
Performance Analysis of Blind Carrier Phase 
Estimators for General QAM Constellations 

E. Serpedin’ (contact author), P. Giblap, G. B. Giannali9, and P. Loubaton’ 
Dept. of Electrical Engineering, Texas A&M University, College Station, TX 77843-3128, Tel.: (979) 458 2287 
Fax: (979) 862 4630 email: serpedinOee.tamu.edu 

a UniversitQ de Marne-la-VallBe, Laboratoire “Systkmes de Communication”, 5 Bd. Descartes, 77454 
Marne-la-Vall6e cedex 2, France 

Dept. of Electrical and Computer Engr., University of Minnesota, 200 Union St. SE, Minneapolis, MN 55455 

Abstract- Large quadrature amplitude modulation (QAM) 
constellations are currently used in throughput efRcient high 
speed communication applications such as digital TV. For such 
large signal constellations, carrier phase synchronization is a 
crucial problem because for efficiency reasons the carrier ac- 
quisition must often be performed blindly, without the use of 
training or pilot sequences. The goal of the present paper is 
to provide thorough performance analysis of the blind carrier 
phase estimators that have been proposed in the literature 
and to assess their relative merits. 

I.  INTRODUCTION 
Fast acquisition of the carrier phase is a crucial issue in 

high-speed communication systems that employ large &AM 
modulation schemes. One of the challenges associated with 
large QAM constellations is the blind carrier acquisition, 
which is often required in large and heavily loaded multipoint 
networks for bandwidth efficiency and little effort involved in 
network monitoring. I t  is known that for large &AM constel- 
lations, the conventional carrier tracking schemes frequently 
fail t o  converge and result in “spinning” [8], [lo]. There- 
fore, developing computationally simple blind carrier phase 
estimators with guaranteed convergence and good statistical 
properties is well-motivated. 

Recently, a number of blind carrier phase estimators have 
been proposed [1], [2], [3], [4], [SI, [ll, p. 266-2771, [12], but 
thorough performance analysis of all these algorithms has 
not been performed. In order to quantify the performance of 
these estimators, the large sample (asymptotic) performance 
analysis of these phase estimators will be established and 
compared with the stochastic (modified) Cramer-bo bound 
[ll, Section 2.41. I t  is shown that the seemingly different 
estimators 111, [2], [3], [SI, [ll, p. 266-2771, [12], are the same, 
while the estimator proposed in [4] has a larger asymptotic 
variance than the power-law estimator [3], [6], [12]. It is 
also shown that by exploiting the additional samples acquired 
through oversampling the received continuous-time waveform 
does not improve the performance of the power-law estimator 
in [3], [6], [12]. Finally, computer simulations are presented 
to corroborate the theoretical developments and to compare 
the performance of the investigated phase estimators. 

11. PROBLEM STATEMENT 

We consider the baseband QAM communication system 
where the received signal Y ( n )  = Yr(n) + jYi(n) is given by 

Y(n)  = P X ( n )  + N ( n )  , (1) 

where Yr(n) and Yi(n) denote the in-phase and quadrature 
components of Y(n),  X ( n )  stands for the independent and 
identically distributed (i.i.d.) input QAM symbol stream, 
N ( n )  is the circularly distributed Gaussian noise, assumed to 
be independent of X ( n ) ,  and 6 denotes the unknown carrier 
phase offset. The problem of blind carrier phase estimation 
consists of recovering the phase error 8 only from knowledge 
of the received data Y(n).  Because the input QAM con- 
stellation has quadrant (7~12) symmetry, it  follows that it 
is possible to recover the unknown phase 8 only modulo a 
.n/a-phase ambiguity. This ambiguity can be further elimi- 
nated through the use of appropriate coding schemes. There- 
fore, without any loss of generality, we can assume that the 
unknown phase 8 lies the interval (-r/4, 7~14). In the next 
section, we briefly outline the blind phase estimators [I], [2], 
[3], [4], [5], [ll, p. 266-2771) [12], and establish their exact 
large sample performance. 

111. BLIND CARRIER PHASE ESTIMATORS 

A .  Approximate Maximum Likelihood Estimator: Fourth- 

The maximum likelihood (ML) estimator of 8 can be theo- 
retically derived by maximizing a stochastic likelihood func- 
tion, obtained by averaging the conditional probability den- 
sity function of the received data with respect to the unknown 
data stream X ( n ) .  However, for high order QAM constella- 
tions, the computational complexity involved in calculating 
the likelihood function and more importantly the resulting 
nonlinear optimization problem render the ML-estimator im- 
practical for most high-speed applications. The need for com- 
putationally simple estimators with guaranteed convergence 
calls for alternative (possibly suboptimal, but computation- 
ally feasible) phase estimators. 

Moeneclaey and de Jonghe have shown in [12] that for 
any arbitrary 2-dimensional rotationally symmetric constel- 
lations (such as square or cross QAM constellations) the 
fourth-power (or power-law) estimator can be obtained as 
an approximate ML-estimator in the limit of small Signal- 
tmNoise Ratio (SNR:= 10 log ElX(n)12/ElN(n)12, where := 
stands for “is defined as”). The power-law estimator and its 
sampled version are defined as: 

Power Estimator 

1 
4 8 := -arg [ ( E X * 4 ( n ) )  EY4(n)] , 
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where the superscript * stands for complex conjugation and 
the operator E(.) denotes the expectation operator. The 
fourth-power estimator does not require any complex nonlin- 
ear optimizations, but it requires a-priori knowledge of the 
input constellation E(X*4(n)). However, this is not a restric- 
tive assumption since for most &AM constellations, EX*4(n) 
is a negative real-valued number, whose effect can be easily 
accounted for. Using standard convergence results [Q] it can 
be checked that asymptotically (3) is' w.p. 1 a consistent 
estimator (8 --+ 0 as N ---f 00) for any SNR range. An expla- 
nation can be obtained by observing that, in the presence of 
circularly and normally distributed noise N ( n ) ,  the following 
relation holds: 

N 
1 Y4(n) w.p.! EY4(n) = ej.leEX4(n) , (4) N 

n= 1 

where the second equality in (4) is obtained by expanding 
EY4(n) = E(exp (je)X(n) + N ( T I ) ) ~ ,  taking into account the 
independence between X(n)  and N ( n ) ,  and ENk(n)  = 0, for 
any positive integer k.  Hence, (3) recovers the carrier phase 
from the phase of the fourth-order moment of the received 
data. 

Cartwright has proposed estimating the unknown phase 8 
using a different set of fourth-order statistics [3]. Define the 
following fourth-order moments and cumulants: 

Cartwright's estimator is defined by: 

tan(40) = 4  ( )*8=fa tan[4( - ) ] .  (8) 

To verify that Cartwright's estimator is the fourth-power es- 
timator in (2), we equate the in-phase and quadrature com- 
ponents of: 

EY4(n)=ej4%X4(n) = cos (4S)EX4(n)+j sin (48)EX4(n) 
EY4(n)=E(Yr(n) + jYi(n))"E[Y;(n) + x4(n) - SY;(n) 

xK2(n)] + 4jE[Y:(n)Yi(n) - Yr(n)K3(n)] 
='Y + 4 j  ('Ya - 'Yb) . (9) 

It  follows that 7 = cos(48)EX4(n) and 4(7a - yb) = 
sin (48)EX4(n), which implies the equivalence between es- 
timators (2) and (8). Cartwright's (fourth-power) estimator 
requires only that EX4(n)  # 0 and the independence be- 
tween X ( n )  and additive circularly and normally distributed 
noise N(n) ,  and it can be applied to both square and cross- 
QAM constellations, as opposed to the estimator proposed in 
[4], which can be applied only to  square-&AM constellations. 

It is interesting to remark that three other phase estima- 
tors, derived using completely different arguments, are equiv- 
alent to the fourth-power estimator. An alternative robust 

'The notation w.p. 1 denotes convergence with probability one. 

phase estimator with guaranteed convergence has been pro- 
posed in [Z] for square-QAM constellations. Herein, the car- 
rier acquisition problem is reduced to  the blind source sep- 
aration problem of the linear mixture of the in-phase and 
quadrature-phase components of the received signal, and a 
cumulant-based source separation criterion is proposed to  es- 
timate the unknown phase-offset [2]. In 111, Ill, pp. 271-2771, 
a low SNR approximation of the likelihood function, assum- 
ing PSK input constellations, is shown to have the same form 
as the estimator [2]. Furthermore, it is justified that this es- 
timator can be used even for general &AM constellations [ll, 
pp. 271-2771. By relying on Godard's quartic criterion [8], 
Foschini has shown an alternative derivation of this phase 
estimator in [5] .  Next, we describe briefly the estimator pro- 
posed in [2], which relies on the observation that the in-phase 
and quadrature components of a square-&AM constellation 
are independent. 

Let 4 denote an estimate o-f the unknown phase offset 0, 
define the "rotated" output Y(n) := exp(-j4) Y(n), and 
assume that X(n) belongs to  a square-&AM constellation. 
In the absence of noise and if $I = 8, then the in-phase 
and quadrature components of Y(n) = X ( n )  are_ indepen- 
dent. Thus, the joint cumulants of _the in-phase (Yr(n)) and 
quadrature (K(n))  components of Y(n)  are equal to  zero 

ya := cum(Pr(n), P,.(n), P,(n), %(n)) = o , 
T b  := cum(Pr(n), %(n), c(n), %(n)) = 0 , (10) 

and' I t  is interesting to  remark that (10) 
continues to hold true even in the presence of additive cir- 
cularly and normally distributed noise N ( n ) ,  because the 
cumulants of the in-phase and quadrature components of 
N ( n )  cancel Out. By taking into account (9), it follows that 
;Ya = (EY4(n) - EY*4(n))/8j. Thus, 8 can be estimated 
from: 

e, :=arg m i n g ( ~ P 4 ( n )  - E P * ~ ( ~ ) )  

- T b  = 0. 

= arg min4(e-j4'EY4(n) - ej4'EY*4(n)). (11) 

If we consider the polar representation EY4(n)  = 
X4exp(j40), from (11) we obtain that 8, = arg min4X4(exp 
(-j4(4 - 8 ) )  - exp (j4(4 - e) ) ) ,  which implies that 0, = 8 
modulo a n/4-phase ambiguity. Hence, estimator (11) is the 
same as the fourth-power _estimator j 2 j .  By taking advan- 
tage of the sign of := (EY4(n) +EY*4(n))/2 (see (5 ) ,  (9)), 
the n/4-phase ambiguity inherent in (11) can be reduced to 
a nl2-phase ambiguity (since if 8, - 0 = n /4  modulo n/2,  
then -5. = -EX4(n) # EX4(n)). 

In practice, many communication systems utilizing &AM 
constellations employ also coding, which implies that the 
SNR available a t  the synchronizer will be reduced by an 
amount proportional to  the coding gain. In order to  eval- 
uate correctly the performance of these phase estimators a t  
all SNR levels, next we provide an exact expression for the 
large sample variance of the power-law estimator, which is 
valid for any SNR level and it is not restricted to  the high 
SNR regime as is the case with the approximate asymptotic 
expression presented in [12]. The next section will show that 

'The reader can easily check that T,, = - j b ,  [41. 
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the expression of [12] is not valid for low and medium SNRs 
(5 20 dB). 
Theorem 1. Assuming that the i.i.d. symbol stream X ( n )  
is coming from a finite dimensional QAM-constellation and 
that the additive noise N ( n )  is circularly and normally dis- 
tributed and independent of X ( n ) ,  then the estimate (3) is 
asymptotically normally distributed with zero mean and the 
asymptotic variance: 

with3 pY,40 := E Y 4 ( n )  = ei4eEX4(n), and 

py,44 :=E J X  (n) I8+16EI X (n) l6 El N (n) 1 '+36El X (n) l4 
x E )  N (  n) I4+16EI X (n) 1 E )  N (n) I6+E1 N (n) 18 

The asymptotic variance (12) does not depend on the un- 
known phase 0, but only on the input symbol constellation 
and the SNR. This confirms the conclusion drawn in [3] stat- 
ing that the standard deviation of (8) appears to be constant 
with respect to the true value of 8. We evaluate next the 
asymptotic performance of a phase estimator based on an 
alternative set of statistics that was proposed in [4]. 

B. HOS-Based Phase Estimator of [6] 

mation 8 E (-n/4, n/4) using the relations: 

( 13) 

Proof. Please see [13]. U 

The phase estimator [4] extracts the unknown phase infor- 

with yX := E[1XI4] - 2{E1X12}2 and 

Y :=cum{Y,(n),Y,(n),X(n), ~ ( n ) }  = ~[yP"(n)~?(n)]  
- E[Y:(n)]E[Y:(n)] = 0.25sin2 ( 2 8 ) ~ ~ .  (16) 

Let Ta, TI,, and 9 denote sample estilmates for ya ,  Yb, and y, 
respectively, and define by 81 and 02 the sample estimates 
corresponding to (14) and (15), respectively. The next theo- 
rem, whose proof is deferred due to space limitations to [13], 
establishes the asymptotic performance of dl and 8 2 .  

Theorem 2. Assuming that the i.i.d. symbol stream X ( n )  
is coming from a finite dimensional QAM-constellation and 
that the additive noise N ( n )  is circularly and normally dis- 
tributed and independent of X ( n ) ,  then the estimates 8 1  and 
e 2  are asymptotically normally distributed with zero mean and 
asymptotic variances: 

3The notation f i y , k i  := EYk(n)Y"(n)  stands for the (k + l)th-moment 
of Y(n) .  

i f  (--:,-:I U [:,a) , 

where: 

9 (19) 
cos (88)[ (EX4(n) )2  - EX*(n) ]  + w , 4 4  

32 + 
eiz := lim NE((? - r ) [ (Ta - "/) - (^(a - '%)I} 

N - W  

- - -sin (80)[EXa(n)  - 2(EX4(n)) ']  + 2Im{pyp} 

- 4sin ( ~ O ) E X ~ ( ~ ) [ P Y , ~ ~  - 3p$,11] 

- 8(Elx(n)IZ + EIN(4I2)W/ lY ,51)  

64 

64 

7 (20) 64 
cos (80)EXs(n)  + 3py,44 

128 
e22 := lim NE(+ - r)' = 

N - w  

- 4Re{py,62} + 48p$,ll +  COS (48)EX4(n) - / h ' , ~ 2 ] ~  

128 
32p$,,, [CO. ( 4 e ) ~ x ~ ( ~ )  - ~ E I Y ( ~ ) ( ~ ]  - 

128 

9 (21) 
+ 16[Re{p~,m) - ~ Y J ~ ] P Y , I I  

128 

py,44 is given by (13), and 

pY,62 := e i " [ ~ x 6 ( n ) x * ' ( n )  + ~ ~ E x ~ ( ~ ) x * ( ~ ) E I N ( ~ ) ) ~  

pY,51:= d4 ' [EX5(n )X*(n )  + 5EX4(n)EJN(n)J2] ,  (23) 
py,33 := ElX(n)l6 + 9E)X(n)l4EIN(n)l2 

w , 2 2  := ElX(n)14 + 4E(X(n)l2ElN(n)l2 + EIN(n)I4, (25) 

+ E E X ~ ( ~ ) E ( N ( ~ ) ( ~ ] ,  (22) 

+ ~ E J X ( ~ ) I ~ E J N ( ~ ) I ~  + EIN(n)16, (24) 

pFLy,11 : = E I x ( ~ ) ( '  + E(N(n)12. (26) 

Opposed to the power-law estimator, the asymptotic per- 
formance of the Chen etal. estimator [4] depends on the 
phase offset 8. As the simulation results will show (see Fig- 
ure 5), the asymptotic performance of this estimator deteri- 
orates significantly whenever the a-priori intervals (14), (15) 
are missed, and for any SNR it exhibits a larger variance than 
the power-law estimator. 

IV. PERFORMANCE COMPARISONS 
In this section, computer simulations are performed to 

assess the relative merits of the proposed phase estim* 
tors by comparing the theoretical (asymptotic) limits and 
the experimental standard deviations of the investigated es- 
timators. Two additional estimators have been anaiyzed: 
the fractionally-sampled (FS) power-law estimator and the 
reduced-constellation power estimator. The FS-power es- 
timator recovers the unknown phase offset 0 by exploiting 
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all the samples obtained by fractionally-sampling (oversam- 
pling) the received continuous-time waveform in the estima- 
tor (3). A raised-cosine pulse shape with roll-off factor 0.3 
and an oversampling factor P = 3 are assumed throughout 
the simulations. The reduced-constellation power estimator 
relies also on (3), but only the received samples that are 
larger in magnitude than a given threshold are processed [lo, 
p. 13821, 16, p. 1482). Thus, only the points closest to the 
four corners of the constellation are processed. The asymp- 
totic performance of these two additional estimators can be 
established using the result of Theorem 1, but due to  space 
limitations their expressions will not be presented. 

In Figures 1-a and b, we have plotted the experimen- 
tal and theoretical standard deviations of all these estima- 
tors versus SNR, assuming a square 256-QAM constellation, 
0 = 15O(= 7r/12), N = 512 samples, M C  = 300 Monte-Carlo 
runs, and additive normally distributed noise. The threshold 
in the reduced-constellation power estimator has been set up 
so that only the received samples corresponding to the 12 
points of the input 256-&AM constellation with the largest 
radii are processed. The solid line denotes the stochastic 
Cram&-Rim bound (CRB= 1 / ( N .  SNR)) corresponding to  
the phase estimate. Figure 1 shows that the power-law es- 
timator performs better than the Chen etal. estimator [4] 
at all SNR levels, but worse than the reduced-constellation 
power estimator at high SNRs (SNRZ 20 dB). The FS-based 
power estimator appears to have the worst performance. The 
reduced performance of the FS-power estimator is due to the 
increased “self-noise” generated by the residual intersymbol 
interference effects. For this reason, we have not pursued 
further the analysis of FS-based power-law estimators. 

In Figure 2, we have plotted separately the theoretical 
and experimental standard deviations of the power-law, the 
reduced-constellation power-law, and the Chen etal. (15) es- 
timators, assuming M C  = 300 Monte-Carlo simulation runs, 
N = 512 samples, 0 = ~ 1 1 2 ,  and a 256-QAM input con- 
stellation. The experimental values are well predicted by the 
asymptotic limits for all three estimators, but the CRB seems 
to be a loose bound. In Figure 3, the experimental and the- 
oretical standard deviations of the power-law and the Chen 
etal. estimators are plotted versus the number of samples 
(N), assuming SNR= 10 dB, MC = 300 Monte-Carlo runs, 
0 = 7r/12. I t  turns out that both estimators achieve the 
asymptotic bound even when a reduced number of samples 
N = 250 f 500 are used. 

In Figure 4-a, the asymptotic performance of the Chen 
etal. estimator (14) is analyzed, assuming f3 = 7r/5, M C  = 
300, and N = 512. Figures 4-b and 5 show that the per- 
formance of the Chen etal. estimator depends on the un- 
known phase 0 and has a larger standard deviation than the 
power-law estimator for any phase offset 0 (Figure 5) and 
for any SNR-level (Figure 4-b). In Figure 5, the theoretical 
standard deviations (17) and (18) are plotted on the inter- 
val (-7r/4, x/4) assuming perfect a-priori knowledge of the 
intervals (14), (15) where B lies. However, in the presence of 
a wrong a-priori knowledge on 8 (101 2 n/4) the performance 
of estimator [4] deteriorates significantly. 

In Figures 6 and 7, we have analyzed the performance of 
the power-law and the reduced-constellation power-law esti- 
mators in the case of a cross 128-&AM constellation, assum- 

ing 0 = 7r/12, MC = 300, N = 4000 samples. For such 
constellations, the Chen etal. estimator cannot be used since 
the in-phase and quadrature components of the input symbol 
stream are not independent. In Figures 6 and 7-a, the ex- 
perimental and asymptotic standard deviations of the power- 
law and the reduced-constellation power-law estimators are 
plotted for different SNR levels. Figures 7-a,b show that the 
asymptotic limit predicts well the experimental results for all 
SNR-levels and number of samples N 2 1000. It  appears also 
that for cross-QAM constellations, the power-law estimator 
exhibits very slow convergence rate and good estimates of the 
phase-offset can be obtained only by using a large number of 
samples (N  > 5,000). Finally, Figure 8 reveals that  the ap- 
proximate asymptotic limit derived in [12] does not predict 
well the exact asymptotic limit of the power-law estimator 
for small and medium S N b  (SNRS 20dB). 
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Fig. 1. Standard Deviation VB. SNR a) Experimental Values b) 
Asymptotic Values (256 square-QAM) 
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Fig. 2. Standard Deviation vs. S N R  Experimental/Theoretical Val- 
ues a) Power Estimator b) Reduced-Constellation Power Estimator 
c) Chen etal. Estimator (256 square-QAM) 
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Fig. 3. Standard Deviation vs. No. of Samples: Power Estimator vs. 
Chen etal. Estimator (256 square-QAM) 
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Fig. 5. Standard Deviation vs. Phase offset: Asymptotic Limit (256 
square-QAM) 
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Fig. 6. Standard Deviation vs. SNR a) Power Estimator b) Reduced- 
Constellation Power Estimator (128 cross-QAM) 

Fig. 7.  Standard Deviation vs. SNR/Data: a) Reduced-Constellation 
Power-Law and Power-Law Estimators b) Power Estimator (128 
cross-QAM) 

Fig. 4. Standard Deviation vs. SNR a) Chen etal. Estimator (0 = 
a/5) b) Asymptotic Limits (256 square-QAM) Fig. 8. Standard Deviation vs. S N R  Exact and Approximate Asymp- 

totic'limits (256 square-QAM) 
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