A journey in decision making processes

Philippe Ciblat

Who I am?

My very short resume : join S2A team in june 2023

- 1996 : Engineer degree from TP and M2 ATSI (UPSay)
- 2000 : PhD Thesis (Blind frequency and channel estimation)
- 2001 : Ass. Prof. at Digital Communications team in TP
- 2010 : Full Prof. and head of the team (until 2021)

Some editorial activities :

- BoG Gretsi, TPC Gretsi, Icassp, Eusipco, ···
- AE/SAE in IEEE TSP, IEEE TISPN, ···

Some teaching activities :

- COM105, Telecom track
- SI101, MD221, M2 MICAS
- TSE202, TSE101 (next year)

Other TSE-related activities :

• Member of GDR Ecoinfo, GDR Internet et Société

Outline

Two technical topics :

- Graph Node classification
 - No Graph Neural Network (GNN)
 - Interpretable algorithm
 - Less complex algorithm (with less hyperparameters)
 H. Hafidi et al., "Graph-assisted Bayesian node classifiers", IEEE Access, 2023
- Edge caching with popular time-sensitive contents
 - No neural network (while decision making agent)
 - Low-complex interpretable probabilistic approach
 H. Tang, et al., "Cache updating strategy minimizing AoI with time-varying popularity", IEEE Information Theory Workshop, 2021

Some perspectives :

- Wireless federative learning
- Graph based image classification
- Sustainable systems

Topic 1 : Graph Node classification

Idea : homophily principle

Predict class of each unlabeled node in the graph by relying

- on nodes' features and
- on nodes' graph connections

Examples :

- in social networks, people are more likely to connect with those who share the same areas of interest
- in research articles' database, more likely to have connections/citations between articles dealing with the same research topic

Problem statement

Classifier based on Bayesian decision theory : Maximum A Posteriori

- V_u : set of nodes involved in the classification of node u.
- $\mathcal{X}_u = \{ \mathbf{x}_u \} \cup \{ \mathbf{x}_v, v \in \mathcal{V}_u \}$: set of features of node *u* and its "helping" nodes
- *y_u* : class of node *u* (what we are looking for !)
- *D_k* : probability density function of features belonging to class *k*. For any *u*,

$$D_k(\boldsymbol{x}_u) = p(\boldsymbol{x}_u|y_u = k).$$

Graph-Assisted Bayesian (GAB) Classifier

$$\hat{k}_u = rg\max_k P_u(k)$$

with $P_u(k) = \Pr(y_u = k | \mathcal{X}_u, \mathcal{I}_G)$

Problem solution

Derivations of $P_u(k)$. Bayes' rule

$$P_{u}(k) = \frac{p(\mathcal{X}_{u}|y_{u} = k, \mathcal{I}_{\mathcal{G}}) \Pr P(y_{u} = k|\mathcal{I}_{\mathcal{G}})}{P(\mathcal{X}_{u}|\mathcal{I}_{\mathcal{G}})} \propto Q_{u}(k)\pi_{k}$$

with $\pi_k = \Pr(y_u = k | \mathcal{I}_G)$ a priori classes' probability Let Δ_u be the diameter of the set \mathcal{V}_u .

$$Q_u(k) = D_k(\boldsymbol{x}_u) \prod_{d=1}^{\Delta_u} \prod_{v \in \mathcal{N}_u(d)} \left(\sum_{k'=1}^K r_{u,v}(k,k') D_{k'}(\boldsymbol{x}_v) \right)$$

with $r_{u,v}(k, k') = \Pr(y_v = k' | y_u = k, \mathcal{I}_{\mathcal{G}})$ the probability to be on class k' for node v given the fact that we are in class k for node u.

Example

$$V_u = \{v\}$$
, known $k_v = 1$, $\pi_1 = \pi_2 = 1/2$, and $\Delta_u = 1$:

$$Q_u(1) = D_1(\boldsymbol{x}_u) \frac{p}{p+q}$$
 and $Q_u(2) = D_2(\boldsymbol{x}_u) \frac{q}{p+q}$

with p (resp. q) probability of intra (resp. inter)-class connection

Assumptions

- 2 equilikely classes
 - p(k) probability that two nodes from class k are connected $\overline{p}_{\text{arithmetic}}$ arithmetic average of $\{p(k)\}_k$
 - *q* probability that two nodes from different classes are connected.
- Information on graph is 1-hop

We get

$$\begin{array}{c|c} r(1,2) = \frac{q}{p(1)+q} & r(2,2) = \frac{p(2)}{q+p(2)} \\ \hline r(1,1) = \frac{p(1)}{p(1)+q} & r(2,1) = \frac{q}{q+p(2)} \end{array}$$

Graph-agnostic iff r(1,2) = r(2,2) and r(1,1) = r(2,1)

Main result

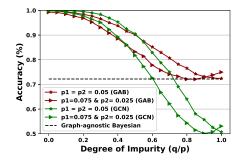
Graph-agnostic iff

•
$$q = \sqrt{p(1)p(2)} = \overline{p}_{\text{geometric}}$$
, or

• Degree of Impurity $= \frac{q}{\overline{\rho}_{\text{arithmetic}}} = \frac{\overline{\rho}_{\text{geometric}}}{\overline{\rho}_{\text{arithmetic}}} \le 1$

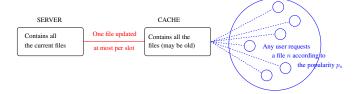
Numerical illustrations

- 2 classes
- Gaussian distributions with different means and covariance matrices
- Number of nodes N = 5,000 and number of features F = 500
- 500 (already-labeled) nodes



- GAB more robust to Dol than GCN
- GCN becomes worse than graph-agnostic (too confident)

Topic 2 : Edge caching



- Content n is time-sensitive (X_n(t) : age in caching)
- Content n has its own popularity (p_n : probability to be requested)
- Ex : newspaper website, web crawling, video last version, ...

Question

- Given a timeslot *t*, which item should be downloaded from the server to the cache to be as up-to-date as possible?
- Scheduling problem

 $\{u_t\}_t = f(\text{information on the system})$

Optimization problem

$$\arg\min_{u_1,\cdots,u_T}\sum_{n=1}^N p_n \int_0^T X_n(t) \, dt$$

s.t. $u_t \in \{1, \dots, N\}$ for all t, and $\sum_{t=1}^{T} \mathbf{1}\{u_t > 0\} = T$.

Approaches :

- As underlying Markov chain, constrained MDP well adapted
 - Optimal random policy exists
 - Suboptimal approach but simple : Whittle's index
- Probabilistic method by re-writing the problem

Extensions : i) when the transmission size depends on the age, ii) when the popularity is time-varying (satisfying Markov chain)

Approach 1 : concept of per-file update rate

- Consider λ_n the per-file update rate
- Actually, when T large enough,

$$\frac{1}{T}\int_0^T X_n(t)dt\approx \frac{1}{\lambda_n}$$

New optimization problem

$$\min_{\lambda_1,\ldots,\lambda_N}\sum_{n=1}^N\frac{p_n}{\lambda_n}$$

s.t.
$$\lambda_n \geq 0$$
, and $\lambda_1 + \cdots + \lambda_N = 1$.

Main result

Problem is convex and leads to

$$\lambda_n^* = \frac{\sqrt{\rho_n}}{\sum_{m=1}^N \sqrt{\rho_m}}$$

Update rate of file *n* follows a square-root law wrt. its popularity

Practical protocol

Let $\tau_n^{\star} = 1/\lambda_n^{\star}$ be the optimal inter-update time for file *n*

$$u_t = \arg \max_{u \in \{1, \dots, N\}} \underbrace{(X_u(t) - \tau_u^*)}_{\text{Schedule and under the Aux hand Division (S)}}$$

Schedule-ordered by Age-based Priority (SOAP)

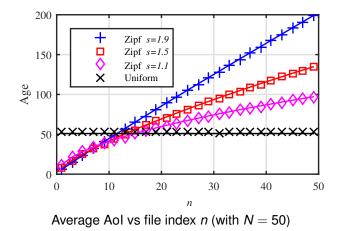
General context :

- r(D, X) : rank function with descriptor D and age X
- Scheduled user

$$u_t = \arg \max_{u \in \{1, \cdots, N\}} r(D_u(t), X_u(t))$$

- Many policies follow this shape
 - Round-Robin (RR), $r(\emptyset, X_u) = X_u$
 - "Weighted Round-Robin", $r(d_u, X_u) = d_u X_u$ Example : does it make sense to choose $d_u = \sqrt{p_u}$?

Numerical illustrations



Proposed policy reduces the average age of more popular items at the expense of less popular items

Approach 2 : index based policy

Find a suboptimal policy based on an index :

$$u_t = \arg \max_{u \in \{1, \cdots, N\}} \mathcal{I}_u(S_u)$$

- I : it is an heuristic
- Whittle's index : methodology for exhibiting a reasonnable index in Restless Multi-Arm Bandit problem
 - N bandits/players/agents
 - At each timeslot, select one bandit (let's say u_t)
 - Its state s_{u_t} is modified according to its action, and is rewarded
 - but states of other bandits also modified and rewarded in different ways (restless)
- When non-playing bandits are frozen (no state evolution) and not rewarded : Gittins' index is optimal

$$\mathcal{IG}_u(D) = \sup_{\tau > 0} \frac{\mathbb{E}[\sum_{t=0}^{\tau-1} \gamma^t r_u(S_t) | s_0 = S]}{\sum_{t=0}^{\tau-1} \gamma^t}$$

Whittle index (1/2)

$$\arg \max_{\{a_n(t)\}_{n,t}} \lim_{T \to \infty} \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma^t \sum_{n=1}^N r_n(s_n(t), a_n(t)) \right]$$

s.t. $\sum_{n=1}^{N} a_n(t) = 1$ (C1) and $a_n(t) \in \{0, 1\}$ (C2) Two modifications :

• Relaxation : C1 replaced with $\sum_{t=0}^{\infty} \gamma^t \sum_{n=1}^{N} a_n(t) = 1/(1-\gamma)$

Lagrangian penalty

$$\arg \max_{\{a_n(t)\}_{n,t}} \mathcal{L}(\lambda)$$

s.t. C2 and with

$$\mathcal{L}(\lambda) = \lim_{T \to \infty} \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma^t \sum_{n=1}^N r_n(s_n(t), a_n(t))\right] - \lambda\left(\sum_{n=1}^N a_n(t) - 1/(1-\gamma)\right)$$
$$= \lim_{T \to \infty} \mathbb{E}\left[\sum_{n=1}^N \left(\sum_{t=0}^{T-1} \gamma^t r_n(s_n(t), a_n(t)) - \lambda a_n(t)\right)\right]$$

Whittle index (2/2)

- The problem is now decoupled
- For each bandit and fixed λ , we maximize

$$\mathcal{L}_n(\lambda) = \lim_{T \to \infty} \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma^t r_n(s_n(t), a_n(t)) - \lambda a_n(t)\right]$$

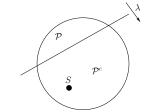
- S(λ) : set of states to be idle obtained via L_n(λ)
- Optimal policy : play (a = 1) if $s \in S^{c}(\lambda)$ else idle (a = 0)
- Indexability : if idle for λ, then still idle for λ' > λ (if higher penalty for being active, stay idle)

Definition

$$\mathcal{IW}(S) = \lambda^*$$

s.t.
$$S \in \partial \mathcal{P}(\lambda^*)$$

Remark : if $\lambda < \lambda^*, S \in \mathcal{P}(\lambda)$, else
 $S \in \mathcal{P}^c(\lambda)$



Main result [unpublished]

We have $S_u = X_u$, and

$$\mathcal{IW}_u(X_u) = \sqrt{p_u}X_u$$

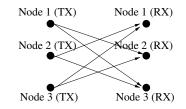
- Is it close to square-root law?
- Extension to 2-D state (age, popularity) when time-varying popularity
 - o to be complete
 - condition for indexability
 - never done for any 2-D state contex

Perspective 1 : Wireless federative learning

- Learn a w-NN
- <u>but</u> database is split over K agents : $(x_k, y_k)_{k=1, \dots, K}$ $w^* = \arg \min_{w} \sum_{k=1}^{K} f_k(w)$
- Agents are wirelessly connected Algorithm :
 - Local gradient computation : $\nabla f_k(w_t)$
 - Sharing gradient and update : $w_{t+1} \leftarrow w_t \mu \sum_{k=1}^{K} \nabla f_k(w_t)$

Sharing step is a bottleneck!

- If no interference (baseline) : user rate = $log_2(SNR)$
- If time-sharing : user rate = $\frac{1}{K} \log_2(SNR)$
- If our scheme : user rate = $\frac{K(K-1)-1}{K(2K-3)} \log_2(SNR) \sim \frac{1}{2} \log_2(SNR)$ More than **half the cake** for each agent ! (if K = 3, then 5/6)



Perspective 1 : why does it work?

When you precode well, you have more than the cake :

• Example : interference channel

$$y_n = x_n + i \left(\sum_{m \neq n} x_m\right) + z_n, \ \forall n$$

• If
$$x_n \in \mathbb{R}$$
, then $\Re\{y_n\} = x_n + \Re\{z_n\}, \ \forall n$

User rate is then

$$\frac{1}{2}\log_2(1+\text{SNR})\sim \frac{1}{2}\log_2(\text{SNR})$$

 Interference Alignement (IA) : put interference in a common subspace at RX side. The orthogonal is interference-free

An other application : distributed estimation in complete graph (rather than star graph and 1-bit time-sharing communication) Collaboration with Shanghai Jiao Tong University (co-PhD degree) Representing an image (or set of patches) as a graph

Some examples :

- node = pixel; feature = color level; edge = two pixels belonging to similar patches; weight = location distance within the image
- node = patch; feature = patch learnt (strongly compressed) representation; edge+weight = related to original patch feature

Application : lung cancer

Collaboration with Universidad Nacional de Colombia (UNAL)

Perspective 3 : Efficiency

 $\label{eq:Efficiency} \text{Efficiency} = \frac{\text{metric of performance}}{\text{consumed energy}}$

- OPEX-like energy : operational one
- CAPEX-like energy : embodied one
 - \circ mining, manufacturing, recycling, \cdots : Life-Cycle Assessment

Example : Machine Learning

- Operational energy : computation energy during usage phase
- Embodied energy : Training, Computer's manufacturing, Cooling
- Metric of performance : Customer Satisfaction Rate

Main concerns :

- Open-data are missing for this kind of evaluation
- Depreciation duration, energy assignement (training/test)

Sustainable (or resilient) system "meets the needs of present generations without compromizing the ability of future generations to meet their own needs" [Brundtland1987]

Implementation : given an application/usage, level of power is fixed

Why is it different from energy efficient system?

- rebound effect has to be taken into account.
- if gain in energy consumption comes from enablement effect, customer behavior has to be predicted

Main concerns :

- Does not depend only on engineers' answers
- Required Science and Technology Studies (STS)

Perspective 3 : sustainable systems

Cars' traffic management :

- Given an area, amount of energy is limited per prefixed duration
- Speed limited to satisfy the energy constraint
- Avoid Stop-and-Go policy (consuming the whole budget once)
- Long-term policy is required to be smoother
 - at which spatial scale : road, county (but long-haul traffic ?), country
 - o at which time scale : day, week, year
 - traffic prediction or adaptation?
- Machine Learning is a relevant tool since highly-complex problem

Back to communication network :

- Given an area, amount of energy is limited per pre-fixed duration
- Packet traffic has to adapt
 - Quality of Service is moving
 - Outage is possible
- Here : available traffic model via stochastic geometry (ANR and PEPR grants in collaboration with *Infres*)