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ABSTRACT

In the framework of cognitive radio, electro-magnetic environment
sensing is a crucial task. In order to distinguish various systems re-
lying on OFDM modulations from each others (such as WiMAX,
WiFi, DVB-T), we need to be able to estimate precisely the inter-
carrier spacing used in the transmitted signal. When the ratio be-
tween cyclic prefix and OFDM symbol duration is small or when
the multipath propagation channel is almost as large as the cyclic
prefix, standard approaches based on detection of cyclic prefix via
an autocorrelation fall down. Therefore we propose a new algo-
rithm to estimate the parameters of an OFDM modulated signal
(especially the inter-carrier spacing) relying on the fourth order
statistics of the received signal. We theoretically prove its ro-
bustness to multipath channels, time offset and frequency offset.
Then its performance is analysed through numerical simulations
and compared to standard approach which confirms the accuracy
of the new algorithm.

1. INTRODUCTION

The concept of cognitive radio introduced by [1] consists in devel-
oping flexible terminal which adapts its transmission parameters
to its environment. A cognitive terminal has therefore sensing ca-
pabilities to characterize its spectral environment and to recognize
the standard and/or the modulation parameters of others cognitive
terminal/access points.

This paper focuses on such a recognition issue and we as-
sume that the cognitive terminal expects to recognize systems
based on OFDM modulation. This assumption is not restrictive
since OFDM modulation is currently the most popular modulation
scheme (e.g. WiFi, WiMAX, DAB, DVB-T, 3GPP/LTE). Note that
an interesting property for standard recognition is that the above-
mentioned systems differ from one another in the value of the
inter-carrier spacing (equal to 15.625kHz, 10.94kHz, 312.5kHz,
1kHz 1.116kHz, 15kHz for Fixed WiMAX, Mobile WiMAX,
WiFi, DAB, DVBT, 3GPP/LTE respectively). It is hence sufficient
to estimate the inter-carrier spacing of an OFDM modulated sig-
nal to identify the used standard. Nevertheless, to have a complete
estimator of the modulation parameters of an OFDM signal, the
blind estimation issue of the guard interval duration has also to be
addressed. Obviously, these results also apply to military contexts.

The estimation of the OFDM signal design parameters has al-
ready given rise to several contributions [2, 3, 4, 5, 6]. All these

This work has been supported by CEA fellowship and french ANR
project entitled DEMAIN

methods are developed in the context of cyclic-prefixed OFDM
(CP-OFDM) and are based on the second-order statistics. Indeed,
they exploit the periodicity induced by the presence of the cyclic-
prefix in the following way : an estimation of the useful time of the
OFDM symbol (which is equal to the inverse of the inter-carrier
spacing) is first performed by evaluating the autocorrelation func-
tion of the receive signal at any lag. Since cyclic prefix occurs,
a peak can be exhibited at the lag equal to the useful time of the
OFDM symbol. This peak actually appears periodically with the
period equal to the the whole OFDM symbol duration. This then
enables to estimate the whole OFDM symbol time duration and
additionally the cyclic prefix duration.

This autocorrelation based method (introduced in [2, 3, 4, 5, 6])
of course does not work well or even fails when i) the cyclic prefix
length is small compared to the whole OFDM symbol length, or
ii) the multipath propagation channel length is almost equal to the
cyclic prefix length with strong inter-symbol interference, or iii)
other kinds of OFDM such as zero-padded OFDM (ZP-OFDM)
are considered. Obviously, under one out of these assumptions,
the periodicity of the received signal provided by the cyclic prefix
is significantly reduced and even often destroyed.

In this paper, we adopt another approach to estimate OFDM sig-
nal design parameters. We introduce a flexible OFDM receiver and
a cost function (based on the kurtosis of the receiver output sym-
bols) exhibiting a global extrema when the receiver’s parameters
match the modulation parameters of the received signal. Though
more complex, this method has several advantages over the auto-
correlation based method: it is robust to the length of the cyclic
prefix, to the multipath propagation channel and to the kind of
OFDM. It can also be used for time synchronization and for fre-
quency offset estimation and compensation.

This paper is organized as follows: in Section 2 we describe the
architecture of the OFDM flexible receiver. In Section 3 we intro-
duce the cost function (based on the kurtosis) and we prove that
its optimization leads to an accurate estimation of the OFDM pa-
rameters such as the inter-carrier spacing, the length of the prefix.
In Section 4, we show that our method is robust to timing offset
and carrier frequency offset. Section 5 is devoted to numerical
illustrations and comparison with autocorrelation based method.

2. OFDM RECEIVER WITH FLEXIBLE PARAMETERS

We assume the cyclic-prefix OFDM modulated signal. The trans-
mit OFDM signal sa(t) is considered to get a inter-carrier spacing
equal to 1/NTc where N is the number of subcarriers and where
1/Tc is the information symbol rate in absence of guard interval.



The duration of the useful part of the OFDM symbol is then NTc.
As usual, in order to vanish the inter-symbol interference, we add a
cyclic prefix of length DTc. Then the whole OFDM symbol dura-
tion is Ts = (N + D)Tc. Moreover the transmit continuous-time
signal sa(t) takes the following form

sa(t) =
1√
N

∑
k∈Z

N−1∑
n=0

ak,ne
−2iπ

n(t−DTc−kTs)
NTc ga(t− kTs) (1)

where ak,n are the transmitted data symbols assumed to be in-
dependent and identically distributed (i.i.d) with zero-mean and
variance Es, and where ga(t) the shaping function equals to 1 if
0 ≤ t < Ts and 0 otherwise. Finally we consider an observation
window of duration T .

The transmit signal passes through a multipath channel com-
posed by L paths. The amplitude and the delay of the lth path
are denoted by λl and τl respectively. Then, in noiseless case, the
continuous-time received signal takes the following form

ya(t) =

(
L∑

l=1

λlsa(t − τl)

)
e2iπ∆ft (2)

where ∆f is the frequency offset due to the oscillator drift or the
Doppler effect.

The discrete-time receive signal, obtained by sampling ya(t) at
rate 1/Te, thus writes:

y(n) =

(
L∑

l=1

λlsa(nTe − τl)

)
e2iπδfn

where δf = ∆fTe is the normalized carrier frequency offset, and
Te satisfies the Shannon condition in regard to the bandwidth of
received signal. Moreover we assume that the OFDM prefix size
has correctly been chosen, i.e. maxl τl − minl τl < DTc. Due to
the Shannon sampling theorem, one can notice that we are able to
obtain the value of ya(t) for any t with the sole knowledge of the
samples y(n) by means of interpolators.

For sake of simplicity, we first assume that minl τl = 0 (no
time offset) and δf = 0 (no carrier frequency offset). Extended
results to the general case (i.e., in presence of time offset and car-
rier frequency offset) will be provided in Section 4.

We remind that the OFDM receiver does not have the knowl-
edge of Tc, N , D, channel parameters, and transmit data. In order
to be carried out, the OFDM receiver firstly requires the knowl-
edge of NTc and DTc. Once NTc and DTc estimated, usual
blind channel estimation techniques can be considered in order to
retrieve the transmit data. In this paper, we only focus on the esti-
mation issue of NTc and DTc. Their estimated values are denoted
by N̂Tc and D̂Tc respectively. Thanks to the value of N̂Tc and
D̂Tc, the OFDM receiver will operate as follows:

1. Consider the following sequence for all k and for all p ∈
{0, P̂ − 1}

rk,p = ya(pTe + D̂Tc + k(N̂Tc + D̂Tc)) (3)

where P̂ is the integer given by �N̂Tc/Te� and where �.�
stands for the integer part. Note that if N̂Tc = NTc and
D̂Tc = DTc, then rk,p corresponds to the pth element of the
kth OFDM block once the cyclic prefix has been removed.

2. Recover the transmitted symbols by applying the normalized
Fourier transform:

∀n ∈ {0, · · · , N ′ − 1}, âk,n =
1√
P̂

P̂−1∑
p=0

rk,pe
2iπp nTe

N̂Tc

(4)
As explained below, the value of N ′ has a negligible influ-
ence on the estimation performance as soon as N ′ ≤ N . In
practice, N ′ is chosen to be equal to 64 which is the usual
minimal value for N whatever the encountered system.

If the estimation step works well (N̂Tc = NTc and D̂Tc =
DTc), the decoded symbol âk,n (at block k and at subcarrier n) is
expected to be proportional to the transmitted symbol ak,n, i.e.,

âk,n = µnak,n (5)

where µn is an unknown constant depending on the channel.

3. PARAMETERS ESTIMATION ALGORITHM

The underlying idea of our alogrithm is that Eq. (5) may hold for
every value of k and v if and only if N̂Tc = NTc and D̂Tc =

DTc. If N̂Tc �= NTc or D̂Tc �= DTc, an extra term associated
with inter-carrier and/or inter-symbol interference should appear
in Eq. (5). As done in blind equalization [7, 8], the presence or
the absence of interference can be evaluated via the the so-called
kurtosis, namely the normalized fourth order cumulant of decoded
symbols âk,n defined as

κ(âk,n) =
cum(âk,n, â∗

k,n, âk,n, â∗
k,n)(

E[|âk,n|2]
)2 (6)

where the superscript (.)∗ stands for the complex conjugate.
Our objective is hence to prove that the kurtosis of each decoded

symbols defined as a function of N̂Tc and D̂Tc reaches its global
minimum value if and only if N̂Tc = NTc and D̂Tc = DTc.
Thanks to this theoretical result, we will be able to build a practical
estimation algorithm of NTc and DTc based on the minimization
of the kurtosis.

The main results of the paper lay in the following theorems.
Before going further, notice that the transmitted symbols ak,n are
i.i.d. symbols, thus their kurtosis κ (ak,v) are identical (indepen-
dent of k and n) and are simply denoted by κ (a) in the sequel. We
remind that the kurtosis is negative for standard linear modulations
(PAM, PSK, QAM).

Theorem 1 Consider the decoded symbols at subcarrier ν and
OFDM symbol k. We have the following result

Given (k, ν) , κ (âk,ν) ≥ κ (a)

and the equality is achieved if and only if

• ∀p ∈ {0, P̂ − 1}, the samples rk,p from which are extracted
âk,ν belong to the same transmitted OFDM symbol, and

• N̂Tc = NTc.

If the equality holds, we also have that âk,ν = µvak′,ν with µv a
constant depending on the channel response at subcarrier ν. Note
that âk,ν corresponds to the symbol transmitted at the carrier ν,
but not necessarily at the kth OFDM symbol.



The proof of Theorem 1 is drawn in Appendix. In practice, the
result of theorem 1 can not be used since it concerns only one
decoded symbol : its kurtosis can not be estimated. The practical
result of this paper is based on the following theorem:

Theorem 2 For any decoded symbols, i.e. for any subcarrier ν
and any OFDM symbol k, the following inequality holds

∀(k, ν) , κ(âk,ν) ≥ κ(a).

Equality holds if and only if N̂Tc = NTc and D̂Tc = DTc.

In the sequel, a sketch of proof of Theorem 2 is given: as proved in
Theorem 1, for each decoded symbol âk,ν , its kurtosis reaches its
global minimum value if and only if N̂Tc = NTc and rk,p for p ∈
{0, P̂ − 1} belong to the same transmit OFDM symbol. To prove
Theorem 2, it only remains to show D̂Tc = DTc. If D̂Tc �= DTc,
it is always possible to find a k∗ such as the set of points rk∗,p for
p ∈ {0, P̂ − 1} belong to two OFDM symbols. Then, thanks to
Theorem 1, we have κ (âk∗,ν) > κ (a) and equality if and only if
D̂Tc = DTc.

The question now is : how estimating the kurtosis ? Theorem
2 concerns the kurtosis of the decoded sequence of symbols âk,n.
This kurtosis can be estimated in a very classical way. For in-
stance, if PSK modulation (with strictly more than 2 state) or QAM
modulation are considered, we get cum(âk,n, â∗

k,n, âk,n, â∗
k,n) =

E[|âk,ν |4] − 2(E[|ak,ν |2])2. Then κ(âk,ν) is estimated by κ̂ de-
fined as follows

κ̂ =

∑M′−1
k=0

∑N′−1
ν=0 |âk,ν |4 − 2

(∑M′−1
k=0

∑N′−1
ν=0 |âk,ν |2

)2

(∑M′−1
k=0

∑N′−1
ν=0 |âk,ν |2

)2

(7)
with M ′ = �T/(N̂Tc + D̂Tc)�.

Thanks to theorem 2, one can ensure that the minimization of
the kurtosis leads the identifiability of NTc and DTc. In practice
(i.e., in noisy context and when only a finite number of observa-
tions is available), we are only able to provide an estimate of NTc

and DTc by minimizing the estimate of the kurtosis.

4. ROBUSTNESS TO VARIOUS IMPAIRMENTS

4.1. Impact of time offset

We consider that minl τl > 0. Due to this time offset, the blind
OFDM receiver should ensure that its first sample r0,0 depends
of the transmitted signal. For doing that, a preliminar step has to
be added to the receiver. This step consists in dropping the first
�τ̂1/Te� samples (if the delays of paths are listed in ascending
order). Theorem 2 in which parameter τ1 has also to be estimated
can easily be extended.

4.2. Impact of carrier frequency offset

If the received signal undergoes a carrier frequency offset (δf �=
0), another extra step has to be added to the receiver to estimate
and compensate it. The received samples given by (3) should then
be modified into

rk,p = ya(pTe + D̂Tc + k(N̂Tc + D̂Tc))e
−2iπδ̂ft/Te (8)

where δ̂f is an estimate of δf . We can prove, with similar tech-
niques, that the proposed cost function based on Eq. (8) instead of
Eq. (3) is minimal for the true value of NTc, DTc, and δf .

5. SIMULATIONS RESULTS

Numerical simulations have been computed to analyse the perfor-
mance of the proposed algorithm. No frequency offset has been
considered, and we set minl τl = 0. Except otherwise stated, the
number of carriers (N ) is fixed to 256, the ratio between the cyclic
prefix length over the useful OFDM symbol time (CP := D/N )
is equal to 1/4. The duration of the useful part of OFDM symbol
(NTc) is 32µs. The number of available OFDM symbols is 5. The
sampling rate Te is chosen as Te = (4/5)Tc.

The multipath propagation channel is built as follows : each
channel realization is composed by 10 paths for which each path
delay is uniformally distributed between [0, τmax] (unless other-
wise stated, τmax = CP/2) and each path magnitude is Gaussian
distributed with same variance. Each curve is averaged over 1000
Monte-Carlo runs.

Let M = �T/Te�. Given a SNR, the noise variance is defined
as follows

σ2 =
Tc

Te

1

M

M−1∑
m=0

∣∣∣∣∣
L∑

l=1

λlsa(mTe − τl)

∣∣∣∣∣
2

10−SNR/10

As we treat an estimation problem, the performance measure
may be the Mean Square Error on NTc and DTc. Nevertheless,
our practical problem related to radio cognitive is to identify the
right system (WiMAX, WiFi, DAB, DVB-T or 3GPP/LTE, etc) by
comparing the N̂Tc to its theoretical value for each considered sys-
tem. As seen in introduction, the smallest gap between two inter-
carrier spacing values is little larger than 1%. Therefore, for our
practical system identification issue, we only need an estimation
of 1/NTc up to 1%. Consequently rather than considering MSE
as performance measure, we consider that the inter-carrier spac-
ing estimation is correct if 1/N̂Tc is close to 1/NTc up to 1%.
In practice, we have calculated our OFDM flexible receiver for
each N̂Tc belonging to the grid of step 0.3µs starting at 5µs and
ending at 50µs. This leads to a gap equal to 1% between two adja-
cent tested inter-carrier spacing compared to the true value 32µs.
For each considered value of N̂Tc, D̂Tc takes values in the set
N̂Tc ×{1/2, 1/4, 1/8, 1/16, 1/32}. Finally the performance has
been evaluated as the number of correct detection, i.e. the number
of realizations for which the N̂Tc and D̂Tc are equal to NTc and
DTc up to 0.3µs. Due to lack of space, we do not plot the perfor-
mance on DTc for certain figures. Actually we have observed that
detections on NTc or DTc always yield similar performance.

In Figure 1, we display the correct detection rate for the pro-
posed algorithm (denoted by HoS for High Order Statistics) and
the autocorrelation based method (denoted by SoS for Second
Order Statistics) versus SNR when various cyclic prefix OFDM
lengths have been employed (CP = {1/4, 1/8, /16, 1/32}). We
remark that if CP is equal to 1/4, both algorithms offer the same
performance. In contrast, as soon as CP is strictly less than 1/4,
our algorithm still works well whereas the autocorrelation based
method fails down. Notice that standard CP varies from 1/32
(DVB-T in France) to 1/4 (WiFi). Consequently, our algorithm is
more appropriate for the cognitive radio than the autocorrelation
method.

In Figure 2, we plot the correct detection rate versus SNR for
various channel lengths (τmax = {CP, CP/2, CP/4, 0}) with
CP = 1/4. We oberve that our algorithm outperforms the auto-
correlation based algorithm as soon as the channel length is more
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Fig. 1. Detection rate versus SNR for various CP

than CP/2. Our algorithm is more robust to realistic propagation
environment when the channel lies on at least half the cyclic prefix.
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Fig. 2. Detection rate versus SNR for various τmax

In Figure 3, we analyse the robustness of both algorithms to the
number of available OFDM symbols for SNR = 10dB. Although
high-order statistics are more difficult to estimate than second-
order statistics, we remark that the proposed algorithm is able to
detect accurately the OFDM parameters with less OFDM symbols
than the autocorrelation based method. Actually this can be easily
explained as follows : due to Eq. (7), kurtosis can be well evalu-
ated since M ′N ′ samples are available to estimate it.

In Figure 4, we inspect the robustness of both algorithms to
carrier offset. We see that the detection rate of our method is still
quite good despite the presence of carrier offset.

In Figure 5, we plot the detection rate of both algorithms ver-
sus SNR when each subcarrier of each OFDM symbol may be
modulated by different modulations (QPSK, 8-PSK, 16-QAM, 64-
QAM). These four modulations are equilikely and have the same
variance. Due to this non i.i.d. assumption on ak,n, the assump-
tions on which Theorem 1 rely are not satisfied anymore. Nev-
ertheless, we show that, in practice, our algorithm still works
well and even better than the autocorrelation based algorithm. As
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the cognitive radio context applies to wireless communications,
it is standard to satisfy i.i.d. assumption (except for few null
subcarriers) because neither spectral power allocation (inside the
same OFDM block) nor adaptive modulation (for adjacent OFDM
blocks) is carried out due to the mis-knowledge of the channel at
the transmitter.

6. CONCLUSION

In this paper, we proposed a new flexible OFDM receiver able to
detect the OFDM parameters. The receiver exploited the fourth
order statistics of the receive signal. Its performance has been
evaluated by means of numerical simulations. We showed that
the new method outperforms the autocorrelation based method in
some useful contexts.

A. APPENDIX - PROOF OF THEOREM 1

Without loss of generality, we only focus on the first estimated
OFDM block. According to Eqs. (2) and (3), the first estimated
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Fig. 5. Detection rate versus SNR in adaptive modulation context

OFDM block is composed by

r0,p =
L∑

l=1

λlsa(pTe + D̂Tc − τl), ∀p ∈ {0, P̂ − 1}

Thanks to Eqs. (4) and (1), the decoded symbols â0,v writes
then, ∀v ∈ {0, N ′}

â0,v =
1√
P̂N

L∑
l=1

â
(l)
0,v (9)

with

â
(l)
0,v =

∑
k∈Z

N−1∑
n=0

ã
(l)
k,n

P̂−1∑
p=0

e
−2iπpTe( n

NTc
− v

N̂Tc
)

× λlga(pTe + D̂Tc − τl − kTs) (10)

and
ã
(l)
k,n = ak,ne

−2iπ n
NTc

(D̂Tc−DTc−τl−kTs)
. (11)

To prove Theorem 1, we will first show that, for each path l, we
get

κ(â
(l)
0,v) ≥ κ

(
ã
(l)
k,v

)
, ∀k (12)

and the equality holds for one particular k = k0 if and only if
the conditions of Theorem 1 are satisfied, and in particular if the
decoded symbol â

(l)
0,v is proportional to one ã

(l)
k0,ν . Due to Eq.

(11), it is equivalent to be proportional to ã
(l)
k0,ν and to the transmit

symbol ak0,v . Note that k0 does not depend on l.
As the summation over p is finite in Eq. (10) and as the function

ga(t) has a finite support, the summation over k in Eq. (10) is also
finite. Let Ωl be the following set

Ωl = {k | ∃p ∈ {0, P̂ − 1}s.t.ga(pTe + D̂Tc − τl − kTs) = 1}
Let us consider that card(Ωl) > 1. Under such an assumption,

it is clear that the decoded symbol â
(l)
0,v depends at least from 1

transmit symbols of each transmit OFDM symbol. So â
(l)
0,v is a

linear combination of several symbols which implies that the in-
equality (12) is a strict inequality. Consequently, in order to obtain

equality in Eq. (12), we need card(Ωl) = 1. Let us now consider
that card(Ωl) = 1. Let k0 be the unique element of Ωl. Under
this assumption, we have that r0,p for any p ∈ {0, P̂ − 1} belongs
to the same kth

0 transmit OFDM symbol. Then â
(l)
0,v simplifies as

follows

â
(l)
0,v = λl

N−1∑
n=0

ã
(l)
k0,neiθn

sin
(
π P̂Te

NTc

(
n − v NTc

N̂Tc

))
sin
(
π Te

NTc

(
n − v NTc

N̂Tc

))
where θn still depends on n.

Once again, as â
(l)
0,v is a linear combination of ã

(l)
k0,n, Eq. (12)

holds. Equality occurs when the weights of the linear combination
vanish except one. These weights are zero if and only if it exists
n0 such that

sin

(
π P̂ Te

NTc

(
n−v NTc

N̂Tc

))
sin

(
π Te

NTc

(
n−v NTc

N̂Tc

)) �= 0 if n = n0

sin

(
π P̂ Te

NTc

(
n−v NTc

N̂Tc

))
sin

(
π Te

NTc

(
n−v NTc

N̂Tc

)) = 0 otherwise

As P̂ = �N̂Tc/Te�, we have that P̂ Te/NTc is close to
N̂Tc/NTc if N is large enough. One can see that the last property
is satisfied if and only if N̂Tc = NTc and n0 = v, i.e., if â

(l)
0,v is

proportional to ã
(l)
k0,ν and so to ak0,v . Due to Eq. (9), this implies

that â0,v is proportional to ak0,v . �
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