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Abstract—In this paper, we address power allocation for an
uplink multiband single-beam satellite system taking into account
on-board nonlinearities. These nonlinearities are generated by the
high power amplifier. Based on the closed-form expression of the
capacity associated with the optimal receiver exploiting the struc-
ture of the nonlinear effects, three power allocations are studied:
maximization of the sum-rate, maximization of the minimum of
the rates, and minimization of the sum of the powers. The related
optimization problems boil down nonconvex problems that can
be cast and solved by using signomial programming. We propose
practical and scalable algorithms for fixing these power allocation
problems.

Index Terms—Power allocation, nonlinear regime, signomial
programming, HPA, capacity

I. INTRODUCTION

Communication networks need to carry more and more
data with new user cases. The hybridization of cellular and
satellite networks allows to answer the exponential increase
of data traffic. Indeed, the satellite system plays the role of a
relay between two points of a terrestrial system. The satellite
uplink/return link is studied in this paper, where terrestrial
users transmit data to the satellite, which then sends it to a
terrestrial gateway.

In order to respond to the increase in data rates, a new
frequency range around the Ka-band is considered. In this
context, some studies have proposed resource allocation al-
gorithms to maximize the system capacity [1], [2]. However,
these studies assume that the satellite high-power amplifier
(HPA) operates in the linear regime.

When nonlinear regime of the HPA is taken into ac-
count, system capacity expressions have been provided in
[3]. Actually the authors exhibited two different expressions
according to the way the nonlinear interference has been
treated by the receiver. The first way is called nonlinearity-
agnostic since the nonlinear interference is seen as an extra
noise. The second way is called nonlinearity-aware since
the nonlinear interference is seen as an extra signal carrying
useful information. In both cases, significant gains have been
observed if optimal power allocations are done. Nevertheless,
the optimal power allocations relied on an exhaustive search,

This work has been funded by ANR through the SIERRA French-
Luxembourgian grant.

which is not scalable with an increasing number of users.
Practical and scalable power allocations have been proposed
in [4] for the case of nonlinearity-agnostic receivers. In this
paper, we aim to propose power allocation algorithms for the
nonlinearity-aware receivers. We will show that the capacity
expression involves a posynomial over signomial ratio, leading
to Signomial Programing (SP) optimization problem. To the
best of our knowledge, this type of problem has never been
used in the field of wireless communications.

In [4], [5], the presence of the linear and nonlinear in-
terference respectively involves a ratio of posynomials in
the capacity and is thus solved using the same methodol-
ogy, i.e., Successive Convex Approximation (SCA) followed
by Geometric Programing (GP). Here, this approach is not
suitable. As initially seen by [6], we suggest moving the
ratio of signomials into the constraint set leads to a ratio
of posynomials in the constraint set. Then similarly to [4],
[5], SCA procedure followed by GP can be used to solve the
considered optimization problems. We show that this approach
leads to practical and scalable power allocation algorithms.

The rest of the paper is organized as follows: in Section II,
we introduce the system model. In Section III, we present and
solve the three different power allocation problems. Numerical
illustrations are given in Section IV. Section V is devoted to
concluding remarks and perspectives.

II. SYSTEM MODEL

A single-beam multiband satellite communication system is
considered, where K terrestrial users transmit data towards
the satellite. In order to avoid interference on the uplink, the
users share orthogonal subbands (FDMA) [7]. We assume that
the assignment between users and subbands has been already
done, so that there are as many active users as subbands.

Each user k ∈ {1, · · · ,K} transmits its own sequence of
independent and identically-distributed symbol {ak,n}n∈Z to
the satellite. We denote by Pk = E

[
|ak,n|2

]
the transmit

power of user k. The link between user k and the satellite
is characterized by the channel gain Gk and is computed
according to the user location [7]. Inside the satellite, the HPA
amplifies the sum of received signal and produces nonlinear
effects. The downlink, from the satellite to the gateway, is



assumed to be perfect. Therefore, the received samples at the
gateway, denoted by zk,n for user k, are written as below [3]:

zk,n = zL
k,n + zNL

k,n + wk,n

with

zL
k,n = ω1

√
Gkak,n

zNL
k,n = ω3

K∑
k1,k2,k3=1

∑
n1,n2,n3∈Z

ak1,n−n1
ak2,n−n2

a∗k3,n−n3

×
√
Gk1Gk2Gk3e

2iπ(k1+k2−k3−k)∆BnTs

× h3(n1Ts, n2Ts, n3Ts, k1 + k2 − k3 − k)

where ∆B is the subband size and wk,n is the additive
white zero-mean Gaussian noise (AWGN) of variance PW =
E
[
|wk,n|2

]
. The HPA is characterized by ω1 and ω3, which

are positive coefficients. The Volterra kernel h3(t1, t2, t3,m)
is written as follows:

h3(t1, t2, t3,m) =

∫
R

3∏
`=1

pT (t` − τ)pR(τ)e−i2πm∆Bτdτ

where pT (t) and pR(t) are the shaping filter and the cor-
responding matched filter. Note that pT (t) is a square-root
Nyquist filter.

As the nonlinear interference (zNL
k,n) is correlated to the

useful signal (zL
k,n), this nonlinear interference can be seen

as an additional information. In that case, according to [3],
the expression of the capacity for user k is

C(k) = log2 (1 + S(k)) , (1)

with

S(k) =
P2

L(k)+2PL(k)PLNL(k)+PLNL(k)2

PL(k)PW + PL(k)PNL(k)− PLNL(k)2
. (2)

The term PL(k) := E[|zL
k,n|2] is given by

PL(k) = ω2
1GkPk. (3)

The term PLNL(k) := E[zL
k,n(zNL

k,n)∗] is given by

PLNL(k) = 2ω1ω3ψGkPk

K∑
k′=1

Gk′Pk′ . (4)

The term PNL(k) := E[|zNL
k,n|2] is given by

PNL(k) = 4ω2
3θ

(1)GkPk

K∑
k′,k′′=1

Gk′Gk′′Pk′Pk′′

+ 2ω2
3θ

(2)
K∑

k1,k2,k3=1
k=k1+k2−k3

Gk1Gk2Gk3Pk1Pk2Pk3

+ 4ω2
3φ

(1)(δ̃k,1Gk−1Pk−1 + δ̃k,KGk+1Pk+1)

×
K∑

k′,k′′=1

Gk′Gk′′Pk′Pk′′

+ 2ω2
3φ

(2)
K∑

k1,k2,k3=1
k=k1+k2−k3±1

Gk1Gk2Gk3Pk1Pk2Pk3 , (5)

where δ̃k,k′ = 1− δk,k′ with δk,k′ being the Kronecker index.
The coefficients θ(i), φ(i) and ψ are positive, and depend on
the Volterra kernel [3].

In next section, we explore different allocation strategies for
the transmit power vector P = [P1, · · · , PK ], where the data
rate for user k is evaluated with (1).

III. POWER ALLOCATION STRATEGIES FOR NONLINEAR
IMPAIRMENTS AWARE RECEIVERS

We henceforth focus on three different power allocation
problems. We propose a reformulation for each problem from
which an efficient optimization method can be exhibited.

For all investigated problems, the same power mask con-
straint is assumed on the transmit power for any user k, i.e.

0 ≤ Pk ≤ Pmax ∀k = 1, . . . ,K, (C1)

where Pmax represents the maximum transmit power.
We bring out some mathematical properties for PL(k),
PLNL(k), PNL(k) and the resulting capacity C(k). To this
aim, let us consider the three definitions below.

Definition 1: A monomial function takes the following form:

m(P1, . . . , PK) = cP b11 . . . P bKK

with c ∈ R+ and bk ∈ R.
Definition 2: A posynomial function takes the following

form:

p(P1, . . . , PK) =

N∑
n=1

mn(P1, . . . , PK)

where {mn}n=1,··· ,N are monomial functions.
Definition 3: A signomial function takes the following form:

s(P1, . . . , PK) = p(P1, . . . , PK)− q(P1, . . . , PK)

where p and q are posynomial functions.
Consequently, (3) is a monomial function and (4)-(5) are

posynomial with respect to P. We also notice that the denom-
inator of (2) is a signomial function with respect to P. We
remind that GP refers to an optimization problem in which the
objective function and inequality constraints are posynomial
and it can be solved using convex programing after a change
of variable [8].

A. Sum-rate maximization

We consider the system’s sum-rate maximization. The re-
lated problem writes as follows:

Problem 1:

max
P

K∑
k=1

log2 (1 + S(k)) s.t. (C1). (P1)

As the logarithmic function is monotonically increasing,
Problem 1 has the following equivalent formulation:

max
P

∏
k

(1 + S(k)) s.t. (C1).

We notice that the objective function is a ratio of a posynomial
over a signomial, leading to SP. As in [6], we introduce new



variables t = [t1, · · · , tK ], tk ≥ 1, in order to move the
signomial functions into the constraint set. The problem is
then written:

min
P,t

∏
k

(tk)
−1 s.t. (C1)

tk ≤ 1 + S(k), ∀k = 1, . . . ,K (C2)

A signomial constraint can always be transformed into a
ratio of posynomial [5], [6]. Indeed, as the numerator and the
denominator of S(k) are positive [3], (C2) can be rewritten as

tk (PNL(k) + PW)

Dk(P, t)
≤ 1, ∀k (C2)

where Dk(P, t) is a posynomial function defined as

Dk(P, t) = PNL(k) + tkP−1
L (k)P2

LNL(k)

+ 2PLNL(k) + PL(k) + PW. (6)

The resulting problem is still not in GP form, because
Dk(P, t) is not a monomial function. As a consequence,
we must deal with a nonconvex optimization problem. The
Successive Convex Approximation (SCA) method is a com-
mon way to converge at a stationary point in nonconvex
optimization problem, when the nonconvex constraints can be
upper-bounded by convex functions. To work well, the upper-
bound, realized at a given point, must be close enough to the
original function. The convexified problem is then solved to
provide a new point. If the SCA conditions are satisfied, this
procedure converges to a stationary point. The conditions on
the convex upper-bound f̃i at iteration i of the nonconvex
function f are: i) f(xi) = f̃i(xi), ii) f(x) ≤ f̃i(x),∀x, and
iii) ∇f(xi) = ∇f̃i(xi) where xi is the given point at iteration
i, resulting from the solution of the previous iteration.

We therefore need to establish a tight upper-bound of our
nonconvex constraint set, so that we can apply the SCA pro-
cedure. Following [6], [5], we use a monomial approximation
of the denominator (6) that satisfies the SCA conditions. At
iteration i (during which the approximation is done around the
point (Pi, ti)), we solve the following problem, which leads
to the next point (Pi+1, ti+1):

(P ′1) : min
P,t

∏
k

(tk)
−1 s.t. (C1)

tk (PNL(k) + PW)

D̃k,i(P, t)
≤ 1, ∀k (C3)

where D̃k,i(P, t) is a monomial approximation of (6) at the
point (Pi, ti). Problem P ′1 is GP with respect to (P, t), and
numerical algorithms can solve it efficiently [8]. In order the

constraint functions (C3) to satisfy the SCA conditions for the
original constraint functions (C2), we have

D̃k,i(P, t) =

K∏
k′,k′′=1

(
4ω2

3θ
(1)GkPkGk′Gk′′Pk′Pk′′

α
(1)
k′,k′′(k)

)α(1)

k′,k′′ (k)

×
K∏

k1,k2,k3=1
k=k1+k2−k3

(
2ω2

3θ
(2)Gk1Gk2Gk3Pk1Pk2Pk3

α
(2)
k1,k2,k3

(k)

)α(2)
k1,k2,k3

(k)

×
K∏

k′,k′′=1

(
4ω2

3φ
(1)δ̃k,1Gk−1Pk−1Gk′Gk′′Pk′Pk′′

α
(3)
k′,k′′(k)

)α(3)

k′,k′′ (k)

×
K∏

k′,k′′=1

(
4ω2

3φ
(1)δ̃k,KGk+1Pk+1Gk′Gk′′Pk′Pk′′

α
(4)
k′,k′′(k)

)α(4)

k′,k′′ (k)

×
K∏

k1,k2,k3=1
k=k1+k2−k3±1

(
2ω2

3φ
(2)Gk1Gk2Gk3Pk1Pk2Pk3

α
(5)
k1,k2,k3

)α(5)
k1,k2,k3

×
K∏

k′,k′′=1

(
4ω2

3ψ
2tkGkPkGk′Pk′Gk′′Pk′′

βk′,k′′(k)

)βk′,k′′ (k)

×
K∏
k′=1

(
4ω1ω3ψGkPkGk′Pk′

γk′(k)

)γk′ (k)

×
(
ω2

1GkPk
µ(k)

)µ(k)( PW

η(k)

)η(k)

(7)

with

α
(1)
k′,k′′(k) =

4ω2
3θ

(1)GkPk,iGk′Gk′′Pk′,iPk′′,i
Dk(Pi, ti)

,

α
(2)
k1,k2,k3

(k) =
2ω2

3θ
(2)Gk1Gk2Gk3Pk1,iPk2,iPk3,i

Dk(Pi, ti)
,

α
(3)
k′,k′′(k) =

4ω2
3φ

(1)δ̃k,1Gk−1Pk−1,iGk′Gk′′Pk′,iPk′′,i
Dk(Pi, ti)

,

α
(4)
k′,k′′(k) =

4ω2
3φ

(1)δ̃k,KGk+1Pk+1,iGk′Gk′′Pk′,iPk′′,i
Dk(Pi, ti)

,

α
(5)
k1,k2,k3

(k) =
2ω2

3φ
(2)Gk1Gk2Gk3Pk1,iPk2,iPk3,i

Dk(Pi, ti)
,

βk′(k) =
4ω2

3ψ
2tk,iGkPkGk′Pk′,iGk′′Pk′′,i

Dk(Pi, ti)
,

γk′(k) =
4ω1ω3ψGkPk,iGk′Pk′,i

Dk(Pi, ti)
,

µ(k) =
ω2

1GkPk,i
Dk(Pi, ti)

, and η(k) =
PW

Dk(Pi, ti)
.

After convergence of the SCA procedure [6], we obtain a
local optimum point for the considered problem. It is interest-
ing to note that the used approach is similar to SCA applied
to Difference of Convex (DC), by applying the logarithm
function to (C2), exponential change of variables, and linear
approximation of the second convex function in DC [9].



B. Maximization of the minimum per-user data rate

We study here the maximization of the minimum individual
data rate. The corresponding problem states as follows:

Problem 2:

max
P

min
k

log2 (1 + S(k)) s.t. (C1) (P2)

As the logarithmic function is monotonically increasing, Prob-
lem 2 has the following equivalent formulation:

max
P

min
k

P2
L(k) + 2PL(k)PLNL(k) + P2

LNL(k)

PL(k)PNL(k) + PL(k)PW − P2
LNL(k)

s.t. (C1)

where the objective function is a ratio of a posynomial over a
signomial. As previously, the main idea is to move this ratio
into the constraint set. By introducing the epigraph form as in
[10], the following problem is obtained

min
P,t

t−1

s.t. (C1)
P2

L(k) + 2PL(k)PLNL(k) + P2
LNL(k)

PL(k)PNL(k) + PL(k)PW − P2
LNL(k)

≥ t, ∀k

As in Problem 1, we transform the last constraints into a ratio
of posynomials given by

t (PNL(k) + PW)

(t+1)P−1
L (k)P2

LNL(k)+PL(k)+2PLNL(k)
≤1, ∀k.

(C4)
Finally, the management of the posynomial ratio is done

in the same way as before, namely using the SCA procedure
with a monomial approximation of the denominator.

C. Sum-power minimization

We now address the sum-power minimization under a per-
user target data rate constraint. The problem writes as follows:

Problem 3:

min
P

K∑
k=1

Pk s.t. (C1) (P3)

log2 (1 + S(k)) ≥ Rtk ∀k = 1, . . . ,K (C5)

where the target data rate for user k is Rtk. It should be noted
that if Rtk is too large, the problem may become intractable.
The feasibility conditions for a linear interference are given in
[11]. Constraint (C5) can be rewritten in the following way:

P2
L(k) + 2PL(k)PLNL(k) + P2

LNL(k)

PL(k)PNL(k) + PL(k)PW − P2
LNL(k)

≥2R
t
k−1 ∀k. (8)

As previously, we get a ratio of a posynomial over a signomial
in the constraint set, that can be rewritten as a ratio of
posynomials:

PNL(k) + PW

2R
t
kP−1

L (k)P2
LNL(k)+PL(k)+2PLNL(k)

≤ 1

2R
t
k−1

∀k. (9)

We handle the posynomial ratio in the same way as before,
i.e., by using the SCA with a monomial approximation of the
denominator. Note that for this problem, finding a feasible
initial point can be difficult. Nevertheless, we can use the
solution obtained by Problem 2 in the case where Rtk = Rk.

IV. NUMERICAL RESULTS

A single-beam multiband satellite with an uplink in the Ka-
band (27.5-29.5GHz) is considered. The subband assignment
has already been completed. The shaping filter is a square-root
raised cosine filter with a roll-off of 0.25. The HPA distortion
coefficients ω1 and ω3 are 1 and 0.05 respectively. Pmax =
50W is the maximum transmit power. As in [7], the channel
gains {Gk}k are computed using location, and we assume that
one third of users are subjected to rainy weather conditions.
Except otherwise stated, we have K = 6 users.

For comparison, we also implement power allocation al-
gorithms for nonlinearity-agnostic receiver proposed in [4],
where the capacity for user k used for the optimization is
C(k) = log2 (1 + PL(k)/(PNL(k) + PW)).

For each figure, we display at least the value of the
considered cost function for i) the naive allocation where the
users have the same transmit power P , which is then optimized
for this considered cost function, ii) the allocation proposed by
this paper, denoted by P ?, for this considered cost function.
Moreover, we plot the optimal value of the cost function for
the AWGN case, i.e., when we force ω3 = 0.

In Fig. 1, we display the sum-rate versus the number of users
for three different power allocation related to Problem 1. The
third allocation, called exhaustive, performs a K-D search in
the space [0, Pmax]K , with a fixed number of points in the
grid (namely, 10,000 points) in order to be scalable. We fix
the pre-amplifier gain, denoted by Gamp, at 10dB. This device
is installed before the HPA which thus can operate in either
linear or nonlinear regime, depending on how the pre-amplifier
is tuned. For small value of K, our proposed algorithm reaches
the performance of exhaustive search. But the naive and the
proposed algorithm are scalable unlike the exhaustive one.
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Fig. 1. Sum-capacity vs. number of users K with Gamp = 10dB.

In Fig. 2, we plot the sum-rate versus the pre-amplifier
gain for various configurations. In the first line of the legend,
the sum rate is given by C and the optimization problem
is Problem 1. In the second line, the sum rate is given by



C and the optimization problem is Problem 1 where C has
been replaced with C (see [4]). In the third line, the sum
rate is C but the optimization problem has been solved with
C expression. An important gain for C is achieved with the
proposed algorithm compared to the naive approach and the
power obtained in [4].
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Fig. 2. Sum-capacity vs. pre-amplifier gain Gamp for nonlinearity-aware
receiver optimization and nonlinearity-agnostic receiver optimization.

In Fig. 3, we display the minimum user rate versus the pre-
amplifier gain, obtained for both power allocations related to
Problem 2. We also plot the minimum user rate obtained with
C when optimization has been done accordingly. Once again
the proposed power allocation is for great interest.
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Fig. 3. Minimum user rate vs. pre-amplifier gain Gamp for nonlinearity-aware
receiver optimization and nonlinearity-agnostic receiver optimization.

In Fig. 4, we plot the sum-power versus the target rate
obtained for both power allocations related to Problem 3. We
fix the same target for all users, and we focus on three values
for the pre-amplifier gain. When the HPA operates in nonlinear

regime, we notice that the proposed power allocation allows
us to achieve a significantly higher target data rate.
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Fig. 4. Sum-power vs. target data rate Rt
k = Rt with Gamp ∈

{−10, 0,+10}dB (A, B and C respectively).

V. CONCLUSION

In the context of satellite communications, we proposed a
scalable algorithms for power allocation when HPA operates
in nonlinear regime. Signomial Programing was the relevant
tool to solve the problems. For future work, we plan to exhibit
closed-form expression for the capacity when multibeam satel-
lite is considered, in order to propose related power allocation.
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