Energy efficiency based resource allocation

Philippe Ciblat

Joint work with C. Le Martret and X. Leturc

- Energy efficiency criterion
- Application to Hybrid ARQ (HARQ) based system
 - Review on Fractional Programming
 - Short introduction to HARQ
 - Application to a practical scheme

Energy-efficiency based problem

$$\min_{\boldsymbol{\theta}} f(\{\mathcal{E}_k(\boldsymbol{\theta}_k)\}_{k=1,\ldots,K})$$

s.t.
$$\begin{aligned} \mathbf{QoS}_k(\theta_k) \geq \mathbf{QoS}_k^{(0)}, \ \forall k \in \{1, \dots, K\} \\ \mathbf{C}(\{\theta_k\}_{k=1,\dots,K}) \geq 0 \\ \mathbf{C}_k(\theta_k) \geq 0, \ \forall k \in \{1,\dots,K\} \end{aligned}$$

with the following energy efficiency

 $\mathcal{E}_k = \frac{\text{\# total amount of data correctly delivered by link } k}{\text{\# total consumed energy on link } k}$

QoS constraints: FER, delay, data rate

Why Energy Efficiency? example 1

- O1: minimum power with data rate constraint (> 1Mbits/s)
- O2: maximum data rate with power constraint (< 35dBm)
- O3: maximum energy efficiency

Remarks:

- we do not control the operating point
- consumed energy = transmit power + circuitry power (P_c)

Why Energy Efficiency? example 2

- Data rate: $\log_2(1 + P)$ with transmit power P
- Consumed power: $P + P_c$

Remarks:

- EE makes sense iff $P_c \neq 0$
- EE operating point strongly depends on P_c

Why Energy Efficiency? example 3

- *Q_r* remaining battery (%),
- *T_t* time to transmit the messages (*s*),
- N_p number of transmitted messages,
- and Data rate (Mbits/s)

		Qr	T_t (s)	Np	Data rate
10 ⁷ sent messages	EE	96	297	10 ⁷	4.3
	MTO	85	256	10 ⁷	5
	MPO	89	1 280	10 ⁷	1
Full battery use	EE	0	8327	$2.8 imes 10^{8}$	4.3
	MTO	0	1 800	7 × 10 ⁷	5
	MPO	0	12 180	$9.5 imes 10^{7}$	1

Capacity based Energy efficiency [Zappone2015]

- K users
- Downlink communications (EE computed at BTS)
- FDMA (with equal bandwidth for each user)

$$\max_{\{P_k\}} \frac{\sum_{k=1}^{K} \overbrace{\log_2(1+G_kP_k)}^{R_k}}{\sum_{k=1}^{K} P_k + P_c}$$

s.t.

$$\sum_{k=1}^{K} P_k \leq P_{\max}$$
$$P_k \geq 0, \forall k$$

Remarks:

- Warning: the power constraint is not necessary saturated.
- Ratio between concave function and convex function
- Linear constraints
- \Rightarrow Resorting to Fractional programming (FP)

Review on Fractional Programming - 1

with concave function f, and positive convex function g.

- Let *q*^{*} be the maximum value (assumed non-negative).
- Let **x*** be the argmax value.

Lemma 1

x* is achieved iff

$$\max_{\mathbf{x}\in\mathcal{C}}f(\mathbf{x})-q^*.g(\mathbf{x})=0$$

Consequence:

If q* is known in advance, just solve

$$\max_{\mathbf{x}\in\mathcal{C}}f(\mathbf{x})-q^*.g(\mathbf{x})$$

• As f concave and g convex, $f - q^* \cdot g$ is concave Convex optimization

Review on Fractional Programming - 2

Lemma 2

Let

$$F(q) := \max_{\mathbf{x} \in \mathcal{C}} f(\mathbf{x}) - q.g(\mathbf{x})$$

is a strictly decreasing function in $q \in \mathbb{R}_+$

Consequence:

- $q \mapsto F(q)$ is continuous
- $\lim_{q\to 0} F(q) = \max_{\mathbf{x}\in \mathcal{C}} f(\mathbf{x}) > 0$ (as q^* is non-negatve)
- $\lim_{q \to \infty} F(q) = -\infty$ (as g is non-negative)
- q* is the unique root of F
- Any root-finding algorithm works!
- <u>but</u> each computation of *F* requires a convex optimization

Lemma 3 : Dinkelbach algorithm [1967]

Start with $q_0 = 0$, select an arbitrary small ε . Iterate over *n*

1. Given q_n , find

$$\mathbf{x}_n^* = rg\max_{\mathbf{x}\in\mathcal{C}} f(\mathbf{x}) - q_n.g(\mathbf{x})$$

2. Then

$$q_{n+1} = \frac{f(\mathbf{x}_n^*)}{g(\mathbf{x}_n^*)}$$

3. Stop when $F(q_{n+1}) < \varepsilon$

Result: this algorithm converges to (q^*, \mathbf{x}^*) up to ε .

HARQ based energy efficiency

Only channel statistics known at the transmitter

- fast-varying Rayleigh/Rice fading channel
- costly to report instantaneous channel realizations
- cheaper to report statistics due to its coherence time

HARQ to handle unknown channel variation

k-th link characterization

- OFDMA
- Subcarriers are statistically equivalent
 - γ_k : bandwidth proportion assigned to link k
 - Q_k: energy used by link k in one OFDM symbol
 - independent of subcarrier
 - $-E_k = Q_k/\gamma_k$: energy of link k in entire bandwidth
- Rice fading channel

Type-I HARQ

Type-I HARQ: packet **S** is composed by coded symbols s_n

- first packet is more protected
- there is less retransmission
- transmission delay is reduced
- Efficiency is upper-bounded by the code rate

Drawbacks

- Each received packet is treated independently
- Mis-decoded packet is thrown in the trash

Type-II HARQ

Memory at RX side is considered \Rightarrow Type-II HARQ

Main examples:

- Chase Combining (CC)
- Incremental Redundancy (IR)

$$egin{array}{rcl} Y_1 &=& S_1(1) + N_1 \ Y_2 &=& S_1(2) + N_2 \end{array}$$

then joint detection on

$$Y = [Y_1, Y_2]$$

Performance metrics

• Packet Error Rate (PER):

PER = Prob(message is not decoded)

• Efficiency (Throughput/Goodput/etc):

 $\eta = \frac{\text{information bits received without error}}{\text{transmitted bits}}$

(Mean) delay:

d = # transmitted packets when message is correctly received

Jitter:

 σ_d = delay standard deviation

Quality of Service (QoS)

- Data: PER and efficiency
- Voice on IP: delay
- Video Streaming: efficiency and jitter

Type-I HARQ with Rice channel and minimum efficiency constraints

$$\max_{\gamma,\mathsf{E}} \sum_{k=1}^{K} \frac{m_k R_k \gamma_k (1 - \pi_k (G_k E_k))}{\kappa_{1,k} \gamma_k E_k + \kappa_{2,k}}$$

s.t. $m_k R_k \gamma_k (1 - \pi_k (G_k E_k)) \ge \eta_k^{(0)}, \sum_{k=1}^K \gamma_k \le 1, \gamma_k \ge 0, E_k \ge 0$ with

•
$$G_k = |A_k|^2 + \varsigma_k^2$$

π_k probability that one frame in error

$$\pi_k(G_k \boldsymbol{E}_k) \approx \boldsymbol{a}_k \left(\boldsymbol{b}_k \sum_{\ell=1}^4 \boldsymbol{c}_\ell \frac{\boldsymbol{e}^{-\frac{|\boldsymbol{A}_k|^2 \boldsymbol{G}_k \boldsymbol{E}_k \boldsymbol{\theta}_\ell \boldsymbol{d}_k}{1+\varsigma_k^2 \boldsymbol{G}_k \boldsymbol{E}_k \boldsymbol{\theta}_\ell \boldsymbol{d}_k}}{1+\varsigma_k^2 \boldsymbol{G}_k \boldsymbol{E}_k \boldsymbol{\theta}_\ell \boldsymbol{d}_k} \right)^{\delta_k}$$

Remark: More difficult than just information-theoretic metric

How to solve it?

• $f_k : x \mapsto 1 - \pi_k(G_k x)$ concave

• change of variables $(\gamma_k, E_k) \mapsto (\gamma_k, Q_k)$, then

$$(\gamma_k, Q_k) \mapsto \gamma_k (1 - \pi_k (G_k Q_k / \gamma_k)) = \gamma_k f_k (Q_k / \gamma_k)$$

is concave as perspective of f_k Consequently, in (γ_k, Q_k)

- Numerator: concave
- Denominator: convex (as linear)
- Constraints set: convex set

Results (fractional programming tool)

• Jong's algorithm: solve at iteration *i* (with the above constraints) $\max_{\gamma,\mathbf{Q}} \sum_{k=1}^{K} u_k^{(i)} m_k R_k \gamma_k (1 - \pi_k (G_k \mathbf{Q}_k / \gamma_k)) - v_k^{(i)} \kappa_{1,k} \mathbf{Q}_k$

and update $u_k^{(i)}$ and $v_k^{(i)}$ according to well-defined equations

KKT can be written in closed-form

Numerical results

- K = 10 links, Bandwidth W = 5 MHz
- QPSK, convolutional code of rate 1/2
- Rician factor: 10 (dashed line), 0 (solid line)

- Model for *P_c* :
 - · How to take into account the manufacturing
 - How to take into account the decoding power consumption

$$= a - b \times \log(C - R)$$

with C the Shannon capacity and R the current data rate

- Extension to massive MIMO done <u>but</u> without two previous items and also depends on the hybrid RF.
- More philosophical thoughts: what do we want to do with a network?
 - If *P_c* is large (not efficient), then EE leads to high *P*, and more Green House Gas (GHG)
 - If *P_c* is low (very efficient), then EE leads to low *P*, and to lowtech (low rate, for instance)

Let x* be the optimal solution of RHS of Lemma 1. It means

$$f(\mathbf{x}^*) - q^*g(\mathbf{x}^*) = 0 \Rightarrow rac{f(\mathbf{x}^*)}{g(\mathbf{x}^*)} = q^*$$

Moreover $\forall \mathbf{x} \neq \mathbf{x}^*$,

$$f(\mathbf{x}) - q^*g(\mathbf{x}) \leq \mathbf{0} \Rightarrow rac{f(\mathbf{x})}{g(\mathbf{x})} \leq q^*$$

which proves that \mathbf{x}^* is the optimal solution of FP.

• Let \mathbf{x}^* be the optimal solution of FP. As $q^* = f(\mathbf{x}^*)/g(\mathbf{x}^*)$, we get

$$rac{f(\mathbf{x})}{g(\mathbf{x})} < q^* \Rightarrow f(\mathbf{x}) - q^*g(\mathbf{x}) \leq 0$$

for any $\mathbf{x} \neq \mathbf{x}^*$.

- Assume $q_1 > q_2$
- \mathbf{x}_1^* the argmax with q_1 , and \mathbf{x}_2^* the argmax with q_2

$$F(q_1) = f(\mathbf{x}_1^*) - q_1 g(\mathbf{x}_1^*) \stackrel{(a)}{<} f(\mathbf{x}_1^*) - q_2 g(\mathbf{x}_1^*) \\ \stackrel{(b)}{<} f(\mathbf{x}_2^*) - q_2 g(\mathbf{x}_2^*) = F(q_2)$$

(a) q₁ > q₂ and g is a positive function. Strict inequality.
(b) x₂^{*} is the argmax for q₂

Sketch of proof for Lemma 3

Step 1: sequence $\{q_n\}_n$ is strictly increasing.

• Assuming $F(q_n) = f(\mathbf{x}_n^*) - q_n g(\mathbf{x}_n^*) > 0$ (True for $F(q_0)$)

•
$$f(\mathbf{x}_n^*) - q_{n+1}g(\mathbf{x}_n^*) = 0$$

 $q_{n+1} - q_n = \frac{F(q_n)}{g(\mathbf{x}_n^*)} > \frac{F(q_n)}{g_{\max}} > 0$ (1)

with $g_{\max} = \max_{\mathbf{x} \in C} g(\mathbf{x})$ (it exists if C compact) Step 2: convergence to q^*

- Due to stopping criterion, bounded increasing sequence, and so $\lim_{n\to\infty} q_n = \overline{q}$
- Assuming that $\lim_{n\to\infty} F(q_n) = F(\overline{q}) > \varepsilon$, i.e, $\overline{q} < q^* \delta$ with $F(q^* \delta) = \varepsilon$.
- <u>but</u> as q_n converges, $(q_{n+1} q_n)$ converges to 0, and Eq. (1) implies

$$F(q_n) o 0 \Rightarrow q_n o q^*$$

which leads to a contradiction.