Statistical Inference over Graphs

Philippe Ciblat

Outline

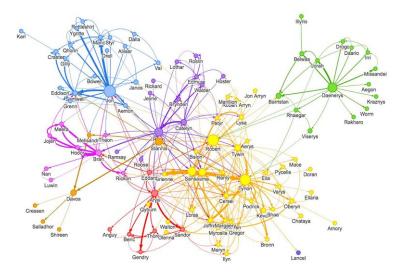
- A very short introduction to Graph Theory
- Non-attributed graphs
 - Community detection
 - Coalition game
- Attributed graphs
 - Node classification
 - Graph comparison
- From graphs to vectors
 - Embedding for attributed graphs

Conclusion

Part 1 : Introduction to Graph Theory

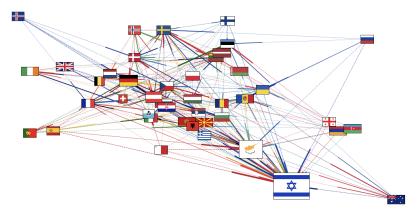
Where do you find graphs ?

Social Networks



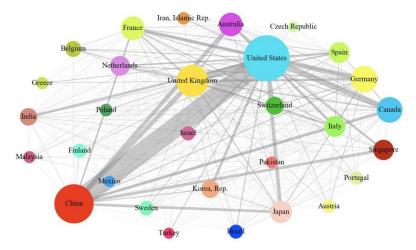
Where do you find graphs ?

Vote Networks



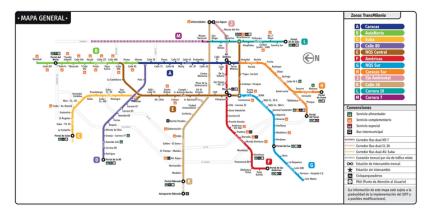
Where do you find graphs ?

Papers' database



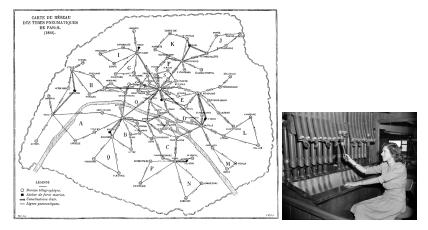
Where do you find graphs ?

Public Transportation map



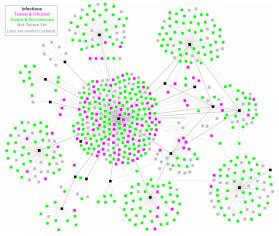
Where do you find graphs ?

Communication Networks



Where do you find graphs ?

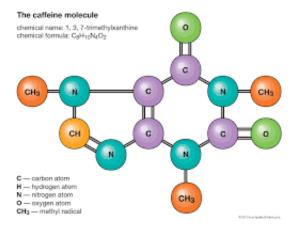
Human interaction for epidemic propagation analysis



source: V. Krebs, "Tracking and stopping the spread of a contagious disease"

Where do you find graphs ?

Molecule Networks



Graph characteristics

Two main types of graphs

- Non-attributed graphs
 - N nodes/vertices
 - Links/Edges between some nodes
 - Edges may be directed/non-directed and/or weighted/non-weighted
- Attributed graphs
 - Each node *i* has also a feature/value $\mathbf{x}_i \in \mathbb{R}^K$

Mathematical representations

Here, we consider non-directed and non-weighted graphs.

- Let *i* be a node and N_i be the set of its neighbors
- Node degree: $d_i = |\mathcal{N}_i|$ (number of neighbors)
- Degrees matrix: $\mathbf{D} = \operatorname{diag}(d_1, \cdots, d_N)$
- Adjacency matrix: A

$$\mathbf{a}_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are connected} \\ 0 & \text{otherwise} \end{cases}$$

Be careful: $a_{ii} = 0$

Laplacian matrix: L = D – A

Some results

● L.1 = 0

• The second smallest eigenvalue $\lambda_2 \neq 0$ iff graph is connected

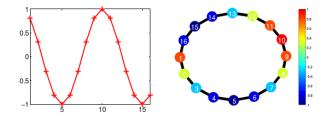
Graph decomposition (1/3)

• Timeline is a graph: if periodic signal (of length *N*), it is even a ring graph

•
$$y_n = \sum_k h_k s^k(x_n)$$
 with $s(x_n) = x_{n-1}$
• $\mathbf{y} = [y_{N-1}, \cdots, y_0]^{\mathrm{T}}$. Then

$$\mathbf{y} = \mathbf{C}\mathbf{x}$$
 and $\mathbf{C} = \mathbf{F}\mathbf{M}\mathbf{F}^{\mathrm{H}}$

with $\mathbf{M} = \text{diag}(m_0, \cdots, m_{N-1})$ and $m_{\ell} = \sum_{n=0}^{N-1} h_k e^{-2i\pi\ell k/N}$ • Then $\mathbf{X} = \mathbf{F}^{\text{H}} \mathbf{x}$ is the Fourier Transform of any vector \mathbf{x} .



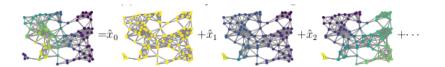
source: N. Tremblay, "Networks and Signal: signal processing tools for networks analysis", PhD thesis, ENS Lyon, 2014

Statistical Inference over Graphs

Graph decomposition (2/3)

- For any graph • $\mathbf{y} = \sum_{k} h_k \mathbf{s}^k (\mathbf{x})$ with $\mathbf{s}(\mathbf{x})_m = \sum_{\ell \in \mathcal{N}_m} \mathbf{s}_{m,\ell} \mathbf{x}_\ell$ • $\mathbf{y} = \sum_{k} h_k \mathbf{S}^k \mathbf{x}$. If $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ Then $\mathbf{y} = \mathbf{V} \left(\sum_{k} h_k \mathbf{\Lambda}^k\right) \mathbf{V}^T \mathbf{x}$
 - By analogy
 - $m_{\ell} = \sum_{k} h_{k} \lambda_{\ell}^{k} \text{ with } \lambda_{\ell} = e^{-2i\pi\ell/N}, \mathbf{F} = \mathbf{V}, \text{ and } \mathbf{S} = \operatorname{circ}([0, 1, 0, \cdots])$
 - Conversely, $\mathbf{X} = \mathbf{V}^{\mathrm{T}} \mathbf{x}$ is called Graph Fourier Transform
 - $-\mathbf{v}_{\ell}$ (ℓ -th column of V) is the ℓ -th Fourier Graph as $\mathbf{y} = m_{\ell}\mathbf{v}_{\ell}$ if $\mathbf{x} = \mathbf{v}_{\ell}$
 - And $Y_{\ell} = m_{\ell} X_{\ell}$.

Graph decomposition (3/3)



A. Barbe, "Diffusion-Wasserstein distances for attributed graphs", PhD thesis, ENS Lyon, Dec 2021

Application: Heat diffusion

Continuous-time Heat diffusion within a graph

- A time t, the temperature of the node ℓ is denoted by xℓ(t)
- The update law comes from Heat diffusion equation

$$\frac{d\mathbf{x}_{\ell}}{dt} = -\sum_{m \in \mathcal{N}_{\ell}} (\mathbf{x}_{\ell} - \mathbf{x}_m) \Leftrightarrow \frac{d\mathbf{x}}{dt} = -\mathbf{L}\mathbf{x}$$

The solution is

$$\mathbf{x}(t) = e^{-t\mathbf{L}}\mathbf{x}(0)$$

• Let $\mathbf{L} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ with $\lambda_1 = 0$ and $\mathbf{v}_1 = \mathbf{1}/\sqrt{N}$. Then

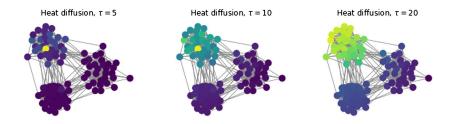
$$e^{-t\mathbf{L}} = \mathbf{V}e^{-t\mathbf{\Lambda}}\mathbf{V}^{\mathrm{T}} \stackrel{t\to\infty}{\to} \mathbf{v}_1\mathbf{v}_1^{\mathrm{T}} = \frac{1}{N}\mathbf{1}\mathbf{1}^{\mathrm{T}}$$

Therefore

$$\lim_{t\to\infty}\mathbf{x}(t)=\overline{x}\mathbf{1}$$

with \overline{x} the average of initial temperatures. The speed of convergence depends on the graph through $\{\lambda_{\ell}\}_{\ell=2,\dots,N}$

Application: Numerical illustrations



B. Ricaud, P. Borgnat, N. Tremblay, P. Gonçalves, P Vandergheynst, "Fourier could be a data scientist: from Graph Fourier transform to signal processing on graphs", Comptes-rendus de Physique de l'Académie des Sciences, Aug. 2019

Application: Consensus algorithm (1/2)

We start with an initial value $\mathbf{x}(0)$.

- At time t, one node wakes up (let's say ℓ)
 - Algorithm 1 (pairwise): ℓ selects $\ell' \in \mathcal{N}_\ell$ and

$$x_{\ell}(t+1) = x_{\ell'}(t+1) = \frac{x_{\ell}(t) + x_{\ell'}(t)}{2}$$

 Algorithm 2 (broadcast): l broadcasts its value at any neighbor who updates

$$x_{\ell'}(t+1)=rac{x_\ell(t)+x_{\ell'}(t)}{2},\ \ell'\in\mathcal{N}_\ell$$

Finally

$$\mathbf{x}(t) = \prod_{k=1}^{t} \mathbf{W}_k \mathbf{x}(0)$$

Results

- Algorithm 1: convergence to \overline{x} (as $\lim_{t\to\infty}\prod_{k=1}^{t} \mathbf{W}_k = \frac{1}{N} \mathbf{1} \mathbf{1}^{\mathrm{T}}$)
- Algorithm 2: convergence to $\underline{x} = \mathbf{v}_{\infty}^{\mathrm{T}} \mathbf{x}(0)$ (as $\lim_{t \to \infty} \prod_{k=1}^{t} \mathbf{W}_{k} = \mathbf{1} \mathbf{v}_{\infty}^{\mathrm{T}}$)

Application: Consensus algorithm (2/2)

Row-stochastic matrix: non-negative matrix and row sums to 1

$$\mathbf{W1} = \mathbf{1} \Rightarrow \lim_{k \to \infty} \mathbf{W}^k = \mathbf{1}\mathbf{v}^{\mathrm{T}} \text{(mild conditions)}$$

with $\mathbf{v}^{\mathrm{T}}\mathbf{1} = 1$

 Column-stochastic matrix: non-negative matrix and column sums to 1

$$\mathbf{1}^{\mathrm{T}}\mathbf{W} = \mathbf{1}^{\mathrm{T}} \Rightarrow \lim_{k \to \infty} \mathbf{W}^{k} = \mathbf{v}\mathbf{1}^{\mathrm{T}}$$
(mild conditions)

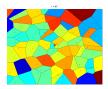
Extension exists for a sequence of \mathbf{W}_k

Remark

- For Algorithm 1: both row and column-stochastic matrix
- For Algorithm 2: only row-stochastic matrix

Application: Numerical illustrations

Initial Graph



Pairwise (
$$t = 10$$
)

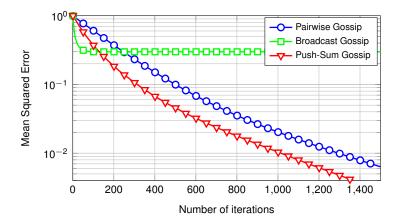
Broadcast (t = 10)



Pairwise (t = 75)

Broadcast (t = 75)

Application: Numerical illustrations

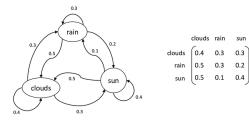


Link with Markov chain

Finite-state Markov Chain: state $s \in S = \{s^1, \cdots, s^N\}$

$$\Pr\left(\boldsymbol{s}_{t+1} = \boldsymbol{s}^{\ell} | \boldsymbol{s}_t = \boldsymbol{s}^k\right) = T_{k,\ell} \ge 0$$

with $\sum_{\ell} T_{k,\ell} = 1$, so **T** is row-stochastic matrix



Analyzing Markov chain is equivalent to analyzing Graph

Stationary distribution: μ s.t. $\mu = \mu$ T

source: H. Seyr and M. Muskulus, "Decision Support Models for Operations and Maintenance for Offshore Wind Farms: A Review", Applied

Sciences, April 2019

What do we want to do?

- Analyzing some math operators on Graph: see Graph Fourier Transform
- Analyzing convergence on Graph: see Markov chain, Gossip algorithms

but in previous cases, graph is a tool, not the signal of interest

- In the remainder of the presentation, Graph is the signal
 - classification/clustering
 - node inference
 - link prediction (not done here)

Two types of graphs

- Non-attributed (only links)
- Attributed (links + values)

Analysis is usually different (except if embedding procedure)

Part 2: Non-attributed graphs

- 2.1 Community detection
- 2.2 Coalition game

2.1: Community detection

Example

Reminder: clustering based only on connection properties (no-valued nodes)

Modularity principle (1/2)

Clustering = Graph partition: $\Pi = \{\mathcal{P}_{\ell}\}_{\ell}$ s.t. $\mathcal{G} = \bigcup_{\ell} \mathcal{P}_{\ell}$ and $\bigcap_{\ell} \mathcal{P}_{\ell} = \emptyset$

 $\Pi^* = \arg \max_{\Pi} Q(\Pi)$

with Q the so-called modularity function

Assume random network. Let *k* and ℓ be two nodes with degrees d_k and d_ℓ . Let *e* be the number of edges What is the probability for these two nodes to be connected ?

We have 2*e* stubs (stub: one link going from one node). Each stub of node *k* has a probability $d_{\ell}/(2e-1)$ to be connected to a stub of node ℓ . Therefore

$$\Pr(k \text{ connected to } \ell) = \frac{d_k d_\ell}{2e - 1}$$

$$Q = \frac{1}{2e} \sum_{k,\ell} \left(a_{k\ell} - \frac{d_k d_\ell}{2e} \right) \delta_{\mathcal{P}_k,\mathcal{P}_\ell}$$

Modularity principle (2/2)

$$Q = \sum_{k,\ell} \frac{a_{k\ell}}{2e} \delta_{\mathcal{P}_k,\mathcal{P}_\ell} - \sum_{k,\ell} \frac{d_k}{2e} \frac{d_\ell}{2e} \delta_{\mathcal{P}_k,\mathcal{P}_\ell}$$

Let f_{ij} fraction of edges in the graph connecting nodes from cluster *i* to cluster *j* (factor 2 since undirected edge counts twice)

$$f_{ij} = \sum_{k,\ell} rac{a_{k\ell}}{2e} \delta_{k\in\mathcal{P}_i} \delta_{\ell\in\mathcal{P}_j}$$

Let $c_i = \sum_j f_{ij}$ be the fraction of edges connecting nodes to cluster *i*

$$Q = \sum_{i} f_{ii} - \sum_{k,\ell} \frac{d_k}{2e} \frac{d_\ell}{2e} \delta_{\mathcal{P}_k,\mathcal{P}_\ell} = \sum_{i} (f_{ii} - c_i^2)$$

If graph is random, $f_{k\ell} \approx c_k c_\ell$

Complexity issue

- Solution 1: decentralized algorithm
- Solution 2: embedding, then clustering algorithm (like k-means)

2.2: Coalition game

Non-centralized case

- each node makes its decision by itself by observing its neighborhood
- then we iterate synchronously or asynchronously.

Mathematical Tool: Coalition Game Theory

Within a coalition structure (actually graph partition), we associate these quantities to each coalition/cluster \mathcal{P}_k :

- Revenue/reward/utility u(P_k) ≥ 0 quantifies the worth of the coalition, with u(∅) = 0.
- **Cost** $c(\mathcal{P}_k) \ge 0$ quantifies the cost of cooperation.
- Value $v(\mathcal{P}_k)$ is defined as:

$$v(\mathcal{P}_k) = u(\mathcal{P}_k) - c(\mathcal{P}_k).$$

Switch operation

Definition

A switch operation $\sigma_{k,\ell}(\mathcal{U})$ is defined as the transfer of players \mathcal{U} from \mathcal{P}_k to $\mathcal{P}_\ell \cup \{\emptyset\}, \sigma_{k,\ell}(\mathcal{U}) : \mathcal{P}_k \mapsto \mathcal{P}_k \setminus \mathcal{U}$, and $\mathcal{P}_\ell \mapsto \mathcal{P}_\ell \cup \mathcal{U}$.

Remark 1: if $\mathcal{P}_{\ell} = \emptyset$, then $\sigma_{k,\ell}(\mathcal{U})$ leads to a new coalition. Remark 2: if $\mathcal{U} = \mathcal{P}_k$, then $\sigma_{k,\ell}(\mathcal{U})$ leads to the merge of \mathcal{P}_k with \mathcal{P}_{ℓ} .

Definition (Switch Operation Gain)

This gain $g(\sigma_{k,\ell}(\mathcal{U}))$ associated with $\sigma_{k,\ell}(\mathcal{U})$ is defined as:

$$g(\sigma_{k,\ell}(\mathcal{U})) := \mathbf{r}_{\mathcal{U}}(\mathcal{P}_{\ell} \cup \mathcal{U}) - \mathbf{r}_{\mathcal{U}}(\mathcal{P}_k),$$

with $r_{\mathcal{U}}(S)$ defined as $r_{\mathcal{U}}(S) := v(S) - v(S \setminus \mathcal{U})$ and interpreted as the added value of having players \mathcal{U} in coalition S.

Nash equilibrium

Definition (Preference relation)

This relation \succeq is defined as a complete and transitive binary relation between two switch operations $\sigma_{k,\ell}(\mathcal{U}_i)$ and $\sigma_{k',\ell'}(\mathcal{U}_j)$ such that:

 $\sigma_{k,\ell}(\mathcal{U}_i) \succeq \sigma_{k',\ell'}(\mathcal{U}_j) \Leftrightarrow g(\sigma_{k,\ell}(\mathcal{U}_i)) > g(\sigma_{k',\ell'}(\mathcal{U}_j))$

In Game Theory, relevant points satisfy equilibrium property:

- No global cost function (if it exists, Game Theory is useless)
- Each player (here, coalition) has its own goal and should find a trade-off/equilibrium with the others
- In non-cooperative game (with rational players), Nash equilibrium

Definition (Nash stability for coalition game)

$$\Pi = \{\mathcal{P}_1, \dots, \mathcal{P}_K\} \text{ is Nash-stable if } \forall \mathcal{P}_k, \forall \boldsymbol{P}_\ell \in \Pi \cup \{\emptyset\}, \forall i \in \mathcal{P}_k, \forall i \in \mathcal{P}_k\}$$

$$g(\sigma_{k,\ell}(\{i\}) \leq 0$$

It exists no single node switch operation with a strictly positive gain

Algorithm for unstructured network

- Unstructured traffic based wireless network
- Goal: build stable clusters (even with moving nodes)
- Solution: gathering nodes with high link capacities between each other
- As a byproduct, communications within the cluster easier to manage, and then elect a cluster head (as a hub)

Consequently, the coalition reward is the sum capacity of all intra-cluster links:

$$u(\mathcal{P}_k) := \sum_{i \in \mathcal{P}_k} \sum_{j \in \mathcal{P}_k \mid (i,j) \in \mathcal{E}} \kappa(i,j)$$

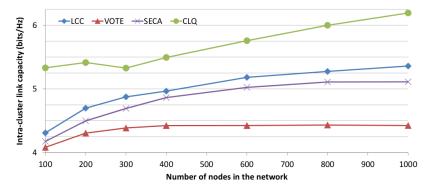
where $\kappa(i, j)$ denotes the *capacity* of link (i, j)

$$\kappa(i,j) = \log_2\left(1 + \frac{\text{ChannelGain}_{i,j}\text{Power}}{\text{Interference+Noise}}\right)$$

The cost $c(\mathcal{P}_k)$ is 0 if cluster size constraint satisfied and ∞ otherwise

Numerical results

Proposed algorithm: Clustering with Link Quality (CLQ).



Part 3: Attributed graphs

- 3.1 Node Classification
- 3.2 Graph comparison

3.1: Node classification

Goal

Predict the class/label of each unlabeled node of the graph by relying

- on nodes' features and
- on nodes' connections within the graph.

Examples:

- in social networks, people are more likely to connect with those who share the same areas of interest
- in research articles' database, more likely to have connections/citations between articles dealing with the same research topic

That's the homophily principle

Information taken into account

- Label Propagation (LP): propagated through the adjacent nodes at each step. Requires algorithms for merging labels' information
- Feature propagation (FP): propagated through the adjacent nodes at each step. Requires algorithms for merging features

FP approach

Main idea: weighted averaging of the current features of adjacent nodes (sometimes followed by a nonlinear function)

- Graph neural networks (GNN): Neural Networks adapted to the attributed graphs. Training done with labeled nodes
- Our contribution: we derive in closed-form a classifier
 - interpretable algorithm (no black box)
 - less complex since no training
 - No embedding (as done by GNN)

Example

- p: average probability of intra-class connection
- q: average probability of inter-class connection
- Degree of impurity (DoI) of the graph is $\frac{q}{p}$
- Dol ≪ 1 leads to graph with communities (nodes with similar features are connected to each other).

	Cora	Citeseer
Intra-class connectivity (p)	$23 imes10^{-3}$	$12 imes 10^{-3}$
Inter-class connectivity (q)	$5.5 imes 10^{-3}$	$4.3 imes10^{-3}$
Degree of Impurity (q/p)	0.23	0.36
Logistic Regression (LR)	56.0%	57.2%
Two-layer GNN	81.5%	70.3%
Gain between GNN and LR	+45.5%	+22.9%

Problem statement

Classifier based on Bayesian decision theory: Maximum A Posteriori

- V_u : set of nodes involved in the classification of node u.
- $\mathcal{X}_u = \{\mathbf{X}_u\} \cup \{\mathbf{X}_v, v \in \mathcal{V}_u\}$: set of features of node *u* and its "helping" nodes
- y_u: class of node u (what we are looking for!)
- *D_k*: probability density function of features belonging to class *k*. For any *u*,

$$D_k(\boldsymbol{x}_u) = p(\boldsymbol{x}_u|y_u = k).$$

Graph-Assisted Bayesian (GAB) Classifier

$$\hat{k}_u = rg\max_k P_u(k)$$

with $P_u(k) = P(y_u = k | \mathcal{X}_u, \mathcal{I}_G)$, and by knowing information on \mathcal{X}_u and on the graph \mathcal{I}_G (e.g., its partial connectivity through the set \mathcal{V}_u)

Problem solution

- arg max : here no complexity issue since small amount of classes
- Derivations of P_u(k). Bayes' rule

$$P_{u}(k) = \frac{P(\mathcal{X}_{u}|y_{u} = k, \mathcal{I}_{\mathcal{G}})P(y_{u} = k|\mathcal{I}_{\mathcal{G}})}{P(\mathcal{X}_{u}|\mathcal{I}_{\mathcal{G}})} \propto Q_{u}(k)\pi_{k}$$

with $\pi_k = P(y_u = k | \mathcal{I}_G)$ a priori classes' probability Let Δ_u be the diameter of the set \mathcal{V}_u .

$$Q_u(k) = D_k(\boldsymbol{x}_u) \prod_{d=1}^{\Delta_u} \prod_{v \in \mathcal{N}_u(d)} \left(\sum_{k'=1}^K r_{u,v}(k,k') D_{k'}(\boldsymbol{x}_v) \right)$$

with $r_{u,v}(k, k') = p(y_v = k' | y_u = k, \mathcal{I}_G)$ the probability to be on class k' for node v given the fact that we are in class k for node u and we have information on the graph \mathcal{I}_G .

Example: $\mathcal{V}_u = \{v\}$, known $k_v = 1$, $\pi_1 = \pi_2 = 1/2$, and $\Delta_u = 1$:

$$Q_u(1) = D_1(\boldsymbol{x}_u) \frac{p}{p+q}$$
 and $Q_u(2) = D_2(\boldsymbol{x}_u) \frac{q}{p+q}$

Main result

Assumptions

- 2 equilikely classes
 - p(k) probability that two nodes from class k are connected p average of {p(k)}_k
 - q probability that two nodes from different classes are connected.
- Information on graph is 1-hop

We get

$$\begin{array}{c|c} r(1,2) = \frac{q}{p(1)+q} & r(2,2) = \frac{p(2)}{q+p(2)} \\ \hline r(1,1) = \frac{p(1)}{p(1)+q} & r(2,1) = \frac{q}{q+p(2)} \end{array}$$

GAB does not depend on the graph iff r(1,2) = r(2,2) and r(1,1) = r(2,1)

$$q = \sqrt{p(1)p(2)} = \overline{p}_{\text{geometric}}$$

iff

$$\mathrm{DoI} = rac{\overline{
ho}_{\mathrm{geometric}}}{\overline{
ho}_{\mathrm{arithmetic}}} \leq 1$$

Graph Neural Network (1/2)

Main idea

- Use graph structure in addition to node and edge features to generate node representation vectors (i.e., embedding)
- Aggregate the features of neighboring nodes and edges
- Output of the ℓ-th layer of GNN is

$$\boldsymbol{h}_{u}^{(\ell)} = \sigma^{(\ell)}(\phi^{(\ell)}(\boldsymbol{h}_{u}^{(\ell-1)}, \{\boldsymbol{h}_{v}^{(\ell-1)}: v \in \mathcal{N}_{u}\}))$$

where

- $\boldsymbol{h}_{u}^{(\ell)}$ representation vector of node u at ℓ -th layer ($\boldsymbol{h}_{u}^{(0)} = \boldsymbol{x}_{u}$)
- $\sigma^{(\ell)}$ activation function
- $\circ \phi^{(\ell)}$ linear function associated with weights' matrix $\mathbf{W}^{(\ell)}$
- First-order GNN has 1 layer (1-hop neighborhood in the graph)
- Usually, activation function is a rectified linear unit (ReLU).
- For the last layer, softmax which provides a probability
- Then node *u* is attributed to the class with the highest probability

Graph Neural Network (2/2)

Graph Convolutional Neural Network (GCN):

$$\phi_{u}^{(\ell)} = \mathbf{W}^{(\ell)} \left(\frac{\mathbf{h}_{u}^{(\ell-1)}}{d_{u}+1} + \sum_{v \in \mathcal{N}_{u}} \frac{\mathbf{h}_{v}^{(\ell-1)}}{\sqrt{(d_{u}+1)(d_{v}+1)}} \right)$$

Graph Isomorphism Network (GIN):

$$\phi_{u}^{(\ell)} = \mathbf{W}^{(\ell)} \left((1+\alpha) \boldsymbol{h}_{u}^{(\ell-1)} + \sum_{v \in \mathcal{N}_{u}} \boldsymbol{h}_{v}^{(\ell-1)} \right)$$

Graph convolution Operator Network (GON):

$$\phi_u^{(\ell)} = \mathbf{W}_1^{(\ell)} \boldsymbol{h}_u^{(\ell-1)} + \mathbf{W}_2^{(\ell)} (\sum_{v \in \mathcal{N}_u} \boldsymbol{h}_v^{(\ell-1)})$$

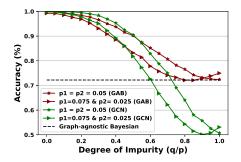
Graph Attention Network (GAT):

$$\phi_{u}^{(\ell)} = \sum_{\boldsymbol{v} \in \mathcal{N}_{u} \cup \{u\}} \alpha_{u,v}^{(\ell)} \boldsymbol{W}^{(\ell)} \boldsymbol{h}_{v}^{(\ell-1)} \text{ with } \alpha_{u,v}^{(\ell)} \propto \boldsymbol{e}^{\varsigma(\boldsymbol{w}^{(\ell)}[\boldsymbol{W}^{(\ell)}\boldsymbol{h}_{u}^{(\ell-1)}] || \boldsymbol{W}^{(\ell)} \boldsymbol{h}_{v}^{(\ell-1)}])}$$

the so-called normalized attention coefficients

Numerical illustrations (1/2)

- 2 classes
- Gaussian distributions with different means and covariance matrices
- Number of nodes N = 5,000 and number of features F = 500
- 500 (already-labeled) nodes



- GAB more robust to Dol than GCN
- GCN becomes worse than graph-agnostic (too confident)

Numerical illustrations (2/2)

	Para	meters t	o estimat	te in GA	B W	Weights to learn in GNN			
Cora		1	0,087			369,066			
PubMed		1,512 129,286							
	MLP	GCN	SAGE	GAT	GMN	DGCN	GBPN	GAB	
Cora	72.1	87.1	86.9	87.1	86.4	87.2	86.4	86.9	
CiteSeer	71.2	73.5	73.5	73.1	72.9	73.9	74.8	75.2	
PubMed	86.5	87.1	87.8	88.1	86.7	84.7	88.5	86.4	
CS	94.2	93.2	93.7	94.0	93.3	94.9	95.5	94.5	
Physics	95.8	96.1	96.3	96.3	96.1	96.7	96.9	96.4	

- GAB close to GBPN and GAT, the best ones in the literature
- But interpretability
- But low-complexity

3.2: Graph comparison

Question

- Are two graphs close to each other ?
- Useful in many applications: link prediction, time-varying analysis, etc

Main issues:

- Balance between features and edges ?
- Even if no features, what does it mean two close graphs ?
 - counter-example: by cutting a few edges, new graph is not connected : is it far or not from the original one
 - so just comparing A is not enough: induced properties are crucial

Detour by the optimal transport

Original problem [Monge1781]

How moving a sand pile with shape 1 into a shape 2 by minimizing the energy consumption ?

Shape : f where f(x) provides the level of sand at x

• $f(x) \ge 0$, and $\int f(x) dx = 1$: probability density function (pdf)

Transport problem

- Transport map: y = T(x)
- Transport cost: c(x, T(x)), and $C(T) = \int c(x, T(x))f_1(x)dx$
- Transport application: T_#

$$f_1(\{x: T(x) \in \Omega\}) = f_2(\Omega) \Leftrightarrow T_{\#}f_1(\Omega) = f_1(T^{(-1)}(\Omega)) = f_2(\Omega)$$

$$T^{\star} = \arg\min_{T, T_{\#}f_1 = f_2} C(T)$$

In general, to hard to solve

Relaxation [Kantorovitch1942]

Modification of definition of Transport Map T

- it is not a function anymore
- it is a probability function: given the sand at *x*, it can be spread at several new positions.

$$C(T) = \int \left(\int c(x, y) T_x(y) dy \right) f_1(x) dx$$

s.t.

• Accurate final shape: $f_2(\Omega) = \int (\int_{\Omega} T_x(y) dy) f_1(x) dx$

• Take only the original shape: $f_1(\Omega) = \int (\int_{\Omega} T_x(y) f_1(x) dx) dy$ Then consider $T_x(y) f_1(x) = \pi(x, y)$

Relaxation [Kantorovitch1942]

Modification of definition of Transport Map T

$$\pi^{\star} = \arg\min_{\pi} \iint c(x,y)\pi(x,y)dxdy$$

s.t.

•
$$f_2(\Omega) = \int_{y \in \Omega} \left(\int \pi(x, y) dx \right) dy$$

•
$$f_1(\Omega) = \int_{x \in \Omega} \left(\int \pi(x, y) dy \right) dx$$

Much easier : Linear programming

Wasserstein distance

Consider two probability mass function (pmf) : discrete version of pdf

- $f_1: \sum_{i=1}^m a_i \delta_{x_i}$ (a non-negative vector summing to 1) $f_2: \sum_{i=1}^m b_i \delta_{y_i}$ (b non-negative vector summing to 1)

p-Wasserstein distance

$$W_{p}(f_{1}, f_{2}) = \min_{\{\gamma_{i,j}\}_{i,j}} \sum_{i=1}^{m} \sum_{j=1}^{n} |x_{i} - y_{j}|^{p} \gamma_{i,j}$$

s.t.

•
$$b_j = \sum_{i=1}^m \gamma_{i,j}, \forall j$$

• $a_i = \sum_{i=1}^n \gamma_{i,j}, \forall i$

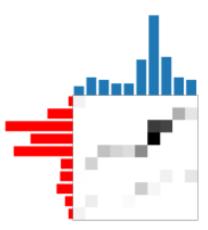
where $\gamma_{i,i}$ is the quantity of material going from x_i to y_i

Remark: Completely different from standard Kullback-Leibler distance (related to entropy)

$$D(f_1||f_2) = \int \log_2\left(\frac{f_1(x)}{f_2(x)}\right) f_1(x) dx$$

Example

- Blue: Source distribution
- Red: Target distribution



Graph Diffusion Distance

- Non-attributed graph
- related to Heat diffusion
- Idea: similar graph will diffuse in the same way the heat

$$\text{GDD} = \max_{\tau \ge 0} \left\| \exp\left(-\tau \mathbf{L}_{1}\right) - \exp\left(-\tau \mathbf{L}_{2}\right) \right\|_{2}^{2}$$

where $\|.\|_{t}^{2}$ is the Frobenius square norm (summing the square of each matrix component)

Gromov-Wasserstein distance

- Non-attributed graph
- Adapted to Graph
- Matrices $C^s \in \mathbb{R}^{m \times m}$ and $C^t \in \mathbb{R}^{n \times n}$

$$\mathrm{GW} = \min_{\{\gamma_{i,j}\}_{i,j}} \sum_{i,j',j,j'} d(\boldsymbol{C}^{\boldsymbol{s}}_{i,i'}, \boldsymbol{C}^{\boldsymbol{t}}_{j,j'}) \gamma_{i,j} \gamma_{i',j'}$$

•
$$a_i = \sum_{j=1}^n \gamma_{i,j}, \forall i$$

• $b_j = \sum_{i=1}^m \gamma_{i,j}, \forall j$

Application to Graph:

- C may be the adjacency matrix A
- C may be a similarity matrix between nodes
- Hyperparameters **a** and **b** to be tuned

Fused Gromov-Wasserstein distance

• Attributed graph

• Matrices $C^s \in \mathbb{R}^{m \times m}$ and $C^t \in \mathbb{R}^{n \times n}$

$$FGW = \min_{\{\gamma_{i,j}\}_{i,j}} \sum_{i,i',j,j'} \left[(1-\alpha) d_1(\boldsymbol{x}_i, \boldsymbol{x}_j) \gamma_{i,j} + \alpha d_2(\boldsymbol{C}_{i,i'}^s, \boldsymbol{C}_{j,j'}^t) \gamma_{i,j} \gamma_{i',j'} \right]$$

s.t.

•
$$a_i = \sum_{j=1}^n \gamma_{i,j}, \ \forall i$$

• $b_j = \sum_{i=1}^m \gamma_{i,j}, \ \forall j$

Diffusion-Wasserstein distance

Attributed graph

• $\mathbf{Y}^t = \exp(-\tau^t \mathbf{L}_t) \cdot \mathbf{X}^t$ heat diffusion with initial values \mathbf{X}^t

$$\mathrm{DW}_{\tau^{s},\tau^{t}} = \min_{\{\gamma_{i,j}\}_{i,j}} \sum_{i,j} \boldsymbol{d}_{1}(\boldsymbol{y}_{i}^{s}, \boldsymbol{y}_{j}^{t}) \gamma_{i,j}$$

s.t.

•
$$a_i = \sum_{j=1}^n \gamma_{i,j}, \forall i$$

• $b_j = \sum_{i=1}^m \gamma_{i,j}, \forall j$

Extreme cases:

- $\tau^s = \tau^t = 0$, Wasserstein distance
- $\tau^s = \tau^t = \infty$, average comparison of features

Numerical illustrations (1/3)

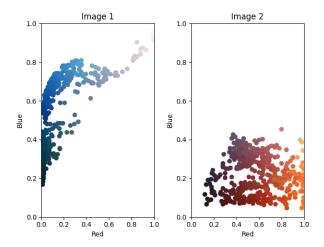
Image color adaptation

Original image

Target color

Numerical illustrations (2/3)

Optimal transport on color distribution



Numerical illustrations (3/3)

Philippe Ciblat

Statistical Inference over Graphs

Part 4: From graphs to vectors

Embedding

Main idea

- Vector : nice representation for signals
- Why? many algorithms adapted to vectors
 - o in classification (k-means, NN with vector as input)
 - o in regression (linear, NN with vector as input)

Embedding:

- representing any type of signal as a vector
- practical and efficient but not necessary smart (see 3.1)

Examples:

- Text: word2vec
 - close vector = synonym
 - semantic vector space: $v_{queen} + v_{man} = v_{king}$
- Graph: graph representation learning (through GNN)
 - o "close" points in graph are close points in vector space
 - But, what does it mean "close" in graph when trade-off between edges and features

Representation self-learning

- $\boldsymbol{x}_u \in \mathbb{R}^P$ feature vector at node u
- $\mathbf{X} \in \mathbb{R}^{N \times P}$: matrix stacking initial feature vectors of all nodes.
- A: adjacency matrix of the graph

Goal

- Self-learning node representation (without human annotation/tag)
- i.e., learning a graph neural network (with L layer) encoder f

$$\mathbf{H}^{(L)} := f(\mathbf{X}, \mathbf{A}) \in \mathbb{R}^{N \times P'}$$

with

- $P' \leq P$ the embedding size
- u-th row of $\mathbf{H}^{(L)}$ is the embedding/representation vector $\mathbf{h}_{u}^{(L)}$ of node u.
- Finding a appropriate criterion to optimize f

Contrastive learning

Given a feature h_u of node u, we generate

- a *positive* example h_u^+ (close to h_u)
- a set of *negative* examples Q_u

We define a loss \mathcal{L} offering low value when h_u

- similar to h⁺_u
- dissimilar to all elements h^- of Q_u

A standard loss

$$\mathcal{L} = -\sum_{u \in \mathcal{G}} \boldsymbol{h}_u^{\mathrm{T}} \boldsymbol{h}_u^+ + \log \sum_{u \in \mathcal{G}} \left(\exp(\boldsymbol{h}_u^{\mathrm{T}} \boldsymbol{h}_u^+) + \sum_{\boldsymbol{h}^- \in \boldsymbol{Q}_u} \exp(\boldsymbol{h}_u^{\mathrm{T}} \boldsymbol{h}^-) \right)$$

How generating negative examples?

Feature-based sampling:

- o based on comparisons between nodes' intrinsic features.
- For node u, we consider as negatives all nodes v whose intrinsic features are neither too close nor too far from those of node u

$$\frac{\boldsymbol{x}_{u}^{\mathrm{T}}\boldsymbol{x}_{v}}{\|\boldsymbol{x}_{u}\|\|\boldsymbol{x}_{v}\|} \in [\omega_{LB}, \omega_{UB}]$$

Negatives are different from positive but quite hard to distinguish from the current sample

Graph-based sampling:

- based on graph structure
- For node u, we consider as negatives all nodes v located at ℓ-hop of node u

Algorithm

- Consider two (small) stochastic perturbations t₁ and t₂ on edges and features
 - $(\mathbf{X}_1, \mathbf{A}_1) \sim t_1(\mathbf{X}, \mathbf{A})$
 - \circ (X₂, A₂) \sim t₂(X, A)
- Apply the current encoder to exhibit the node representations
 - the baseline representation $\mathbf{H}^{L} = f(\mathbf{X}_{1}, \mathbf{A}_{1})$
 - the positive example $\mathbf{H}_{+}^{L} = f(\mathbf{X}_{2}, \mathbf{A}_{2})$
- Select negative examples
 - Features-based sampling
 - Connection-based sampling
- Update weights of *f* using the loss function *L*

Numerical illustrations

- Test the node representation into a classification problem
- Once embedding done, classification relying on logistic regression applied
- Embedding size P' = 512

	Cora	Citeseer	Pubmed	Arxiv
Raw features	47.9	49.3	69.1	55.5
DeepWalk	67.2	43.2	65.3	70.1
DeepWalk + features	70.7	51.4	74.3	-
EP-B	78.1	71.0	79.6	68.0
DGI	82.3	71.8	76.8	70.2
Proposed Method	83.6	72.5	79.8	70.2
GCN (supervised)	81.5	70.3	79.0	71.7

Conclusion

Graph is a fascinating mathematical structure

- using different mathematical branches
- related to practical problems
- but difficult to manage

Problems not treated here

- Epidemic propagation (rumor spreading, max-consensus)
- Link prediction
- Random Graph
- Structured Graph (like in Chemistry)
- Graph drawing

Our publications devoted to graphs

PhD theses:

- Hakim Hafidi (co-supervised with Mounir Ghogho (UIR, Morocco)), "Robust Machine Learning for Graphs", Feb. 2023
- Raphaël Massin (co-supervised with Christophe Le Martret (Thales)), "On distributed node clustering in mobile ad hoc networks", Nov. 2016
- Franck lutzeler (co-supervised with Walid Hachem), "Distributed estimation and optimization in asynchronous networks", Dec. 2013

Other references

- D. Spielman, "Spectral and Algebraic Graph Theory", Booklet, Yale University, 2019
- A.-L. Barabasi, "Network Science", Cambridge Press University, 2016
- A. Ortega, P. Frossard, J. Kovacevic, J. Moura, P. Vandergheynst, "Graph signal processing: Overview, challenges, and applications", Proceedings of the IEEE, 2018
- M. Newman, "Fast algorithm for detecting community structure in networks," 2003
- S. Ferradans, N. Papadakis, G. Peyre, J. Aujol, "Regularized discrete optimal transport", SIAM Journal on Imaging Sciences, 2014
- L. Brogat-Motte, R. Flamary, C. Brouard, J. Rousu, F. d'Alché-Buc, "Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters", ICML, 2022