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@ A very short introduction to Graph Theory

@ Non-attributed graphs

o Community detection
o Coalition game

@ Attributed graphs

o Node classification
o Graph comparison

@ From graphs to vectors
o Embedding for attributed graphs

@ Conclusion
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Introduction

Part 1 : Introduction to Graph Theory |
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Introduction

Where do you find graphs ?

Social Networks
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Introduction

Where do you find graphs ?

Vote Networks
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Introduction

Where do you find graphs ?

Papers’ database
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Introduction
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Introduction

Where do you find graphs ?

Communication Networks
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Introduction

Where do you find graphs ?

Human interaction for epidemic propagation analysis

Infectious.
Tested & Infected
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Introduction

Where do you find graphs ?

Molecule Networks

Thie catleing malacule I/“_

chntedil fdrmei 1, 2, 7 -InSathylinhn |
chemical dommsia: gy phdy D

Philippe Ciblat Statistical Inference over Graphs 9/61



Introduction

Graph characteristics

Two main types of graphs

@ Non-attributed graphs

o N nodes/vertices
o Links/Edges between some nodes
o Edges may be directed/non-directed and/or weighted/non-weighted

@ Attributed graphs
o Each node i has also a feature/value x; € R¥
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Introduction

Mathematical representations

Here, we consider non-directed and non-weighted graphs.

@ Let i be a node and N; be the set of its neighbors
@ Node degree: d; = |N;| (number of neighbors)

@ Degrees matrix: D = diag(ds, - - - , dv)

@ Adjacency matrix: A

2 — 1 if j and j are connected
Y71 0 otherwise

Be careful: a; =0
@ Laplacian matrix: L=D — A

oeL1=0

@ The second smallest eigenvalue Ao # 0 iff graph is connected
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Introduction

Graph decomposition (1/3)

@ Timeline is a graph: if periodic signal (of length N), it is even a
ring graph
o Yo =3, M (xn) with s(xn) = Xp_1
oy= [yN—h' .. 7_y0]T. Then

y = Cx and C = FMF"

with M = diag(mo, - -- , mn—1) and mg = SN 1 he=2mk/N
o Then X = F¥x is the Fourier Transform of any vector x.

source: N. Tremblay, “Networks and Signal: signal processing tools for networks analysis”, PhD thesis, ENS Lyon, 2014
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Introduction

Graph decomposition (

@ For any graph
oy =3, hks"(x) with s(X)m = > vens, SmiXe
oy=>,hS* IfS=VAV' Then

y=V (Z hkl\k> Vx
k

o By analogy
— mg =3, h Xk with A, = e2m¢/N F =V, and S = circ([0,1,0,---])
— Conversely, X = VTx is called Graph Fourier Transform
— Vg (¢-th column of V) is the ¢-th Fourier Graph asy = myv, if x = v,
— And Yg = mng.
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Introduction

Graph decomposition (3/3)

A. Barbe, “Diffusion-Wasserstein distances for attributed graphs”, PhD thesis, ENS Lyon, Dec 2021
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Application: Heat diffusion

Continuous-time Heat diffusion within a graph
@ Atime t, the temperature of the node ¢ is denoted by x,(t)
@ The update law comes from Heat diffusion equation
ng

dt o) dt

@ The solution is
x(t) = e~ ™x(0)

@ LetL = VAVT with \y = 0 and v; = 1/V/N. Then

0o 1
et = Ve MYT 20y T = N"T
Therefore
lim x(t) = x1

t— o0
with X the average of initial temperatures.
The speed of convergence depends on the graph through {A¢}e=2.... N
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Introduction

Application: Numerical illustrations

Heat diffusion, T=5 Heat diffusion, T =10 Heat diffusion, T =20

B. Ricaud, P. Borgnat, N. Tremblay, P Gongalves, P Vandergheynst, “Fourier could be a data scientist: from Graph Fourier transform to

signal processing on graphs”, Comptes-rendus de Physique de I'’Académie des Sciences, Aug. 2019
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Introduction

Application: Consensus algorithm (1/2)

We start with an initial value x(0).
@ Attime t, one node wakes up (let’s say /)
@ Algorithm 1 (pairwise): ¢ selects ¢’ € N, and
Xe(t) + X (1)
2

@ Algorithm 2 (broadcast): ¢ broadcasts its value at any neighbor
who updates

Xe(t+1)=xp(t+1) =

X[(t) + Xg/(t)

!
5 U EN,

Xel(t+1) =

Finally

x(t) = T W«x(0)
k=1

@ Algorithm 1: convergence to X (as lim;_ Hf(:1 W, = 1N11T)
@ Algorithm 2: convergence to x = vI_x(0) (as
lim¢ o0 [They Wk = 1V1)

Philippe Ciblat Statistical Inference over Graphs 17 /61




Introduction

Application: Consensus algorithm (2/2)

@ Row-stochastic matrix: non-negative matrix and row sums to 1

W1=1= lim WX =1v"(mild conditions)

k— o0
with vT1 = 1
@ Column-stochastic matrix: non-negative matrix and column sums
to 1

1"TW =17 = lim WX = v1T(mild conditions)

k—o0

Extension exists for a sequence of W

@ For Algorithm 1: both row and column-stochastic matrix
@ For Algorithm 2: only row-stochastic matrix

Philippe Ciblat Statistical Inference over Graphs
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Introduction

Application: Numerical illustrations

Initial Graph Pairwise (t = 10) Pairwise (t = 75)

Broadcast (t = 10) Broadcast (t = 75)
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Introduction

Application: Numerical illustrations
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Introdi

Link with Markov chain

Finite-state Markov Chain: state s € S = {s',--- , sV}
Pr (St+1 = Sé|St = Sk) = Tk’g >0

with >, Tk, = 1, so T is row-stochastic matrix

03

@ clouds rain sun
0.3, 0.2
\ clouds {OA 0.3 0.3} Analyzing Markov

(080302 chain is equivalent to

@ sun [ 0.5 0.1 0.4 N
' ) analyzing Graph

Stationary distribution: p s.t. up = uT

source: H. Seyr and M. Muskulus, “Decision Support Models for Operations and Maintenance for Offshore Wind Farms: A Review”, Applied

Sciences, April 2019
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What do we want to do?

@ Analyzing some math operators on Graph: see Graph Fourier
Transform

@ Analyzing convergence on Graph: see Markov chain, Gossip
algorithms

but in previous cases, graph is a tool, not the signal of interest

@ In the remainder of the presentation, Graph is the signal
o classification/clustering
o node inference
o link prediction (not done here)

Two types of graphs

@ Non-attributed (only links)
@ Attributed (links + values)
Analysis is usually different (except if embedding procedure)
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Non-attributed

Part 2: Non-attributed graphs |

2.1 Community detection
2.2 Coalition game
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2.1: Community detection

v

Reminder: clustering based only on connection properties (no-valued
nodes)
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Non-attributed

Modularity principle (1/2)

Clustering = Graph partition: N = {P,;}, s.t. G = UyP, and NPy =
Mn* = arg max Q()

with Q the so-called modularity function

Assume random network. Let k and ¢ be two nodes with degrees di
and d,. Let e be the number of edges
What is the probability for these two nodes to be connected ?

We have 2e stubs (stub: one link going from one node). Each stub of
node k has a probability d;/(2e — 1) to be connected to a stub of
node ¢. Therefore

dkd,
2e —1

Pr (k connected to £) =

1 dkd,
Q= 2—e kz; (akg — 26) 6731(7732

Philippe Ciblat Statistical Inference over Graphs 24/61




Non-attributed

Modularity principle (2

O ke dk dy
Q= % 26673/(,775 £ 2e 266731(,7’13

Let f; fraction of edges in the graph connecting nodes from cluster i
to cluster j (factor 2 since undirected edge counts twice)

a
fj = HgOkenien,
k.l
Let ¢; = ), f; be the fraction of edges connecting nodes to cluster i
dx d,
Q:Zfﬁ_ L Spe P, :Z(fi'—c,?)
i

Y. 2e2e -

If graph is random, fx; ~ cxCy

Complexity issue

@ Solution 1: decentralized algorithm
@ Solution 2: embedding, then clustering algorithm (like k-means)
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Non-attributed
2.2: Coalition game

Non-centralized case

@ each node makes its decision by itself by observing its
neighborhood

@ then we iterate synchronously or asynchronously.
Mathematical Tool: Coalition Game Theory

Within a coalition structure (actually graph partition), we associate
these quantities to each coalition/cluster Py:

@ Revenue/reward/utility u(Px) > 0 quantifies the worth of the
coalition, with u(@) = 0.

@ Cost c(Px) > 0 quantifies the cost of cooperation.
@ Value v(Px) is defined as:

V('Pk) = U(Pk) — C(Pk).
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Switch operation

Definition

A switch operation ok (/) is defined as the transfer of players U/ from
Py to P, U {@}, Uk,g(Z/{) T Pr — Pk \U, and P, — P, UU.

Remark 1: if P, = 0, then o ¢(U) leads to a new coalition.
Remark 2: if i = Py, then ok () leads to the merge of Py with P,.

Definition (Switch Operation Gain)

This gain g(ox,¢(U)) associated with o, ¢(U/) is defined as:
9(oke(U)) == ru(Pe UU) — 1e(Px),

with r;/(S) defined as r,/(S) := v(S) — v(S \ U) and interpreted as the
added value of having players U/ in coalition S.

v

Philippe Ciblat Statistical Inference over Graphs 27 /61



Nash equilibrium

Definition (Preference relation)

This relation > is defined as a complete and transitive binary relation
between two switch operations ok ¢(U;) and ok (1) such that:

ox,e(Ui) = ok e (Uj) < gloke(Ui) > g(ow o (U)))

In Game Theory, relevant points satisfy equilibrium property:
@ No global cost function (if it exists, Game Theory is useless)
@ Each player (here, coalition) has its own goal and should find a
trade-off/equilibrium with the others
@ In non-cooperative game (with rational players), Nash equilibrium

Definition (Nash stability for coalition game)

M= {Py,...,Pk}is Nash-stable if VPx, VP, € MU {0}, Vi € P,

gloke({i}) <0

It exists no single node switch operation with a strictly positive gain

Philippe Ciblat Statistical Inference over Graphs 28/61



Non-attributed

Algorithm for unstructured network

@ Unstructured traffic based wireless network
@ Goal: build stable clusters (even with moving nodes)

@ Solution: gathering nodes with high link capacities between
each other

@ As a byproduct, communications within the cluster easier to
manage, and then elect a cluster head (as a hub)

Consequently, the coalition reward is the sum capacity of all
intra-cluster links:

uPe) = > (i)

i€Pk jePk|(if)€E

where «(/, ) denotes the capacity of link (i, )

Interference+Noise

. Ch 1Gain; ;P
(i) = log, (1 . ChannelGainj 0wer> .

The cost ¢(Px) is 0 if cluster size constraint satisfied and co otherwise

Philippe Ciblat Statistical Inference over Graphs
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Non-attributed

Numerical results

Proposed algorithm: Clustering with Link Quality (CLQ).

6 ~-LCC -AVOTE -<SECA cLQ

Intra-cluster link capacity (bits/Hz)

5
- . A e I — 'y
A/"/"_, B R E B
4 r
100 200 300 400 500 600 700 800 900 1000

Number of nodes in the network
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Attributed

Part 3: Attributed graphs J

3.1 Node Classification
3.2 Graph comparison
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3.1: Node classification

Predict the class/label of each unlabeled node of the graph by relying
@ on nodes’ features and

@ on nodes’ connections within the graph.

Examples:

@ in social networks, people are more likely to connect with those
who share the same areas of interest

@ in research articles’ database, more likely to have
connections/citations between articles dealing with the same
research topic

That's the homophily principle

Philippe Ciblat Statistical Inference over Graphs 31/61



Information taken into account

@ Label Propagation (LP): propagated through the adjacent nodes
at each step. Requires algorithms for merging labels’ information

@ Feature propagation (FP): propagated through the adjacent
nodes at each step. Requires algorithms for merging features

FP approach

Main idea: weighted averaging of the current features of adjacent
nodes (sometimes followed by a nonlinear function)

@ Graph neural networks (GNN): Neural Networks adapted to the
attributed graphs. Training done with labeled nodes
@ Our contribution: we derive in closed-form a classifier

o interpretable algorithm (no black box)
o less complex since no training
o No embedding (as done by GNN)
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Attributed
Example

@ p: average probability of intra-class connection
@ q: average probability of inter-class connection

@ Degree of impurity (Dol) of the graph is g

@ Dol <« 1 leads to graph with communities (nodes with similar
features are connected to each other).

Cora Citeseer
Intra-class connectivity (p) | 23 x 10~3 | 12 x 103
Inter-class connectivity (q) | 5.5 x 1073 | 43 x 103
Degree of Impurity (q/p) 0.23 0.36
Logistic Regression (LR) 56.0% 57.2%
Two-layer GNN 81.5% 70.3%
Gain between GNN and LR | +45.5% +22.9%

Philippe Ciblat Statistical Inference over Graphs
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Problem statement

Classifier based on Bayesian decision theory: Maximum A Posteriori )

@ V,: set of nodes involved in the classification of node u.

o X, ={x,}U{x,,v e V,}: setof features of node v and its
“helping” nodes
@ y,: class of node u (what we are looking for!)
@ Dy: probability density function of features belonging to class k.
For any u,
Di(xu) = p(Xulyu = k).

Graph-Assisted Bayesian (GAB) Classifier

~

ky, = arg max Pu(k)

with Py(k) = P(yy = k|Xu,Zg), and by knowing information on X,
and on the graph Zg (e.g., its partial connectivity through the set V)

Philippe Ciblat Statistical Inference over Graphs 34 /61



Attributed
Problem solution

@ arg max : here no complexity issue since small amount of classes
@ Derivations of P, (k). Bayes’ rule
_ P(Xulyu = k,Zg)P(yu = Kk|Zg)

Fulo = P(%, o) Qo

with mx = P(y, = k|Zg) a priori classes’ probability
Let A, be the diameter of the set V,,.

Ay K
Qu(k)=Dk(x,) [T ] <Z ruv(k, k’)D,«(x,,))

d=1veN,(d) \k'=1

with ry v(k, k') = p(yv = K’'|yu = k,Zg) the probability to be on class
K’ for node v given the fact that we are in class k for node u and we
have information on the graph Zg.

Example: V, = {v}, known k, =1, 7 =m =1/2,and A, = 1:

and Qy(2) = Da(xy)—2

_ p
Ou(1)—D1(Xu)p+q p+q

Philippe Ciblat Statistical Inference over Graphs 35/61



Main result

@ 2 equilikely classes
o p(k) probability that two nodes from class k are connected

p average of {p(k)}«
o q probability that two nodes from different classes are connected.

@ Information on graph is 1-hop

We get
— — _P(2)
r(1,2) = p(1§:+)q ‘ r2,2) = qu(Z)
r(1.1) = giyiq ‘ r2.1) = g

GAB does not depend on the graph iff r(1,2) = r(2,2) and

r(1,1) =r(2,1)

q= P(1 )p(2) = ﬁgeometric
iff _
_ Pecomeric

<1

Dol

arithmetic
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Attributed

Graph Neural Network (1/2)

@ Use graph structure in addition to node and edge features to
generate node representation vectors (i.e., embedding)
@ Aggregate the features of neighboring nodes and edges

@ Output of the ¢-th layer of GNN is
hy) = 0O (hG ™" (W v e M)

where

hff) representation vector of node u at ¢-th layer (hf,o) = Xy)
o®) activation function

Y linear function associated with weights’ matrix W)
First-order GNN has 1 layer (1-hop neighborhood in the graph)

O O O O

@ Usually, activation function is a rectified linear unit (ReLU).
@ For the last layer, softmax which provides a probability
@ Then node u is attributed to the class with the highest probability
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Attributed

Graph Neural Network (2/2)

Graph Convolutional Neural Network (GCN):

(1) (1)
50 — W <hu s hy, >

dy +1 ven, V(du+1)(dy +1)
Graph Isomorphism Network (GIN):

o) =W ((1 +aphy ™+ 3 hs“>>

vENy
Graph convolution Operator Network (GON):
#0 = Wﬁ”hﬁf‘” n Wg)( Z hff‘”)
VEN,
Graph Attention Network (GAT):

o) = Z aODWO R with o), s WO WAL |WOH{))
veN, U{u}
the so-called normalized attention coefficients
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Attributed

Numerical illustrations (1/2)

@ 2 classes

@ Gaussian distributions with different means and covariance
matrices

@ Number of nodes N = 5,000 and number of features F = 500
@ 500 (already-labeled) nodes

1.0 7

°
©

°
w

Accuracy (%)
e
3

—#— pl = p2 = 0.05 (GAB)
—— pl1=0.075 & p2= 0.025 (GAB)
4 —#— pl = p2 = 0.05 (GCN)

—— pl1=0.075 & p2= 0.025 (GCN)
-=-=- Graph-agnostic Bayesian

o
£

0.5

0:0 0:2 0:4 0:6 0:8 1.‘0
Degree of Impurity (q/p)

@ GAB more robust to Dol than GCN
@ GCN becomes worse than graph-agnostic (too confident)

Philippe Ciblat
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Attributed

Numerical illustrations (2/2)

Parameters to estimate in GAB | Weights to learn in GNN
Cora 10,087 369,066
PubMed 1,512 129,286

MLP GCN SAGE GAT GMN DGCN GBPN | GAB
Cora 721 871 869 871 864 872 86.4 | 86.9
CiteSeer | 71.2 735 735 731 729 739 748 | 752
PubMed | 86.5 87.1 878 88.1 86.7 847 885 | 86.4
CS 942 932 937 940 933 949 955 | 945
Physics | 95.8 96.1 96.3 96.3 96.1 96.7 969 | 96.4

@ GAB close to GBPN and GAT, the best ones in the literature
@ But interpretability
@ But low-complexity

Philippe Ciblat Statistical Inference over Graphs 40/ 61



3.2: Graph comparison

@ Are two graphs close to each other ?

@ Useful in many applications: link prediction, time-varying
analysis, etc

Main issues:
@ Balance between features and edges ?

@ Even if no features, what does it mean two close graphs ?

o counter-example: by cutting a few edges, new graph is not
connected : is it far or not from the original one
o s0 just comparing A is not enough: induced properties are crucial
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Detour by the optimal transport

Original problem [Monge1781]

How moving a sand pile with shape 1 into a shape 2 by minimizing
the energy consumption ?

Shape : f where f(x) provides the level of sand at x
o f(x) >0, and [ f(x)dx = 1: probability density function (pdf)

Transport problem

@ Transport map: y = T(x)
@ Transport cost: c(x, T(x)), and C(T) = [ c(x, T(x))f (x)dx
@ Transport application: T
f({x: T(x) € Q}) = L(Q) & TxA(Q) = AHTEN(Q)) = K(Q)

T = =arg glﬁn . C(T)

In general, to hard to solve
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Attributed

Relaxation [Kantorovitch1942]

Modification of definition of Transport Map T

@ itis not a function anymore

@ it is a probability function: given the sand at x, it can be spread at
several new positions.
X Ty

o = [ ( [ etxnTutviay ) fxaox

s.t.
@ Accurate final shape: £(Q) = [( fQ y)dy)fi (x)dx
@ Take only the original shape. fi(Q f Jo Tx(¥)fi(x)dx)dy

Then consider T, (y)fi(x) = n(x.y)
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Attributed

Relaxation [Kantorovitch1942]

Modification of definition of Transport Map T

T = arg min // c(x, y)m(x, y)dxdy

s.t.
0 »(Q) = [,cq (J7(x,y)dx) dy
® () = [icq (J 7(x.y)dy) dx

Much easier : Linear programming

Philippe Ciblat Statistical Inference over Graphs 43 /61



Wasserstein distance

Consider two probability mass function (pmf) : discrete version of pdf
@ fi: Z;’; ajoy, (a non-negative vector summing to 1)
e f: Y [, bidy, (b non-negative vector summing to 1)

p-Wasserstein distance

Wp(fi, b) = m|n ZZM YilPyi

71/1/.1/1

s.t.
m .
® bj=> i1 Vi
@ ai= 2}7:1 Vi Vi
where v; ; is the quantity of material going from x; to y;

Remark: Completely different from standard Kullback-Leibler
distance (related to entropy)

D12 = [ togs (?Eg) f(x)alx
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Attributed

Example

@ Blue: Source distribution
@ Red: Target distribution
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Graph Diffusion Distance

@ Non-attributed graph
@ related to Heat diffusion
@ |dea: similar graph will diffuse in the same way the heat

GDD = m>a(>J< |lexp (—7L1) — eXP(—TL2)H§

where ||.||2 is the Frobenius square norm (summing the square of
each matrix component)
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Gromov-Wasserstein distance

@ Non-attributed graph
@ Adapted to Graph
@ Matrices C* € R™ and C! € R"™"

GW = min E d(C,'le, Cj{j/)’Y,’J’V,‘/J/
{Vij}ij i
s.t.
@ a = 2;7:1 Vi Vi

® by =" Vj

Application to Graph:
@ C may be the adjacency matrix A
@ C may be a similarity matrix between nodes
@ Hyperparameters a and b to be tuned
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Fused Gromov-Wasserstein distance

@ Attributed graph
@ Matrices C% € R™*™ and C! € R™"

FGW = min > [(1 = a)ai(xi, X;)vi; + ade(CFy, Cfy Vi s ]
RO AT
st.

Q@ g = 27:1 Yij Vi

° b/ = Eln; Yijs vj
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Diffusion-Wasserstein distance

@ Attributed graph
@ Y® = exp(—7°Ls).X® heat diffusion with initial values X®
@ Y! = exp(—7'L;).X" heat diffusion with initial values X!

DW_ s .+ = min Zm(y?,y})w,f

{vigti T
s.t.
© g =31, Vi
® bj=3"vij Vi

Extreme cases:
o 7 =711 = 0, Wasserstein distance
e 7% = 7! = 00, average comparison of features
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Attributed

Numerical illustrations (1/3)

Image color adaptation

Original image Target color
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Attributed

Numerical illustrations

Optimal transport on color distribution

Image 1 Image 2
10
0.8 -
0.6 -
w w
E] E]
© ©
0.4 -
0.2 A
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Attributed

Numerical illustrations (3/3)
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Embedding

Part 4: From graphs to vectors J
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Embedding

@ Vector : nice representation for signals
@ Why? many algorithms adapted to vectors

o in classification (k-means, NN with vector as input)
o in regression (linear, NN with vector as input)

Embedding:
@ representing any type of signal as a vector
@ practical and efficient but not necessary smart (see 3.1)

Examples:
@ Text: word2vec

o close vector = synonym
o semantic vector space: Vqueen + Viman = Vking

@ Graph: graph representation learning (through GNN)

o “close” points in graph are close points in vector space
o But, what does it mean “close” in graph when trade-off between
edges and features
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Representation self-learning

@ x, € RP feature vector at node u
@ X € RNV*P: matrix stacking initial feature vectors of all nodes.
@ A: adjacency matrix of the graph

@ Self-learning node representation (without human
annotation/tag)

@ i.e., learning a graph neural network (with L layer) encoder f

HO .= f(X,A) € RV<F

with
o P’ < P the embedding size
o u—th row of HY is the embedding/representation vector h{" of
node u.

@ Finding a appropriate criterion to optimize f
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Contrastive learning

Given a feature h, of node u, we generate
@ a positive example h;} (close to hy)
@ a set of negative examples Q,

We define a loss £ offering low value when h,,
@ similar to h
@ dissimilar to all elements h™ of Q,

A standard loss

L=-Y hyh;+log>  |exp(hihi)+ > exp(hyh”)

ueg ueg h—eQ,
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Embedding

How generating negative examples?

@ Feature-based sampling:

o based on comparisons between nodes’ intrinsic features.
o For node u, we consider as negatives all nodes v whose intrinsic
features are neither too close nor too far from those of node u

Xix,

——— € [wiB, wus]
lIxulll| V] ’

Negatives are different from positive but quite hard to distinguish
from the current sample

@ Graph-based sampling:
o based on graph structure
o For node u, we consider as negatives all nodes v located at ¢-hop
of node u
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Algorithm

@ Consider two (small) stochastic perturbations t; and t, on edges
and features
o (Xi1,Aq) ~ (X, A)
o (Xz2,A2) ~ (X, A)
@ Apply the current encoder to exhibit the node representations
o the baseline representation H- = f(X1, A¢)
o the positive example H; = (X2, A2)
@ Select negative examples
o Features-based sampling
o Connection-based sampling

@ Update weights of f using the loss function £
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Embedding
Numerical illustrations

@ Test the node representation into a classification problem
@ Once embedding done, classification relying on logistic

Philippe Ciblat

regression applied

@ Embedding size P/ =512

Cora | Citeseer | Pubmed | Arxiv
Raw features 47.9 49.3 69.1 555
DeepWalk 67.2 43.2 65.3 70.1
DeepWalk + features | 70.7 51.4 74.3 -
EP-B 78.1 71.0 79.6 68.0
DGl 82.3 71.8 76.8 70.2
Proposed Method 83.6 72.5 79.8 70.2
GCN (supervised) | 815 | 70.3 790 | 717
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Conclusion
Conclusion

Graph is a fascinating mathematical structure
@ using different mathematical branches
@ related to practical problems
@ but difficult to manage

Problems not treated here
@ Epidemic propagation (rumor spreading, max-consensus)
@ Link prediction
@ Random Graph
@ Structured Graph (like in Chemistry)
@ Graph drawing
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