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ABSTRACT

Graph neural networks (GNN) have been recognized as pow-
erful tools for learning representations in graph structured
data. The key idea is to propagate and aggregate information
along edges of the given graph. However, little work has
been done to analyze the effect of noise on their performance.
By conducting a number of simulations, we show that GNN
are very sensitive to the graph noise. We propose a graph-
assisted Bayesian node classifier which takes into account the
degree of impurity of the graph, and show that it consistently
outperforms GNN based classifiers on benchmark datasets,
particularly when the degree of impurity is moderate to high.

Index Terms— Node classification, noisy graphs

1. INTRODUCTION

Graphs offer a flexible framework for representing diverse
data. They are described by a set of nodes representing enti-
ties and a set of edges connecting them representing relation-
ships between them. For attributed graphs, nodes and edges
may further be associated with several features. To leverage
the richness of information that resides in graphs, the scien-
tific community developed a set of methods and techniques
that can be grouped under the umbrella of graph represen-
tation learning. These methods have found applications in
molecular physics [1], quantum chemistry [2], finance [3] and
human brain activity and function [4].

Most successful approaches for graph representation
learning are based on Graph Neural networks (GNN), a class
of deep learning methods designed to perform inference on
data described by graphs. A classical example is the Graph
Convolutional Network (GCN) [5]. The GCN filter can be
seen as an aggregation operator, i.e. the representation of
a node is obtained by averaging its intrinsic features with
those of its first-order neighbors using the symmetrically nor-
malized adjacency matrix. GCN was designed for the task
of graph-based semi-supervised learning which consists of
classifying nodes in a graph where labels are only available
for a small subset of nodes.

The node classification task has then become a standard
problem for studying the performance of GNN and several

approaches have been proposed to build more sophisticated
and expressive GNN. As an example, the authors in [6, 7] in-
troduced GAT and AGNN that use an attention mechanism
to update the adjacency matrix by giving different weights
to neighbors based on nodes’ and edges’ features. Other re-
searchers explored higher-order information of the graph by
repeatedly mixing feature representations of neighbors at var-
ious distances [8] or by modifying the propagation strategy of
GCN by exploring its relation to the PageRank algorithm [9].

Although these approaches achieved remarkable results
on a number of benchmark datasets, we notice that their per-
formance varies significantly across datasets. More specifi-
cally, the gain in terms of prediction accuracy of GNN when
compared to that of a simple logistic regression (i.e. no contri-
bution from the neighbors) highly depends on the dataset. To
the best of our knowledge, no attempt has been made in the lit-
erature to investigate the reasons behind the variations of this
gain across benchmark datasets. We hypothesize that these
variations can be explained by the connectivity and the degree
of purity of the graph. Connectivity can be measured by the
probability of intra-class connection, p (i.e. the probability
that two nodes from the same class are connected). The de-
gree of purity of the graph can be measured by 1−q/p, where
q is the probability of inter-class connection q (i.e. the prob-
ability that two nodes from different classes are connected).
We will refer to the degree of impurity, q/p, as the noise-
to-signal ratio, which is typically lower than one. Datasets
where q < p are referred to as assortive in stochastic block
models, which are generative models for random graphs that
tend to produce graphs containing communities [10]. From
this perspective, one can say that node classification is easier
in graphs with strong community structure.

Table 1 shows estimations of p and q/p for two widely
used citation datasets for benchmarking GNN algorithms, as
well as the node classification accuracies when using a logis-
tic regression classifier with a two-layer GCN, which consists
of aggregating the feature vectors of the first and second or-
der neighbors of a node before applying logistic regression.
The results clearly suggest that the classification performance
gain of GNN algorithms decreases with decreasing p and/or
increasing noise-to-signal ratio q/p, i.e. performance gain of
GNN over logistic regression increases with tighter commu-



Cora Citeseer
Inter class connectivity p 23× 10−3 12× 10−3

Intra class connectivity q 5.5× 10−3 4.3× 10−3

Noise-to-Signal ratio q/p 0.23 0.36
Logistic regression 56.0% 57.2%
Two layer GCN [5] 81.5% 70.3%
Gain +45.5% +22.9%

Table 1. Estimations of intra and inter class connection prob-
abilities on two datasets and the accuracy of classification

nity structure.
The main contribution of the paper is to propose a new

node classification method robust to the impurity of the graph.
The method relies on a Bayesian approach taking into account
the graph structure. The paper is organized as follows: in
Section 2, we formulate the node classification problem and
recall some GNN-based classifiers. In Section 3, we introduce
our new graph-assisted Bayesian classifier. We show it leads
to a GNN-based classifier only in the absence of noise (i.e.,
q = 0) and under further conditions. In Section 4, numerical
results are provided. Comparison with existing GNN-based
methods are done on real datasets for which the degree of
purity has been modified by injecting artificial noise.

2. BACKGROUND

2.1. Problem formulation

Let G = (V, E) be an undirected graph where V is a set
of nodes and E ⊆ V × V is a set of edges. Each node
u ∈ V is represented by a feature vector xu ∈ RF×1
where F is the number of node’s features. An adjacency
matrix A ∈ RN×N represents the topological structure of
the graph where N = |V| is the number of nodes in the
graph. Without loss of generality we assume the graph to
be unweighted i.e Au,v = 1 if (u, v) ∈ E and Au,v = 0
otherwise. Let X = [x1,x2, . . . ,xN ]>. Let yi denote the
label of the ith node and let K denote the number of classes,
i.e. yi ∈ {1, . . . ,K}. We assume that only a small number of
labels, say M (� N ), are known.

The objective of node classification is to predict the class
of all unlabeled nodes in the graph given the adjacency matrix
A, the feature matrixX and the set of available labels.

2.2. Graph Neural Networks

GNNs are a class of graph embedding architectures which
use the graph structure in addition to node and edge features
to generate a representation vector (i.e., embedding) for each
node. GNNs learn node representations by aggregating the
features of neighboring nodes and edges. The output of the

l-th layer of these GNNs is generally expressed as:

h(l)
u = φ(l)(h(l−1)

u , ψ(l)({(h(l−1)
u ,h(l−1)

v ) : v ∈ N (u)}))
(1)

where h(l)
u is the feature vector of node u at the l-th layer

initialized by h(0)
u = xu and N (u) is the set of first-order

neighbors of node u. Different GNNs use different formula-
tions of ψ(l) and φ(l) [11]. Note that a first-order GNN based
classifier relies on one layer or equivalently considers only the
one-hop neighborhood in the graph.
Graph Convolutional Neural Network (GCN). The convo-
lutional propagation rule used in GCN defines the functions
ψ(l) and φ(l) respectively such that:

h̄
(l)
u =

h(l−1)
u

du + 1
+

∑
v∈N (u)

h(l−1)
v√

(du + 1)(dv + 1)

h(l)
u = σ((W (l))>h̄

(l)
u ), (2)

whereW (l) is a learnable weight matrix, σ is a rectified linear
unit (ReLU), and du is the degree of node u [5]. All nodes’
aggregation operations are computed in parallel resulting in
the following matrix representation:

H(l) = σ(ÂH(l−1)W (l)), (3)

where H(l) = [h
(l)
1 ,h

(l)
2 , . . . ,h

(l)
N ]> is the matrix of nodes’

hidden feature vectors at the l−th layer and Â = Ď
− 1

2 ǍĎ
− 1

2

is the symmetrically normalized version of the adjacency ma-
trix with added self-loop Ǎ = A + IN with Ď being its
diagonal degree matrix, i.e. Ďii =

∑
j Ǎij . These opera-

tions are applied in each layer resulting in a classifier whose
last layer is given by:

Ŷ = Softmax(ÂH(L−1)W (L)), (4)

where Ŷ ∈ RN×K and ŷu,k is the probability that node u
belongs to class k. The node is assigned to the class with the
highest probability.
Graph Convolution Operator (GraphConv). In [12], the
GraphConv is defined through the functionsψ(l) and φ(l) such
that:

h(l)
u = (W

(l)
1 )>h(l−1)

u + (W
(l)
2 )>(

∑
v∈N (u)

h(l−1)
v ). (5)

Unlike GCN, the GraphConv operator computes a transfor-
mation matrix of the central node that is different from the
transformation of its neighbors.
Graph Isomorphism Network (GIN). In [13], the GIN is
defined through the functions ψ(l) and φ(l) such that:

h(l)
u = (W (l))>((1 + α)h(l−1)

u +
∑

v∈N (u)

h(l−1)
v ). (6)

The GIN operator attributes a different learnable weight to the
central node when combining information from its neighbors.



3. BAYESIAN NODE CLASSIFIER

3.1. Model definition

Unlike in GNN, we adopt a Bayesian approach to node clas-
sification. The exact Bayesian classifier for each node would
depend on all nodes connected directly or indirectly to the
node, in the sense that the probability that a node belongs to
one of the classes depends on its intrinsic features, features of
a large number of other nodes and the graph structure. Here,
we introduce a simplified Bayesian classifier which classi-
fies a node based only on its intrinsic features and those of
its first-order neighbors (i.e., one-hop neighborhood), con-
sidering only the links between the node and its neighbors.
By analogy with the conventional naive Bayesian classifier
(which ignores the correlations between the feature), our clas-
sifier can also be considered as a naive graph-based node clas-
sifier in the sense that it ignores some graph information for
the sake of simplicity. We leave higher-order (less naive) ver-
sions of this classifier for future work. We name the pro-
posed classifier as first-order graph-assisted Bayesian (FO-
GAB) classifier. Next, we derive this classifier and show that
it may reduce to a first-order GNN-based classifier only when
the graph is noise-free.

Let Xu = {xu} ∪ {xv, v ∈ N (u)} the set of features
of node u and its first order neighbors, Dk the probability
distribution that generates samples belonging to class k. The
objective is to compute the probability that a node u belongs
to class k knowing Xu, which, using Bayes rule, expresses as:

P (yu = k|Xi) =
P (Xu|yu = k)P (yu = k)∑K

k′=1 P (Xu|yu = k′)P (yu = k′)
. (7)

Let T ∈ RK×K be the link probabilities matrix whose
(k, k′)-th entry, tk,k′ denotes the probability that there is a
link between nodes of class k and those of class k′. The
probabilities of intra-class and inter-class connectivity are
defined as the average of the diagonal elements and off-
diagonal elements of T , respectively, i.e., p = 1

K tr(T ) and
q = 1

K(K−1) (sum(T ) − tr(T )) with sum(·) the sum of all
matrix elements.

The distribution of each neighboring node knowing that
the central node belongs to class k is a mixture of the distribu-
tions associated with the different classes, where the weights
of the mixture are determined by the link probabilities:

P (xv|yu = k) =

K∑
k′=1

t̃k,k′Dk′(xv), (8)

where t̃k,k′ =
tk,k′∑K

k′=1
tk,k′

. The tk,k′ ’s are normalised to make
the sum of the weights of the mixture to be equal to one. As-
suming that the feature vectors of the different nodes are in-

dependent, the likelihood of Xu given yu = k is:

P (Xu|yu = k) = Dk(xu)
∏

v∈N (u)

(

K∑
k′=1

t̃k,k′Dk′(xv)). (9)

Let P (yu = k) = πk, the prior probability of class k. Hence,
the probability that node u belongs to class k knowing Xu is:

P (yu = k|Xu) =

πkDk(xu)
∏
v∈N (u)(

∑K
k′=1 tk,k′Dk′(xv))∑K

k′=1 πk′Dk′(xu)
∏
v∈N (u)(

∑K
k′′=1 tk′,k′′Dk′′(xv))

.

(10)

The first-order GAB classifier consists thus of assigning to
node u the class maximizing the above probability, i.e.,

ŷu = arg max
k

P (yu = k|Xu). (11)

3.2. Relation to a GNN based classifier

Here, we study the relation between the first-order GAB clas-
sifier and first-order GNN-based classifier in the case of bi-
nary classification (i.e. K = 2). By defining p̃ = 1

2 (t̃1,1 +
t̃2,2) and q̃ = 1

2 (t̃1,2 + t̃2,1), Eq. (7) can be written as:

P (Xu|yu = k) = Dk(xu)
∏

v∈N (u)

p̃Dk(xv) + q̃Dk′(xv)

p̃+ q̃
,

(12)
which leads to:

P (yu = 1|Xi) =
1

1 + π2

π1

D2(xu)
D1(xu)

∏
v∈N (u)

D2(xv)

D1(xv)
+ q̃

p̃

1+ q̃
p̃

D2(xv)

D1(xv)

.

(13)
When q = 0 (or equivalently q̃ = 0) , the above expres-

sion reduces to:

P (yu = 1|Xi) =
1

1 + π2

π1

∏
v∈N (u)∪{u}

D2(xv)
D1(xv)

(14)

If, in addition, xk ∼ N (µk,Σ), the first-order GAB classifier
is found to be:

β0 + β>1

 ∑
v∈N (u)∪{u}

xv

 > 0⇒ ŷu = 1, (15)

where

β0 = log(
π2
π1

) + (|N (u)|+ 1)(µ>2 Σ−1µ2 − µ>1 Σ−1µ1)

β>1 := [β1,1, · · · , β1,F ] = (µ2 − µ1)>Σ−1. (16)

Therefore, the test statistic of the 1st-order GAB classifier in
the case of Gaussian distributions with the same covariance



Fig. 1. Accuracy performance with added noisy edges in Cora (left) and Citeseer (right).

matrix across the classes, is based on averaging the node’s
feature vector and those of its neighbors (used in GNN clas-
sifiers) only when q = 0, i.e. when the graph is noise-free.

The averaging over the neighbors test statistic is also
valid when the distribution is not normal. When the features
xu,f are independent binary random probabilities P (xu,f =

1|yu = 2) = α
(2)
f and P (xu,f = 1|yu = 1) = α

(1)
f , the

first-order GAB classifier in the q = 0 case has the same form
as in Eq. (15) but where the coefficients are given by:

β0 = log
π2
π1

+ F

F∑
f=1

log
1− α(2)

f

1− α(1)
f

β1,f = − log
α
(1)
f

α
(2)
f

1− α(2)
f

1− α(1)
f

.

(17)

Hence, the test statistic is again based on averaging over the
neighbors, as in GNN-based classifiers, only when q = 0.

4. EXPERIMENT

We empirically compare the robustness to noise of the pro-
posed first-order graph-assisted Bayesian classifier (GAB)
with that of first-order GNNs (GCN, GraphConv, GIN) and a
graph-agnostic Bayesian classifier which classifies the nodes
based only on their intrinsic features. The experiment is as
follows, starting from a given graph, we add links between
previously unconnected nodes that belong to different classes
with the goal of gradually varying the noise-to-signal ratio
from its initial value to 1. For each corrupted graph, we train
the above mentioned classifiers and report their accuracy on
Figure 1.
Datasets. We use Cora and Citeseer, two citation networks
where nodes are bag of words representations of documents
and edges correspond to (undirected) citations. Each docu-
ment is assigned a unique label based on its topic. Statistics
of the datasets are given in Table 2.
Experimental design. We follow the standard train/val/test
splits in [5]. To implement the GNN based classifiers we use

Table 2. Description of the datasets
Dataset Nodes Edges Features Classes (K) Train/Val/Test Nodes

Cora 2,708 5,429 1,433 7 140/500/1,000
Citeseer 3,327 4,732 3,707 6 120/500/1,000

Pytorch. We initialize all models using Glorot initialization
and trained them to minimize the cross entropy loss using
the Adam optimizer with an initial learning rate of 0.005.
To implement our graph based Bayesian classifier (Eq. (10)),
we consider a Bernoulli distribution for each component of
the feature vectors. We estimate the parameters of Bernoulli
distributions and the link probabilities from the training set.
It is worth point out that due to the scarcity of the available
labelled nodes, we opt for the following estimates of the nor-
malized link probabilities. We first estimate the normalized
link probability matrix denoted by T̃ . We then force its diag-
onal terms to be identical and equal to p̌ = 1

K tr(T̃ ) and its
off-diagonal to be identical and equal to q̌ = 1

K−1 (1− p̌).
Experimental results. Figure 1 shows that GAB exhibits a
strong learning ability that is robust to the degree of impurity
of the graph. When the graph has maximum impurity with
q/p = 1, it ignores the neighbors and thus reduces to a the
conventional graph-agnostic Bayesian classifier. The com-
parison demonstrates that GAB significantly outperforms the
GNN-based classifiers, particularly when the degree of impu-
rity is moderate to high, i.e. when the network does not show
strong community structure.

5. CONCLUSION

We have studied the effects of the degree of purity of graphs
on the performance of GNN-based node classification. Fur-
ther, we have proposed a graph-assisted Bayesian node clas-
sifier, which takes into account the degree of impurity of the
graph. The proposed classifier is shown to significantly out-
perform the GNN-based classifiers, particularly when the de-
gree of impurity is moderate to high. As future work, we will
investigate the performance of higher-order GAB.
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