

Graph-assisted Bayesian node classifiers

Hakim HAFIDI, Philippe CIBLAT, Mounir GHOGHO

Telecom Paris, Institut Polytechnique de Paris, France Université Internationale de Rabat, Morocco Université Mohammed VI Polytechnique, Morocco



Problem statment

Main Results

• 2 equilikely classes

 $\circ p(k)$ probability that two nodes from class k are connected $\circ \overline{p}_{\text{arithmetic}}$ arithmetic average of $\{p(k)\}_k$

 $\circ q$ probability that two nodes from different classes are connected.

• Information on graph is 1-hop

We get

 $\frac{r(1,2) = \frac{q}{p(1)+q} \left| r(2,2) = \frac{p(2)}{q+p(2)}}{r(1,1) = \frac{p(1)}{p(1)+q} \left| r(2,1) = \frac{q}{q+p(2)} \right|}$

Predict class of each unlabeled node in the graph by relying • on nodes' features and

• on nodes' graph connections by applyig **homophily principle**

Examples:

• in social networks, people are more likely to connect with those who share the same areas of interest

• in research articles' database, more likely to have connections/citations between articles dealing with the same research topic

	Cora	Citeseer
Intra-class connectivity (p)	23×10^{-3}	12×10^{-3}
Inter-class connectivity (q)	5.5×10^{-3}	4.3×10^{-3}
Degree of Impurity (q/p)	0.23	0.36
Logistic Regression (LR)	56.0%	57.2%
Two-layer GNN	81.5%	70.3%

Techniques:

Graph-agnostic iff

•
$$r(1, 2) = r(2, 2)$$
 and $r(1, 1) = r(2, 1)$, or
• $q = \sqrt{p(1)p(2)} = \overline{p}_{\text{geometric}}$, or
• Degree of Impurity $= \frac{q}{\overline{p}_{\text{arithmetic}}} = \frac{\overline{p}_{\text{geometric}}}{\overline{p}_{\text{arithmetic}}} \leq 1$

Numerical Results

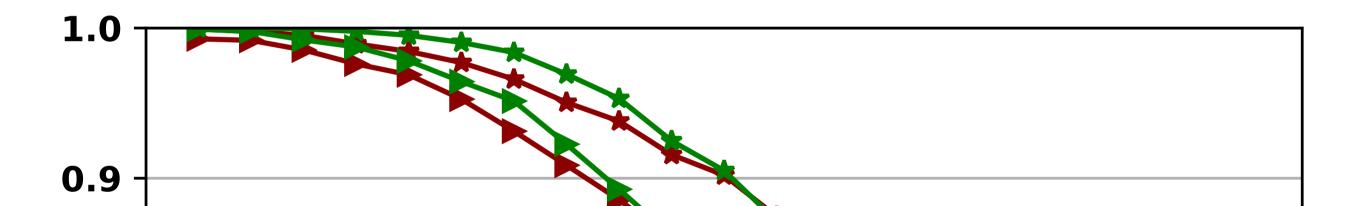
Synthetic data:

• 2 classes

• Gaussian distributions with different means and covariance matrices

• Number of nodes N = 5,000 and number of features F = 500

• 500 (already-labeled) nodes



- Label Propagation (LP)
 - Distributed voting
- Feature propagation (FP)
- Gossiping, sometimes followed by a nonlinear function • Graph Neural Networks (GNN). Training done with labeled nodes
- **Our contributions:** Graph Node classification
- No Graph Neural Network (GNN)
- Interpretable algorithm
- Less complex algorithm (with less hyperparameters)

(%) 0.8 U **D** 5 0.7 p1 = p2 = 0.05 (GAB) 4 p1=0.075 & p2= 0.025 (GAB) p1 = p2 = 0.05 (GCN) 0.6 p1=0.075 & p2= 0.025 (GCN) Graph-agnostic Bayesian 0.5 -0.0 0.2 0.6 0.8 1.0 0.4 **Degree of Impurity (q/p)**

System Model

- \mathcal{V}_{μ} : set of nodes involved in the classification of node u.
- $\mathcal{X}_u = \{x_u\} \cup \{x_v, v \in \mathcal{V}_u\}$: set of features of *u* and its "helping" nodes • y_u : class of node *u* (what we are looking for!)
- D_k : probability density function of features belonging to class k.

 $D_k(\boldsymbol{x}_u) = p(\boldsymbol{x}_u | y_u = k).$

Real data:								
	MLP	GCN	SAGE	GAT	GMN	DGCN	GBPN	GAB
Cora	72.1	87.1	86.9	87.1	86.4	87.2	86.4	86.9
CiteSeer	71.2	73.5	73.5	73.1	72.9	73.9	74.8	75.2
PubMed	86.5	87.1	87.8	88.1	86.7	84.7	88.5	86.4
CS	94.2	93.2	93.7	94.0	93.3	94.9	95.5	94.5
Physics	95.8	96.1	96.3	96.3	96.1	96.7	96.9	96.4

Graph-Assisted Bayesian (GAB) Classifier

$$\hat{k}_u = \arg\max_k P_u(k)$$

with $P_u(k) = \Pr(y_u = k | \mathcal{X}_u, \mathcal{I}_G)$. We show that

$$P_u(k) = \pi_k D_k(\boldsymbol{x}_u) \prod_{d=1}^{\Delta_u} \prod_{v \in \mathcal{N}_u(d)} \left(\sum_{k'=1}^{K} r_{u,v}(k,k') D_{k'}(\boldsymbol{x}_v) \right)$$

with Δ_u the diameter of the set \mathcal{V}_u , π_k a priori classes' probability, and $r_{u,v}(k, k') = \Pr(y_v = k' | y_u = k, \mathcal{I}_{\mathcal{G}})$ the probability to be on class k' for node v given the fact that we are in class k for node u.

Complexity analysis:

	Parameters to estimate in GAB	Weights to learn in GNN
Cora	10,087	369,066
PubMed	1,512	129,286

Conclusion

• GAB close to GBPN and GAT, the best ones in the literature • But interpretability • But low-complexity