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Abstract—In this article, we address the problem of adapting
power among users and their packet retransmissions in a down-
link OFDMA context for optimizing a weighted sum through-
put. Retransmission protocols are modeled using information-
theoretic considerations. We propose a Constrained Markov De-
cision Process approach to optimize the weighted sum throughput
subject to an average power constraint. Finally, we introduce
structured policies to reduce the complexity of solving the CMDP.

I. INTRODUCTION

In modern telecommunication standards such as High Speed
Downlink Packet Access (HSDPA) or 4G LTE (Long Term
Evolution), reliability of data transmission is ensured using
Hybrid Automatic Repeat reQuest (HARQ) protocols. HARQ
protocols are a combination of Forward Error Correction
(FEC) and Automatic Repeat reQuest (ARQ) protocol. In
recent telecommunication standards, feedback signals are used
to optimize HARQ parameters such as the rate or the power
of transmission.

Resource allocation for HARQ protocols has been well
investigated in a single user context. In [1], [2], allocating
power is shown to improve the throughput in presence of
partial Channel State Information (CSI) at the transmitter.
Other works consider outdated CSI, the transmitter has in-
formation on past fading only [3]–[8]. These contributions
exploit a Markov chain structure of the HARQ protocol to
provide either a linear or a dynamic programming approach
for solving optimization problems. In particular, [3] and [9]
exploit time correlation of the fading channel to propose
respectively a Partially Observable Markov Decision Process
POMDP) and a Markov Decision Process (MDP) for solving
resource allocation problems considering HARQ protocols.

Resource allocation has been considered in multiuser
OFDMA context in [10] [11]. However, in these cases, re-
source allocation does not vary across the different transmis-
sion rounds of HARQ protocols. Both [10] and [11] solved a
resource allocation problem using the Lagrangian approach.
This approach was possible since when HARQ properties
(power, bandwidth) do not vary across HARQ rounds, analytic
expressions for throughput or outage and their derives exist.
When HARQ characteristics are allowed to vary, expression of
throughput or outage rarely exist. Furthermore, when they ex-
ist, these expressions are generally difficult to exploit without
approximations [5] [4].

In this article, we optimize the spectral efficiency of a
downlink Orthogonal Frequency Division Multiple Access
(OFDMA) network by allocating power across users and
across the different HARQ rounds. We propose to model the
power allocation problem as a Constrained Markov Decision
Process (CMDP) as it is often done in the single user context.
This model could be thought as the multiuser extension of
the work proposed in [6]. However, the Linear Programming
approach proposed in [6] cannot directly be applied in our
context since the dimension of the CMDP increases because
of the multiuser context. Hence we propose an alternative
approach that replaces solving a large LP by solving small
LP and a separable concave program.

The paper is organized as follows: in Section II, the system
model is presented. In Section III, we build a Markov chain
to model the state of the different HARQ protocols. Section
IV, is dedicated to the optimization of the network spectral
efficiency under average power constraint. Simulation results
are presented in Section V. Conclusions are drawn in Section
VI.

II. NETWORK AND SYSTEM MODEL

A. Channel Model

Consider a slotted downlink OFDMA network where K
users share N orthogonal subcarriers. At the BaseStation (BS),
a scheduler has assigned Nk subcarriers to user k. We will
assume that N =

∑
kNk. The set of subcarriers allocated

to user k is denoted by Nk and the fraction of bandwidth
occupied by user k is denoted βk = Nk

N .
The BS has only outdated Channel State Information (CSI)

and statistical CSI. We consider that fading coefficients asso-
ciated with the different subcarriers of user k are independent
and identically distributed, hence the the BS allocates its power
equally among subcarriers of user k:

Pk,n,t = Pk,t ∀n ∈ Nk. (1)

The input-output relationship between the BS and user k on
subcarrier n, for all time u in slot t is

Yk,n,t(u) =
√
Pk,tHk,n,tXk,n,t(u) + Zk,n,t(u), (2)

where Yk,n,t is the received complex signal, Xk,n,t is the
transmitted signal distributed as CN(0, 1), Pk,t is the power
allocated to user k by the BS, Hk,n,t is a complex channel
gain, and the noise Zk,n,t is complex valued Gaussian random



variable CN(0, 1). The noise on subcarrier n is independent
from the noise on other tones. Hk,n,t is independent from
channel gains on other subcarriers or other slots and Hk,n,t re-
mains constant over the slot. Furthermore, for every user k we
consider a Rayleigh fading channel. The channel coefficients
under coherent detection γk,n,t = |Hk,n,t|2 are independent
and identically distributed with distribution

fγk,n,t
(γ) =

e−γ/γ̄k

γ̄k
n ∈ Nk, t ∈ N (3)

where γ̄k is the average Signal to Noise Ratio (SNR) of user
k.

B. IR-HARQ protocol
The Incremental Redundancy HARQ uses jointly ARQ and

FEC to ensure reliability of data transmission. The BS handles
K IR-HARQ protocols in parallel (one for each user). The IR-
HARQ protocol of user k has at most Lk transmission attempts
to limit delay.

We present now IR-HARQ protocol. Before sending a data
packet to user k, the BS encodes this packet using a code of
rate Rk

Lk
and divide this codeword into Lk frames of constant

length. Each time user k fails decoding the information packet,
it sends a Negative ACKnowledgement to the BS and the BS
transmits a new frame. Let `k,t be a random variable account-
ing for the number of frames that has been unsuccessfully sent
up to slot t for the transmission of the current code word. If
`k,t ∈ {0, . . . , Lk − 1} and user k still fails to decode, then
`k,t+1 = `k,t + 1 and a new frame is transmitted by BS. On
the contrary, if user k successfully decodes the information
packet, then `k,t+1 = 0 and BS starts the transmission of a
new information packet at slot t + 1. If `k,t = Lk, then the
BS has no more frames to transmit, an outage is declared and
the BS starts the transmission of a new information packet.

The random variable `k,t can be used in a stochastic
modeling of IR-HARQ protocols, as it is proposed in the next
section.

III. MARKOV CHAIN MODEL OF THE NETWORK

If outdated CSIT is available (channel at time t − 1 is
known or related extra mutual information and we are sending
the frame t), the IR-HARQ of every user can be represented
as a Markov chain with two variables: i) `k,t, and ii) the
accumulated mutual information. We will then use this model
to propose a Constrained Markov Decision Processes (CMDP).

If no outdated CSIT is available, then only the first variable
is required for describing the IR-HARQ protocols. The con-
sidered problem would be a Partially Observable CMDP, but
this is out of the scope of this paper.

A. State space
It is now admitted that for large codewords, IR-HARQ pro-

tocols behave as mutual information accumulators (see [12]).
The extra mutual information provided by the transmission at
slot t is

∆(γk,t, Pk,t) =
1

Nk

∑
n∈Nk

log2

(
1 + Pk,tγk,n,t

)

where γk,t = {γk,n,t}n∈Nk
.

The IR-HARQ protocol for user k at slot t is represented
by the couple sk,t = (`k,t, Ik,t), where Ik,t is the ACcumu-
lated Mutual Information (ACMI). The transition rule for Ik,t
depends on `k,t. Indeed, given `k,t, a packet is always sent at
time t. Its nature depends on the value of `k,t. If `k,t 6= 0, Lk,
the packet corresponds to redundancy. If `k,t = 0 or `k,t = Lk,
this is a new data packet. Therefore, we have

Ik,t+1 = 11,...,L−1 (`k,t) Ik,t + ∆(γk,t, Pk,t). (4)

Equivalently, the transition rule for `k,t+1 depends on `k,t
and Ik,t. Since, successful decoding at time t + 1 happens if
and only if Ik,t+1 > Rk the transition function for `k,t+1 is

`k,t+1 = 1Ik,t+1>Rk
(Ik,t+1)

(
1`k,t<Lk

(`k,t) `k,t + 1
)
. (5)

The vector st = (s1,t, ..., sK,t) represents the state of the
global network at the BS at time t. The set of all possible
states is called the state space.

B. Action space and policies

Let Pk be the set of power admissible for user k. The BS
allocates at time t the power Pk,t ∈ Pk to every subcarrier
in Nk. The complete power allocation at time t is then given
by Pt = (P1,t, P2,t, . . . , PK,t). The set of admissible power
vector is P = P1 × P2 × · · · × PK .

At time t, the BS knows st but does not know γk,t (outdated
CSI). We consider that the power allocation π is defined by
the conditional probability π(dPt|st). Such allocation policies
are called randomized stationary policies (the conditional
probability does not change with t). A special case using the
Dirac measure, are power allocations of the form Pt = πD(st)
which can also be written as π(dPt|st) = δπD(st)(dPt). These
policies are named deterministic policies.

C. Transition kernel for st

Combining equations (4) and (5) for all k, we can express
st+1 as

st+1 = f(st,Pt,γt) (6)

where γt =
(
γ1,t, . . . ,γK,t

)
. From (6), it can be proved that

for any measurable subset S

P(st+1 ∈ S|st,Pt, . . . , s0,P0) = P(st+1 ∈ S|st,Pt). (7)

For every randomized stationary policy π, {st} forms a
Markov chain where the probability that st+1 ∈ S from st
is

Pπ(st+1 ∈ S|st) =

∫
P

P(st+1 ∈ S|st,Pt)π(dPt|st) (8)

D. Optimization problem

Defining Rk as the equivalent code rate for the transmission
on one slot for user k, we introduce the number bits correctly
decoded by user k per seconds and per Hertz as

rk(sk,t) =

®
Rk = bk

BkTslot
if `k,t = 0

0 otherwise
(9)



where bk is the number of information bits in a codeword, Tslot
is the duration of a slot, and Bk is the bandwidth occupied by
user k. The throughput of user k is then

ηk(π) = lim inf
T→∞

Eπ

[
1

T

T−1∑
t=0

rk(sk,t)

]
. (10)

where Eπ [·] is the expectation considering that the policy π
is used.

The average power allocated to user k is defined in a similar
way

P̄k(π) = lim sup
T→∞

Eπ

[
1

T

T−1∑
t=0

Pk,t

]
. (11)

Let {ωk} be a set of priorities satisfying
∑K
k=1 ωk = 1,

and η(π) =
∑K
k=1 ωkηk(π) be a weighted throughput network

utility, we seek a randomized stationary policy π? that solves

π∗ = arg max
π

η(π) (12)

s.t.
K∑
k=1

βkP̄k(π) ≤ Pmax

where βk = Nk

N is the fraction of bandwidth occupied by user
k.

Problem (12) belongs to the class of Constrained Markov
Decision Process (CMDP) (see [13]). Usually, CMDPs are
proposed over a set of policies that includes non-stationary
policies (policies that depend on time). However, based on
results of [13] and [6] we can prove that for problem (12)
randomized stationary policies define a dominating class of
policies. This means that for every policy φ (stationary or not,
randomized or not), if φ is admissible for problem (12), there
exists a randomized policy π admissible for (12) such that
η(π) ≥ η(φ). The proof of this point is omitted due to lack
of space.

Usually in telecommunications, problem (12) would have
been solved within the set of deterministic policies (as in [9]
for unconstrained MDP). However proving the existence of an
optimal deterministic policy for a general CMDP is difficult.
Therefore, we consider this optimization problem within the
set of randomized stationary policies.

IV. SOLVING PROBLEM (12)

Solving (12) is equivalent to an infinite dimensional Linear
Programming (LP) [14]. A solution of this infinite LP can
be approched numerically by discretizing the state and action
spaces as done in [6]. In our case, the complexity (size
of the discrete action and state spaces) is an issue. Indeed,
consider that every HARQ protocol has at most L transmission
rounds and consider a grid on Ik of size NI , the discrete
state space has a size of NK

I (L + 1)K . Similarly for the
action space, suppose that every set Pk contains NP power
levels, the complete set P has NK

P elements. Following [6],
we should solve a finite LP with NK

I (L+ 1)KNK
P variables

and NK
I (L + 1)K + 2 constraints. This size of LP becomes

rapidly prohibitive. In the next section we propose structured

policies called factorized policies that are optimal and that can
be used to approximate the solution of the initial infinite LP
with a lower complexity.

A. Optimality of factorized policies

A factorized policy is a randomized stationary policy that
has the following structure:

π̃(dP|s) =
K∏
k=1

π̃(dPk|sk). (13)

A factorized policy is such that the BS allocates power to user
k considering the state of user k only. Let π̃? be an optimal
policy for problem (12) restricted to factorized policies, we
now show that

η(π?) = η(π̃?). (14)

Since factorized policies are randomized stationary policies
we have η(π?) ≥ η(π̃?). To show that η(π?) ≤ η(π̃?), we
propose to build π̃? from π?.

First, note that problem (12) can be rewritten as

max
Ψ1,...ΨK ,π∈Π

K∑
k=1

ωkηk(π) (15)

s.t.
K∑
k=1

βkΨk ≤ Pmax

P̄k(π) ≤ Ψk, ∀k ∈ [1,K]

Ψk ≥ 0, ∀k ∈ [1,K]

Indeed, if π? is optimal for problem (12),
(P̄1(π?), . . . , P̄k(π?), π?) is optimal for problem (15)
and the converse is also true.

Let πΨk
be a single user policy for user k that solves

πΨk
= arg max

π
ηk(π) (16)

s.t. P̄k(π) ≤ Ψk

π̃? is built as follows

π̃?(dP|s) =
K∏
k=1

πP̄k(π?)(dPk|sk) (17)

where πP̄k(π?) is a single user policy found by solving (16)
with power constraint Ψk = P̄k(π?).

By construction π̃? is admissible for problem (12) and
verifies that

∑K
k=1 ωkηk(π̃?) ≥∑K

k=1 ωkηk(π?). This proves
that the policy π̃? is optimal for problem (12).

B. Solving (12) on factorized policies

When restricted to factorized policies similar to those of
equation (17), problem (15) becomes

max
Ψ1,...ΨK

K∑
k=1

ωkηk(Ψk) (18)

s.t.
K∑
k=1

βkΨk ≤ Pmax

Ψk ≥ 0, ∀k ∈ [1,K]



where ηk(Ψk) is a shorthand notation for ηk(πΨk
).

Analytic expression for ηk(Ψk) rarely exists, hence finding
a solution with a Lagrangian approach is not possible. How-
ever, we prove in Appendix A that for every k, ηk(Ψk) is
increasing and concave. Furthermore, problem (18) is sepa-
rable since its objective and constraint functions are sums of
K functions, each function depending only on an individual
variable Ψk (see [15]). Concave and separable problems can
be approximated by linear programs [15].

To obtain an approximation of the optimal solution for
problem (18), every function ηk(Ψk) is approximated by
the piece-wise linear function defined by the points of the
form (Ψk,j , η(Ψk,j)) where 0 = Ψk,1 < Ψk,2 < · · · <
Ψk,Jk = Pmax are given grid points. When replacing every
function ηk(·) with its piecewise linear approximation, (18) is
equivalent to the following linear programming:

max
λi,j

K∑
k=1

ωk

Jk∑
j=1

λk,jηk(Ψk,j) (19)

s.t.
K∑
k=1

βk

Jk∑
j=1

λk,jΨk,j ≤ Pmax

Jk∑
j=1

λk,j = 1, ∀k ∈ [1,K]

λk,j ≥ 0, ∀k ∈ [1,K] , ∀j ∈ [1, Jk] .

Let (λ?1,λ
?
2, . . . ,λ

?
K) with λ?k = (λ?k,1, . . . , λ

?
k,Jk

) be the
solution of problem (19), an approximate solution for (12)
given by

π̂(dP|s) =
K∏
k=1

πΨ̂k
(dPk|sk) (20)

where πΨ̂k
is a policy that solves problem (16) with power

constraint Ψ̂k =
∑Jk
j=1 λ

?
k,jΨk,j . Because of the first con-

straint in problem (19), we have that
∑
k βkΨ̂k ≤ Pmax hence

π̂ is an admissible policy for problem (15). Furthermore, using
concavity of functions ηk(·) and the Jensen inequality, we have

η(π̂) =
K∑
k=1

ωkηk(Ψ̂k) ≥
K∑
k=1

ωk

Jk∑
j=1

λ?k,jηk(Ψk,j).

Note that solving (19) requires solving
∑
k Jk single user

LPs with NI(L+1)NP variables and NI(L+1)+2 constraints
for computing all ηk(Ψk,j) and solving one LP with

∑
k Jk

variables and K+1 constraints. This complexity is much lower
than solving a unique LP with NK

I (L+1)KNK
P variables and

NK
I (L+ 1)K + 2 constraints.

V. SIMULATION RESULTS

The network is composed of K = 8 users sharing N = 64
subcarriers equally (Nk = 8 and βk = 1

8 ). Each user expe-
riences a Rayleigh channel with average channel gains γ̄ ∈
{0.9, 0.9, 0.8, 0.6, 0.4, 0.4, 0.3, 0.1}. Every user uses the same
IR-HARQ protocol with Lk = L = 7 transmission attempts
R = 9 bits/s/Hz. We consider NI = 16 quantification levels

for the ACMI corresponding to a 4-bits feedback channel. For
every user, Pk is NP = 16 levels in [−10dBW, 20dBW ]. The
average throughput is considered in problem (15) by taking
ωk = 1

8 .
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Figure 1. Comparison of average throughputs K = 8

In Figure 1, we consider 4 different scenarios. In Scenario
1, we compute the optimal power allocation for problem as
proposed in Section IV with Jk = 64. In Scenario 2, problem
(18) is solved by replacing ηk(Ψk) with the ergodic capacity:

ηk(Ψk) = E
î
log2

Ä
1 + Ψk|Hk,n,t|2

äó
.

In Scenario 3, power is allocated according to the solution
found in Scenario 2 whereas the HARQ protocol described
at the beginning of this section is used. In Scenario 4, a
statistical CSI based water-filling is considered. This water-
filling solution is based on average SNRs γ̄k and is computed
by replacing ηk(Ψk) with

ηk(Ψk) = log2 (1 + Ψkγ̄k) .

This statistical CSI waterfilling is used to allocate power when
the HARQ protocol presented at the beginning of this section
is used by all users.

In Figure 1, we observe that the power allocation of Sce-
nario 1 leads to a substantially better throughput than those
of Scenarios 3 and 4. Furthermore, the average throughput of
the power allocation of Scenario 1 is closed to the one of
Scenario 2, which is a consequence of a result shown in [12]:
asymptotically in L, the throughput of a single user tends to
the ergodic capacity. Scenario 3 and 4 seem to give similar
results, which is a consistent result with [16].

In Figure 2 we study the influence of the parameter Jk on
the average throughput. We observe that values of Jk as close
as 64 are sufficient for solving problem (19).

VI. CONCLUSION

In this article we consider a power allocation in a multi-user
downlink OFDMA network. The BS exploits outdated CSI to
allocate power for every user while taking into account their
HARQ protocol. The proposed approach to solve the power
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Figure 2. Sum spectral efficiency versus SNR for Jk ∈
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allocation problem is firstly to model the whole problem as a
Constrained Markov Decision Process and secondly to propose
a policy structure that leads to a tractable way of solving
the original problem while keeping the complexity reasonable
(even for moderate number of users in the network).

APPENDIX A
PROPERTIES OF ηk

In this appendix, we show that the function ηk(Ψ) is increas-
ing and concave. We recall that for every Ψ, ηk(Ψ) = ηk(πΨ)
where πΨ is a randomized stationary policy solving (16).

A. Proof that ηk is increasing

The proof that ηk(Ψ) is increasing is trivial. Indeed, let
Ψ1 ≤ Ψ2. Since πΨ1 is an admissible policy for problem (16)
with constraint Ψ2, we have that ηk(Ψ1) ≤ ηk(Ψ2).

B. Proof that ηk is concave

To prove that ηk(Ψ) is concave, we show that for every
Ψ1 < Ψ2 and α ∈ [0, 1]

ηk(αΨ1 + (1− α)Ψ2) ≥ αηk(Ψ1) + (1− α)ηk(Ψ2). (21)

To show (21) it is sufficient to provide a randomized
stationary policy π verifying

ηk(π) = αηk(Ψ1) + (1− α)ηk(Ψ2) (22)
P̄k(π) = αΨ1 + (1− α)Ψ2. (23)

Indeed, since π verifies equation (23), it is admissible for
problem (16) with constraint αΨ1 + (1− α)Ψ2 and

ηk(αΨ1 + (1− α)Ψ2) ≥ ηk(π) ≥ αηk(Ψ1) + (1− α)ηk(Ψ2)

A policy (that is not stationary) φ verifying equations (22)
and (23) can be built as follows: at each slot T , the BS
computes

P
(T )
k =

1

T

T−1∑
t=0

Pk,t.

If P (T )
k ≥ αΨ1 + (1− α)Ψ2 BS uses πΨ1

else BS uses πΨ2
.

In [17], such policy is called a "steering policy" and it is
shown that equations (22) and (23) are verified when T →∞.
The policy φ is not a randomized stationary policy. However,
adapting results of [14] to problem (16) we can show that for
every policy ϕ (stationary or not), there exists a randomized
stationary policy π such that ηk(π) ≥ ηk(ϕ) and P̄k(π) ≤
P̄k(ϕ). Applying this result to φ leads to the existence of a
randomized stationary policy π such that

ηk(π) ≥ ηk(φ) and P̄k(π) ≤ P̄k(φ).

Since P̄k(φ) and ηk(φ) are given by equations (22) and (23),
we have that π is also admissible for problem (16), and that

ηk(αΨ1 + (1− α)Ψ2) ≥ ηk(π) ≥ αηk(Ψ1) + (1− α)ηk(Ψ2)
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