figure 1.8: Energy gain vs. B in the asymptotic regime (N →∞) and D(~nm) = 0.

Figure 1.9: Minimum average energy vs. N for B = 32 Bytes, Trel = 99.999% and D(~nm) = 0.

channels. In contrast, the reliability is significantly affected by feedback errors except when p is
small enough compared to (1− Trel). Indeed, if approximately p < 0.1(1− Trel), then the URLLC
requirements are still satisfied. Hence, the feedback has to be protected on the control channel
according to this error probability constraint; this is relatively easy to achieve without consuming
a lot of resources since it is just one bit.
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Figure 1.10: M? (assuming M ≤ 8) vs. N for B=32 Bytes and Trel=99.999%.

Figure 1.11: Ef (p)−Ef (0)
Ef (0)

and εf vs. p when B=32 Bytes, Trel=99.999%, N = 450c.u. and M=4

rounds.

1.11 Throughput Optimization

We investigated the energy minimization for a specific value of the information bits B and under a
specific latency constraint. Therefore we set a minimum value on the information bits per time, i.e.
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throughput, and tried to minimize the energy. This section is dedicated on reversing the roles. We
aim to maximize the throughput but constraining the acceptable average energy consumption.

Our main goal is to optimize again an IR-HARQ scheme by determining the blocklength ~nM
and the power ~PM of the packet sent in every round and also to quantify the number of information
bits B maximizing the throughput without the average consumed energy exceeding an energy
budget Et. Obviously since we remain on the URLLC regime the latency and reliability constraints
are still imposed. Throughput is defined as the average ratio of successfully decoded bits divided
by the number of symbols used. The throughput can be derived using the renewal theory [39]
where the expected value of delay is

∑M
m=1 nmεm−1 and the expected reward is B(1 − εM ).

Consequently, our goal can be translated into the following optimization problem.

Problem 4.

max
B,~nM , ~PM

B(1− εM )∑M
m=1 nmεm−1

(1.28)

s.t.
M∑
m=1

nm ≤ N (1.29)

εM ≤ 1− Trel (1.30)
M∑
m=1

nmPmεm−1 ≤ Et (1.31)

~PM ∈ RM+ , ~nM ∈ NM+

Solving the general problem 4 is intractable. The objective (1.28) is given as a fraction of Q
functions having involved expressions as arguments. Our goal is to reformulate the problem so as
to get rid of the fraction and remain with a simpler expression. In the first step we modify slightly
the objective function by forcing the numerator to be equal to B(1−εrel) which means we force the
constraint given in (1.30) to be active. This leads to the following modified optimization problem.

Problem 5.

max
B,~nM , ~PM

B(1− εrel)∑M
m=1 nmεm−1

(1.32)

s.t.
M∑
m=1

nm ≤ N (1.33)

εM ≤ 1− Trel (1.34)
M∑
m=1

nmPmεm−1 ≤ Et (1.35)

~PM ∈ RM+ , ~nM ∈ NM+

The following result proves that the solution of Problem 5 achieves almost the same perfor-
mance as the one of the original Problem 4.

Proposition 2. Let (Bmod, ~nmodM , ~PmodM ) be the solution of Problem 5, which result in a value Th
for the throughput according to (1.28). Let Th? be the highest (optimal) value for the throughput
given by the solution of Problem 4. Then (Bmod, ~nmodM , ~PmodM ) is a feasible point of Problem 4 and
it holds that Th ≤ Th? ≤ Th

Trel
.
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Proof. See Appendix A.8

We propose to perform the optimization over B via one-dimensional grid-search. Conse-
quently, Problem 5 can be further simplified and leads to the following Problem 6.

Problem 6.

min
~nM , ~PM

M∑
m=1

nmεm−1 (1.36)

s.t.
M∑
m=1

nm ≤ N (1.37)

εM ≤ 1− Trel (1.38)
M∑
m=1

nmPmεm−1 ≤ Et (1.39)

~PM ∈ RM+ , ~nM ∈ NM+

1.11.1 Using M rounds

As in the energy minimization problem 1, we show with the following proposition the same behav-
ior on the problem 6, i.e. the greater number of rounds M is available the better.

Proposition 3. Given Trel and resources N,Et, increasing the number of retransmissions M

always yields solutions of Problem 6 with better values of the objective function (1.36).

Proof. See Appendix A.9

We should cautiously interpret the above results because we have not included feedback
delays in this setup. Of course in practice, as M grows the feedback delays are aggregating
prohibiting any further splitting. Nonetheless, after showing the dynamic programming algorithm
solving the problem 6 and having already discussed on the energy minimization problem on how
to incorporate feedback delays and their effects, it is straightforward how to proceed accordingly
for the throughput maximization problem and incorporate those delays, so we choose to neglect
them.

1.11.2 Equality constraints

Let’s try again to further simplify the problem by turning some inequality constraint into equalities.

Proposition 4. Let (~n?M? , ~P ?M?) be the optimal point of Problem 6 and ε?m = ε(~n?m, ~P
?
m), where

~n?m (resp. ~P ?m) is an extracting vector from the m-th first components of ~n?M (resp. ~P ?M ), be the
error probability at every round m < M . We have ε?m > 1 − Trel and finally at round M we have
ε?M ≤ 1− Trel < εM (~n?M−1, n

?
M − 1, ~P ?M ).

Proof. See Appendix A.10

As ε?M ≤ 1 − Trel < εM (~n?M−1, n
?
M − 1, ~P ?M ), we conjecture that ε?M ≈ 1 − Trel since it makes

sense the last symbol of the last round not being able to throw us too far away from the boundary
of 1 − Trel. An important remark is that equality ε?M ≈ 1 − Trel is not necessarily true for the
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initial problem 4. As can be confirmed by Fig. 1.12 there is an area where we have to consider
operating on smaller error probabilities to get higher throughput. But this is relevant only for very
low reliability values (in Fig. 1.12 is 1− Trel > 0.1) which also do not allow to concretely pass from
problem 5 to problem 6.

The ε?M ≈ 1 − Trel also leads to E?M ≈ Et, where E?M is the average energy consumed by
the optimal solution of Problem 6. The reason is that if enough energy is allowed by the energy
constraint (1.39) (i.e. Et−E?M ) to be spent on PM so as to compensate for a one symbol decrease
of nM (and still satisfy the reliability constraint ε?M ≈ 1 − Trel), then we can arrive to a better
solution with smaller objective (1.36). Therefore, the average energy spent by the optimal solution
E?M should be close to the boundary Et. To conclude, the problem we aim to solve becomes:

Problem 7.

min
~nM , ~PM

M∑
m=1

nmεm−1 (1.40)

s.t.
M∑
m=1

nm ≤ N (1.41)

εM = 1− Trel (1.42)
M∑
m=1

nmPmεm−1 = Et (1.43)

~PM ∈ RM+ , ~nM ∈ NM+

1.11.3 Dynamic Programming approach

We can now solve Problem 7 iteratively in a similar way as before by using a dynamic programming
approach but with some changes. First of all, we redefine the states at the end of m-th round:

S1 = (N1, c1)

Sm = (Nm, cm,Em, Vm),m ∈ {2, 3, ...}

where Nm, cm and Vm are defined exactly like in (1.13-1.15). We remind that εm = Q(cm). This
time we need to add extra component to the state which refers to average energy spent till m-
round Em =

∑m
i=1 niPiεi−1. We have Nm ∈ Nd, Vm ∈ Vd and cm ∈ Cd as in (1.18),(1.19) and

(1.20). Let SM be the set of all feasible final states. By feasibility, we mean that a state SM ∈ SM
satisfies the constraints of Problem 7 and there is a path (~nM , ~PM ) leading to SM . Our objective
is to find the sequences/paths of states minimizing (1.40) to every SM ∈ SM being a possible
candidate to achieve optimality. Then, the optimal solution of Problem 7 is retrieved by choosing
out of those SM the one with the smallest minimum.

The justification for choosing the first three variables of the states Sm is to be able to check
the constraints (1.37)-(1.39). The dispersion variable Vm is added so as the description of Sm
to depend only on the previous state Sm−1 and the variables nm and Pm, which constitute the
branch between Sm−1 and Sm. The functions connecting these states can be easily found and let
them be: Sm = fS(Sm−1, nm, Pm), Sm−1 = f−1S (Sm, nm, Pm).

For sake of simplicity, we introduce the following notation “min
X|Y

f(X)” which stands for “minimize
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f(·) over the variables X given constraints Y ”. Now the Problem 7 can be seen as the solution of

min
~nM , ~PM |SM ∈ SM

M∑
m=1

nmεm−1.

This minimization can be solved dynamically since it can be written as

min
nM ,PM |SM

{
min

~nM−1, ~PM−1|SM ,nM ,PM
{nMεM−1+

M−1∑
m=1

nmεm−1}
}
.

The inner minimization is done under fixed (SM , nM , PM ), which allows the first term nMεM−1 to
get out as a constant since this term can be expressed as a function, let it be K(·), of only those
fixed variables. Moreover, SM−1 = f−1S (SM , nM , PM ) is fixed, which can be confirmed that it is an
equivalent to (SM , nM , PM ) constraint when minimizing the second term. So, we have

min
~nM , ~PM |SM

{
M∑
m=1

nmεm−1} = min
nM ,PM |SM

{
K(SM , nM , PM )

+ min
~nM−1, ~PM−1|SM−1=f

−1
S (nM ,PM ,SM )

{
M−1∑
m=1

nmεm−1}
}
.

The above formula can be proven for every m ∈ {1, ...,M}, which enables to use a dynamic
programming approach. Specifically, in order to find the optimal solution for the state Sm, it is
sufficient to know the optimal solution of every Sm−1 connected to it through a branch (nm, Pm).
Therefore we can start by straightforwardly computing the values for all feasible S1 and afterwards
in every m iteration of the dynamic programming algorithm, we compute the optimal solution for
Sm by using the corresponding Sm−1.

1.11.4 Algorithm Implementation

In practice, the dynamic programming algorithm requires the variables of the states to take dis-
crete values. Specifically:

• Nm ∈ Nd has already a discrete form since it is an integer, but it can be quantized using
bigger than one symbol step size for accelerating the simulation. Let N be the set of the
discrete values that Nm can take.

• cm is real and cm ∈ Cd. Let C ⊂ Cd be the set of the discrete values that the dynamic
algorithm allows cm to take.

• Em is real and Em ∈ [0,Et]. After quantization, let E be the set of the discrete values Em
can take.

• Vm is real and Vm ∈ Vd. After quantization, let V be the set of the discrete values Vm can
take.

The implementation of the dynamic algorithm has some differences compared to one of energy
minimization problem. It consists of two stages: a first one for computing the performance of the
feasible states and a second one for searching over those states to find the optimal solution. The
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complexity is dominated by the first stage and is equal to the number of iterations of the dynamic
algorithm multiplied by the number of states examined per iteration times the number of branches
departing from every state. In this implementation, we compute the branch (nm+1, Pm+1) depart-
ing from a state Sm through fixing the variables Nm+1 and Em+1 of the arriving state Sm+1 and
subsequently we acquire the feasible cm = Q−1(εm+1) and Vm+1. Therefore the overall complex-
ity is O(M · |N||E||C||V| · |N||E|).

The above complexity characterizes a rather slow algorithm, however in practice the algorithm
can be faster by remarking that most of the times all paths ending up at states with the same
(Nm, cm, Em) which the algorithm considers, present dispersion Vm within a small range of val-
ues. Therefore if a reasonable resolution of the discrete set V is considered so as no significant
approximation errors are introduced, the number of feasible states with same (Nm, cm, Em) and
different Vm turns out to be rather small (often just one value). Therefore, the variable |V| can be
thought as constant. A final implementation remark for speeding up significantly, is that after a
feasible solution appears, by keeping track of the best feasible solution found, we have an upper
bound of the optimal solution. This upper bound can cut prematurely all paths that already exhibit
higher than that upper bound objective function.

1.11.5 Numerical Results and Discussion

In this section, we carry our numerical evaluations to assess the system performance. In Fig. 1.12,
we investigate the effect of the error probability the reliability constraint forces on throughput. The
figure can be obtained by solving Problem 7 for M = 5 and 1 − Trel = 10−6 but memorizing for
m ∈ {2, 3, 5} and for every cm all the feasible states and their maximum throughput performance.
Therefore we are actually required to do only one run of the dynamic algorithm because after the
computation of the performance of each state, we can restrict the search of the minimum only
among the states with the given εm = Q−1(cm),m ∈ {2, 3, 5}.

As shown in Proposition 3 and confirmed by Fig. 1.12, more transmission rounds result in
higher throughput. Moreover since we have short packets (finite blocklength regime), it is not
possible to attain εM → 0 with a finite energy budget. Therefore, there exists a certain value
beyond which the reliability cannot go. This is the reason why the curve of M = 2 in Fig. 1.12
terminates at a certain error probability past of which there is no feasible point. Of course the
same applies for the other two curves but it cannot be depicted in the figure due to the limits of
the horizontal axis. Finally, we remark, as in [18], that there is a certain value of error probability
that maximizes the throughput, which is relatively high though (close to 0.1). Accordingly, in our
case, higher reliability can be achieved at the expense of throughput.

The impact of the number of symbols used on the throughput performance is shown in Fig. 1.13,
which is obtained by imposing equality in the latency constraint (1.41) of Problem 7 or equivalently
retrieving the optimal solutions by only searching within states with NM = N .

When the available number of symbols are inadequate, no feasible solution exists and the
throughput vanishes. Interestingly, as N grows beyond a certain threshold, only a slight increase
in throughput is achieved, followed by a slow decrease. This means that it is not always beneficial
from a throughput perspective to use the whole available blocklength since the denominator of
(1.28) may increase. Asymptotically, if N → ∞, then for some m ∈ {1, · · · ,M} it should be
nm → ∞, which in turn will result in vanishing throughput. Therefore, all curves in Fig. 1.13 will
asymptotically converge to zero.
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Figure 1.12: Throughput vs. error probability for N = 400, Et = 265, and B = 32 bytes.
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Figure 1.13: Throughput vs. number of symbols used for 1 − Trel = 10−5, B = 32 bytes, and
M = 3.

Fig. 1.14 depicts the throughput versus the energy budget. In practice, we do not force equality
in the energy constraint (1.35), since, as stated previously, the optimal solution consumes by de-
fault (almost) all the available energy. In our simulations, we set the minimum possible blocklength
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for the first IR-HARQ round to be N1,min ≥ 100 (which is set likewise so that the approximation
(1.1) remains accurate). Consequently, the throughput cannot exceed the value B

N1,min
, which

represents the unrealistic case of only one packet sent with minimum blocklength and achieving
perfect reliability. This upper bound is closely attained as the available energy grows up to a point
where only one transmission may fulfill the constraints and thus, further increase of the energy is
worthless. Moreover, Fig. 1.14 reconfirms (as in Fig. 1.13), since the curves coincide, that past a
certain threshold, any further increase in blocklength is meaningless.
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Figure 1.14: Throughput vs. energy spent for 1− Trel = 10−5, B = 32 bytes, and Mr = 3.

Finally, in Fig. 1.15 we depict the throughput (via a contour plot) versus the available average
energy Et and the information bits to transmit B. There is an upper left area with no feasible
points. Keeping a constant Et by moving vertically, we see that the throughput is a unimodal
function over B and there is a specific value of B that achieves optimality. This also agrees with
[18] where a simple ARQ scheme with no URLLC constraints was employed.

1.12 Conclusion

In this chapter we characterized the interplay between energy, throughput, latency, and reliability
for point-to-point communication in AWGN channels. In URLLC systems where only a limited
number of symbols can be transmitted, we formulate optimization problems that enable tuning
the IR-HARQ parameters by estimating the number of rounds, the blocklength, and the transmit
power for each transmitted packet. After analyzing mathematically the problems, it is possible to
reach a simpler form where even though the problem remains non-convex, its solution accepts a
dynamic programming based approach. First, we set the objective function to be the minimization
of the average consumed energy; second, the objective is to maximize the throughput. It turns
out that even when operating with strict latency constraints, a proper optimization of IR-HARQ
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Figure 1.15: Throughput vs. energy and information bits for Trel = 10−5, N` = 600, and Mr = 3.

can be beneficial as long as the feedback delay is reasonable compared to the packet duration.
The main takeaway is that for either energy minimization or throughput maximization, one could
expect gains of the magnitude of 20% compared to schemes with no-HARQ. Reasonably enough,
the optimal solution to the throughput maximization problem turns out to use all available energy
budget. Respectively, the solution that minimizes the energy consumption adversely affects the
throughput. So a natural question arises whether there is a graceful point on this tradeoff relation-
ship. This is the rationale behind the following chapter under a more general setup where fading
is taken also into account.
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Chapter 2

IR-HARQ Optimization for URLLC:
Fading channels and the Effect of
CSI

2.1 Introduction

In this chapter, we further explore the potential benefits of a properly optimized incremental re-
dundancy hybrid automatic repeat request (IR-HARQ) retransmission protocol in ultra-reliable,
low-latency communication (URLLC) systems. So far we have investigated an IR-HARQ mecha-
nism in additive white Gaussian noise (AWGN) channels. We tuned the blocklength and the power
during each IR-HARQ round so as not only the URLLC requirements are met, i.e. latency of few
milliseconds and reliability higher than 99.999%, but also a certain performance metric, such as
to be optimized according to some objective. First we set that objective to be the minimization of
the average consumed energy and then we deal with throughput maximization.

In this chapter, we generalize the objective by taking into account simultaneously both di-
mensions. We set here a (linear) combination of energy consumption and throughput to be our
optimizing goal. To further extend the work on top of the AWGN, we add small-scale fading. In
general the transmitted signal arrives at the receiver by several paths, interfering with one another
and causing the fading of the channel. To estimate the influence of the main path of the signal
being interfered with reflected versions of itself on our system we used a Ricean fading model.

Unfortunately, channel fading can deteriorate significantly the channel quality and fulfilling of
URLLC requirements becomes significantly challenging. Poor channel quality can definitely ren-
der communication impossible except if an excessive loss of throughput and energy is allowed.
To estimate the price of higher energy and/or lower throughput that has to be paid, we try to
analyze the feasibility and performance in block fading channels. Some leverage of the impact
of the channel unpredictability so as mitigate the destructive effect of bad channel realizations
can be achieved by sending pilots in order to assess the channel’s quality. Acquiring Channel
State Information (CSI) helps to better tailor the IR-HARQ and operate in a better point in terms
of reliability-energy-throughput tradeoff.

We quantify here the impact of CSI on the tradeoff between energy and latency. We investi-
gate how the two standard cases of CSI, i.e., (i) statistical where only the statistics of the channel
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is known and (ii) full where the exact channel coefficient is available, influence the optimization of
the IR-HARQ scheme. We demonstrate that performing purely energy minimization or throughput
maximization leads to a bad trade-off point and a multi-objective optimization should be consid-
ered instead. Moreover, we analyze and compute the feasibility region of the IR-HARQ schemes.
Surprisingly, it turns out that with statistical CSI we obtain a larger feasibility region than with
a reasonable scheme exploiting full CSI and avoiding deep fading instances. In general, under
URLLC conditions the difficulty of finding a scheme calibrating perfectly to the full CSI renders it
less robust even without taking into account the shrinking of the latency constraint due to the train-
ing phase of learning the channel. Aside from robustness, the full CSI may yield better throughput
with lower energy. The material presented in this chapter has been published in [C5].

2.2 Revisiting the System Model

A point-to-point communication link is again considered, where the transmitter has to convey B
information bits within a certain predefined latency, expressed by a certain predefined maximum
number of channel uses denoted by N . If no retransmission mechanism is utilized, the packet
of B bits is transmitted only once (one-shot transmission) and its maximum possible blocklength
is N . In case of retransmission, IR-HARQ protocol is used with M transmission rounds, i.e.,
M − 1 retransmissions. By setting M = 1, we recover the no-HARQ case. We denote nm,
m ∈ {1, 2, ...,M}, the number of channel uses for the m-th transmission. Since the model is
significantly more complicated (as we incorporate fading and CSI), here we will mainly concentrate
on M = 2. We keep the assumption that the receiver knows perfectly whether or not the message
is correctly decoded (through CRC) and ACK/NACK is received error-free. The latency constraint
is expressed again by translating it into a number of channel uses as follows: we have

∑M
m=1 nm ≤

N1.
We consider a block flat fading channel, where the channel h ∈ C is an independent realization

of an underlying random variable H following a specific distribution and remains constant in each
block. The signal is also subject to additive white circularly-symmetric complex Gaussian random
process with zero mean and unit variance. The IR-HARQ mechanism takes place within one
block, i.e., there is only one channel coefficient value h for all retransmissions associated with
the same bits. Consequently, we assume that the coherence block duration is around or greater
than N . As explained in the previous chapter, this is a relevant model for short-length packet
communication and IoT applications, where point to point communication is performed. Without
loss of generality, in them-th round the fragment (sub-codeword) cm ∈ Cnm is received with power
gPm = ‖h·cm‖2

nm
, where we defined the channel gain g = |h|2, and distorted by an additive white

circularly symmetric complex Gaussian random process with zero mean and unit variance.

2.3 Problem Statement

Similarly to the previous chapter, the problem we study here is that of optimizing the IR-HARQ
mechanism by tuning the blocklengths and the powers but now with the more general aim of mini-

1Penalty terms D(n1, ...nm) can easily be introduced at each m-th transmission in order to take into account the
delay for the receiver to process/decode the m-th packet and send back acknowledgment (ACK/NACK). We focus on
the simplified version where D(n1, ...nm) = 0 since D(n1, ...nm) > 0 is effectively equivalent to D = 0 but with more
stringent latency constraint (smaller N ).
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mizing a multi-objective function, involving both average energy consumption and throughput. We
require a low error probability 1− Trel without consuming more than a total energy budget Et and
within a latency N . Since channel fading is included in the model the formula (1.1) character-
izing the probability of error (or equivalently the outage probability) in the m-th round has to be
modified.

Since the IR-HARQ mechanism takes place within one fading block, it is simple to adapt the
equation (1.1) by just a scaling of the power according to the channel gain g the signal experiences
during that block. Formally,

εm ≈ Q


m∑
i=1

ni log(1 + gPi)−B log 2√√√√ m∑
i=1

ni

(
1− 1

(1 + gPi)2

)
 (2.1)

where Q(x) is the complementary Gaussian cumulative distribution function. For the sake of
clarity, we may show the dependency on the variables, i.e., εm(n1, ...nm, P1, ...Pm, g) instead of
εm.

2.4 Optimization

By ”full CSI” case we mean that the transmitter knows exactly the channel coefficient h, which
is independently varying block by block. On the other hand if only the channel distribution H is
known to the transmitter we refer to ”statistical CSI” case. In both configurations we optimize the
weighted sum of the average throughput and energy consumption.

Throughput is defined as the average ratio of successfully decoded bits divided by the number
of symbols used. Given a channel realization (and so its gain g = |h|2), the expected throughput
can be derived using the renewal theory [39] where the expected value of delay is

∑M
m=1 nmεm−1

and the expected reward is B(1− εM ) which leads to

Th(0) =
B(1− ε2)

n1 + n2ε1
.

The expected energy spent for transmitting B information bits (conditioned on the channel real-
ization) is

E(1) = n1P1 + n2P2ε1.

2.4.1 Full CSI

The optimization problem is cast as follows.



38 IR-HARQ Optimization for URLLC: Fading channels and the Effect of CSI

Problem 8. Full CSI problem.

min
n1(g),n2(g),P1(g),P2(g)

Eg
[
− Th(a)

Th,max
+
E(a)

Emin

]
(2.2)

s.t. Eg[ε2(n1(g), n2(g), P1(g), P2(g), g)] ≤ 1− Trel (2.3)

n1(g) + n2(g) ≤ N, ∀g (2.4)

n1(g)P1(g) + n2(g)P2(g) ≤ Et, ∀g (2.5)

Pi(g) ≤ Pmax, i ∈ {1, 2}, ∀g (2.6)

where

• Th(a) = (1− a)Th(0),

• E(a) = aE(1). So the variable a is a weight balancing throughput maximization and energy
minimization.

• Eg[·] is the expectation over the channel gain realizations.

• Th,max = maxEg[Th(0)] s.t. (2.4-2.6) hold

• Emin = minEg[E(1)] s.t. (2.4-2.6) hold.

Since the values of energy and throughput are very different in scale, to facilitate the multi
objective optimization we normalize each of those quantities using the optimal value that they can
attain if they were the single quantity to be optimized, i.e. using Th,max and Emin . Furthermore, in
order for the solutions of the Problem 8 to be possible to consume the maximum energy budget
Et we assume

Pmax ≥
Et

N
. (2.7)

As the channel is known, we can adapt the blocklengths and powers accordingly. The solution
of the optimization problem depends on the channel gain realization g and so what we really try
to find are functions of g. To avoid the very complicated functional optimization we simplify the
problem by enforcing the solution to have certain reasonable characteristics. Firstly, the simple
yet intuitive that the transmissions are avoided over deep fading. Mathematically, the proposed
solutions satisfy:

(ni, Pi) =

(0, 0), g < gth

(ni(g), Pi(g)) , g ≥ gth
(2.8)

Secondly, we force each transmission (when done) to achieve the same error probability εon, i.e.:

ε2(n1(g), n2(g), P1(g), P2(g)) =

0, g < gth

εon, ≥ gth
. (2.9)

Hence, the reliability constraint (2.3) becomes:

P(g < gth) + P(g ≥ gth)εon ≤ 1− Trel. (2.10)

These simplifications enable decoupling the problem by treating every g with g ≥ gth individ-
ually. An additional simplification can be applied (with a proof being a simple combination of the
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proofs of lemma 2 and proposition 4 so it is omitted) that asserts ε2 ≈ 1 − Trel. This means
that trying to achieve lower error probability than the already very low required εon (whenever
g ≥ gth), results in much greater waste of energy and blocklength resources than benefit to the
multi-objective. Summing up, the proposed scheme for optimizing IR-HARQ with full CSI comes
as the solution of the following optimization problem:

Problem 9. Simple Scheme with Full CSI problem.

min
n1(g),n2(g),P1(g),P2(g),gth

Eg
[
− Th(a)

Th,max
+
E(a)

Emin

]
(2.11)

s.t. ε2(n1(g), n2(g), P1(g), P2(g), g)] = 1{g ≥ gth}εon (2.12)

n1(g) + n2(g) ≤ N, ∀g (2.13)

n1(g)P1(g) + n2(g)P2(g) ≤ Et, ∀g (2.14)

Pi(g) ≤ Pmax, i ∈ {1, 2}, ∀g (2.15)

ni(g) = Pi(g) = 0 i ∈ {1, 2}, ∀g < gth (2.16)

where Th(a), E(a), Eg[·] are defined as in Problem 8 and

• Th,max = maxEg[Th(0)] s.t. (2.12-2.16) hold

• Emin = minEg[E(1)] s.t. (2.12-2.16) hold

• εon =
1− Trel − P(g < gth)

P(g ≥ gth)

2.4.2 Statistical CSI

If only the distribution of the channel H is known then the channel realization is not known in
advance and changes independently in every coherence bloc. Therefore it is impossible adapting
the blocklengths and powers at each time and so we aim to find an optimal blocklength-power
configuration which is independent of the channel gain g.

Problem 10. Statistical CSI problem.

min
n1,n2,P1,P2

Eg
[
− Th(a)

Th,max
+
E(a)

Emin

]
(2.17)

s.t. n1 + n2 ≤ N (2.18)

Eg[ε2(n1, n2, P1, P2, g)] ≤ 1− Trel (2.19)

n1P1 + n2P2 ≤ Et, (2.20)

Pi ≤ Pmax, i ∈ {1, 2} (2.21)

where

• Th,max= maxEg[Th(0)] s.t. (2.18-2.21) hold,

• Emin= minEg[E(1)] s.t. (2.18 - 2.21) hold.

We can again assert equality in the reliability constraint (2.19).
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2.5 Feasibility region

Notice that it is not always possible to meet the constraints and to get a non-empty feasible set if
the average channel gain average is very low or the available resources are scarce. The following
lemma helps characterizing the feasibility set.

Lemma 5. The solution of the problem:

min
n1,...,nM ,P1,...,PM ,M

εM (n1, ...nm, P1, ...Pm, g) (2.22)

s.t.
M∑
i=1

ni ≤ N (2.23)

M∑
i=1

niPi ≤ Et (2.24)

is M = 1 with (n1, P1) = (N,
Et

N
). For meaningful/practical solutions, we restrict to

ni ≥ Q−1(10−9) ≈ 36, and (2.25)

max{Q(0.45
√
B ln 2), 10−9} < εM<0.5. (2.26)

Proof. See Appendix B.1

Lemma 1 tells us that the best blocklength-power allocation of IR-HARQ within a coherence
block for minimizing the outage probability given a maximum available amount of energy and
channel uses is to employ one packet consuming all the available blocklength and energy. The
nice property is that this is independently of the channel realization g. Otherwise stated the safest
way to increase the reliability is to use directly all the resources in one shot, no matter the channel
g.

Since the knowledge of the channel is not required it means that both statistical and full CSI
can follow this strategy. This remark allows us to draw the borderlines of the feasibility region.
Infeasibility for our Problems 8 and 10 occurs if with resources (N,Et), is impossible to reach
reliability 1 − Trel which according Lemma 5 it corresponds to min{Eg[ε2(n1, n2, P1, P2, g)]} >
1− Trel ⇔ Eg[ε2(N, 0, Et

N , 0, g)] > 1− Trel.
Passing to Problem 9 the simple scheme for full CSI which will be the one we apply provided

full CSI, we cannot always apply the policy for maximizing the feasibility region. When g ≥ gth it
is permissible but specifically for deep fading cases, i.e. g < gth we avoid the transmitting. So
to find now the feasibility region we must concentrate on the interval [gth,∞) if it is possible to
reach error probability εon. It is easy to check that the minimum error probability is decreasing as
the channel gain gets larger. So the infeasibility can be checked only by only looking at the worst
channel g = gth. Consequently, if ε2(N, 0, Et

N , 0, gth) ≤ εon, there are feasible solutions. Obviously
the restriction to stay inactive during deep fading events leads the policy driven by Problem 9 to
have smaller feasibility region than the one by Problems 8 and 10.

Lemma 5 brings also an interesting corollary:
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Corollary 5.1. The solution of the problem:

min
n1,...,nM ,P1,...,PM ,M

M∑
i=1

niPi (2.27)

s.t.
M∑
i=1

ni ≤ N (2.28)

εM (n1, ...nm, P1, ...Pm, g) ≤ 1− Trel (2.29)

is M = 1 with n1 = N and power P1 = Po such that ε1(N,Po, 1) = 1 − Trel, given the additional
restrictions (2.25) and (2.26) hold.

Proof. Assuming that the optimal solution of the problem is different than (N,Po) and it is with
M = M? > 1 and (n?1, ..., n

?
M? , P1, ..., P

?
M?). The first solution consumes power Eo = NPo and

the second E? =
∑M?

i=1 n
?
iP

?
i . We assume E? < Eo and prove it leads to contradiction. Casting

an error minimization problem like in lemma 5 with resources (N,Eo), we know that problem has
the optimal solution (n1, P1) = (N,Po = Eo

N ) and so the minimum attainable value the objec-
tive function can have is 1 − Trel. But this leads to a contradiction since we can use the point
(n?1, ..., n

?
M? , P1, ..., P

?
M?) which spends less energy E? and attains the same or smaller value of

the objective (due to the constraint (2.29)), i.e. 1−Trel and reach to a better solution. If it is smaller
than 1 − Trel we already reached to a better than optimal solution. If it is equal to 1 − Trel then
by simply increasing some power P ?i with the available surplus Eo − E? will do the job and this
concludes the proof.

Setting g = 1, we return to the AWGN case. Interestingly, the corollary describes the a problem
almost the same as Problem 1 but it gives a contrasting solution. The difference of the Corollary’s
Problem is that the objective is to minimize the maximum available energy we need to have to
attain the URLLC constraints but in Problem 1 we minimized the averaged consumed energy. At
that problem HARQ could save even 25% of energy by using IR-HARQ and here the one-shot
transmission is optimal.

2.6 Numerical Results and Discussion

We assume B = 256 information bits (32 bytes) have to be transmitted through a Ricean fading
channel with K-factor and unit-variance, i.e. |h| ∼ Rice(K, 1). The K-factor represents the
ratio between the direct path (Line Of Sight) and the other paths. K = 0 corresponds to the
Rayleigh fading while K → ∞ corresponds to the AWGN. We also assume that n1 ≥ 100 such
that Polyanskiy’s formula approximation (2.1) is accurate and also that 1 − Trel, εon ∈ [10−9, 0.5]

to satisfy Eq. (2.26). The solutions of the Problem 9 for the full CSI (named henceforth Full CSI
simple in figures) case are found using a 4D grid search. 1D over gth and for every g > gth

a 3D over (n1, n2, P1) because P2 can then be found through (2.9). Luckily the channel gain
only scales the powers (P1, P2) so finding for one g the optimal configuration determines the
configurations corresponding to almost all the other g just by scaling the powers (hence we get
away with approximately 4D search and not 5D). This is not true only for g close to gth where
the power needs to be scaled too high and the constraints (2.14-2.15) may not allow it so in that
case a different configuration of power-blocklengths has to be found. For the Problem 10 with the
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statistical CSI (named henceforth Stat. CSI in figures) to a 3D grid search over (n1, n2, P1) finds
the optimal point.

In Figure 2.1, we depict the feasibility regions in (Et,K) for different CSI configurations and
different N . For the same constraints in latency N and reliability Trel. As discussed previously the
feasibility region for full CSI when we use the scheme of avoiding the deep fading, is smaller than
the one with only statistical CSI. We remind that for full CSI, the transmitter policy is to remain idle
when g < gth, so additional resources are needed when it is active to achieve a pre-fixed outage
probability εon smaller than 1 − Trel to compensate for. The full CSI policy is more constrained.
The threshold gth cannot be tuned to zero since we force for every g ≥ gth an error probability
εon ≤ 1 − Trel to be achieved and this requires an infinite amount of resources when g→0. We
also observe from Figure 2.1, that the reliability constraint Trel strongly affects the feasibility region,
while this is not the case for the latency constraint N . We emphasize that, as we will see later,
when both CSI setups are feasible, the full CSI outperforms the statistical one.

Figure 2.1: Feasibility region for different channel, B = 32Bytes, maximum energy budget Et =
PmaxN with Pmax = 30dB.

In Figure 2.2, we plot the relative throughput Th(a)Th,max (left scale) and relative energy E(a)Emin (right
scale) versus a. Performing either throughput maximization (a = 0) or energy minimization (a = 1)
is not a good strategy since by allowing a small decrease of throughput (in the first case) or a small
increase of energy (in the second case), the other metric in the objective function significantly
improves. A good tradeoff for full and statistical CSI is around a = 0.3 in the employed here.

By solving the optimization problems for every α ∈ [0, 1] we get the Pareto frontier for through-
put and energy which is displayed in Figure 2.3 for various setups. We remark that the K factor
as well as the target reliability play the important role. On the contrary, the constraints on latency
N , energy Et and power Pmax seem to have a minor impact except when they are so stringent
that we get close to the boundary of the feasibility area.
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Figure 2.2: Throughput and energy relative to their optimal value for Ricean channel with K =
7dB, B = 32Bytes, 1 − Trel = 10−5 and maximum energy Et = PmaxN with Pmax = 30dB and
N = 4000.

Focusing on the full CSI case we can explain why resources (N,Et) don’t affect the perfor-
mance as long as feasibility is assured. The reason is that we measure the average throughput
and energy which are affected mostly by the most probable scenario where there is no deep fading
and only a small portion of the resources (N,Et) is needed. So the full (N,Et) is mainly needed
only for assuring reliable communication when deep fading occurs. But since deep fading is a rare
instance does not change the average performance. Indeed if we gradually reduce (N,Et), the
performance remains almost the same until the point it is infeasible to attain the targeted reliability.
This observation is substantial since it can help us assess when full CSI preferable to statistical.
The answer is that assuming (βN, βEt) (with β ∈ (0, 1)) resources are needed to send pilots so
as to learn the channel and enable full CSI scheme, then if with the rest ((1 − β)N, (1 − β)Eb) is
still feasible to achieve with full CSI the targeted reliability then full CSI is preferable. We have to
stress the fact that even with the entire (N,Et) the feasibility region of the scheme full CSI Simple
we used, is already smaller than the statistical one, so limiting it even more so as to send pilots
and learn the channel makes the full CSI scheme even less robust.

In Figure 2.4, we display again the Pareto frontier for the throughput and energy when HARQ is
carried out or when one shot transmission is employed but with the same resources (N,Et). With
full CSI a constant 37% percent, according to the figure, of energy can be saved for the same
throughput by using HARQ instead of one-shot. This gain for statistical CSI scheme depends
substantially on the channel quality K and it can become huge for poor channel conditions.

To explain this behavior we first discuss the optimal configuration of (n1, n2, P1, P2). The first
packet is of significant importance since we measure average performance and the first packet is
always sent whereas the second only ε1 times. For throughput maximization n1 should be kept
as small as possible at the expense of power P1. However, as we move to energy minimization,
the situation is reversed, as larger n1 with smaller P1 reduces required energy. The role of the
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Figure 2.3: Pareto frontier for throughput and energy, with Et = PmaxN , Pmax = 30dB, and
N = 4000.

second packet is mainly to successfully meet the constraints of the optimization problem and not
to improve the objective (which is mainly the role of the first packet). This behavior is similar for
both schemes using either full or statistical CSI.

Specifically for statistical CSI, where the channel coefficient is unknown, we see the mech-
anism of the optimized HARQ rendering the first packet responsible for achieving a good value
of the objective function by focusing on the instances where the channel is good. The second
packet will be employed only when the channel is bad and necessarily a lot of resources must be
spent. In one-shot there is not this option of differentiating the good and bad realizations of the
channel. Unfortunately, the bad channel realizations will be the ones to determine the amount
of resources needed to spend for all cases (bad and good channel realizations). Reasonably, as
channel statistics deteriorate (K decreases) the waste of resources in one-shot scheme becomes
more profound since the bad channel realizations determining the expenditure of resources get
worse. On the contrary, in the case of full CSI the surprising savings we see for statistical CSI do
not happen. This is because the channel is known also for the one-shot scheme and there can
be a distinction between good and bad channel realizations without having to rely on retransmis-
sions. Moreover, this results to an almost constant save of energy given a specific throughput,
independently of channel quality.

2.7 Conclusion

The focus of this chapter was the optimization of IR-HARQ under strict latency and reliability con-
straints in fading channels. We explored two different types of CSI, i.e. one where the exact value
of channel is known and one where only its statistics is available. Even though full CSI can yield
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Figure 2.4: Pareto frontier for throughput and energy when HARQ or one shot transmission is
used, with Eb = PmaxN , Pmax = 1000 (30dB), and N = 4000. For readability in the legend we
reduced “Stat. CSI” to “Stat.” and “Full CSI Simple” to “Full”.

considerable gains simultaneously in both energy and throughput compared to statistical CSI, it
turns out that it is not necessarily more robust. Due to the difficulty of applying a scheme opti-
mally exploiting full CSI, there can be a considerable shrinkage of the feasibility regime compared
to statistical CSI under the same resources. We did not even account that a certain number of
pilots have to be employed to acquire the full CSI which would definitely deteriorate the feasibility
of a scheme depending on full CSI. So far, we focused only on a single user link under specific
quality of service requirements. In the next chapter, we extend the resource allocation problem
not only across transmission rounds of a single user but also across multiple users each having
its own quality of service requirements.
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Chapter 3

Deep Reinforcement Learning for
Centralized Scheduling under
Multi-class Traffic

3.1 Introduction

In the previous chapters, we mainly focused at the lower layers of the communication protocol and
aim at optimizing the physical/link layer for transmitting packets that have to be delivered with high
reliability and within a very short time interval. We investigated whether it is beneficial to break
this short time interval into even smaller pieces in point-to-point communications. We would like
now to consider multiuser downlink communications, moving as well one layer up, towards the
media access control (MAC) layer. We retain the requirement that users have to be served within
a specific time interval, and again with the possibility of using retransmissions within that interval.
Nevertheless, unlike previous chapters, we consider that this delay constraint, even if it is a strict
one, does not correspond to a extremely short time, enabling us to rely on the standard long
blocklength assumption for deriving information-theoretic metric.

We consider a traffic of users that when they appear in the system, they require a specific
amount data to be successfully delivered to them within a specific number of time slots. Since
the base station to which they are connected to does not have infinite resources, it must carefully
allocate resources to meet its users’ requirements. Therefore the problem we consider here is
that of centralized resource scheduling at each time slot so as to satisfy the service requirements
of connected users. Specifically, we consider multi-class (heterogeneous) traffic, i.e., every user
belongs to one traffic class that determines its service requirements and therefore the quality of
service (QoS) that needs to be provisioned. Each class sets both the requested packet size and
the maximum latency, measured in number of time slots a user is eager to wait until it gets the
packet successfully. So every user has a strict latency constraint and within that time interval the
base station has to spend the appropriate amount of resources so as to satisfy this user. If the
resources were not enough and the transmission fails, then there is the possibility of retransmis-
sion but only within the strict (but not too short) latency constraint. The retransmission protocol
we assume in this chapter is a simple Automatic Repeat Request (ARQ), according to which if
the base station fails in one time slot to meet the user’s requirements, then it has to spend again,
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in a future time slot, resources to retransmit the whole packet without relying on any previous
packet transmissions (as it is the case of IR-HARQ in the previous chapters). Since in every time
slot different number of users, belonging to different classes, may appear, the scheduler has to
take cumbersome decisions on how to distribute resources so as in the long term the number of
satisfied users is maximized. These decisions depend on how many users are simultaneously
active, how much data they require, how many more time slots are each user eager to wait and
(if it is available) their channel quality. On top of that, the history of those parameters has to be
considered in order to exploit possible time dependencies, which may improve the efficiency of
the scheduler. For example, sometimes it may be better to spend more resources on a demand-
ing user with bad channel quality because it is approaching its maximum latency constraint and
sometimes to ignore that user because it is too demanding and at the same time some others
appeared with surprisingly good channel quality and is more efficient to serve them.

In front of such complex problems a good approach is using more versatile tools. We use the
combination of Reinforcement Learning (RL) and deep neural networks. This combination, which
is called Deep Reinforcement Learning (DRL), has recently attracted significant attention and has
been used in various scientific fields. To tackle the difficulties of our specific problem, we leverage
on several existing ideas and develop a new DRL algorithm capable of competing and surpassing
traditional approaches.

3.2 Traffic Model

The traffic model consider here is as follows: users appear and disappear continuously and each
belongs to a specific class. The characteristics of those classes describe statistically the traffic.
Each class has the following attributes:

• Data size D: the size of data a user of that class asks for.

• Maximum Latency L: the maximum number slots within which the user needs to success-
fully receive the packet of size D, so as to be satisfied.

• Arrival probability p: the probability a new user belonging to this class arrives in the system.

Additionally, we introduce a parameter to incorporate the notion of different importance, denoted
by α, different classes may have. This parameter can be used to either dictate the scheduler
to prioritize some classes needing higher success probability or maybe (from a service provider
perspective) to prioritize a class of users with more privileged contracts (SLAs), demanding better
service.

We denote C the set of classes. Every user that enters the system, belongs to a class c ∈ C
with probability pc and is characterized by the tuple (Dc, Lc, αc). We assume that a maximum
number K of users can exist per time slot. We also assume that a new user appears whenever
a previous one has reached the maximum time it can be present in the system. For example,
if a user appears at time t = 1, belonging to a class c ∈ C with Lc = 4, then even if it gets
immediately and immediately successfully its requested packet of size Dc at t = 1, it will still
remain in the system until a new user appears at t = 5 belonging to a class c′ ∈ C with probability
pc′ . Therefore, at every time slot a set Ut (with constant cardinality |Ut| = K) of users is observed,
with some of them belonging to set Uactt ⊆ Ut, with some demanding resources from the base
station as being unsatisfied and some being already satisfied. To alleviate the assumption of
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always K users and incorporate the fact that the number of user can fluctuate over time, we add
a null class c0 with Dc0 = 0, αc0 = 0 and Lc0 > 0. Therefore a user of the null class is equivalent
to that no user has appeared. The null class effectively will result in occasionally having less than
K users.

The rationale behind this specific traffic model is as follows: (i) we wanted to have a traffic
model under which users with different strict data and latency requirements come and go, and that
is both quite generic and also tractable enough so as to permit to build benchmarks against which
we compare the DRL scheduler. We emphasize that the RL algorithm can adapt and train neural
network models on other types of traffic and we believe that under proper parameter tuning, it will
give good results. (ii) we wanted the traffic to remain uninfluenced by the scheduler decisions. For
instance, if we made the common assumption that whenever a user is satisfied a new one arrives
with some probability per time slot, then the scheduler performance affects the statistics of the
traffic. This is due to the fact that at a given time interval, a scheduler with abundant resources
will see more users than schedulers with poor resources, since more resources means satisfying
users earlier leading to (statistically) more users appearing.

3.3 Channel and data rate models

The users are assumed to be uniformly distributed within a concentric ring. Therefore the distance
of a user u from the base station is a random variable with a probability density function: fd(du) =

2du
d2
max−d2

min
,du ∈ [dmin,dmax]. Furthermore we assume that the mobility of the users is not high

enough to change significantly within their limited time interval they are active. Consequently, their
distances from the base station are kept constant. In contrast, the modification of the channel due
to small scale fading is taken into account and described below.

Multiple users can be served simultaneously and in this work we assume that they are al-
located on different orthogonal frequency bands and so there is no interference between them.
We also assume that they experience flat block fading and therefore every user has a constant
channel gain for a given time throughout all the available frequency band from which a user is
served. Let a user u that appeared at time t0, with channel gain at time t is gu,t =

Cpl|hu,t|2
σ2
N

d
−npl
u

with npl being the pathloss exponent, Cpl a constant to account for the constant losses and σ2
N is

the noise power spectrum density. The distance du remains constant throughout out the lifespan
of user u but there is a small scale Rayleigh fading changing in every time slot according to the
Markovian model:

hu,t0 ∼ CN (0, 1)

hu,t = ρhu,t−1 + Z, with Z ∼ CN (0, 1− ρ2), t > t0

where CN (0, v) represents a circular complex normal distribution with zero mean and variance v.
The parameter ρ = J0(2πfdTslot) ∈ [0, 1] [40] determines the time correlation of the channel where
J0(·) being the zeroth-order Bessel function of the first kind, fd the maximum Doppler frequency
(determined by the mobility of the users) and Tslot the slot duration. If ρ = 0 (high mobility at
the small scale level), in every time slot the user has an independent realization of the fading
distribution. If ρ = 1 (absence of mobility), the fading is constant throughout the user’s lifespan.

We consider two cases about the knowledge of the channels at the scheduler side:

• Statistical CSI: at current time, the scheduler knows the location of the active users and their
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fading statistics. For future users coming in the system, only statistics of both the location
and the channel are known.

• Full CSI: at current time, the scheduler knows the location and the fading of the active users.

We assume the Shannon rate formula is valid and that the base station operates on capacity
level providing to user u at time t data equal to wu,t log2(1+gu,tPu,t), where Pu,t is the transmitted
energy per channel use/symbol and wu,t the assigned bandwidth. An outage happens when
the user’s data requirement is higher than what the channel can support. For instance, in the
statistical CSI case if we consider the first transmission of an active user (which means that
previous channel realization is unknown) at given time tu, then this user at distance du from the
base station, belonging to class c ∈ C with resources (wu,t, Pu,t) has a probability of failing to
successfully decode its packet equal to:

P failu (wu,t, Pu,t; du) = P(wu,t log2(1 + gu,tPu,t) < Du|du)

= P(|hu,t|2 < ζu,td
npl
u )

= 1− e−ζu,td
npl
u (3.1)

with ζu,t=
σ2
N (2Du/wu,t − 1)

CplPu,t
.

Now if the location du of this user is unknown by the scheduler, the error probability becomes

P failu (wu,t, Pu,t) = P(wu,t log2(1 + gu,tPu,t) < Du)

=

∫ dmax

dmin

P failu (wu,t, Pu,t; d)fd(d)dd

= 1−
Γ( 2

npl
, ζu,td

npl
min)−Γ( 2

npl
, ζu,td

npl
max)

nplζ
2/npl
u,t (d2

max − d2
min)/2

(3.2)

where Γ(s, x) =
∫∞
x
ts−1 e−t dt is the upper incomplete gamma function. For the sake of simplicity,

we overloaded notation by allowing x in Dx, αx, Lx to either denote a class x or a user x belonging
to a class with those characteristics.

3.4 Scheduling procedure

The base station is called to appropriately use in every time-slot its energy and bandwidth re-
sources to satisfy its users. We concentrate only on the bandwidth distribution, assuming no
power adaptation and simplifying the base station job that spends a fixed amount of energy per
channel use, i.e., Pu,t = P,∀u, t. If the available bandwidth at the base station’s disposal is W
then the scheduler aims to find the (wu1,t, wu2,t, ...) ∈ R

|Uactt |
≥0 with u1, u2, ... ∈ Uactt such that∑

u∈Uactt

wu,t ≤W, ∀t
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and maximize over the time horizon the accumulated reward for every satisfied user which is
described by the following objective “gain-function”:

G =
∑
t

∑
u∈Uactt

αu1{wu,t log2(1+gu,tP ) > Du}. (3.3)

We stress out that a user u remains on the set Uactt for a time interval less or equal to its maximum
acceptable latency Lu. If not satisfied within that interval then he does not contribute positively to
the objective G.

As implied by (3.3), the retransmission protocol adopted is Automatic Repeat reQuest (ARQ).
If a user fails to correctly decode the received packet then this packet is ignored (no buffering at
the receiver side) and the user waits until the base station sends again the same packet to try to
decode. Finally, as stated previously, we consider two different CSI cases. In the first scenario,
statistical CSI, only statistical properties of channel and location are known at current time tc and
the future, while, in the second scenario, full CSI, the exact value of the channels hu,tc ,∀u ∈ Uacttc

and the location of the users (and so du∀u ∈ Uacttc ) are known at the current time tc.

3.5 Benchmark procedures for the scheduler

In this section we describe the benchmark procedures/algorithms for both scenarios (statistical
CSI and full CSI). The procedures will be compared to our DRL based algorithms in Section 3.10.

3.5.1 Case 1: Statistical CSI available only

We first concentrate on the case of a single user u0 appearing at time t0. The current time is
tc ∈ [t0, t0 + Lu0

− 1]. We denote by −→w u0,t = (wu0,t0 , wu0,t0+1, ..., wu0,t) the assigned bandwidth
from time t0 (beginning of transmission for user u0). Additionally, let Au0,t be a binary random
variable which if Au0,t = 1 then u0 is still unsatisfied at the end of time slot t (after receiving
−→w u0,t resources) and Au0,t = 0 otherwise. Given that at the beginning of time t user u0 is still
unsatisfied and that we know the resource allocation wu0,t is scheduled to be done at time t, we
define Φ(−→w u0,t; du0

) to be the probability that wu0,t is still not enough when the location du0
is

known but the channel hu0,t is unknown:

Φ(−→w u0,t; du0
) =

P(Au0,t = 1|−→w u0,t−1,du0
, Au0,t−1=1), t > t0

P(Au0,t = 1|du0
), t = tc = t0.

(3.4)

The average contribution of user u0 to the gain function (3.3) on the time interval [tc, t] is given by
the following equation, derived applying the chain rule for conditional probability:

g[tc,t]u0
=g(wu0,tc , ..., wu0,t; du0

) =


0, if tc > t0 and Au0,tc−1=0

αu0

(
1−

t∏
j=tc

Φ(−→w u0,j ; du0)
)
, else.

(3.5)

Now we consider that the average contribution on the gain function (3.3) for the the future users
following the user u0. The next user (if it exists) appears at time t1 = t0+Lu0

, and so on. Therefore
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we consider the users noted as u1, u2, . . . that will appear at t1 = t0 + Lu0 , t2 = t1 + Lu1 , . . ..
We denote that with probabilities pc1 , pc2 , . . . they will belong to classes c1, c2, . . ., respectively
(and one of these classes may be the null class). These classes will determine the maximum
latencies Lu1

, Lu2
, . . . and consequently the time arrivals t1, t2, . . . all being random variables.

As we consider here future users, even their locations are unknown. Consequently we need to
average over the locations the equations (3.4) and (3.5) to obtain their contribution on the gain
function (3.3). So for i ≥ 1 if −→w ui,t = (wui,ti , wui,ti+1, ..., wui,t), we have

g[ti,t]ui =g(wui,ti , ..., wui,t) = αu0

(
1−

t∏
i=tc

Φ(−→w ui,i)
)

(3.6)

where the contribution looking at time t with t < ti + Lui starts at time ti for user ui and where

Φ(−→w ui,t) =

P(Aui,t = 1|−→w ui,t−1, Aui,t−1=1), t > ti

P(Aui,t = 1), t = ti.
(3.7)

Hence, the averaged value of gain function for the sequence of users u0, u1, ... (so when one
user at most is active per time slot, ie, K = 1) starting at the current time tc is:

G(wu0,tc , ...,wu0,t1−1, wu1,t1 , ...) =

g[tc,t1−1]u0
(.; du0

) +
∑
c1∈C

(
pc1 · g[t1,t2−1]u1

(.) +
∑
c2∈C

(
pc2 · g[t2,t3−1]u2

5.) +
∑
c3∈C

(...)

))
.

(3.8)

From (3.8), we observe a tree structure1 that when a user vanishes there is a summation over all
the possibilities of the classes that the new user can belong to. Therefore a number of branches
is equal to the number of possible classes (|C|). To manage the scalability issue, we propose to
cut the tree by considering only T future time slots, so to work with the finite horizon [tc, tc+T −1].

Finally, the general case with multiple users served simultaneously (K > 1) is easy to be
considered by just computing K ”parallel trees”. With a slight abuse of notation, we consider that
the first subscript of the variables w now refers to the index of the tree (and implicitly to a specific
user). As a consequence, the variables for the scheduled bandwidth resources over an horizon
of length T can be put into the following matrix:

Wtc =


w1,tc w1,tc+1 · · · w1,tc+T−1

w2,tc w2,tc+1 · · · w2,tc+T−1
...

...
. . .

...
wK,tc wK,tc+1 · · · wK,tc+T−1


and the average gain for these resources takes the following form:

G(Wtc) =

K∑
k=1

G(wk,tc , wk,tc+1, · · · , wk,tc+T−1). (3.9)

Finally our optimization problem whose solution constitutes the benchmark procedure for the sta-

1A simple way to be computed is recursively
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tistical CSI case is the following one at current time tc:

max
Wtc∈R

K×T
≥0

G(Wtc) (3.10)

s.t.
K∑
k=1

wk,t ≤W, ∀t ∈ {tc, . . . , tc+T−1}. (3.11)

It can be easily shown that the objective function G(·) is non-concave with multiple local op-
timums. In contrast, the constraints given by Eq. (3.11) describe a compact and convex domain
set. Consequently, we may apply the so-called Frank-Wolfe algorithm [41]. The idea behind this
algorithm is as follows: at each iteration, the algorithm starts from a point and approximates the
objective function around it with a linear (first-order) approximation. Then it solves the correspond-
ing Linear Programming problem (LP) to find the best solution which will be the starting point of
the next iteration. The procedure terminates when the algorithm converges to a local optimum,
i.e., when the objective function does not increase anymore significantly. In order to exhibit a
solution close to the global optimum, the algorithm is repeated Ninit times with different randomly
chosen initial points. At the end, we peak the best local optimum. This Frank-Wolfe algorithm is
known to have sublinear convergence speed. In our set-up, we remark that it always converges
within few, reasonable number of iterations (≤ 20).

Before proceeding further, we provide here some general remarks.

• The above benchmark procedure takes into account the past through (3.4) since all the
previously allocated resources are involved.

• The procedure at current time tc proposes a solution for the scheduler for the current time tc
and also for the future [tc+1, tc+T −1]. Nevertheless, as this procedure will be recomputed
at time tc + 1 (once the actions proposed for time tc is applied and new information about
the transmission’s success or failure are available), the actions proposed at time tc for time
tc+1 are generally not applied. Obviously we will apply at time tc+1 the solution advocated
by the procedure computed at time tc + 1.

• The Frank-Wolfe method is sublinear but the computation of the objective function (3.9)
and its partial derivatives grow exponentially with T which leads in practice to a slow and
cumbersome method (not to mention that to be sure to retrieve a good local optimum we
repeat the process Ninit times).

• Lastly, the algorithm treats the “mean” case. It does not specify what really happens in the
future since it only evaluate what happens in the future on average. It would be possible
to address every future scenario differently but by skyrocketing the number of variables and
constraints, making the already-slow benchmark procedure.

Hereafter, we concentrate on calculating (3.4) and (3.7) for different channel model subcases.
The rest of the benchmark procedure is straightforward2.

2Perhaps it is tricky to also find the derivative of (3.2) which is required for the first-order approximation in the Franck-
Wolfe algorithm. So we get

dP failu

dw
=

∫ dmax

dmin

dP(|h|2 < ζu,td
npl )

dζu,t
fd(d)dd

dζu,t

dw
=

Γ(
2+npl
npl

, ζu,td
npl
min)−Γ(

2+npl
npl

, ζu,td
npl
max)

nplζ
(2+npl)/npl
u,t (d2

max − d2
min)/2

dζu,t

dw
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3.5.1.1 The i.i.d. fading channel case (ρ = 0)

It is the simplest subcase since there are no time dependencies on the fading, so (3.4) and (3.7)
become

Φ(−→w u0,t; du0
) = P failu0

(wu0,t, P ; du0
), and (3.12)

Φ(−→w ui,t) = P failui (wui,t, P ), i ≥ 1. (3.13)

We remind the users ui for i ≥ 1 follow the user u0, and therefore we average over their unknown
locations.

3.5.1.2 The constant fading channel case (ρ = 1)

Now the channel is the same for each retransmission on the user. For user u0, the channel is
invariant but unknown. Only its location is known. At time t > t0, we have

Φ(−→w u0,t; du0
) = P(wu0,t log(1 + gu0

P ) < Du0
|wu0,t′ log(1 + gu0

P ) < Du0
,∀t′ ∈ [t0, t− 1], du0

)

=
P(wu0,t′′ log(1 + gu0

P ) < Du0
,∀t′′ ∈ [t0, t]|du0

)

P(wu0,t′ log(1 + gu0P ) < Du0 ,∀t′ ∈ [t0, t− 1]|du0
)
.

Therefore we obtain

Φ(−→w u0,t; du0
) =


P failu0

(max{−→w u0,t}, P ; du0
)

P failu0 (max{−→w u0,t−1}, P ; du0
)
, if t > t0

P failu0
(wu0,t, P ; du0

), if t = t0.

(3.14)

For the case of the future users (ui with i ≥ 1), the equations remain the same with the only
change that the location of the users is unknown as well. So in Eq. (3.14), we just need to omit
the du similarly to the i.i.d. case.

3.5.1.3 The general Markovian case (ρ ∈ (0, 1))

This case is much more complicated due to the correlation between the channel realizations.
Actually, at time t, the distribution of hu,t given the past (which is not known in practice) is Ricean
distributed. More precisely, if the user u is active at t − 1 and t, we have P(|hu,t|=x

∣∣∣|hu,t−1|) =

Rice(x; vR = ρ|hu0,t−1|, σ2
R = 1−ρ2

2 ) where vR and σ2
R are the so-called Ricean parameters.

Let us focus on the user u0 and we are looking at the time t = t0 + 1. According to [42, eq:
37], we have:

Φ(−→w u0,t0+1; du0
) =

∫ xu0,0

0

∫ xu0,1

0

P(|hu0,t0+1|=x |y)P(|hu0,t0 |=y)dxdy

= 1−
e−x

2
1Q1(

xu0,0
σR

,
ρxu0,1
σR

)− e−x
2
u0,0Q1(

ρxu0,0
σR

,
xu0,1
σR

)

2(1− e−x
2
u0,0)

(3.15)

with xui,j =
√
ζui,ti+jd

−
npl
2 , i ∈ {0, 1} and QM be the marcum Q-function.

For the future users (ui, i ≥ 1), we have at time t = ti + 1 (we remind that user ui starts its
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transmission at time ti):

Φ(−→w u,ti+1) =

∫ dmax

dmin

Φ(−→w ui,ti+1; dui)fd(d)dd. (3.16)

where Φ(−→w ui,ti+1; dui) is given by (3.15) by replacing u0 with ui. This equation (3.16) is already
intractable whereas we are just focusing on the two first adjacent retransmissions. Obviously,
it is even worse if we consider more retransmissions. Therefore, in the rest of the paper, the
benchmark procedures will be only designed for ρ = 0 or ρ = 1, even if tested in the general case
ρ ∈ (0, 1). More precisely, for any ρ, we apply the benchmark procedure designed for either ρ = 0

or ρ = 1, and keep the best result.

3.5.2 Case 2: full CSI

Let us work on the user u0 at the current time tc ≥ t0. We remind that for this case, the channel
hu0,tc is known and the location du0

is known as well. Consequently, the channel gain gu0,tc is also
available to the base station. But the future channels hu0,t for t > tc are only statistically known.

The user u0 is unsatisfied at t iff the allocated bandwidth wu0,t is smaller than the following
threshold

wthu0,t =
Du0

log2(1 + gu0,t · P )
.

Consequently, the error probability of user u0 defined by (3.4) can be expressed:

Φ(−→w u0,t; du0) =

P(wu0,t < wthu0,t|Au0,t−1 = 1, hu0,tc , du0
), if t > tc

1{wu0,tc < wthu0,tc}, if t = tc.
(3.17)

In this case, we remark that the probabilities are not necessary continuous due the indicator
function in (3.17). Consequently, the gain function described in (3.9) is now non-continuous over
the variables wk,tc∀k (because we know exactly the channel gains at tc and indicator functions
occur at this time), but continuous for wk,t, t > tc corresponding to the future. To overcome this
problem, we split the problem into two cases;

• Immediate horizon (T = 1): we focus only on the current time tc and the effects on the future
are omitted.

• Finite horizon (T > 1): we take into account the future but unlike previously, we assume
the channel realization and the location at time t ∈ [tc, tc + T − 1] known in advance, i.e.,
when the algorithm is run at time tc. The gain function obtained by this approach is an upper
bound.

3.5.2.1 Immediate horizon: T = 1

In this case, the optimization problem can be entirely restated. The variables to be optimized are
xu,tc which is 1 id user u is active at time tc or 0 otherwise. The cost in bandwidth is wthu,tcxu,tc
because we assume that if an user is active, then the scheduler provides to it the minimum
bandwidth it required to do a transmission without failure. Then the contribution in the gain function
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is αuxu,tc . Therefore the optimization problem can written as follows

max
xu,tc

∑
u∈Uacttc

αuxu,tc

s.t.
∑

u∈Uacttc

wthu,tcxu,tc ≤W

xu,tc ∈ {0, 1}, ∀u ∈ Uacttc .

This problem is a Knapsack problem, which corresponds to maximizing the total value by choosing
from a set of objects a proper subset. Every object has its value but also a weight that prevents
from picking all of them since the total weight of the chosen subset should not overreach the
capacity level. It is a well knownNP-complete problem with various efficient algorithms for solving
it.

3.5.2.2 Finite horizon: T > 1

As remarked previously, the original problem described by (3.17) is mixed, i.e. discrete over some
variables and continuous over others. One idea is to approximate the indicator function with a
continuous function3 in order to apply the Frank-Wolfe algorithm again as in the case of statistical
CSI. We do not follow this way since the number of bad local optimums grow up and also it is
very dependent on the choice of the approximating function. Hereafter, we assume that for the
future T − 1 time slots, the base station knows exactly how many and where users will appear,
of which class and what will be their channels. The base station thus acts as an oracle capable
to perfectly calibrate the scheduling to future fluctuations. We obtain therefore an upper bound of
the performance of our policies.

Connecting this problem with a knapsack problem is not successful. Let us assume in the time
interval [tc, tc + T − 1] the oracle knows a set of UTtc users/objects appear in total. We can think
of having T different knapsacks (one for each t ∈ [tc, tc + T − 1] and all of capacity W ), which
we aim to fill with users/objects from the set UTtc . The goal is to maximize the overall value of the
chosen objects, i.e. satisfied users. This corresponds to a “multiple knapsack problem” but with
a crucial difference. In contrast to “multiple knapsack problem”, the weight of each object/user
fluctuates over time as a consequence of the channel variability which changes the required
resources/weight. That means that every object has a different weight depending on the knapsack
it will be put it. Even considering ρ = 1, the constant channel does not help much since for some
time slots in [tc, tc + T − 1] a user can happen to be either “unborn” or “dead”. In those time slots
we have to assume a different weight at those time slots that will be something greater than W so
as to make it impossible to fit in the knapsacks corresponding to those time slots.

Finally we address our problem using a more generic (and slower) approach after formulating it
as a Integer Linear Programming (ILP) optimization one, and so we call this method ILP oracle. As
mentioned, inside the lifespan t ∈ Ilife = [max(tc, tu),min(tu+Lu−1, tc+T−1)] of a user u ∈ UTtc ,
wthu,t are the (accurately predicted by the oracle) required bandwidth to satisfy u at time t given his
channel gain gu,t. Outside t ∈ [tc, tc + T − 1]/Ilife, wthu,t is given a value greater than W so as to

3So, the form 1{w > wthu,tc} needs to be changed into continuous function for which when w < wthu,tc it is equal to 0
in order to avoid giving less than wthu,tc resource at user u and then it goes as fast as possible to 1.
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prevent any allocation. The formulation is

max
xu,t

∑
u∈UTtc

αu

tc+T−1∑
t=tc

xu,t

s.t.
∑
UTtc

wthu,txu,t ≤W, ∀t ∈ [tc, tc+T−1]

tc+T−1∑
t=tc

xu,t ≤ 1, ∀u ∈ UTtc

xu,t ∈ {0, 1}, ∀t ∈ [tc, tc+T−1] and ∀u ∈ UTtc .

To solve this ILP optimization (which correspond to a ”multiple choice knapsack”) for every time
step, we used the software CPLEX of IBM which relies on the Branch and Cut algorithm [43].

3.6 Deep reinforcement learning

The difficulty of finding efficient, not complex algorithms to tackle the problem motivates us to try
a more versatile tool, namely deep reinforcement learning. The downside is the produced neural
network model has a performance that is dependent on the training. It may take a great amount of
time to converge, and eventually converge to a poorly performing model or even not converge at
all. Trying to avoid those scenarios, we came up with a DRL algorithm combining several recently
introduced ideas.

In standard RL setups, there is an agent who interacts with an environment. At every time
step t this agent observes the current state of environment st ∈ S and takes an action at ∈ A.
In our case it is st = {∀u ∈ Ut : Du, Lu, αu,du, lu,t, Au,t, hu,t} where lu,t ≤ Lu is the number of
time slots passed since appearance of u and Au,t is changed slightly to signify whether the user
is active at the beginning (not the end) of time slot t. The action is simply the resource allocation
at time t. After the action at the environment’s state changes. The new state st+1 is a realization
of the random variable (RV) St+1 with density p(•; st, at) (which for simplicity we will denote it
as p(; st, at)) and the agent receives a reward R(st, at, st+1) which can be RV. This is a Markov
Decision Process (MDP) [44]. The full CSI case conforms perfectly with this model and the reward
is not RV but can be deterministically described as R(st, at).

In the case of statistical CSI, it is much more complicated. Previously we assumed that the
agent has full access to the state st but it does not stand anymore because its observation ot

lacks the hu,t, so o ⊂ st. In that case where the observation ot follows in general distribution
O(ot; st, at−1) the model is called Partially Observable Markov Decision Process (POMDP) [45].
In this situation, it is possible to come back to the MDP scheme, called belief MDP, by substituting
the states with the ”belief” bt [46] of the value of st. Belief bt preserves the Markovian property
and follows p(•; ot−1, at−1, bt−1). Equivalently one could not depend on the previous bt−1 to com-
pute bt but on the complete history {o0, a0, o1, a1, · · · , at−1, ot−1}. Hopefully, in our statistical CSI
case, it suffices to keep only ot−1 together with some previous actions, which are the actions
corresponding to the resources that had already been assigned to every current active user. Now
we can revise the meaning of the state as st = {∀u ∈ Ut : Du, Lu, αu,du, lu,t, Au,t,

−→w u,t−1}4 and
keep the same formulation of the MDP. The algorithm below is described using st and the only

4Users just appearing at time t have no scheduling history, so −→wu,t−1 is omitted.
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difference for the statistical case is that the reward depends on the new state, i.e. R(st, at, st+1),
and is a RV5.

Since the action in our setup is sharing the bandwidth in a continuous way a traditional Deep
Q-learning Network (DQN) does not work. The reason is that in classic DQN, the trained Neural
Network (NN) needs a number of outputs equal to the possible actions which in our case is infinite
due to continuity. But even without the continuity and assuming serving every user with either a
fixed amount of resources or not at all, the number of possible outputs is huge since we need
one output for every different combination of the set of users chosen to be served. To resolve this
problem we resort to Policy Gradient methods. A famous type of method of this category is the
actor-critic where a NN, called critic, predicts how well the proposed policy provided by a second
NN called actor will be. In general, the actor’s policy gives a probability distribution over possible
actions. So from a given state there are many probable actions that can be taken. If this taken
action turns out to give higher (resp. lower) than the critic’s expectation then the actor learns
to increase (resp. decrease) the probability of taking again that action in similar situations. We
choose a different type of method called ”deterministic policy gradient” where the actor NN output
provides deterministically a specific action.

3.6.1 Optimizing the Actor NN

Let us first concentrate on the actor. A deterministically parameterized agent is modeled as a
Neural Network (NN) [47], named Actor NN, who aims to optimize his NN’s parameters θ so that
the resulting policy πθ : S → A maximizes an objective J(θ). Let us first define

Zπθ (st, at) = R(st, at) +

∞∑
i=1

γiR(St+i, πθ(St+i)) (3.18)

to be the RV representing the discounted reward accumulated when the agent starts from state st
with action at and after follows the policy πθ. Parameter γ ∈ [0, 1] is the discount factor balancing
the importance of future rewards. Let also the state-action value function Qπθ (st, at) : S ×A → R

be:
Qπθ (st, at) = E[Zπθ (st, at)] (3.19)

If pt0 is the density of the distribution of the initial state st0 , then we can now describe the objective
function of the agent:

J(θ) = Est0∼pt0 [Qπθ (st0 , πθ(st0))] (3.20)

To maximize it the gradient is needed which through the deterministic policy gradient theorem [48]
can be written:

∇θJ(θ) = Est0∼pt0 ,s∼ρ
πθ
st0

[∇θπθ(s)∇aQπθ (s, a)|a = πθ(s)] (3.21)

with ρπθst0 the discounted state (improper) distribution defined as ρπθst0 (s) =
∑∞
i=0 γ

i
P(st+i =

s|st0 , πθ). In practice it is common that ρπθst0 is approximated by the (proper) distribution %πθst0 (s) :=∑∞
i=0P(st+i = s|st0 , πθ). This gradient allows to gradually improve the Actor NN if, as assumed

so far, the true function Qπθ (s, a) (and for every possible πθ) is provided to the agent.

5It is random variable since there is the scenario of at time t a user to be at the last time slot he is eager to wait, he is
served some resources but at t+ 1 he disappears without knowing if got satisfied.
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3.6.2 Optimizing the Value NN

However, it is intractable to get the true Qπθ (s, a) so we approximate it by building a second
network, named Value NN and denoted Qπθψ (ψ represents its NN’s parameters). To train the
Value NN, the Bellman equation is used which combines (3.18) and (3.19) into:

Qπθ (st, at) = R(st, at) + γEst+1∼p(;st,at)[Q
πθ (st+1, πθ(st+1))] 6 (3.22)

The idea is in order Qπθψ to be a good approximator of Qπθ (s, a) it has to satisfy (3.22). We push it
by optimizing the parameters ψ to minimize the difference (named temporal difference) between
the two sides of equation (3.22) when the Qπθψ (s, a) is used. So if d2(x, y) = (x − y)2, to improve
Qπθψ we minimize the loss

L2(ψ) = Est0∼pt0 ,s∼%
πθ
st0

,s′∼p(;s,a)[d2(Qπθψ (s, a), R(s, a) + γQπθψ (s′, πθ(s
′))]. (3.23)

The reasoning behind (3.23) is that we start from st0 and following the policy πθ we arrive to
different states s with probability %πθst0 (s). From those states we want to know the validity to take
the action a followed by actions done through πθ in the expected discounted sum of rewards.
Notice that action a is not necessarily the one proposed by πθ since (as discussed later) we need
to be able to input to the value NN different ones in order to explore the actions’ space.

3.6.2.1 First trick: Target Networks

As Qπθψ is optimized it affects both sides of the Bellman equation bringing instabilities. To limit
them, a key idea was proposed in [49] which, when adopted to the deterministic policy gradient,

introduces two separate NNs Qπ
−
θ

ψ− and πθ−, named here target Value NN and target Actor NN
respectively. Those NNs either freeze the parameters of Value and Actor NN for a number of
iterations and then they are ”hard updated” ψ− ← ψ and θ− ← θ, or are softly updated per
iteration ψ− ← ρsyncv ψ + (1− ρsyncv )ψ− and θ− ← ρsyncv θ+ (1− ρsyncv )θ−. In either case the target
NN change slowly and are used to stabilize the right hand of bellman equation. The loss function
becomes

L2(ψ) = Est0∼pt0 ,s∼%
πθ
st0

,s′∼p(;s,a)[d2(Qπθψ (s, a), R(s, a) + γQ
πθ−
ψ− (s′, πθ−(s′))].

3.6.2.2 Second trick: Distributional perspective

A richer representation of the value NN to approximate is the distribution of Zπθ instead of only its
mean value [50]–[52]. Therefore now instead of working with Qπθψ (s, a) (which approximates the
mean value of Zπθ ), we propose to work with a new value NN, denoted by Zπθφ (s, a) whose the
outputs describe an approximation of the distribution of Zπθ . To accomplish that, we first have to
revisit the Bellman equation through its distributional version

Zπθ (st, at)
D
= R(st, at) + γZπθ (St+1, πθ(St+1)). (3.24)

6In the statistical CSI the reward is a RV so we need to average over the rewards also and the equation becomes

Qπθ (st, at) = Est+1∼p(;st,at)[E[R(st, at, st+1)] + γQπθ (st+1, πθ(st+1))]
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The idea is again to force the value network to satisfy Eq. (3.24).

Like in [51], [52] the value NN aims to approximate the real distribution of Zπθ (s, a) with one
discrete RV Zπθφ (s, a) random variable taking values in {y1, y2, ..., yNQ} (in strictly ascending order)
with probabilities P(Zπθφ (s, a) = yi) = pi. The relationship between the RV Zπθφ (s, a) and the NN
Zπθφ (s, a) is that the domain of Zπθφ (s, a) is defined as the output of Zπθφ (s, a), i.e. Zπθφ (s, a) =

(y1, y2, ..., yNQ). So if we well train the parameters φ of the NN Zπθφ (s, a), the resulting random
Zπθφ (s, a) will be a good approximation of Zπθ (st, at).

Let us go back to (3.24) to see how Zπθφ (s, a) can satisfy it. Instead of scalar (mean) values
in the Bellman equation, distributions are compared. Therefore a distance metric between dis-
tributions is needed and in [51], [52] the 1-Wasserstein distance is used defined as W1(U, V ) =∫ 1

0
|F−1U (ω)−F−1V (ω)|dω where U and V are RV with F−1U and F−1V being their inverse cumulative

distribution function (CDF).

Incorporating also the first trick (target networks), we wish to optimize φ so as to minimize
1-Wasserstein distance W1(Zπθφ (st, at), R(st, at) + γZπθφ−(St+1, πθ−(St+1))) which is easily shown
to happen when

P(yi ≥ R(st, at) + γZπθφ−(St+1, πθ−(St+1))) = τi
pi
2

+

i−1∑
j=1

pi (3.25)

where τi := pi
2 +

∑i−1
j=1 pi is obtained so that yi is the τi-quantile R(st, at)+γZπθφ−(St+1, πθ−(St+1)).

This can be seen in Figure 3.1. The discrete approximation crosses the CDF of R(st, at) +
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Figure 3.1: Minimizing the 1-Wasserstein distance

γZπθφ−(St+1, πθ−(St+1)) is the middle of each vertical line (line corresponding to a jump from an
discrete value to the next one). Finally it remains to optimize the parameters φ of Zπθφ (s, a) so
as the resulting Zπθφ (s, a) satisfies (3.25). This can be done by quantile regression [53]; more
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precisely, if d1(y, z; τ) = (τ − 1{z < y})(z − y) then we just need to minimize the loss function7:

L1(φ)=E
st0∼pt0 ,s∼%

πθ
st0

,s′∼pt(s,a),z∼R(s,a)+γZ
π
θ−

φ−
(s′,πθ− (s′))

[

NQ∑
i=1

d1(yi, z; τi)] (3.26)

where the dependency in φ is hidden in the output {yi}i=1,··· ,NQ .

3.6.2.3 Third trick: N -steps update

A common trick is the value NN to be updated not only using the immediate reward but accumu-
lated rewards from Nst steps [54], i.e. using:

Zπθ (st, at)
D
=

[
R(st, at)+

Nst−1∑
i=1

R(St+i, πθ(St+i))

]
+ γNstZπθ (St+Nst , πθ(St+Nst)).

The motivation is the value NN to depend less on itself for the update since Nst − 1 additional
terms come straight from the environment rewards. This also enables the value NN to faster
realize the contribution of some delayed rewards[55]. In our case the environment exhibits very
big variance. From a specific state, one action can lead to a large variety of new states which are
significantly different to each other (due to the new channel realizations and the traffic which can
lead to the appearance of some new users with different requirements). Therefore every new term
is also a source of large variance. On top of that on the statistical CSI case even the reward from
a specific state after one action is a RV and can vary. Hence if Nst grows then adding those new
terms together increases even more the variance resulting to convergence difficulties. Therefore
we consider low values for the Nst: Nst = 1 for the statistical CSI case, and Nst = 2 for the full
CSI case. Up to this point, the algorithm resembles to D4PG proposed in [56].

3.6.2.4 Fourth trick: Dueling

In [57], the “dueling network” architecture was proposed. This structure is similar to the red part of
the Value NN in Fig. 3.2 where three outputs (coming from three subNN) are considered, namely,
Zπθ,Mφ (s, a), Zπθ,Sφ (s, a) and Zπθ,Dφ (s, a).

To explain its functionality firstly we concentrate on the setup of [57] where a traditional DQN
(deep Q network) is used (i.e., no Actor NN or Deterministic Policy gradient, and the action space
A is of finite cardinality). In that DQN setting, a NN QDx (sin) depending on parameters x takes an
input state sin and provides |A| outputs (where A is the action space) where one output corre-
sponds to a good approximation of the state-action values Q(sin, a) for one possible action a ∈ A.
Consequently, we have a vector QDx (sin) ∈ R|A| where a component of QDx (sin) corresponding
to specific action a and is denoted by QDx (sin)a ∈ R (we do the same for QSx ). The QDx (sin) is

7We illustrate the role of this specific loss function with an example. Suppose an RV Z following a probability density
function fZ(z), then minimizing J(y) = Ez∼Z [d1(y, z; τ)] equals to:

min
φ

Ez∼Z [τ(z − y)]−
∫ y

−∞
(z − y)fZ(z)dz

min
φ

τEz∼Z [z]− τy −
∫ y

−∞
zfZ(z)dz + y

∫ y

−∞
fZ(z)dz

Clearly, the derivative is dJ
dy

= −τ − yfZ(y) +P(z ≤ y) + yfZ(y) = P(z ≤ y)− τ , hence J(y) a unimodal with minimum
when P(z ≤ y?)=τ , i.e. y? the τ -percentile of the RV Z. Likewise for d2(y, z) = (z − y)2 we get the minimum when
y? = E[z] which explains (3.23)
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Figure 3.2: The architecture of the Neural Networks

a combination of QSx (sin) ∈ R|A| and QMx (sin) ∈ R and its components are computed in the
following way:

QDx (sin)a=QMx (sin)+
(
QSx (sin)a−

1

|A|
∑
a∈A
QSx (sin)a

)
,∀a ∈ A (3.27)

This pushes QMx (sin) = 1
|A|
∑
a∈AQDx (sin)a ≈ 1

|A|
∑
a∈AQ(sin, a) in a natural way (this can be

seen by averaging (3.27) over every a ∈ A ). Therefore QM (sin) represents the mean value of
the state sin.

Coming back to our case, we use this idea in a different way. Instead of averaging for a specific
state over the state-action value the different possible actions we have, we propose to average
for a specific state-action over the quantiles of the (approximated) distribution of the discounted
accumulated reward. The value NN Zπθφ (s, a) outputs from Zπθ,Dφ (s, a) = (y1, ..., yNQ) ∈ RNQ
characterizing the RV Zπθ (s, a) approximating the distribution of Zπθ (s, a) exactly as described
previously and the parameters φ are optimized so as to minimize the loss LD1 (φ) as described by
(3.26). Now we design the dueling architecture composed by Zπθ,Mφ (s, a) ∈ R and Zπθ,Sφ (s, a) ∈
R
NQ . Setting τi = 2i−1

2NQ
⇒ pi = 1

NQ
,∀i gives Zπθ,Mφ (s, a) meaningfulness since it averages over

the output Zπθ,Dφ (s, a) equal to

∑NQ
i=1 yi
NQ

=

NQ∑
i=1

piyi = E[Zπθφ (s, a)] ≈ E[Zπθ (s, a)] = Qπθ (s, a). (3.28)

From (3.28) we realize that an approximation of the objective which the Actor NN (3.20) seeks
to maximize is provided through Zπθ,Mφ (s, πθ(s)) and therefore this output is used to compute the
gradients in (3.21).
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Figure 3.3: Dueling Explanation

The dueling trick turns out to be helpful. We assume the
reason is that it splits the work of the value NN into two sub-
problems. One finding the center mean of the distribution of
the approximated sum of discounted returns and another the
shape of this distribution which happens to be very similar for
different state-action input. Hence, this ”shape” NN does not
have to change much even if the mean changes.

So far, we implicitly forced Zπθ,Mφ (s, a) to be an approximating mean of Zπθ,S(s, a) through the
dueling architecture and optimizing the output Zπθ,Dφ by minimizing LD1 (φ) as in (3.26). Obviously,
it is possible to train Zπθ,Mφ (s, a) directly by skiping the dueling and distributional approach, ie, by
minimizing the quadratic loss LM2 (φ) as in (3.23). But, we can also think to do a trade off between
both losses:

L(φ) = ρlossesLD1 (φ) + (1− ρlosses)LM2 (φ), ρlosses ∈ [0, 1]

When ρlosses = 0, the distributional approach is not applied and it leads to the worst results. When
ρlosses does not vanish, we have observed similar results to the case ρlosses=1 but occasionally
with faster convergence.

3.7 Common Features

In order to reduce the number of parameters and the sensitivity to the environment variation,
we propose to “share” the first part of the value NN with the actor NN. Specifically as shown in
Figure 3.2 we assume the value NN to consist of two sub-networks, the blue one with parameters
φ1 that we call feature sub-network8 and the red one with φ2. The total parameters are φ =

[φ1, φ2]. Respectively for the actor NN we have θ = [θ1, θ2]. The idea is the feature sub-network
of each to have the same structure and to push for φ1 = θ1. The feature sub-network converts
the input state to a set of features that should be useful to both the Actor NN and Value NN.
Those features are useful to both since if these features are enough for value NN to output a
good approximation of state-value function Qπθ (s, a) then they should be adequate for the Actor
NN to maximize this same function. The way we push for φ1 = θ1 is by training the complete
value NN independently and we “synchronize” slowly the feature sub-network of the Actor NN by
θ1 ← ρsyncft θ1 + (1 − ρsyncft )φ1. The actor does not use the gradients given in (3.21) to update
its feature sub-network, but it is improved slowly as the feature sub-network of the value NN is
improving. Important detail is ρsyncft to be smaller than the learning rate of the actor so as to have
“enough time” to adapt to the changes of his features imposed by the value NN.

3.8 Architecture, Multi-Agent, and Scalability

Assuming that the input to the actor NN is st = (xt,1, . . . , xt,K) where xt,i is the input information
related to the ith user at time step t and the actor NN provides the action at = (at,1, . . . , at,K), then
we want any permutation of xt,i to lead to the same permutation of at,i. To force this, we need
at,i = fa(Fself (xt,i), Fothers({xt,j : j 6= i})), ∀i where Fothers(·) is a vector valued function invari-
ant to permutation of the input (commutative). Respectively, assuming the value NN takes input

8It is implemented with convolutional layers performing the same manipulations on the input information corresponding
to each user without mixing them.
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(vt,1, · · · , vt,K) with vt,i = (xt,i, at,i) then if we denote the output as a function fv(vt,1, · · · , vt,K),
fv(·) has again to be commutative. Those remarks not only allow us to build networks that scale
insignificantly as the number of users (and so the input) K increases, facilitating therefore the
training, but also they provide interesting links to some ideas related multi-agent settings.

Our problem can be thought as a centralized fully co-operative multi-agent task. Specifi-
cally at each time slot one can think of K agents, each undertaking the responsibility to sat-
isfy one user. The agents do not act selfishly to satisfy their own user but a global goal. Fi-
nally all agents have access to the information related to all the users. We use a Deep De-
terministic Policy gradient approach like in [58] but here we prefer to use a single centralized
critic for all agents. Also, previously we showed that each agent i takes a decision of the form
at,i = fa(Fself (xt,i), Fothers({xt,j : j 6= i})), ∀i which means (contrary again to [58]) that all
agents actually use the same function to take their decisions. The function is implemented using
a NN structure, which means that all the agents are sharing parameters, like what the authors of
[59] do in a similar fully co-operative and partially observable setting.

Finally, there is some connection to [60] where again there is a co-operative multi agent setting
and a centralized critic is used. Trying instead of using a global reward function to train each
agent, they personalize it for every agent by introducing a counterfactual baseline. This baseline
encapsulates the advantage a certain action of an agent brings to the system while keeping
the actions of the rest of the agents the same. The idea of comparing one agent to the rest
is also somehow apparent in our case but through the form the agents policy function has, i.e.
at,i = fa(Fself (xt,i), Fothers({xt,j : j 6= i})).

In the full CSI since we can easily compute how much bandwidth wthu,t each user needs at time
t, for the scheduling we only need know which ones to prioritize. So the action at gives a sorting
of the users and we satisfy accordingly as many as the total resources allow. The function fa(·)
gives a value to each user and the most valuable ones will be the first ones to be considered to
be served and if the available resource allows it they will be served. We pick the fa(·) to have
a softmax form, specifically fa = eFself (xt,i)

eFself (xt,i)+
∑
j 6=i e

Fself (xt,j)
. For the statistical CSI the amount of

resources each user needs cannot be straightforwardly estimated so each agent on top of the
value of a user estimate also the (minimum) bandwidth it needs.

Finally to create a value NN that is commutative to its input and disassociate its output from
the index identity of each user, i.e. by looking the output of the value of NN to not be able to infer
any knowledge on who is the i-th user, we sort the users according to their value given by the
actor. Therefore the value NN will get in his i-th input the information associated to the user who
has the i-th bigger value (and since the values of each user is disassociated to their index identity
we succeed to attain the commutative property). Now for example the value NN knows that at its
first input will always have to process the information related to the most valuable user. We point
out that the sort is by default a commutative function and that a linear transformation like y = Ax

can only be if all the entries of matrix A are equal to each other so a traditional feed forward neural
network structure has troubles approximating a commutative behaviour.

3.9 Exploration issue

It is important that the Value NN not only correctly predicts Zπθ (s, a = πθ(s)) but also approx-
imates as precisely as possible the state-action function when “neighboring” actions are taken,
i.e., Qπθ (s, a ∈ Bε(πθ(s))) (where Bε(x) is a ball of radius ε around center x). This enables the
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actor NN to correctly optimize its policy and improve gradually its actions. Therefore the Value NN
has to be fed with not only the actions coming from the actor’s policy πθ(s) but also with randomly
perturbed version of them so as to explore the neighborhood.

As previously stated, our environment exhibits randomness with large variance. For the same
(st, at) (state-action) it can ”easily” happen, especially in the statistical CSI case, the accumulated
reward Zπθ (st, at) in one realization to be high and in another low, which means in the first time
the actor will try inn state st to do again the action at and in the second instance to avoid it.
Therefore the difficulty to estimate E[Zπθ (st, at)] does an unavoidable exploration. Also due to
the common features there can be an exterior influence on the policy of the actor leading to
possibly changing some actions and therefore to some exploration. Nonetheless an additional
perturbation is beneficial especially for the full CSI case.

The perturbation on an action at ∈ A should be done in a way that the final action a′t is
still a valid action, i.e. a′t ∈ A. In our case the action at is putting a value to each user using
a softmax which by definition satisfy a simplex constraint. The so-called Dirichlet distribution
obeys also these simplex constraints. Therefore, a straightforward way to disturb some actions is:
a′t = (1−ρnoise)at+WρnoiseU, ρnoise ∈ [0, 1], where U ∈ R|Uactt | a Dirichlet-distributed RV. For the
statistical CSI the actor also output the bandwidth so we perturb this action by adding Gaussian
noise N (0, σ2

bw).

3.10 Simulations

In our simulation We consider users located at a distance from the base station varying from
dmin = 0.05 to dmax = 1 kilometers. The distance dependent path loss is set to be 120.9 +

37.6 log10(d) in dB which is compliant to LTE standard [61] and in our setting it translates to the
constant loss component Cpl = 10−12.09 and path loss exponent npl = 3.76. The AWGN power is
σ2
N = −149dBm/Hz. The characteristic of the classes the users can belong to are summed up at

the table 3.1. We examine first the full CSI case where we set the maximum number of users to
be equal to K = 100 and then the statistical CSI case, for which we consider K = 25. One can
estimate that in a time slot the average number of “real” users, i.e., not belonging to the null class,
is equal to 100 0.2·2+03·10

0.2·2+0.3·10+0.5·1 ≈ 87.

Dc Lc αc pc
class 1 256 Bytes 2 1 0.2
class 2 2048 Bytes 10 1 0.3

null class 0 1 0 0.5

Table 3.1: Classes description

Obviously, with abundance of resources it is easy to always satisfy all users, rendering im-
possible to distinguish a good from a bad policy. We set the energy per symbol to be equal to
P = 10−6Joule = 1µJ. So for example for the full CSI where W = 2MHz is used, it corresponds
to power P = 2Watt. The value of W = 2MHz is chosen so the maximum performance of the
upper bound retrieved by the ILP oracle method to be equal to satisfying approximately 99% of
the users. It can be easily confirmed from Figure 3.4 that this maximum performance is achieved
when there is no time correlation between channel realizations, i.e., ρ = 0.
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We proceed to a short description of the model and the hyperparameters. The function Fself (·)
consists of two parts and the first one belongs to the feature NN. This part starts with a batch
normalization [62] since the magnitude of the values of the different components of the input vary
significantly. Then it is followed by two hidden layers with hyperbolic tangent function as activation
function and 50 neurons each. The next part is another two hidden layers with 50 and 25 neurons
respectively with both tanh as activation function and the output in the of size 1 in the full CSI
or of size 2 in the statistical CSI (where both the value and resource each user requires is the
output). The value NN shares the same first part for the feature NN and the second part has on
the distributional side two hidden layers of 50 neurons each using a rectifier linear unit (ReLU) and
the output is only a linear combination of 9 outputs (representing 9 quantiles). The other side is
identical but outputs only one value (representing the mean). The optimizer used was RMSProp
[63] with learning rate 10−4 and the gamma parameter equal to γ = 0.6. The ρlosses = 0.9 and
ρsyncft = 10−3. We perturbate 30 percent of the samples with a Dirichlet distribution with all of
the concentration parameters equal to 1 and ρnoise = 0.1 and as the performance improves we
reduce to 5 percent of the samples to perturbate.

In Figure 3.4 we plot the probability of a user decoding its packet successfully during the
requested latency. As the channel time correlation ρ increases each user experiences less time
diversity throughout its lifespan resulting to a decrease of its likelihood of receiving successfully its
packet. On the extreme case of ρ = 1, if a user experiences a very bad channel realization, then
because it remains constant there is no chance of getting a better channel and so get satisfied
throughout its lifespan.

Obviously when using an oracle that knows the channel values of the future T − 1 steps and
uses that unrealistic information optimally, then we obtain an upper bound of the performance. As
T increases there are diminishing performance gains. In our setup we cannot see any significant
additional gain for values T > 6 so we keep T = 6. Interestingly it means that there is negligible
impact of further in the future time steps on the present scheduling decision. This agrees on our
choice of a small value of γ for the DRL.

In both Figures 3.4 and 3.5 we see the DRL algorithm to perform convincingly better than
the knapsack benchmark. We remind that the knapsack benchmark is optimal when we want to
maximize myopically only the present objective, neglecting any effect that the scheduling decision
might have on the future. Contrary to the DRL method, it cannot take into consideration that a
user might reaches his latency deadline so it needs to be prioritized. Also it cannot differentiate
when currently a user u requires small wthu,tc if the chance to be satisfied is high because, even
though this user requires a lot of data Du and is far from the base station, its channel gain |hu,t|2

is surprisingly large or when it can be postponed for a next round since the reason of the good
wthu,tc is due to the small distance du from the base station and the few data Du the user requires.
So in this case, most likely even in the future it is likely wthu,t, t > tc to be low. Overall we can see a
4% increase of satisfied users given a specific amount of resources. From another aspect given a
required 96% success probability, Figure 3.5 shows that the DRL method saves 13% bandwidth
resources. We point out that since we keep constant the energy per symbol the 13% bandwidth
saving comes with an 13% energy saving also.

Next, we turn to the case of statistical CSI. Since only statistical properties of the channel
are now available, the scheduler needs extra resources to compensate the lack of knowledge
to successfully serve a smaller number of users. We set K = 25 and for Figure 3.6 increase to
W = 4MHz. Looking from Figures 3.6 and 3.7 we see an advantage in performance for employing
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Figure 3.4: Probability of successfully satisfying a user versus the correlation factor ρ, Number of
initialization for the Frank-Wolfe Ninit = 3

a DRL scheduler but not a clear one.
As discussed in the section where Frank-Wolfe approach was presented, using the exact time

correlation parameter ρ to perform the optimization is too complicate so we restricted to using
the expressions retrieved by assuming either i.i.d. channel fading (ρ = 0) or constant (ρ = 1)
even if the exact channel correlation has an intermediate value ρ ∈ (0, 1). In Figure 3.6 we see
that using the expression of either ρ = 0 or ρ = 1 does not bring much difference so we can
reasonably assume that even using expressions with the exact value of ρ wouldn’t change much
the performance of the Frank-Wolfe algorithm.

We also want to test the impact of the number of future time steps we take into consideration
for the Frank-Wolfe algorithm on the performance. From Figure 3.6 we see that to depend just
on the present maximization of the objective, i.e., taking T = 1, is a bad strategy, but increasing
a lot the time horizon and trying to form a scheduling plan including time steps much further on
the future is not beneficial. This is not beneficial not only because the complexity of computing
the objective function and its derivatives grows exponentially but also the performance does not
necessarily improves. This consents with the choice of the γ parameter to be that low (γ = 0.6).

Finally since the Frank-Wolfe converges to a local optimum, a simple way to secure a good
performance is to repeat the process multiple times starting from different random initialization
points (in our simulation realized by a uniform distribution) and pick the best local optimum. Ob-
viously, as confirmed in figure 3.7, increasing the number Ninit of random initialization results to
a bigger set of local optimum from which we choose the best one so the performance increases.
Fortunately, increasing Ninit gives diminishing returns and there is no need to search for many
local optimums.

A natural question is the following: if it does not matter much that the Frank-Wolfe algorithm
retrieves local optimums or that it takes a small future time horizon into consideration or that it
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Figure 3.5: Probability of successfully satisfying a user versus the bandwidth W , Channel time
correlation ρ = 0
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Figure 3.6: Probability of successfully satisfying a user versus the correlation factor ρ. Number of
initialization for the Frank-Wolfe Ninit = 3

uses in its expression an approximation of ρ to either equal to one or zero then, then how can
it have a marginally worse performance than a DRL method? The last drawback of Frank-Wolfe
that might contribute to the inferior performance, is that it does not consider the future users that
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Figure 3.7: Probability of successfully satisfying a user versus the bandwidth W . Frank-Wolfe
time horizon T = 3, channel time correlation ρ = 0

may appear in a way that it will plan differently according to what their characteristics will be but
it treats them by averaging all the possible scenarios and we believe this is the reason it slightly
falls back to DRL in performance.

Of course we should not forget the fact that once a DRL model is trained, it takes no time to
run as compared to the huge complexity of the Frank-Wolfe approach. Still the DRL approach has
the problem of training which can take hours and the performance depends that the environment
does not change from training to testing. So the question, which is the topic of future investigation,
is if DRL is employed and some properties of the environment change, how fast would it be able
to retrieve a good performance.

3.11 Conclusion

In this chapter we investigated the problem of centralized scheduling of bandwidth resources un-
der multi-class traffic in terms of data requirements and latency constraints. We distinguished
between two different cases depending on the information the scheduler has regarding the chan-
nel quality of the users: one of full CSI information and one of statistical only. We compared
state-of-the-art combinatorial, integer linear programming programming and optimization algo-
rithm with one based on deep reinforcement learning. The deep reinforcement learning method
we developed manages to train a neural network model outperforming in the full CSI case a knap-
sack algorithm that optimally maximizes a myopic version of the objective. Using an oracle based
solution we can get an tight upper bound of the performance and we verify that the neural net-
work model is not far from it. Passing to the statistical CSI case the DRL method was compared
to a Frank-Wolfe approach, which managed to marginally outperform, providing close to optimal
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performance.
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Conclusions and Perspectives

In this thesis we focused on communication over wireless channels under strict latency con-
straints. We investigated how to efficiently apply retransmission protocols and how to optimally
distribute the resources among users on each round. We investigated the problem from two
different perspectives in terms of network layers:

• The physical layer where we focused on a single user where a packet of a specific size has to
be delivered with extremely reliability and within stringent latency constraints. We proposed
a dynamic programming algorithm that splits the available time interval into smaller so as
to allow retransmissions and distributes the power properly so as to optimize the IR-HARQ
mechanism in terms of either energy consumption or throughput.

• The media access control where we take into consideration multi-user scenarios where
each user can have its own service requirements in terms of data received and latency.
We proposed a deep reinforcement algorithm that can train a neural network, which can
outperform some traditional combinatorial or optimization approaches.

In the first as well as the second chapter we focused on the physical layer for a point-to-point
communication where a fixed number of information bits needs to be transmitted under require-
ments of low latency and high reliability. The goal was to configure an HARQ scheme in an
optimal way and assess its benefits. The low latency constraint enforces a limited number of sym-
bols to be transmitted which compelled us to use finite blocklength information theoretic results
to describe the optimization problem we cast. Unfortunately, the analytical expressions are more
involved than in the widely used infinite blocklength (Shannon) framework, which consequently
makes the problem harder to solve analytically. We managed to simplify it after mathematical ma-
nipulations and then illustrate an algorithm based on dynamic programming that solves optimally
this complicate non-convex optimization problem.

Although we got useful intuitions and an algorithm to properly optimize an HARQ scheme
and attain optimal energy or throughput in chapter 1, the problem that was tackled was restricted
to additive white Gaussian noise channels. In chapter 2, we extended our scope considering
a channel model where the signal is also distorted by Rician fading. We investigated the two
distinct sides of Channel State Information where, on the one side, the transmitter knows exactly
the channel fading coefficient (which can be estimated by the use of pilots), and on the other
only statistical properties of the channel are available. Before proceeding on the evaluation of the
IR-HARQ schemes we showed a way of finding the feasibility region. Interestingly, we found that
even a reasonable scheme which efficiently exploits the full CSI has a smaller feasibility region
than the one with statistical CSI, and that without even accounting for the need of sending pilots
to get a full CSI. Therefore we questioned the robustness of full CSI schemes in occasions with
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ultra reliable and low latency communication requirements. In terms of performance however the
availability of full CSI is shown to yield huge energy and throughput benefits. We finally argued
that pursuing solely energy minimization or throughput maximization can be detrimental for the
throughput or energy respectively, hence, any optimization must take both of those dimensions
into account.

We moved to the media access control layer in chapter 3 where we looked to a multi user
scenario. We considered, as always in this thesis, the setup where users can only be satisfied if
they get their packet within a strict time interval but retransmissions are allowed inside it. Following
the paradigm of 5G, each user belongs into classes (in 5G those could represent eMBB, mMTC,
and URLLC scenarios) which define their needs and therefore their requirements. The problem
was once again how to distribute the resources but now not only over time but over the different
users. We insisted again on the necessity to investigate the two opposite side of CSI, so we built
benchmarks for the full CSI case and for the statistical CSI. Against those we built a reinforcement
learning algorithm that applies to both CSI cases and manages to train a model that from our
simulation results we verify that it outperforms the benchmarks.

Perspectives

Following the line of the work done in chapter 2 in the future we aim to consider the case of
imperfect CSI. Increasing the number of pilots renders a more reliable CSI but, on the other hand,
it pays a toll on the latency. We would like to test how many pilot symbols are needed in order
the transmitter to get reliable enough information about the channel quality without compromising
significantly the latency.

In chapter 3 there are multiple directions we aim to concentrate. The scheduling algorithm
we proposed was targeting at the efficient distribution of the bandwidth across multiple users and
over time. The first step is to add the possibility of power adaptation and serve the users with a
personalized power consumption. Moreover, again we can consider the case of imperfect CSI. We
would like to insist that under those more realistic but also more complicated conditions it is hard
to find benchmarks that will have any optimality guarantee. On the other hand the Reinforcement
learning will be able to train a model but whose performance has to be tested. Additional aspects
are to consider a multi cell environment where users from different cells may be served under
the same frequency band and so interfere each other. In those scenarios maybe an intercell
communication can change the scheduling decision and mitigate or avoid interference.

Another two directions that we would like to investigate are the robustness of our proposed
deep reinforcement learning algorithm and the possibility of using recurrent neural networks. To
check the robustness we are planning after training a model to change the characteristic of the
environment. Specifically we would like to see by changing the traffic and/or the channel model
how much will deteriorate the performance and more importantly how long will it take to be trained
and reach again maximum performance. Finally in multi-agent collaborative tasks it has been
shown that a recurrent NN structure can be beneficial [59], [60], [64] so it is interesting to see
whether this will also be beneficial in our setup.
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Appendix A

A.1 Proof of Lemma 1

Let ~P ?M = (~P ?M−1, P
?
M ). If εM−1 ≤ εM at (~n?M ,

~P ?M ), then (~n?M ,
~P ′M ) with ~P ′M = (~P ?M−1, 0) offers

a lower consumed average energy since the last term in the sum of the objective function (1.2)
can be removed while the other terms remain identical. This leads to a contradiction preventing
εM−1 ≤ εM at the optimal point.

A.2 Proof of Lemma 2

Let us denote by ∂εM/∂P the derivative function of P 7→ εM (~n†M ,
~P †M−1, P ). We will prove that

∂εM/∂P|P=P †M
< 0. By change of variables y = 1/(P + 1)2 and setting y† = 1/(P †M + 1)2, we

show that

∂εM
∂P

< 0 at P = P †M ⇔ ∂εM
∂y

> 0 at y = y†

⇔ h(y) > 0 at y = y† (A.1)

where
h(y) = k2 − yk1 + nM (1− y + y ln(y)/2), with

k1 =

M−1∑
i=1

ni ln(1+Pi)−B ln 2 and k2 =

M−1∑
i=1

ni

(
1− 1

(1 + Pi)2

)
.

It is easily proven h(y) to be a monotonically decreasing function. If h(1) ≥ 0, then (A.1) is
straightforwardly satisfied. Now, if h(1) < 0, then it exists y0 ∈ (0, 1) such that h(y0) = 0. So
for y ∈ [y0, 1], we get h(y) ≤ 0, which implies that εM is decreasing with respect to y. As a
consequence, for y ∈ [y0, 1] and so the corresponding P (y), we have εM (~n†M ,

~P †M−1, P (y)) ≥
εM (~n†M ,

~P †M−1, 0) = εM−1(~n†M−1,
~P †M−1) which prevents to have P (y) = P †M according to the

assumption εM−1 ≥ εM on the analyzed point. Consequently, y† does not belong to [y0, 1], and
belongs to (0, y0) where (A.1) holds.
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A.3 Proof of Lemma 3

Let ε1 = Q(F1(a)) and εM = Q(F (a)) where

F1(a) =
g1(a)− c√

g2(a)
and F (a) =

g1(a) + c1 − c√
g2(a) + c2

,

with g1(a) = an1 ln(1 + P1

a ), g2(a) = an1

(
1 − 1

(1 + P1

a )2

)
, c1 =

∑M
m=2 nm ln(1 + Pm), c2 =∑M

m=2 nm

(
1− 1

(1+Pm)2

)
, and c = B ln 2. As we consider a point in B, we get

ε1 < 0.5⇔ an1 ln(1 +
P1

a
) > c⇒ E1 > B ln 2 (A.2)

where E1 = n1P1. To prove (A.2), we used the inequality ln(1 + x) ≤ x when x ≥ 0. Once again,
belonging to B leads to

F1(a) ≤ F (a) ≤
√

2B ln 2

3
. (A.3)

We want to show that ε1 and εM are decreasing functions with respect to a, i.e., F ′1(a) ≥ 0

and F ′(a) ≥ 0 where f ′(a) stands for
df

da
for any mapping f . As g1(a), g2(a), g′1(a) and g′2(a) are

strictly positive, we have

F ′1(a) ≥ 0 ⇔ 2g′1(a)g2(a) ≥ g′2(a)(g1(a)− c) (A.4)

⇔ c ≥ E1H

(
P1

a

)
(A.5)

and

F ′(a) ≥ 0⇔2g′1(a)(g2(a) + c2) ≥ g′2(a)(g1(a) + c1 − c) (A.6)

⇔c ≥ E1H

(
P1

a

)
+ (c1 −K

(
P1

a

)
c2) (A.7)

where

x 7→ H(x) =
2x+ 4− ln(1 + x)( 4

x + x+ 3)

x(x+ 3)
,

and

x 7→ K(x) =
2(x+ 1)3

(
ln(1 + x)− x

x+1

)
x2(x+ 3)

.

After some algebraic manipulations, (A.4) and (A.6) are equivalent to

F1(a) ≤
2g′1(a)

√
g2(a)

g′2(a)
=
√
E1W

(
P1

a
, 0

)
(A.8)

F (a) ≤
2g′1(a)

√
g2(a) + c2

g′2(a)
=
√
E1W

(
P1

a
,
c2
E1

)
(A.9)
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with

(x, y) 7→W (x, y) = K(x)

√
y +

x+ 2

(1 + x)2
. (A.10)

We want now to prove that ( (A.5) OR (A.8) holds for any x > 0) AND ((A.7) OR (A.9) holds for
any x > 0). For that, we split the analysis into two intervals on x.

• If x ∈ (0, 484): the function x 7→ W (x, 0) is a positive unimodal function converging to zero
when x → ∞. For x ∈ (0, 484), it is easy to check that W (x, 0) ≥ W (0, 0) =

√
2
3 . 1 As

W (x, y) > W (x, 0) for any y ≥ 0, we obtain that
√
E1W (x, y) ≥

√
E1W (x, 0) ≥

√
2E1

3
. Due

to (A.2), we have
√
E1W (x, y) ≥

√
E1W (x, 0) ≥

√
2B ln 2

3
. According to (A.3), we check

that
√
E1W (x, y) ≥

√
E1W (x, 0) ≥ F (a) ≥ F1(a). Therefore, (A.8) and (A.9) hold.

• If x ∈ [484,∞): in that interval, we can see that H(x) ≤ 0, which implies that (A.5) holds.

It now remains to check that either (A.7) or (A.9) holds. For doing so, we distinguish two
cases:

◦ If c1 ≤ 10.37c2: one can check that K(x) is an increasing function. Therefore for
x ≥ 484, we get K(x) ≥ K(484) > 10.37. Consequently, c1 −K(x)c2 < 0. As H(x) ≤ 0

too for x ≥ 484, it is easy to show that (A.7) holds.

◦ If c1 > 10.37c2: this inequality leads to

M∑
m=2

nm ln(1 + Pm)− 10.37nm

(
1− 1

(1 + Pm)2

)
> 0

which forces that there exists at least one mx ∈ {2, ...,M} such that:

nmx ln(1 + Pmx) > 10.37nmx

(
1− 1

(1 + Pmx)2

)
> 0⇒ Pmx > 31866

which implies that:

c2 ≈ nmx +
∑

m∈{2,..,M}\mx

nm

(
1− 1

(1 + Pmx)2

)
⇒ c2 > nmx .

Consequently, according to (A.10),
√
E1W

(
x,
c2
E1

)
≥ K(484)

√
nix ≥ 10.37 ·

√
1. If

(A.9) does not hold, one can see that εM < Q(10.37) ≈ 1.7·10−25. As this error does
not correspond to any reasonable operating point, we consider that (A.9) holds.

1In general for x ∈ (0, 484) it holds W (x, y) ≥
√
y + 2

3
, so for (A.9) to hold it is enough to show F (a) ≤

√
c2 + 2E1

3
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A.4 Proof of Result 2

Consider the last round M where for the optimal point (~n?M ,
~P ?M ), we know that εM−1 > εM (see

Lemma 1 and its related proof for more details). For x ∈ [0, n?M ], let

F (x) = Q

x ln(1 + P ?M ) +
∑M−1
i=1 n?i ln(1 + P ?i )−B ln 2√

x
P?M (P?M+2)

(P?M+1)2 +
∑M−1
i=1 ni

P?i (P
?
i +2)

(P?i +1)2

 .

We know that F (0) = εM−1 > εM = F (n?M ) and that F (·) is a continuous (not necessary mono-
tonically decreasing) function. Therefore, it exists x0 ∈ (0, n?M ) such that F (0) < F (x0) <

F (n?M ). If F is smooth enough, it exists an integer n ∈ {1, 2, ..., n?M − 1} (typically equal to
bx0c or dx0e) such that εM−1 > F (n) > εM . Then, the new point of M + 1 rounds, which is
(~n?M−1, n, n

?
M − n, ~P ?M−1, P ?M , P ?M ), leads to the following average energy

M−1∑
m=1

n?mP
?
mεm−1 + nP ?MF (n) + (n?M − n)P ?MεM−1,

which is smaller that the average energy provided by the point (~n?M ,
~P ?M ). Obviously the reliability

constraint (given by εM ) remains unaltered and the latency constraint does not change since
D(~nm) = 0. So increasing the number of transmissions to M + 1 improves the optimal operating
point of M transmissions.

A.5 Proof of Lemma 4

To prove the lemma, we will prove that if for some solution the states S̃i−1, S̃i,S̃i+1 satisfy c̃i−1 ≥ c̃i
and c̃i < c̃i+1, then there exists a better solution, thus it cannot be the optimal one. Therefore,
if for the optimal solution for some i we know c?i+1 > c?i then it must c?i > c?i−1 and since from
Lemma 1 we know c?M > c?M−1, this lemma is proved by induction.

To prove the existence of a better solution we only have to prove the superiority of a con-
figuration of M − 1 rounds that goes directly from the state S̃i−1 to S̃i+1 using one fragment of
blocklength ni + ni+1 and has exactly the same configuration before and after those states (then
due to Proposition 2 there exists an even better configuration with M rounds) Hence, we only
need to prove:

∆E(S̃i−1, S̃i) + ∆E(S̃i, S̃i+1) ≥ ∆E(S̃i−1, S̃i+1). (A.11)

Since a zero delay penalty is assumed, using (1.3) and (1.4) with equalities allows us to derive
that

∆E(Sk−1, Sk) = nkPkεk−1 = nk(e
γk
nk − 1)Q(ck−1)

where γk = ck
√
Vk − ck−1

√
Vk−1 > 0. Since c̃i−1 ≥ c̃i, to prove (A.11) it suffices to prove that

ñie

γ̃i
ñi + ñi+1e

γ̃i+1

ñi+1 ≥ (ñi + ñi+1)e

γ̃i + γ̃i+1

ñi + ñi+1 .
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Changing variables as λl =
ñl

ñi + ñi+1
and xl =

γ̃l
ñl

, l ∈ {i, i+ 1}:

λie
xi + λi+1e

xi+1 ≥ eλixi + λi+1xi+1 ,

which holds due to the convexity of the exponential function.

A.6 Proof of Result 3

We consider Ei = n?iP
?
i where n?i and P ?i are the i-th blocklength and power components of the

optimal solution (~n?M ,
~P ?M ) respectively. Notice that each Ei depends on N . Let us assume that

it exists at least one i0 ∈ {1, 2, ...,M} such that lim
N→∞

Ei0 = ∞. According to Lemma 4, we know

that ε1 > ε2 > ...εM = 1 − Trel > 0 at the optimal point. Consequently, the minimum average

energy lim
N→∞

(
E1 +

M∑
i=2

εi−1Ei

)
= ∞ too. For at least one finite N , say Nf , the optimal point

leads to a finite minimum average energy. For any N > Nf , the optimal solution cannot increase
the minimum average energy since the optimal solution at Nf is a feasible point of Problem 1 for
N . So the minimum average energy is upper bounded when N →∞. Therefore,

lim
N→∞

Ei <∞,∀i ∈ {1, 2, ...,M}.

When N → ∞, both the delay feedback model don’t not have an impact on the latency con-
straint (1.3) (since D(·) doesn’t allow infinite values for finite input), so we can generally apply the
results obtained for D = 0. According to Lemma 3, we also know that it is preferable to increase
the blocklength rather than the power in order to save energy. Therefore, when N →∞, we have
to take n?1 as large as possible, i.e., lim

N→∞
n?1 = ∞. Similar arguments can be applied to the other

rounds, i.e., lim
N→∞

n?i =∞ with i ∈ {2, · · · ,M}. We prove below that Ei = lim
N→∞

n?i ln(1 + P ?i ):

P ?i
P ?i + 1

≤ ln(1 + P ?i ) ≤ P ?i

⇒ lim
N→∞

n?iP
?
i

P ?i + 1
≤ lim
N→∞

ni ln(1 + P ?i ) ≤ lim
N→∞

n?iP
?
i

⇒ Ei
0 + 1

≤ lim
N→∞

ni ln(1 + P ?i ) ≤ Ei.

Now we can easily confirm (1.1) leading to

lim
N→∞

εm = lim
N→∞

Q

(∑m
i=1 n

?
i ln(1+P ?i )−B ln 2√√√√ m∑

i=1

n?iP
?
i

P ?i + 2

(P ?i + 1)2

)

= Q

(∑m
i=1Ei −B ln 2√

2
∑m
i=1Ei

)
. (A.12)
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Putting m = M in (A.12) and using the reliability constraint (1.4) with equality, we have

M∑
i=1

Ei =
(Q−1(1−Trel))2

2

(
1+

√
1+

2B ln 2

(Q−1(1−Trel))2
)2

(A.13)

where its right hand side corresponds to the energy when no HARQ (M = 1) is used and is
denoted by E∞No−HARQ.

A.7 Proof of Result 4

The function E 7→ Q
(E −B ln 2√

2E

)
is plotted in Figure A.1. We also draw the m-th component

of the objective function (1.26) of Result 3, which corresponds to the area of the partially grey
partially green rectangular box located from

∑m−1
i=1 Ei to

∑m
i=1Ei with a level εm−1 (see (A.12)).

According to (1.25), the final point is E∞No−HARQ. Consequently, the sum of the green and the
grey areas gives the value of the objective function (1.26). It is evident that the function E 7→
Q
(E −B ln 2√

2E

)
coincides at the upper left corner of each rectangular box and is always inside

each rectangular box (due to its decreasing monotonicity). Therefore, the value of the objective
function (1.26) cannot be lower than the green area. When M → ∞, we can decrease the width
of each rectangular box converging to a solution that includes only the green area. Consequently,
the minimum energy spent converges to the green area, which is identical to the Riemann integral

of E 7→ Q
(E −B ln 2√

2E

)
from 0 to E∞No−HARQ.

0 E1 E1+E2 E1+E2+E3 E1
no!HARQ

"3

"2

"1
1

Q(E!B ln 2p
2E

)

Figure A.1: Geometrical interpretation of Result 3 for M = 4.

A.8 Proof of Proposition 2

The constraints of the problems 5 and 4 are the same, therefore they share the same feasible
domain that we denote by D. Thus, (Bmod, ~nmodM , ~PmodM ) is a feasible point of Problem 4. Since
Th? is the optimal value and Th just a feasible one, we have that Th ≤ Th?. Furthermore,

the solution of Problem 5 guarantees that for every point in D it holds
B∑M

m=1 nmεm−1
≤ Th

Trel
.

Therefore if x? ∈ D is the optimal point of Problem 4 and gives an error probability of ε?M , then
Th?

(1− ε?M )
≤ Th

Trel
from which we can easily show that Th? ≤ Th

Trel
.
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A.9 Proof of Proposition 3

The proof is a combination of the proofs at A.1 and A.4 but applied now at the problem 6. If
(~n?M ,

~P ?M ) is the optimal solution of problem 6 and ε?m = ε(~n?m, ~P
?
m) ( where ~n?m (resp. ~P ?m) is an

extracting vector from the m-th first components of ~n?M (resp. ~P ?M ) ) then it holds that ε?M−1 > ε?M
since if not, by just removing the M -th round (or equivalently setting nM = 0) we arrive to a
better than optimal solution, i.e. giving smaller objective function (1.36) while satisfying all the
constraints (1.37-1.39).

So by not wanting to reduce the number of rounds we proved ε?M−1 > ε?M but it remains to
show that if we increase M , we can do striclty better. Following exactly the same steps as in proof
at A.4, with M + 1 rounds available, it is possible to find a point (~n?M−1, n, n

?
M −n, ~P ?M−1, P ?M , P ?M )

with average consumed energy:(
M−1∑
m=1

n?mP
?
mε

?
m−1

)
+ nP ?MF (n) + (n?M − n)P ?MεM−1 <

M∑
m=1

n?mP
?
mε

?
m−1 ≤ Et

so that the energy constraint (1.39) is satisfied. It also attains the same error probability as with M
rounds (namely ε?M ) so also the reliability constraint (1.38) isn’t violated. On top of being feasible
it gives a lower objective function (1.36)(

M−1∑
m=1

n?mε
?
m−1

)
+ nF (n) + (n?M − n)εM−1 <

M∑
m=1

n?mε
?
m−1

and this concludes the proof.

A.10 Proof of Proposition 4

Assume that for m0 < M we have ε?m0
< 1 − Trel. Then if we reduce the available number or re-

transmissions from M to M ′ = m0, then (~n?M ′ ,
~P ?M ′) is a feasible point of the reduced problem with

a bigger value of the objective function (1.36) which according to proposition 3 is a contradiction.
Proving ε?M ≤ 1− Trel < εM−1(~n?M , n

?
M − 1, ~P ?M ) is fairly simple since the first inequality is the

reliability constraint (1.38) and the second cannot be violated; otherwise the point (~n?M−1, n
?
M −

1, ~P ?M ) is better than the optimal solution, which again leads to a contradiction.
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Appendix B

B.1 Proof of Lemma 5

We first consider M = N and so ni = 1, ∀i and we have the general case where each symbol

chooses its own average power Pi.We want to prove that Pi =
Et

N
, ∀i is the solution of the

optimization problem. If it is true, these Pi can get out of the sums of the error formula (2.1),
leaving

∑N
i 1 = N , i.e.

Q


M∑
i=1

ni log(1 + gPi)−B log 2√√√√ M∑
i=1

ni

(
1− 1

(1 + gPi)2

)


Pi=
Et

N= Q


N log(1 + g

Et

N
)−B log 2√√√√N

(
1− 1

(1 + gEt

N )2

)
 (B.1)

This way the optimal error probability could be expressed versus N and
Et

N
which is equivalent to

choose one block of size N with identical power
Et

N
.

First of all since using full resources is beneficial for reliability, which means the constraints
become equalities (proof similar to the ones of lemmas 2 and 3). Moreover since Q-function is
strictly decreasing and the logarithm is increasing, we can alter the objective function and we end
up to

max
x1,...,xN

log
( N∑
i=1

log(
1

xi
)−B log 2

)
−1

2
log
( N∑
i=1

(1−x2i )
)

(B.2)

s.t.

N∑
i=1

1

xi
= Ẽ (B.3)

where xi =
1

1 + h2Pi
and Ẽ = N + h2Et. So xi ∈ [1/Ẽ, 1]. The domain on which we maximize

is a compact set, thus a global maximum should exist. Additionally, the interval boundary, i.e.
xi ∈ {1/Ẽ, 1} represents the cases where all but one symbol vanish (if xi = 1 ⇔ Pi = 0 and if

xi = 1/Ẽ
(B.3)⇔ xj = 0 ∀j 6= i) which yield suboptimal error probabilities because it is equivalent to

the case of sending only one symbol with all the energy and so wasting most of the blocklength
resources (i.e. if xi = 1/Ẽ then nj = 0 ∀j 6= i) . Hence, the global maximum cannot be on the
interval boundary. We use KKT conditions to prove that there is only one stationary point for the
above problem and this point is when all xi are equal to each other, and so these xi are optimal.
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Applying the KKT conditions with λ the Lagrangien multiplier associated with (B.3), we get the
set of equations

−x
3
i

V
+
xi
A

= λ, ∀i ∈ {1, 2, ..., N} (B.4)

with A = −
∑N
i=1 log(xi) − B log 2 and V =

∑N
i=1(1 − x2i ). Let us assume that the solution of

(B.4) is ~x? = (x?1, ..., x
?
N ) and denote A? = A(~x?), V ? = V (~x?). A? and B? are the same for

each equation in (B.4). If we can find more than three different elements of ~x?, then the cubic
polynomial − x3

V ? + x
A? − λ = 0 has more than three roots which is impossible. Additionally as

A?, B?, and x?i are positive by construction, we can show that x?i can at most take two different
values. Let us denote them by (x̃1, x̃2). The value x̃1 is taken by n1 out of N xi-variables while
the value x̃2 is taken by n2 = N − n1 xi-variables. Then (B.3) and (B.4) can be transformed into

n1 + n2 = N (B.5)
n1
x̃1

+
n2
x̃2

= Ẽ (B.6)

− x̃
3
1

V
+
x̃1
A

= − x̃
3
2

V
+
x̃2
A

(B.7)

For instance, the case x̃1 = x̃2 =
Ẽ

N
is a solution. Actually, it corresponds to our desired

stationary point. It just remains to prove that this is the only solution.

For x̃1 6= x̃2:
(B.7)⇔ A(x̃21 + x̃1x̃2 + x̃22) = V. (B.8)

We will show that (B.8) and the assumptions (2.25) and (2.26) cannot all hold at the same time.
Using (2.26) we get:

A > 0⇔ n1 log(x̃1) + n2 log(x̃2) < −B log 2 (B.9)
A√
V
<F

(B.8)⇔
√
n1(1−x̃21)+n2(1−x̃22)<F (x̃21+x̃1x̃2+x̃22) (B.10)

with F= min{0.45
√
B log 2, Q−1(10−9)} and the change from max of (2.25) to min is due to the

decreasing monotonicity of Q(·)−1.

In Figure B.1, we display the area where (B.9) holds in blue, and the area where (B.10) holds
in grey. We want to prove that both blue and black areas are disjoint in order to have no solution
satisfying both inequalities. It is easy to prove that the boundary-curve C1 (resp. C2) is convex
(resp. concave). So to avoid common points between both areas, the points K2 and K3 (inter-
section point of curve C2 with x̃2 = 1 and x̃1 = 1 respectively) have not to belong in the blue
area.

The point K2 = (e−
B log 2
n1 , 1) does not belong in the blue area if it does not satisfy (B.10), i.e.

for n1 log(x̃1) = −B log 2 we want either (B.11) or (B.12) to hold:√
n1(1− x̃21) > 0.45

√
B log 2(x̃21 + x̃1 + 1), (B.11)√

n1(1− x̃21) > Q−1(10−9)(x̃21 + x̃1 + 1). (B.12)
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Figure B.1: Inequalities description for x̃1 and x̃2.

First we concentrate on (B.11). After substitution we want to show that:√
x̃21 − 1

log x̃1
> 0.45(x̃21 + x̃1 + 1). (B.13)

A known inequality is log(x) ≥ x− 1√
x
, for x ≤ 1. By dividing with 1 − x2(> 0) we can get√

x2 − 1

log x
≥
√√

x(1 + x). Furthermore for 0 < x ≤ 1, we have 2x+ 1 ≥ x2 + x+ 1. If

√√
x̃1(1 + x̃1) ≥ 0.45(2x̃1 + 1) (B.14)

holds, then (B.13) holds. Proving (B.14) is equivalent to show
√
x̃1

4 − 1.2346
√
x̃1

3
+
√
x̃1

2 −
1.2346

√
x̃1 + 0.25 ≤ 0. The roots of this fourth-order polynomial can analytically be found and the

inequality is satisfied when x̃1 ≥ ρ2 = 0.0563. So (B.13) is satisfied for x̃1 ≥ ρ2. For x̃1 < ρ, one

can see it is equivalent to 0.45
x̃21 + x̃1 + 1√

1− x̃21
< 0.45

ρ2 + ρ+ 1√
1− ρ2

. If x̃1 > e
− 1−ρ2

0.452(ρ2+ρ+1)2 (≈ 0.0125),

then 0.45
ρ2 + ρ+ 1√

1− ρ2
<

√
−1

log x̃1
and again (B.13) holds. To sum up, when x̃1 > 0.0125 the point

K2 is outside the blue area.
Now we will concentrate on (B.12) to treat the case of x̃1 ≤ 0.0125. From (B.12), we have:

n1 > Q−1(10−9)
(x̃1

2 + x̃1 + 1)2

1− x̃21
≈ Q−1(10−9)

which holds according to the assumption done in the Lemma. Similar procedure can be applied
for the point K3 which concludes the proof.
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