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Outline

A very short introduction to Graph Theory

Non-attributed graphs
◦ Community detection
◦ Coalition game

Attributed graphs
◦ Node classification
◦ Graph comparison

From graphs to vectors
◦ Embedding for attributed graphs

Conclusion
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Part 1 : Introduction to Graph Theory
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Where do you find graphs ?

Social Networks
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Where do you find graphs ?

Vote Networks
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Where do you find graphs ?

Papers’ database
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Where do you find graphs ?

Public Transportation map
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Where do you find graphs ?

Communication Networks
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Where do you find graphs ?

Human interaction for epidemic propagation analysis

source: V. Krebs, “Tracking and stopping the spread of a contagious disease”
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Where do you find graphs ?

Molecule Networks
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Graph characteristics

Two main types of graphs

Non-attributed graphs
◦ N nodes/vertices
◦ Links/Edges between some nodes
◦ Edges may be directed/non-directed and/or weighted/non-weighted

Attributed graphs
◦ Each node i has also a feature/value xi ∈ RK
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Mathematical representations

Here, we consider non-directed and non-weighted graphs.

Let i be a node and Ni be the set of its neighbors
Node degree: di = |Ni | (number of neighbors)
Degrees matrix: D = diag(d1, · · · ,dN)

Adjacency matrix: A

aij =

{
1 if i and j are connected
0 otherwise

Be careful: aii = 0
Laplacian matrix: L = D− A

Some results
L.1 = 0
The second smallest eigenvalue λ2 6= 0 iff graph is connected
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Graph decomposition (1/3)

Timeline is a graph: if periodic signal (of length N), it is even a
ring graph
◦ yn =

∑
k hk sk (xn) with s(xn) = xn−1

◦ y = [yN−1, · · · , y0]
T. Then

y = Cx and C = FMFH

with M = diag(m0, · · · ,mN−1) and m` =
∑N−1

n=0 hk e−2iπ`k/N

◦ Then X = FHx is the Fourier Transform of any vector x.

source: N. Tremblay, “Networks and Signal: signal processing tools for networks analysis”, PhD thesis, ENS Lyon, 2014
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Graph decomposition (2/3)

For any graph
◦ y =

∑
k hk sk (x) with s(x)m =

∑
`∈Nm

sm,`x`
◦ y =

∑
k hk Sk x. If S = VΛVT Then

y = V

(∑
k

hkΛ
k

)
VTx

◦ By analogy
− m` =

∑
k hkλ

k
` with λ` = e−2iπ`/N , F = V, and S = circ([0, 1, 0, · · · ])

− Conversely, X = VTx is called Graph Fourier Transform
− v` (`-th column of V) is the `-th Fourier Graph as y = m`v` if x = v`
− And Y` = m`X`.
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Graph decomposition (3/3)

A. Barbe, “Diffusion-Wasserstein distances for attributed graphs”, PhD thesis, ENS Lyon, Dec 2021
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Application: Heat diffusion
Continuous-time Heat diffusion within a graph

A time t , the temperature of the node ` is denoted by x`(t)
The update law comes from Heat diffusion equation

dx`
dt

= −
∑

m∈N`

(x` − xm)⇔ dx
dt

= −Lx

The solution is
x(t) = e−tLx(0)

Let L = VΛVT with λ1 = 0 and v1 = 1/
√

N. Then

e−tL = Ve−tΛVT t→∞→ v1vT
1 =

1
N

11T

Therefore
lim

t→∞
x(t) = x1

with x the average of initial temperatures.
The speed of convergence depends on the graph through {λ`}`=2,··· ,N
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Application: Numerical illustrations

B. Ricaud, P. Borgnat, N. Tremblay, P. Gonçalves, P Vandergheynst, “Fourier could be a data scientist: from Graph Fourier transform to

signal processing on graphs”, Comptes-rendus de Physique de l’Académie des Sciences, Aug. 2019
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Application: Consensus algorithm (1/2)
We start with an initial value x(0).

At time t , one node wakes up (let’s say `)
Algorithm 1 (pairwise): ` selects `′ ∈ N` and

x`(t + 1) = x`′(t + 1) =
x`(t) + x`′(t)

2
Algorithm 2 (broadcast): ` broadcasts its value at any neighbor
who updates

x`′(t + 1) =
x`(t) + x`′(t)

2
, `′ ∈ N`

Finally

x(t) =
t∏

k=1

Wk x(0)

Results

Algorithm 1: convergence to x (as limt→∞
∏t

k=1 Wk = 1
N 11T)

Algorithm 2: convergence to x = vT
∞x(0) (as

limt→∞
∏t

k=1 Wk = 1vT
∞)
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Application: Consensus algorithm (2/2)

Row-stochastic matrix: non-negative matrix and row sums to 1

W1 = 1⇒ lim
k→∞

Wk = 1vT(mild conditions)

with vT1 = 1
Column-stochastic matrix: non-negative matrix and column sums
to 1

1TW = 1T ⇒ lim
k→∞

Wk = v1T(mild conditions)

Extension exists for a sequence of Wk

Remark
For Algorithm 1: both row and column-stochastic matrix
For Algorithm 2: only row-stochastic matrix

Philippe Ciblat Statistical Inference over Graphs 18 / 61



Introduction Non-attributed Attributed Embedding Conclusion

Application: Numerical illustrations

Initial Graph Pairwise (t = 10) Pairwise (t = 75)

Broadcast (t = 10) Broadcast (t = 75)
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Application: Numerical illustrations
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Link with Markov chain

Finite-state Markov Chain: state s ∈ S = {s1, · · · , sN}

Pr
(
st+1 = s`|st = sk) = Tk,` ≥ 0

with
∑
` Tk,` = 1, so T is row-stochastic matrix

Analyzing Markov
chain is equivalent to
analyzing Graph

Stationary distribution: µ s.t. µ = µT

source: H. Seyr and M. Muskulus, “Decision Support Models for Operations and Maintenance for Offshore Wind Farms: A Review”, Applied

Sciences, April 2019
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What do we want to do?

Analyzing some math operators on Graph: see Graph Fourier
Transform
Analyzing convergence on Graph: see Markov chain, Gossip
algorithms
but in previous cases, graph is a tool, not the signal of interest

In the remainder of the presentation, Graph is the signal
◦ classification/clustering
◦ node inference
◦ link prediction (not done here)

Two types of graphs

Non-attributed (only links)
Attributed (links + values)

Analysis is usually different (except if embedding procedure)
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Part 2: Non-attributed graphs

2.1 Community detection
2.2 Coalition game
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2.1: Community detection

Example

Reminder: clustering based only on connection properties (no-valued
nodes)
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Modularity principle (1/2)
Clustering = Graph partition: Π = {P`}` s.t. G = ∪`P` and ∩`P` = ∅

Π? = arg max
Π

Q(Π)

with Q the so-called modularity function

Assume random network. Let k and ` be two nodes with degrees dk
and d`. Let e be the number of edges
What is the probability for these two nodes to be connected ?

We have 2e stubs (stub: one link going from one node). Each stub of
node k has a probability d`/(2e − 1) to be connected to a stub of
node `. Therefore

Pr (k connected to `) =
dk d`

2e − 1

Q =
1

2e

∑
k,`

(
ak` −

dk d`
2e

)
δPk ,P`
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Modularity principle (2/2)

Q =
∑
k,`

ak`

2e
δPk ,P`

−
∑
k,`

dk

2e
d`
2e
δPk ,P`

Let fij fraction of edges in the graph connecting nodes from cluster i
to cluster j (factor 2 since undirected edge counts twice)

fij =
∑
k,`

ak`

2e
δk∈Pi δ`∈Pj

Let ci =
∑

j fij be the fraction of edges connecting nodes to cluster i

Q =
∑

i

fii −
∑
k,`

dk

2e
d`
2e
δPk ,P`

=
∑

i

(fii − c2
i )

If graph is random, fk` ≈ ck c`

Complexity issue

Solution 1: decentralized algorithm
Solution 2: embedding, then clustering algorithm (like k-means)
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2.2: Coalition game

Non-centralized case
each node makes its decision by itself by observing its
neighborhood
then we iterate synchronously or asynchronously.

Mathematical Tool: Coalition Game Theory

Within a coalition structure (actually graph partition), we associate
these quantities to each coalition/cluster Pk :

Revenue/reward/utility u(Pk ) ≥ 0 quantifies the worth of the
coalition, with u(∅) = 0.
Cost c(Pk ) ≥ 0 quantifies the cost of cooperation.
Value v(Pk ) is defined as:

v(Pk ) = u(Pk )− c(Pk ).
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Switch operation

Definition

A switch operation σk,`(U) is defined as the transfer of players U from
Pk to P` ∪ {∅}, σk,`(U) : Pk 7→ Pk \ U , and P` 7→ P` ∪ U .

Remark 1: if P` = ∅, then σk,`(U) leads to a new coalition.
Remark 2: if U = Pk , then σk,`(U) leads to the merge of Pk with P`.

Definition (Switch Operation Gain)

This gain g(σk,`(U)) associated with σk,`(U) is defined as:

g(σk,`(U)) := rU (P` ∪ U)− rU (Pk ),

with rU (S) defined as rU (S) := v(S)− v(S \ U) and interpreted as the
added value of having players U in coalition S.
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Nash equilibrium

Definition (Preference relation)

This relation � is defined as a complete and transitive binary relation
between two switch operations σk,`(Ui ) and σk ′,`′(Uj ) such that:

σk,`(Ui ) � σk ′,`′(Uj )⇔ g(σk,`(Ui )) > g(σk ′,`′(Uj ))

In Game Theory, relevant points satisfy equilibrium property:
No global cost function (if it exists, Game Theory is useless)
Each player (here, coalition) has its own goal and should find a
trade-off/equilibrium with the others
In non-cooperative game (with rational players), Nash equilibrium

Definition (Nash stability for coalition game)

Π = {P1, . . . ,PK} is Nash-stable if ∀Pk , ∀P` ∈ Π ∪ {∅}, ∀i ∈ Pk ,

g(σk,`({i}) ≤ 0

It exists no single node switch operation with a strictly positive gain
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Algorithm for unstructured network

Unstructured traffic based wireless network
Goal: build stable clusters (even with moving nodes)
Solution: gathering nodes with high link capacities between
each other
As a byproduct, communications within the cluster easier to
manage, and then elect a cluster head (as a hub)

Consequently, the coalition reward is the sum capacity of all
intra-cluster links:

u(Pk ) :=
∑
i∈Pk

∑
j∈Pk |(i,j)∈E

κ(i , j)

where κ(i , j) denotes the capacity of link (i , j)

κ(i , j) = log2

(
1 +

ChannelGaini,jPower
Interference+Noise

)
.

The cost c(Pk ) is 0 if cluster size constraint satisfied and∞ otherwise
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Numerical results

Proposed algorithm: Clustering with Link Quality (CLQ).
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Part 3: Attributed graphs

3.1 Node Classification
3.2 Graph comparison

Philippe Ciblat Statistical Inference over Graphs 31 / 61



Introduction Non-attributed Attributed Embedding Conclusion

3.1: Node classification

Goal
Predict the class/label of each unlabeled node of the graph by relying

on nodes’ features and
on nodes’ connections within the graph.

Examples:
in social networks, people are more likely to connect with those
who share the same areas of interest
in research articles’ database, more likely to have
connections/citations between articles dealing with the same
research topic

That’s the homophily principle
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Information taken into account

Label Propagation (LP): propagated through the adjacent nodes
at each step. Requires algorithms for merging labels’ information
Feature propagation (FP): propagated through the adjacent
nodes at each step. Requires algorithms for merging features

FP approach

Main idea: weighted averaging of the current features of adjacent
nodes (sometimes followed by a nonlinear function)

Graph neural networks (GNN): Neural Networks adapted to the
attributed graphs. Training done with labeled nodes
Our contribution: we derive in closed-form a classifier
◦ interpretable algorithm (no black box)
◦ less complex since no training
◦ No embedding (as done by GNN)

Philippe Ciblat Statistical Inference over Graphs 32 / 61



Introduction Non-attributed Attributed Embedding Conclusion

Example

p: average probability of intra-class connection
q: average probability of inter-class connection

Degree of impurity (DoI) of the graph is q
p

DoI� 1 leads to graph with communities (nodes with similar
features are connected to each other).

Cora Citeseer
Intra-class connectivity (p) 23× 10−3 12× 10−3

Inter-class connectivity (q) 5.5× 10−3 4.3× 10−3

Degree of Impurity (q/p) 0.23 0.36
Logistic Regression (LR) 56.0% 57.2%
Two-layer GNN 81.5% 70.3%
Gain between GNN and LR +45.5% +22.9%
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Problem statement

Classifier based on Bayesian decision theory: Maximum A Posteriori

Vu: set of nodes involved in the classification of node u.
Xu = {xu} ∪ {xv , v ∈ Vu}: set of features of node u and its
“helping” nodes
yu: class of node u (what we are looking for!)
Dk : probability density function of features belonging to class k .
For any u,

Dk (xu) = p(xu|yu = k).

Graph-Assisted Bayesian (GAB) Classifier

k̂u = arg max
k

Pu(k)

with Pu(k) = P(yu = k |Xu, IG), and by knowing information on Xu
and on the graph IG (e.g., its partial connectivity through the set Vu)
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Problem solution

arg max : here no complexity issue since small amount of classes
Derivations of Pu(k). Bayes’ rule

Pu(k) =
P(Xu|yu = k , IG)P(yu = k |IG)

P(Xu|IG)
∝ Qu(k)πk

with πk = P(yu = k |IG) a priori classes’ probability
Let ∆u be the diameter of the set Vu.

Qu(k) = Dk (xu)

∆u∏
d=1

∏
v∈Nu(d)

(
K∑

k ′=1

ru,v (k , k ′)Dk ′(xv )

)

with ru,v (k , k ′) = p(yv = k ′|yu = k , IG) the probability to be on class
k ′ for node v given the fact that we are in class k for node u and we
have information on the graph IG .
Example: Vu = {v}, known kv = 1, π1 = π2 = 1/2, and ∆u = 1:

Qu(1) = D1(xu)
p

p + q
and Qu(2) = D2(xu)

q
p + q
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Main result

Assumptions

2 equilikely classes
◦ p(k) probability that two nodes from class k are connected

p average of {p(k)}k

◦ q probability that two nodes from different classes are connected.

Information on graph is 1-hop

We get

r(1,2) = q
p(1)+q r(2,2) = p(2)

q+p(2)

r(1,1) = p(1)
p(1)+q r(2,1) = q

q+p(2)

GAB does not depend on the graph iff r(1,2) = r(2,2) and
r(1,1) = r(2,1)

q =
√

p(1)p(2) = pgeometric

iff

DoI =
pgeometric

parithmetic
≤ 1
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Graph Neural Network (1/2)

Main idea
Use graph structure in addition to node and edge features to
generate node representation vectors (i.e., embedding)
Aggregate the features of neighboring nodes and edges
Output of the `-th layer of GNN is

h(`)
u = σ(`)(φ(`)(h(`−1)

u , {h(`−1)
v : v ∈ Nu}))

where
◦ h(`)

u representation vector of node u at `-th layer (h(0)
u = xu)

◦ σ(`) activation function
◦ φ(`) linear function associated with weights’ matrix W(`)

◦ First-order GNN has 1 layer (1-hop neighborhood in the graph)

Usually, activation function is a rectified linear unit (ReLU).
For the last layer, softmax which provides a probability
Then node u is attributed to the class with the highest probability

Philippe Ciblat Statistical Inference over Graphs 37 / 61



Introduction Non-attributed Attributed Embedding Conclusion

Graph Neural Network (2/2)
Graph Convolutional Neural Network (GCN):

φ
(`)
u = W(`)

(
h(`−1)

u

du + 1
+
∑

v∈Nu

h(`−1)
v√

(du + 1)(dv + 1)

)
Graph Isomorphism Network (GIN):

φ
(`)
u = W(`)

(
(1 + α)h(`−1)

u +
∑

v∈Nu

h(`−1)
v

)
Graph convolution Operator Network (GON):

φ
(`)
u = W(`)

1 h(`−1)
u + W(`)

2 (
∑

v∈Nu

h(`−1)
v )

Graph Attention Network (GAT):

φ
(`)
u =

∑
v∈Nu∪{u}

α
(`)
u,v W(`)h(`−1)

v with α(`)
u,v ∝ eς(w(`)[W(`)h(`−1)

u ‖W(`)h(`−1)
v ])

the so-called normalized attention coefficients
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Numerical illustrations (1/2)

2 classes
Gaussian distributions with different means and covariance
matrices
Number of nodes N = 5,000 and number of features F = 500
500 (already-labeled) nodes
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p1 = p2 = 0.05 (GAB)
p1=0.075 & p2= 0.025 (GAB)
p1 = p2 = 0.05 (GCN)
p1=0.075 & p2= 0.025 (GCN)
Graph-agnostic Bayesian

GAB more robust to DoI than GCN
GCN becomes worse than graph-agnostic (too confident)
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Numerical illustrations (2/2)

Parameters to estimate in GAB Weights to learn in GNN
Cora 10,087 369,066
PubMed 1,512 129,286

MLP GCN SAGE GAT GMN DGCN GBPN GAB
Cora 72.1 87.1 86.9 87.1 86.4 87.2 86.4 86.9
CiteSeer 71.2 73.5 73.5 73.1 72.9 73.9 74.8 75.2
PubMed 86.5 87.1 87.8 88.1 86.7 84.7 88.5 86.4
CS 94.2 93.2 93.7 94.0 93.3 94.9 95.5 94.5
Physics 95.8 96.1 96.3 96.3 96.1 96.7 96.9 96.4

GAB close to GBPN and GAT, the best ones in the literature
But interpretability
But low-complexity
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3.2: Graph comparison

Question
Are two graphs close to each other ?
Useful in many applications: link prediction, time-varying
analysis, etc

Main issues:
Balance between features and edges ?
Even if no features, what does it mean two close graphs ?
◦ counter-example: by cutting a few edges, new graph is not

connected : is it far or not from the original one
◦ so just comparing A is not enough: induced properties are crucial
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Detour by the optimal transport

Original problem [Monge1781]

How moving a sand pile with shape 1 into a shape 2 by minimizing
the energy consumption ?

Shape : f where f (x) provides the level of sand at x
◦ f (x) ≥ 0, and

∫
f (x)dx = 1: probability density function (pdf)

Transport problem

Transport map: y = T (x)

Transport cost: c(x ,T (x)), and C(T ) =
∫

c(x ,T (x))f1(x)dx
Transport application: T#

f1({x : T (x) ∈ Ω}) = f2(Ω)⇔ T#f1(Ω) = f1(T (−1)(Ω)) = f2(Ω)

T ? = arg min
T ,T#f1=f2

C(T )

In general, to hard to solve
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Relaxation [Kantorovitch1942]

Modification of definition of Transport Map T

it is not a function anymore
it is a probability function: given the sand at x , it can be spread at
several new positions.

x 7→ Tx

C(T ) =

∫ (∫
c(x , y)Tx (y)dy

)
f1(x)dx

s.t.
Accurate final shape: f2(Ω) =

∫
(
∫

Ω
Tx (y)dy)f1(x)dx

Take only the original shape: f1(Ω) =
∫

(
∫

Ω
Tx (y)f1(x)dx)dy

Then consider Tx (y)f1(x) = π(x , y)
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Relaxation [Kantorovitch1942]

Modification of definition of Transport Map T

π? = arg min
π

∫∫
c(x , y)π(x , y)dxdy

s.t.
f2(Ω) =

∫
y∈Ω

(∫
π(x , y)dx

)
dy

f1(Ω) =
∫

x∈Ω

(∫
π(x , y)dy

)
dx

Much easier : Linear programming
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Wasserstein distance
Consider two probability mass function (pmf) : discrete version of pdf

f1:
∑m

i=1 aiδxi (a non-negative vector summing to 1)
f2:
∑n

i=1 biδyi (b non-negative vector summing to 1)

p-Wasserstein distance

Wp(f1, f2) = min
{γi,j}i,j

m∑
i=1

n∑
j=1

|xi − yj |pγi,j

s.t.
bj =

∑m
i=1 γi,j , ∀j

ai =
∑n

j=1 γi,j , ∀i
where γi,j is the quantity of material going from xi to yj

Remark: Completely different from standard Kullback-Leibler
distance (related to entropy)

D(f1||f2) =

∫
log2

(
f1(x)

f2(x)

)
f1(x)dx
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Example

Blue: Source distribution
Red: Target distribution
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Graph Diffusion Distance

Non-attributed graph
related to Heat diffusion
Idea: similar graph will diffuse in the same way the heat

GDD = max
τ≥0
‖exp (−τL1)− exp (−τL2)‖2

2

where ‖.‖2
f is the Frobenius square norm (summing the square of

each matrix component)
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Gromov-Wasserstein distance

Non-attributed graph
Adapted to Graph
Matrices Cs ∈ Rm×m and C t ∈ Rn×n

GW = min
{γi,j}i,j

∑
i,i′,j,j′

d(Cs
i,i′ ,C

t
j,j′)γi,jγi′,j′

s.t.
ai =

∑n
j=1 γi,j , ∀i

bj =
∑m

i=1 γi,j , ∀j

Application to Graph:
C may be the adjacency matrix A
C may be a similarity matrix between nodes
Hyperparameters a and b to be tuned
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Fused Gromov-Wasserstein distance

Attributed graph
Matrices Cs ∈ Rm×m and C t ∈ Rn×n

FGW = min
{γi,j}i,j

∑
i,i′,j,j′

[
(1− α)d1(x i ,x j )γi,j + αd2(Cs

i,i′ ,C
t
j,j′)γi,jγi′,j′

]
s.t.

ai =
∑n

j=1 γi,j , ∀i

bj =
∑m

i=1 γi,j , ∀j
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Diffusion-Wasserstein distance

Attributed graph
Ys = exp(−τ sLs).Xs heat diffusion with initial values Xs

Yt = exp(−τ tLt ).Xt heat diffusion with initial values Xt

DWτ s,τ t = min
{γi,j}i,j

∑
i,j

d1(ys
i ,y

t
j )γi,j

s.t.
ai =

∑n
j=1 γi,j , ∀i

bj =
∑m

i=1 γi,j , ∀j

Extreme cases:
τ s = τ t = 0, Wasserstein distance
τ s = τ t =∞, average comparison of features
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Numerical illustrations (1/3)

Image color adaptation

Original image Target color
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Numerical illustrations (2/3)

Optimal transport on color distribution
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Numerical illustrations (3/3)
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Part 4: From graphs to vectors
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Embedding

Main idea
Vector : nice representation for signals
Why? many algorithms adapted to vectors
◦ in classification (k-means, NN with vector as input)
◦ in regression (linear, NN with vector as input)

Embedding:
representing any type of signal as a vector
practical and efficient but not necessary smart (see 3.1)

Examples:
Text: word2vec
◦ close vector = synonym
◦ semantic vector space: vqueen + vman = vking

Graph: graph representation learning (through GNN)
◦ “close” points in graph are close points in vector space
◦ But, what does it mean “close” in graph when trade-off between

edges and features
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Representation self-learning

xu ∈ RP feature vector at node u
X ∈ RN×P : matrix stacking initial feature vectors of all nodes.
A: adjacency matrix of the graph

Goal
Self-learning node representation (without human
annotation/tag)
i.e., learning a graph neural network (with L layer) encoder f

H(L) := f (X,A) ∈ RN×P′

with
◦ P′ ≤ P the embedding size
◦ u−th row of H(L) is the embedding/representation vector h(L)

u of
node u.

Finding a appropriate criterion to optimize f
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Contrastive learning

Given a feature hu of node u, we generate
a positive example h+

u (close to hu)
a set of negative examples Qu

We define a loss L offering low value when hu

similar to h+
u

dissimilar to all elements h− of Qu

A standard loss

L = −
∑
u∈G

hT
uh+

u + log
∑
u∈G

exp(hT
uh+

u ) +
∑

h−∈Qu

exp(hT
uh−)
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How generating negative examples?

Feature-based sampling:
◦ based on comparisons between nodes’ intrinsic features.
◦ For node u, we consider as negatives all nodes v whose intrinsic

features are neither too close nor too far from those of node u

xT
uxv

‖xu‖‖xv‖
∈ [ωLB, ωUB]

Negatives are different from positive but quite hard to distinguish
from the current sample

Graph-based sampling:
◦ based on graph structure
◦ For node u, we consider as negatives all nodes v located at `-hop

of node u
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Algorithm

Consider two (small) stochastic perturbations t1 and t2 on edges
and features
◦ (X1,A1) ∼ t1(X,A)
◦ (X2,A2) ∼ t2(X,A)

Apply the current encoder to exhibit the node representations
◦ the baseline representation HL = f (X1,A1)
◦ the positive example HL

+ = f (X2,A2)

Select negative examples
◦ Features-based sampling
◦ Connection-based sampling

Update weights of f using the loss function L
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Numerical illustrations

Test the node representation into a classification problem
Once embedding done, classification relying on logistic
regression applied
Embedding size P ′ = 512

Cora Citeseer Pubmed Arxiv
Raw features 47.9 49.3 69.1 55.5
DeepWalk 67.2 43.2 65.3 70.1
DeepWalk + features 70.7 51.4 74.3 -
EP-B 78.1 71.0 79.6 68.0
DGI 82.3 71.8 76.8 70.2
Proposed Method 83.6 72.5 79.8 70.2
GCN (supervised) 81.5 70.3 79.0 71.7
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Conclusion

Graph is a fascinating mathematical structure
using different mathematical branches
related to practical problems
but difficult to manage

Problems not treated here
Epidemic propagation (rumor spreading, max-consensus)
Link prediction
Random Graph
Structured Graph (like in Chemistry)
Graph drawing
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Our publications devoted to graphs

PhD theses:
Hakim Hafidi (co-supervised with Mounir Ghogho (UIR,
Morocco)), “Robust Machine Learning for Graphs”, Feb. 2023

Raphaël Massin (co-supervised with Christophe Le Martret
(Thales)), “On distributed node clustering in mobile ad hoc
networks”, Nov. 2016

Franck Iutzeler (co-supervised with Walid Hachem), “Distributed
estimation and optimization in asynchronous networks”, Dec.
2013
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