A journey between graphs and decision making

Philippe Ciblat

Outline

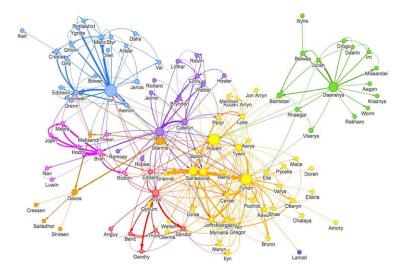
Attributed graphs

- A very short introduction to Graph Theory
- Node classification
- Graph comparison
- Node embedding
- Index policy: example with Age of Information
 - Square-root policy
 - Whittle's index
 - Extension to multivariate states ?
- Future work directions
 - Distributed estimation
 - Sustainable system

Part 1 : Attributed graphs

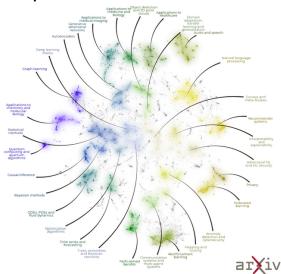
Where do you find graphs?

Social Networks: community detection?

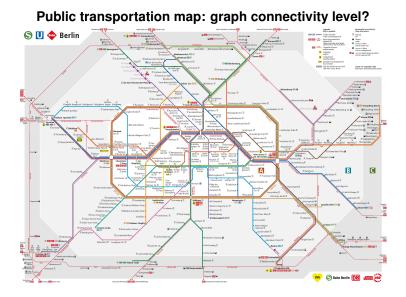


Where do you find graphs?

Papers' database: node classification?

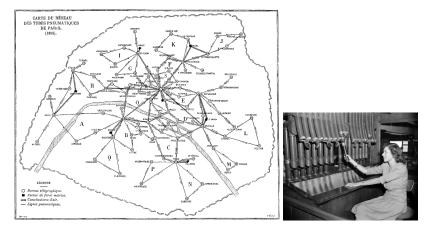


Where do you find graphs?



Where do you find graphs ?

Communication Networks: information propagation?



Attributed graph

- N nodes (or vertices)
- Edges (or *links*) between some nodes
- Edges may be directed/non-directed, weighted/non-weighted
- Each node *i* may also have a feature (or *value*) $\mathbf{x}_i \in \mathbb{R}^F$

Mathematical representations

We consider non-directed and non-weighted graphs

- Let *i* be a node and N_i be the set of its neighbors
- Node degree: $d_i = |\mathcal{N}_i|$ (number of neighbors)
- Degrees matrix: $\mathbf{D} = \text{diag}(d_1, \cdots, d_N)$
- Adjacency matrix: A

$$a_{ij} = \left\{ egin{array}{cc} 1 & ext{if } i ext{ and } j ext{ are connected} \ 0 & ext{otherwise} \end{array}
ight.$$

Be careful: $a_{ii} = 0$

Laplacian matrix: L = D – A

Some results

● L.1 = 0

• The second smallest eigenvalue $\lambda_2 \neq 0$ iff graph is connected

Example 1: Heat diffusion

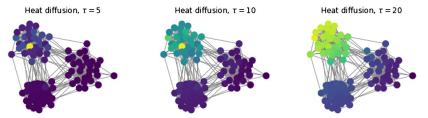
- At time t, temperature of the node ℓ is denoted by xℓ(t)
- The update law comes from Heat diffusion equation

$$\frac{d\mathbf{x}_{\ell}}{dt} = -\sum_{m \in \mathcal{N}_{\ell}} (\mathbf{x}_{\ell} - \mathbf{x}_{m}) \Leftrightarrow \frac{d\mathbf{x}}{dt} = -\mathbf{L}\mathbf{x} \Leftrightarrow \mathbf{x}(t) = e^{-t\mathbf{L}}\mathbf{x}(0)$$

• Let $\mathbf{L} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ with $\lambda_1 = 0$ and $\mathbf{v}_1 = \mathbf{1}/\sqrt{N}$. Then

$$e^{-t\mathbf{L}} = \mathbf{V}e^{-t\mathbf{\Lambda}}\mathbf{V}^{\mathrm{T}} \stackrel{t\to\infty}{\longrightarrow} \mathbf{v}_{1}\mathbf{v}_{1}^{\mathrm{T}} = \frac{1}{N}\mathbf{1}\mathbf{1}^{\mathrm{T}} \ \Rightarrow \ \lim_{t\to\infty} \mathbf{x}(t) = \overline{\mathbf{x}}\mathbf{1}$$

with \overline{x} the average of initial temperatures



source: B. Ricaud et al., "Fourier could be a data scientist: from Graph Fourier transform to signal processing on graphs", Aug. 2019

Example 2: Consensus algorithm

We start with an initial value $\mathbf{x}(0)$ At time *t*, one node ℓ wakes up and selects $\ell' \in \mathcal{N}_{\ell}$. Then

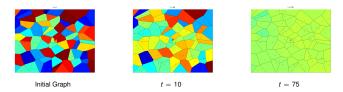
$$x_{\ell}(t+1) = x_{\ell'}(t+1) = \frac{x_{\ell}(t) + x_{\ell'}(t)}{2}$$

Finally

$$\mathbf{x}(t) = \prod_{k=1}^{t} \mathbf{W}_k \mathbf{x}(0)$$

Result

 $\lim_{t\to\infty} \mathbf{x}(t) = \overline{x}\mathbf{1}$ as each \mathbf{W}_k doubly-stochastic matrix



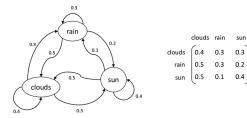
Link with Markov chain

Finite-state Markov Chain: state $s \in S = \{s^1, \dots, s^N\}$

$$\Pr\left(\boldsymbol{s}_{t+1} = \boldsymbol{s}^{\ell} | \boldsymbol{s}_t = \boldsymbol{s}^k\right) = T_{k,\ell} \geq 0$$

sun

with $\sum_{\ell} T_{k,\ell} = 1$, so **T** is row-stochastic matrix



Analyzing Markov chain is equivalent to analyzing Graph

Stationary distribution: μ s.t. $\mu = \mu$ T

source: H. Sevr and M. Muskulus, "Decision Support Models for Operations and Maintenance for Offshore Wind Farms: A Review", 2019

Problem 1: Node classification

Idea: homophily principle

Predict class of each unlabeled node in the graph by relying

- on nodes' features and
- on nodes' graph connections

Main idea: weighted averaging of the current features of adjacent nodes (sometimes followed by a nonlinear function)

- Graph neural networks (GNN): Neural Networks adapted to the attributed graphs. Training done with labeled nodes
- Our contribution: we derive in closed-form a classifier
 - interpretable algorithm (no black box)
 - less complex since no training
 - no embedding (as done by GNN)

Problem statement

Classifier based on Bayesian decision theory: Maximum A Posteriori

- V_u: set of nodes involved in the classification of node u
- $\mathcal{X}_u = {\mathbf{x}_u} \cup {\mathbf{x}_v, v \in \mathcal{V}_u}$: set of features of node *u* and its "helping" nodes
- *y_u*: class of node *u* (what we are looking for!)
- *D_k*: probability density function of features belonging to class *k*.
 For any *u*,

$$D_k(\mathbf{x}_u) = p(\mathbf{x}_u | y_u = k)$$

Graph-Assisted Bayesian (GAB) Classifier

$$\hat{k}_u = rg\max_k P_u(k)$$

with $P_u(k) = \Pr(y_u = k | \mathcal{X}_u, \mathcal{I}_G)$

Problem solution

Derivations of $P_u(k)$. Bayes' rule

$$P_u(k) = \frac{p(\mathcal{X}_u | y_u = k, \mathcal{I}_{\mathcal{G}}) \mathsf{Pr}(y_u = k | \mathcal{I}_{\mathcal{G}})}{p(\mathcal{X}_u | \mathcal{I}_{\mathcal{G}})} \propto Q_u(k) \pi_k$$

with $\pi_k = \Pr(y_u = k | \mathcal{I}_G)$ a priori classes' probability Let Δ_u be the diameter of the set \mathcal{V}_u .

$$Q_u(k) = D_k(\mathbf{x}_u) \prod_{d=1}^{\Delta_u} \prod_{v \in \mathcal{N}_u(d)} \left(\sum_{k'=1}^K r_{u,v}(k,k') D_{k'}(\mathbf{x}_v) \right)$$

with $r_{u,v}(k, k') = \Pr(y_v = k' | y_u = k, \mathcal{I}_G)$ the probability to be on class k' for node v given the fact that we are in class k for node u

Example

$$\mathcal{V}_u = \{v\}$$
, known $k_v = 1$, $\pi_1 = \pi_2 = 1/2$, and $\Delta_u = 1$:

$$Q_u(1) = D_1(\mathbf{x}_u) rac{p}{p+q}$$
 and $Q_u(2) = D_2(\mathbf{x}_u) rac{q}{p+q}$

with p (resp. q) probability of intra (resp. inter)-class connection

Main result

Assumptions

- 2 equilikely classes
 - p(k) probability that two nodes from class k are connected $\overline{p}_{\text{arithmetic}}$ arithmetic average of $\{p(k)\}_k$
 - q probability that two nodes from different classes are connected
- Information on graph is 1-hop

We get

$$\frac{r(1,2) = \frac{q}{p(1)+q}}{r(1,1) = \frac{p(1)}{p(1)+q}} \quad r(2,2) = \frac{p(2)}{q+p(2)}}{r(2,1) = \frac{q}{q+p(2)}}$$

Graph-agnostic iff r(1, 2) = r(2, 2) and r(1, 1) = r(2, 1)

Main result

Graph-agnostic iff

•
$$q = \sqrt{p(1)p(2)} = \overline{p}_{\text{geometric}}$$
, or

• Degree of Impurity
$$= \frac{q}{\overline{p}_{\text{arithmetic}}} = \frac{\overline{p}_{\text{geometric}}}{\overline{p}_{\text{arithmetic}}} \le 1$$

Graph Neural Network (1/2)

- Use graph structure in addition to node and edge features to generate node representation vectors (i.e., embedding)
- Aggregate the features of neighboring nodes and edges
- Output of the ℓ-th layer of GNN is

$$\mathbf{h}_{u}^{(\ell)} = \sigma^{(\ell)}(\phi^{(\ell)}(\mathbf{h}_{u}^{(\ell-1)}, \{\mathbf{h}_{v}^{(\ell-1)} : v \in \mathcal{N}_{u}\}))$$

where

- $\mathbf{h}_{u}^{(\ell)}$ representation vector of node u at ℓ -th layer ($\mathbf{h}_{u}^{(0)} = \mathbf{x}_{u}$)
- $\sigma^{(\ell)}$ activation function
- $\phi^{(\ell)}$ linear function associated with weights' matrix $\mathbf{W}^{(\ell)}$

Algorithm

Given $\mathbf{h}_{u}^{(L)}$, node *u* is attributed to the class with the highest probability

Graph Neural Network (2/2)

Graph Convolutional Neural Network (GCN):

$$\phi_{u}^{(\ell)} = \mathbf{W}^{(\ell)} \left(\frac{\mathbf{h}_{u}^{(\ell-1)}}{d_{u}+1} + \sum_{v \in \mathcal{N}_{u}} \frac{\mathbf{h}_{v}^{(\ell-1)}}{\sqrt{(d_{u}+1)(d_{v}+1)}} \right)$$

Graph convolution Operator Network (GON):

$$\phi_u^{(\ell)} = \mathbf{W}_1^{(\ell)} \mathbf{h}_u^{(\ell-1)} + \mathbf{W}_2^{(\ell)} \left(\sum_{v \in \mathcal{N}_u} \mathbf{h}_v^{(\ell-1)} \right)$$

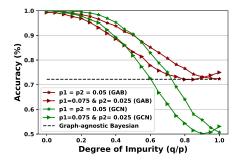
Graph Attention Network (GAT):

$$\phi_{u}^{(\ell)} = \mathbf{W}^{(\ell)} \left(\alpha_{u,u}^{(\ell)} \mathbf{h}_{u}^{(\ell-1)} + \sum_{v \in \mathcal{N}_{u}} \alpha_{u,v}^{(\ell)} \mathbf{h}_{v}^{(\ell-1)} \right)$$

with $\alpha_{u,v}^{(\ell)}$ the so-called normalized attention coefficients

Numerical illustrations

- 2 classes with different Gaussian distributions
- *N* = 5,000 and *F* = 500
- 500 (already-labeled) nodes



- GAB more robust to Dol than GCN
- GCN becomes worse than graph-agnostic (too confident)

Problem 2: Graph comparison

Question

- Are two graphs close to each other?
- Useful in many applications: link prediction, time-varying analysis, etc

Main issues:

- Balance between features and edges?
- Even if no features, what does it mean two close graphs?
 - counter-example: by cutting a few edges, new graph is not connected : is it far or not from the original one?
 - so just comparing A is not enough: induced properties are crucial

Detour by the optimal transport

Original problem [Monge1781]

How moving a sand pile with shape 1 into a shape 2 by minimizing the energy consumption?

Shape : f where f(x) provides the level of sand at x

• $f(x) \ge 0$, and $\int f(x) dx = 1$: probability density function (pdf)

Transport problem

- Transport map: y = T(x)
- Transport cost: c(x, T(x)), and $C(T) = \int c(x, T(x))f_1(x)dx$
- Transport application: $T_{\#}$

$$T^{\star} = \arg\min_{T, T_{\#}f_1 = f_2} C(T)$$

In general, too hard to solve

Relaxation [Kantorovitch1942]

Transport Map *T* is not a function anymore <u>but</u> a probability function: given the sand at *x*, it can be spread at several new positions: $x \mapsto T_x$

$$C(T) = \int \left(\int c(x,y)T_x(y)dy\right)f_1(x)dx$$

s.t.

- Accurate final shape: $f_2(\Omega) = \int (\int_{\Omega} T_x(y) dy) f_1(x) dx$
- Take only the original shape: $f_1(\Omega) = \int (\int_{\Omega} T_x(y) f_1(x) dx) dy$

Then consider $T_x(y)f_1(x) = \pi(x, y)$

$$\pi^{\star} = \arg\min_{\pi} \iint c(x,y)\pi(x,y)dxdy$$

s.t. $f_2(\Omega) = \int_{y \in \Omega} \left(\int \pi(x, y) dx \right) dy$ and $f_1(\Omega) = \int_{x \in \Omega} \left(\int \pi(x, y) dy \right) dx$

Much easier : Linear programming

Wasserstein distance

Consider two probability mass function (pmf) : discrete version of pdf

•
$$f_1: \sum_{i=1}^m a_i \delta(\bullet - x_i)$$
 (a non-negative vector summing to 1)

•
$$f_2: \sum_{i=1}^n b_i \delta(\bullet - y_i)$$
 (**b** non-negative vector summing to 1)

Wasserstein distance (or Earth mover's distance) Let $\gamma_{i,j}$ be the quantity going from x_i to y_j $W(f_1, f_2) = \min_{\gamma} \sum_{i=1}^{m} \sum_{j=1}^{n} |x_i - y_j|^2 \gamma_{i,j}$ s.t. • $b_j = \sum_{i=1}^{m} \gamma_{i,j}, \forall j$ • $a_i = \sum_{j=1}^{n} \gamma_{i,j}, \forall i$

Graph Diffusion Distance

- Non-attributed graph
- related to Heat diffusion
- Idea: similar graph will diffuse in the same way the heat

[Hammond2013]

$$\mathsf{GDD} = \max_{ au \geq 0} \left\| oldsymbol{e}^{- au \mathbf{L}_1} - oldsymbol{e}^{- au \mathbf{L}_2}
ight\|_2^2$$

Gromov-Wasserstein distance

- Non-attributed graph
- Adaptation of Wasserstein distance to Graph
- Matrices $C^s \in \mathbb{R}^{m \times m}$ and $C^t \in \mathbb{R}^{n \times n}$

[Peyré2016]

$$\mathsf{GW} = \min_{\boldsymbol{\gamma}} \sum_{i,i',j,j'} d(\boldsymbol{C}^{s}_{i,i'}, \boldsymbol{C}^{t}_{j,j'}) \gamma_{i,j} \gamma_{i',j'}$$

s.t.

•
$$a_i = \sum_{j=1}^n \gamma_{i,j}, \forall i$$

• $b_j = \sum_{i=1}^m \gamma_{i,j}, \forall j$

Application to Graph:

- C may be the adjacency matrix A
- C may be a similarity matrix between nodes
- Hyperparameters **a** and **b** to be tuned

Fused Gromov-Wasserstein distance

Adaptation to attributed graph

[Flamary2020]

$$\mathsf{FGW} = \min_{\gamma} \sum_{i,i',j,j'} \left[\alpha d_1(C^s_{i,i'}, C^t_{j,j'}) \gamma_{i,j} \gamma_{i',j'} + (1-\alpha) d_2(\mathbf{x}_i, \mathbf{x}_j) \gamma_{i,j} \right]$$

s.t.

•
$$a_i = \sum_{j=1}^n \gamma_{i,j}, \ \forall i$$

• $b_j = \sum_{i=1}^m \gamma_{i,j}, \ \forall j$

Diffusion-Wasserstein distance

- Attributed graph
- y^s = e^{-τ^sL_s}x^s heat diffusion with initial values x^s
- $\mathbf{y}^t = e^{-\tau^t \mathbf{L}_t} \mathbf{x}^t$ heat diffusion with initial values \mathbf{x}^t

[Borgnat2021]

$$\mathsf{DW}_{\tau^{s},\tau^{t}} = \min_{\gamma} \sum_{i,j} d(\mathbf{y}_{i}^{s}, \mathbf{y}_{j}^{t}) \gamma_{i,j}$$

s.t.

•
$$a_i = \sum_{j=1}^n \gamma_{i,j}, \forall i$$

• $b_i = \sum_{j=1}^m \gamma_{i,j}, \forall j$

Extreme cases:

- $\tau^s = \tau^t = 0$: Wasserstein distance
- $\tau^s = \tau^t = \infty$: average comparison of features

Application : Image color adaptation

- Histogram on RGB
- Underlying graph for preserving neighborhood.
- Weighted average for color adaptation with path γ

Target color

Final image

source: R. Flamary and N. Courty, "https://pythonot.github.io/", 2019

Original image

Problem 3: Graph embedding

Main idea

- Vector : nice representation for signals
- Why? many algorithms adapted to vectors
 - o in classification (k-means, NN with vector as input)
 - o in regression (linear, NN with vector as input)

Embedding: representing any type of signal as a vector

Examples:

- Text: word2vec
 - close vector = synonym
 - semantic vector space: $v_{queen} + v_{man} = v_{king}$
- Graph:
 - graph representation learning (one graph becomes one vector)
 - node representation learning (each node becomes one vector)
 - \hookrightarrow "close" points in graph are close points in vector space
 - $\,\hookrightarrow\,$ meaning of "close" when trade-off between edges and features

Representation self-learning

- $\mathbf{x}_u \in \mathbb{R}^F$ feature vector at node u
- $\mathbf{X} \in \mathbb{R}^{N \times F}$: matrix stacking initial feature vectors of all nodes
- A: adjacency matrix of the graph

Goal

- Self-learning node representation (without human annotation/tag)
- i.e., learning a graph neural network (with L layer)

$$\mathbf{H}^{(L)} := f(\mathbf{X}, \mathbf{A}) \in \mathbb{R}^{N \times F'}$$

with

- $\circ F' \leq F$ the embedding size
- *u*-th row of $\mathbf{H}^{(L)}$ the embedding/representation vector $\mathbf{h}_{u}^{(L)}$ of node *u*
- Finding an appropriate criterion to exhibit f

Contrastive learning

Given a feature \mathbf{h}_u of node u, we generate

- a *positive* example **h**⁺_{*u*} (close to **h**_{*u*})
- a set of negative examples Qu

We define a loss \mathcal{L} offering low value when \mathbf{h}_u

- similar to h⁺_u
- dissimilar to all elements \mathbf{h}^- of Q_u

A standard loss

$$\mathcal{L} = -\sum_{u \in \mathcal{G}} \mathbf{h}_u^{\mathrm{T}} \mathbf{h}_u^+ + \log \sum_{u \in \mathcal{G}} \left(\boldsymbol{e}^{\mathbf{h}_u^{\mathrm{T}} \mathbf{h}_u^+} + \sum_{\mathbf{h}^- \in \mathcal{Q}_u} \boldsymbol{e}^{\mathbf{h}_u^{\mathrm{T}} \mathbf{h}^-}
ight)$$

How generating negative examples?

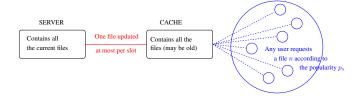
- Consider two (small) perturbations on edges and features
 - $\circ ~(\boldsymbol{X}_1, \boldsymbol{A}_1) \sim \textit{t}_1(\boldsymbol{X}, \boldsymbol{A})$
 - $(\mathbf{X}_2, \mathbf{A}_2) \sim t_2(\mathbf{X}, \mathbf{A})$
- Apply the current node representations
 - the baseline representation $\mathbf{H}^{L} = f(\mathbf{X}_{1}, \mathbf{A}_{1})$
 - the positive example $\mathbf{H}_{+}^{L} = f(\mathbf{X}_{2}, \mathbf{A}_{2})$
- Select negative examples: for node *u*, all nodes at its *l*-hop
- Update weights of *f* using the loss function *L*

Numerical illustrations: classification based on our node embedding

	Cora	Citeseer	Pubmed	Arxiv
Raw features	47.9	49.3	69.1	55.5
SoTA	82.3	71.8	76.8	70.2
Proposed Method	83.6	72.5	79.8	70.2
GCN (supervised)	81.5	70.3	79.0	71.7

Part 2 : Index policy

Application: caching with Age of Information



- Content *n* is time-sensitive $(X_n(t))$: age in caching)
- Content *n* has its own popularity (*p_n*: probability to be requested)
- Ex: newspaper website, web crawling, video last version, ...

Question

- Given a timeslot *t*, which item should be downloaded from the server to the cache to be as up-to-date as possible?
- Scheduling problem

 ${u_t}_t = f(\text{information on the system})$

Optimization problem

Optimization problem

$$\arg\min_{u_1,\cdots,u_T}\sum_{n=1}^N p_n \int_0^T X_n(t) dt$$

s.t.
$$u_t \in \{1, \dots, N\}$$
 for all t , and $\sum_{t=1}^{T} \mathbb{1}\{u_t > 0\} = T$.

Approaches:

- Probabilistic method by re-writing the problem
- As underlying Markov chain, constrained MDP well adapted
 - Optimal random policy exists
 - Suboptimal approach but simple: Whittle's index

Approach 1: concept of per-file update rate

- Consider λ_n the per-file update rate
- Actually, when T large enough,

$$\frac{1}{T}\int_0^T X_n(t)dt\approx \frac{1}{\lambda_n}$$

New optimization problem

$$\min_{\lambda_1,\ldots,\lambda_N}\sum_{n=1}^N\frac{p_n}{\lambda_n}$$

s.t.
$$\lambda_n \geq 0$$
, and $\lambda_1 + \cdots + \lambda_N = 1$.

Main result

Problem is convex and leads to

$$\lambda_n^* = \frac{\sqrt{p_n}}{\sum_{m=1}^N \sqrt{p_m}}$$

Update rate of file *n* follows a square-root law wrt. its popularity

Practical protocol

Let $\tau_n^{\star} = 1/\lambda_n^{\star}$ be the optimal inter-update time for file *n*

$$u_t = \arg \max_{u \in \{1, \cdots, N\}} (X_u(t) - \tau_u^*)$$

General context: Schedule-ordered by Age-based Priority (SOAP)

- r(D, X): rank function with descriptor D and age X
- Scheduled user

$$u_t = \arg \max_{u \in \{1, \cdots, N\}} r(D_u(t), X_u(t))$$

- Many policies follow this shape
 - Round-Robin (RR), $r(\emptyset, X_u) = X_u$
 - "Weighted Round-Robin", $r(d_u, X_u) = d_u X_u$. How choosing d_u ?

Approach 2: index based policy

Find a suboptimal policy based on an index:

$$u_t = rg \max_{u \in \{1, \cdots, N\}} \mathcal{I}_u(S_u)$$

• *I*: it is an heuristic

- Whittle's index: methodology for exhibiting a reasonable index in Restless Multi-Arm Bandit problem
 - N bandits/players/agents
 - At each timeslot, select one bandit (let's say *u*_t)
 - Its state s_{u_t} is modified according to its action, and is rewarded
 - but states of other bandits also modified and rewarded in different ways (restless)
- When non-playing bandits are frozen (no state evolution) and not rewarded: Gittins' index is optimal

$$\mathcal{I}_{u}^{\mathcal{G}}(\boldsymbol{S}) = \sup_{\tau > 0} \frac{\mathbb{E}[\sum_{t=0}^{\tau-1} \gamma^{t} r_{u}(\boldsymbol{S}(t)) | \boldsymbol{S}(0) = \boldsymbol{S}]}{\sum_{t=0}^{\tau-1} \gamma^{t}}$$

Whittle index (1/2)

$$\arg \max_{\{a_{u}(t)\}_{u,t}} \lim_{T \to \infty} \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma^{t} \sum_{u=1}^{N} r_{u}(s_{u}(t), a_{u}(t)) \right]$$

s.t. $\sum_{u=1}^{N} a_u(t) = 1$ (C1) and $a_u(t) \in \{0, 1\}$ (C2) Two modifications:

- Relaxation: C1 replaced with $\sum_{t=0}^{\infty} \gamma^t \sum_{u=1}^{N} a_u(t) = 1/(1-\gamma)$
- Lagrangian penalty

$$\arg \max_{\{a_u(t)\}_{u,t}} \mathcal{L}(\lambda)$$

s.t. C2 and with

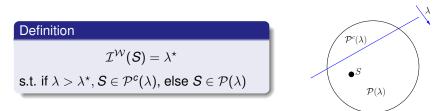
$$\mathcal{L}(\lambda) = \lim_{T \to \infty} \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma^t \sum_{u=1}^N r_u(s_u(t), a_u(t))\right] - \lambda\left(\sum_{u=1}^N a_u(t) - 1/(1-\gamma)\right)$$
$$= \lim_{T \to \infty} \sum_{u=1}^N \mathbb{E}\left[\left(\sum_{t=0}^{T-1} \gamma^t r_u(s_u(t), a_u(t)) - \lambda a_u(t)\right)\right]$$

Whittle index (2/2)

- The problem is now decoupled
- For each bandit u and fixed λ , we maximize

$$\mathcal{L}_{u}(\lambda) = \lim_{T \to \infty} \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma^{t} r_{u}(\boldsymbol{s}_{u}(t), \boldsymbol{a}_{u}(t)) - \lambda \boldsymbol{a}_{u}(t)\right]$$

- $\mathcal{P}(\lambda)$: set of states leading to a = 1 obtained via $\mathcal{L}_u(\lambda)$ (std MDP)
- Optimal policy: play (a = 1) if $s \in \mathcal{P}(\lambda)$ else idle (a = 0)
- Indexability: if idle for λ, then still idle for λ' > λ (if higher penalty for being active, stay idle): if s ∈ P^c(λ) then s ∈ P^c(λ')

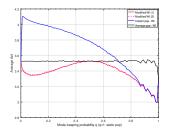


Closed-form expression [unpublished]

$$\mathcal{I}_{u}^{\mathcal{W}}(X_{u}) = \sqrt{p_{u}}X_{u}$$
 $(X_{u} = age)$

- Is it close to square-root law ?
 - o checked by simulation but not theoretically
- Extension to time-varying popularity: 2-D state (age, popularity)
 - Two modes : $R^{(1)} = \{p_n^{(1)}\}$ and $R^{(2)} = \{p_n^{(2)}\}$
 - Whittle's index in 2-D state: unfeasible except special cases (here, q = 0.5 where q probability to stay in its mode for each user)

$$\mathcal{I}_u(X_u, R_u) = \sqrt{qp_u^{(R_u)} + (1-q)p_u^{(R_u^c)}}X_u$$



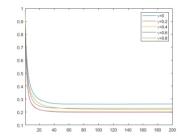
Future works

Perspective 1: Distributed estimation

At sensor k, $x_k(0) = \theta + w_k(0)$

Estimation of θ by sharing $x_k(0)$ with neighborhood iteratively

- Gossip algorithm
- Here, consider
 - → flooding error at receiver side related to the size of in-going neighborhood
 - \hookrightarrow solution : censorship rate γ at transmitter side



Goal

Closed-form expression for Cramer-Rao Bound to design γ

Perspective 2: Efficiency

 $\label{eq:efficiency} \text{Efficiency} = \frac{\text{metric of performance}}{\text{consumed energy}}$

Two kinds of consumed energy: Life-Cycle Assessment

- OPEX-like energy: operational one
- CAPEX-like energy: embodied one

Example 1: Communication network

- OPEX: transmit energy (load-dep.), no-idle hardware (load-ind.)
- CAPEX: Sleeping energy, Mining, Manufacturing
- Concerns: open-data/models missing, depreciation duration, ...

Example 2: Machine Learning

- OPEX: computation energy during usage phase
- CAPEX: Training, Computer's manufacturing, Cooling
- Concerns: open-data/models missing, depreciation duration, ...

Perspective 2: or Sustainability?

Sustainable system "meets the needs of present generations without compromizing the ability of future generations to meet their own needs" [Brundtland1987]

Implementation: given a large area, level of power is fixed

Why is it different from energy efficient system?

- rebound effect is avoided
- if gain in energy consumption comes from enablement effect, customer behavior has to be predicted

Main concerns:

- Does not depend only on engineers' answers
- Concept on priority usages, net neutrality
- Required Science and Technology Studies (STS)