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Abstract—Many wireless public safety and military networks
are ad hoc networks, for which clustering is a well-known strategy
to improve scalability. In addition these networks are structured
according to a hierarchical organization, i.e. nodes belong to
specific operational groups which implies that the traffic is
mainly intra-group. So far, clustering algorithms are built using
metrics such as node identifiers, node mobility, etc., and thus
do not take into account the network hierarchical structure.
The goal of this paper is therefore twofold: i) specify a way
to benchmark clustering solutions from a system point of view,
and ii) thanks to this benchmark determine the importance of
using operational group information to build clusters. Therefore
we define a novel network cost function based on additive metrics
(e.g. delay) incorporating the traffic structure and the inter-
clusters communications costs. Thanks to this function we show
that the clustering solutions providing the best QoS to the end
user depend on the group structure.

Keywords—Ad hoc network, Cluster, Network cost function,
Operational group, End-to-end delay.

I. INTRODUCTION

An ad hoc network is an infrastructure-less multi-hop wire-
less network where each node acts as a router, thus relaying
packets on behalf of other nodes. Those networks are used
when usual infrastructure based networks are not available or
not suitable, such as in public safety or military networks. Such
networks do not rely on the same MAC/NET solutions as usual
communication technologies such as WiFi or 3GPP. In this
context, specific communication solutions must be designed,
especially concerning radio resource allocation. A preliminary
step before allocating radio resources to nodes is to choose
how the network will be organized. A first strategy is the flat
network approach where radio resources are allocated thanks
to peer to peer signalling exchanges between neighbor nodes.
A second approach, considered here, consists in building sets
of nodes called clusters in order to introduce hierarchy in the
network and thus improve its scalability [1].

Numerous solutions for building clusters in mobile ad hoc
networks have been defined [2] [3] [4], using parameters
such as node identifiers, node degrees1, node mobility, node
remaining battery energy, etc. A salient feature of public safety
and military networks is that they are structured according
to a hierarchical organization: each node belongs to specific

1In a graph the degree of a node is the number of its 1-hop neighbors.

operational groups such as a squad, a section, etc., which
implies that most traffic is intra-group. This is the context that
is tackled in this paper. The authors of [5] have proposed a
clustering algorithm using operational group (called group of
interest) information but their work takes into account neither
the dependence of traffic flows to operational groups nor the
effect of radio links quality. Additionally, in [5] there is no
explicit result about the benefit of building clusters using group
information compared to not using it.

More generally, clustering solutions are compared using
metrics such as number of clusters, number of nodes per
cluster, etc. The limitation of this approach is that it does
not provide any hint about the QoS that will be provided by
the network to the user applications. Thus, there is a need to
define a metric that could be used for that purpose.

The novelty of our work is the definition of a cost function
J (0) used to measure and compare the performance of clus-
tering solutions in clustered ad hoc networks. More precisely
this function measures the quality of a network partition using
end-to-end path calculations with additive metrics (e.g. delay),
and takes into account the fact that inter-cluster and intra-
cluster communications have different costs. As a byproduct,
this function is very useful for evaluating the benefit expected
through the use of operational group information for obtaining
the clustering solution.

The paper is organized as follows. The network model is
described in Section II. The novel network cost function J (0) is
introduced in Section III. Application to group based systems
and associated numerical results are detailed in Section IV.
Section V is devoted to concluding remarks.

To improve readability, in this document operational group
is contracted into group.

II. NETWORK MODEL

Without loss of generality only connected2 undirected
graphs are considered in the remaining of this work. We
consider a graph G defined by its set of nodes V and its set
of edges E . The number of nodes of G is N := |V| and the
number of edges of G is M := |E|. The set of all partitions
p of G is called P . In our model the parts of a partition are

2In a connected graph there exists a path between any pair of vertices.



identified to the clusters. The weight of edge (i, j), ∀(i, j) ∈ E
is noted wi,j . The weight wi,j is a dimensionless quantity
associated with the quality of link (i, j). For example it can be
a number of transmissions required to achieve a target packet
error rate.

The set of groups O is defined as {O1, . . . ,ONg
} with Ng

the number of groups. Let us note ngk the size of group Ok.
Each node belongs to only one group, i.e. ∀k 6= `, Ok

⋂
O` =

∅, thus
∑Ng

k=1 n
g
k = N , and

⋃Ng

k=1Ok = V . A partition p of
G contains Nc clusters noted Ck with k ∈ {1, . . . , Nc}. The
size of cluster Ck is noted nck. Each node belongs to only one
cluster, i.e. ∀k 6= `, Ck

⋂
C` = ∅, thus

∑Nc

k=1 n
c
k = N , and⋃Nc

k=1 Ck = V . The diameter3 of cluster Ck is noted dk.

III. NOVEL NETWORK COST FUNCTION

A. Definition

To assess the quality of a partition p of G we define a func-
tion J (0) which represents the average cost of communications
between all pairs of nodes in the network. It is defined as:

J (0)(p) :=
1

N

∑
(i,j)∈V2

πi,j · J (0)
i,j (p), (1)

where the factor 1/N embodies the fact that all nodes i have
equal probability to transmit, J (0)

i,j (p) is the transmission cost
between node i and node j, and πi,j is the probability that node
i chooses node j as a destination. By convention πi,i = 0, and∑
j∈V πi,j = 1, ∀i ∈ V .
Finding the best clustering of the network will be equivalent

to finding the set of best partitions P ′ defined as:

P ′ := arg min
p∈P

J (0)(p). (2)

Let us now explain how J
(0)
i,j (p) is elaborated. First, we

assume that the routing process selects the shortest paths
to establish communications in the network. The shortest
path between node i and node j is defined here as the set
Si,j =

(
(i, i1), (i1, i2), · · · , (iL−1, iL), (iL, j)

)
for which the

cumulated weights along this path, hi,j , defined as:

hi,j :=
∑

(i′,j′)∈Si,j

wi′,j′ , (3)

is minimum. Note that Si,j is independent of the partition p.
Fig. 1 provides an example of shortest path S1,4 between

source node 1 and destination node 4.

Fig. 1. Example of multi-hop shortest path.

3The diameter of a graph is the length of its the longest shortest path.

In clustered networks, inter-cluster communications can be
implemented using a MAC different from the one used for
intra-cluster communications. This is justified by the fact that
within a cluster a node called cluster-head (CH) can manage
the radio resource management4 (RRM) on behalf of the whole
cluster, which allows the CH to optimize it locally. Conversely,
inter-cluster RRM is done in a more distributed way (e.g.
among the CHs of neighbor clusters) and is thus more difficult
to optimize. Therefore, we reasonably assume that the costs
of intra-cluster and inter-cluster communications are different.
Consequently a path Si,j is split into the two subsets Ŝi,j(p)
of intra-cluster links and S̃i,j(p) of inter-cluster links, leading
respectively to the cumulated weights ĥi,j and h̃i,j :

ĥi,j(p) :=
∑

(i′,j′)∈Ŝi,j(p)

wi′,j′ , (4)

h̃i,j(p) :=
∑

(i′,j′)∈S̃i,j(p)

wi′,j′ . (5)

Following Eqs. (3)-(4)-(5), we have:

hi,j = ĥi,j(p) + h̃i,j(p). (6)

For example in Fig. 2, ĥ1,4 = w1,14 +w14,3 +w5,10 +w2,4

and h̃1,14 = w3,5 + w10,2.

Fig. 2. Multi-hop shortest path with cluster boundaries.

In order to account for the difference between intra and
inter-cluster communications, we define the cost from node i
to node j as the weighted sum of ĥi,j(p) and h̃i,j(p):

J
(0)
i,j (p) := γ̂ · ĥi,j(p) + γ̃ · h̃i,j(p), (7)

where γ̂ > 0 is the cost associated with the intra-cluster
communications, and γ̃ ≥ γ̂ the cost associated with the
inter-cluster communications. Note that Eqs. (4)-(5)-(7) clearly
show that J (0) is applicable to additive metrics.

Noting γ := γ̃/γ̂ and summing Eq. (7) over all pairs of
nodes we get:

J (0)(p) =
γ̂

N

∑
(i,j)∈V2

πi,j · (ĥi,j(p) + γ · h̃i,j(p)). (8)

One can remark that the factor γ̂/N in Eq. (8) plays no role
in the optimization problem of Eq. (2).

4i.e. the allocation of transmit power, modulation and coding schemes, sub-
channels, scheduling, admission control, etc.



Because hi,j is independent of the way the network is
clustered, it is useful to exhibit it in Eq. (8) leading to:

J (0)(p) = A+ (γ − 1) ·B(p), (9)

with

A :=
γ̂

N

∑
(i,j)∈V2

πi,j · hi,j ,

B(p) :=
γ̂

N

∑
(i,j)∈V2

πi,j · h̃i,j(p).

So far, the expressions are a function of probabilities πi,j
which makes the model very general and applicable to several
contexts. Particular values for πi,j will be considered in
Section IV in order to take into account the hierarchical
organization of some ad hoc networks.

B. Examples for practical J (0)

In this subsection, through two examples we discuss how to
use the generic cost function J (0) with practical QoS metrics.

Firstly, J (0) can be interpreted as an end-to-end delay.
In that context the link weights wi,j (see Eq. (3)) can be
interpreted as the average number of transmissions required
on node i to achieve a successful reception on node j (using
an ARQ protocol) and γ can be viewed as the multiplicative
coefficient of the delay induced by the difference of efficiency
between inter-cluster and intra-cluster RRM. The value of J (0)

i,j

from Eq. (7) should be interpreted as the duration needed
for node i to send successfully to node j one unit of traffic.
Let us take the example of a TDMA based MAC in which
the intra-cluster delay to send data γ̂ is equal to one 100
ms MAC frame while the inter-cluster delay γ̃ is twice this
value. Assuming a uniform traffic between all nodes, each
destination node j receives an equal portion πi,j = 1/14 from
node i. Considering the shortest path between nodes 1 and 4
of Fig. 2 and applying Eq. (7) with wi,j = 1 ∀(i, j) ∈ E , we
get J (0)

1,4 = 800 ms. The value of J (0) in Eq. (9) is the average
duration for a node to send successfully one unit of traffic to
all nodes. Using the same example of Fig. 1 and Fig. 2 we
get J (0) = 376 ms.

Secondly, J (0) can be used to measure a network capacity
consumption, which we want to minimize in order to maximize
the throughput forwarded in the network. Using the same
amount of radio resources, the higher the SNR of the link,
the higher the amount of information that can be transmitted.
Therefore to transmit the same amount of data, the use of
good links leads to the consumption of less network radio
resources. From that perspective the link weights wi,j can be
interpreted as the inverse of the spectral efficiency achievable
on link (i, j), related to the best modulation and coding scheme
(MCS) usable on the link. To render wi,j dimensionless, it
must be divided by the spectral efficiency of a reference
MCS. Compared to intra-cluster RRM that can be centralized
on CH nodes, inter-cluster RRM is a distributed process.
Consequently the channel state indications (CSI) used by inter-
cluster have less accuracy than CSI used by intra-cluster RRM.

Therefore, intra-cluster RRM can use higher efficiency MCS
than inter-cluster RRM, thus justifying γ > 1.

Some other examples can be found but are not evoked here
due to space limitation.

C. Theoretical results and additional constraints

Thanks to Eq. (9) it is easy to prove the following theorem.
Theorem 1: The solutions of the problem in Eq. (2) are:
1) If γ = 1, P ′ = P , and ∀p ∈ P , J (0)(p) = A.
2) If γ > 1, P ′ = {V}.
The first part of theorem 1 means that when γ = 1, the way

clusters are built is not important. This case is not interesting in
practice since there will always be a difference of cost between
intra and inter-cluster communications. When γ > 1, the best
and trivial solution is to build one cluster corresponding to
the whole network. This solution is not acceptable because
of the constraints related to the size of the clusters. If the
cluster is too large the RRM is not simple anymore and the
underlying assumption about a simple intra-cluster RRM does
not hold anymore. Consequently, to ensure the validity of this
assumption we add constraints on the clusters and define Pc
the subset of valid partitions as follows:

Pc = {p ∈ P s.t. p satisfies C1, C2, C3},

with

C1 : Ck is connected ∀k ∈ {1, 2, . . . , Nc},
C2 : nmin ≤ nck ≤ nmax ∀k ∈ {1, 2, . . . , Nc},
C3 : dk ≤ dmax ∀k ∈ {1, 2, . . . , Nc}.

First C1 ensures that each cluster is a connected subgraph of
G, allowing intra-cluster communication between all cluster
members. Then C2 forces the number of cluster members to
be neither too small nor too large, which makes sense from a
RRM point of view. Finally C3 prevents nodes from the same
cluster from being too far from the CH (in charge of RRM).
The values of the parameters nmin, nmax and dmax depend
on the RRM process.

Now, our goal is to find the set of partitions P∗ solving the
following problem:

P∗ = arg min
p∈Pc

J (0)(p). (10)

Again, thanks to Eq. (9), we have the following theorem:
Theorem 2: When γ > 1, P∗ is independent of γ.

IV. APPLICATION OF J (0) TO GROUP-BASED SYSTEMS

A. Definition

We now consider that operational groups exist and that
the traffic is structured according to these groups. To capture
this fact, we consider that the probability that one node
communicates with a node of the same group is equal to
α ∈ [0, 1] and thus the probability that one node communicates
with a node in another group is equal to 1− α. Since a node
of group Ok can communicate to ngk − 1 nodes in the same
group, the probability to reach one of these nodes is equal to



α/(ngk − 1). The number of nodes of the other groups with
which this node can communicate is equal to N − ngk with
a corresponding probability of (1 − α)/(N − ngk). Thus, we
have:

πi,j :=


α

ngk − 1
if j ∈ Ok,

1− α
N − ngk

otherwise,
(11)

with (i, j) ∈ V2 and i ∈ Ok.

B. Assessment methodology

A first result we want to show is that groups have an impact
on the clustering solution. To do this we find the set Pu of
optimal partitions when the traffic pattern does not depend on
the groups, then we determine if these partitions are still good
when the traffic pattern becomes dependent on the groups. A
traffic independent of the groups is equivalent to πi,j = 1

N−1 ,
∀(i, j) ∈ V2, i 6= j, hence:

Pu := arg min
p∈Pc

J (0)(p)

∣∣∣∣
πi,j=

1
N−1 ,∀(i,j)∈V2,i6=j

.

To determine if the partitions p ∈ Pu are still good when the
traffic pattern becomes dependent on the groups according to
Eq. (11), we calculate the following metric:

δu(α) :=
J
(0)
u − J (0)

∗

J̄
(0)
∗ − J (0)

∗
, (12)

with J
(0)
u the highest value of J (0) for all the partitions in

Pu when J (0) is calculated with πi,j defined as in Eq. (11),
J̄
(0)
∗ := maxp∈Pc J (0)(p), and J

(0)
∗ := minp∈Pc J (0)(p). Let

us call J (0) interval the interval [J
(0)
∗ , J̄

(0)
∗ ]. The term δu(α)

measures the performance loss obtained by not taking into
account the dependence of traffic patterns to groups during
cluster building. It takes its values in [0, 1] when J

(0)
u goes

through the J (0) interval: 0 is associated to the best partitions
and 1 to the worst partitions.

Assuming that taking the group structure into account when
building clusters is of interest, new algorithms have to be
designed. In order to show that it is not an easy task (which
is out of the scope of the paper), we propose hereafter a naive
approach. The simplest way to follow would be to force all the
members of a group to belong to the same cluster. However,
due to the constraints it is not always possible. Therefore we
propose the following procedure: i) for each group, find the
node with the highest degree in the subgraph of G induced
by the members of this group and build a cluster including
this node and its 1-hop neighbors; ii) for each nodes not yet
member of any cluster, attach it to an existing cluster while
making sure that C3 is satisfied, and build a new 1-node cluster
when C3 is not satisfied. The obtained partition is denoted by
pg . Using the same idea as Eq. (12), the performance of the
aforementioned naive algorithm is studied through the metric:

δg(α) :=
J (0)(pg)− J (0)

∗

J̄
(0)
∗ − J (0)

∗
.

Note that this procedure may lead to clusters with a number
of nodes less than nmin, thus not satisfying C2.

C. Simulation setup

The random networks used to calculate the values of δu(α)
and δg(α) are generated using the following procedure. First
Ng nodes are placed randomly in a d×d square area following
a uniform distribution. Each of those nodes is the first node
of each group Ok, ∀k ∈ {1, 2, . . . , Ng}, called Vk. Then all
members of each group Ok are placed relatively to Vk using
polar coordinates (ρ, θ). The radius ρ is a random variable
following the probability density function (p.d.f.):

fρ(d) =


2

d1+d2
if 0 < d ≤ d1,

2(d2−d)
(d1+d2)(d2−d1) if d1 < d ≤ d2,
0 otherwise.

The angle θ is a random variable following a uniform p.d.f.
in [−π,+π). When θ leads to a node outside of the simulated
area, another value is calculated. In this paper the following
parameter values have been used: N = 30, d1 = 4000, d2 =
8000, Ng = 6, r = 5000 and d = 20000. The number of edges
of the 100 random networks used during our simulations lies in
[146, 222] with an average value of 183 edges. Their network
diameter lies in [5, 12] and is equal to 7.19 on average.

Thanks to Theorem 2 the quality of a partition does not
depend on γ, so the only considered value is γ = 2. For
the sake of simplicity, each wi,j has been set constant and
equal to 1, ∀(i, j) ∈ E . Finally, the constraint parameters
are: nmin = 4, nmax = 8 and dmax = 2. All the curves
of section IV-D have been obtained by averaging over 100
networks. Note that all valid partitions have been found using
a brute force approach. Among the 100 random networks, the
minimum and maximum number of valid partitions were 672
and 49 647 650.

D. Results

The cumulated distribution functions (c.d.f.) of δu(α) are
plotted in Fig. 3.

Fig. 3. c.d.f. of δu(α).



Fig. 4. End-to-end intra-group delay histogram.

The first information provided by these curves is that the
partitions p ∈ Pu that are the best when the traffic pattern does
not depend on the groups, do not remain the best partitions
when the traffic pattern depends on the group: Pu 6= P∗. For
example when α = 0.2, only 40% of the partitions p ∈ Pu are
also in P∗ and this proportion decreases to about 0% when
α = 0.8 or 0.9. An additional result is that the partitions p ∈
Pu are not only no longer the best but also become quite bad
when the value of α is high enough. For example when α =
0.7, only 50% of these partitions have a J (0) value in the first
20% of the J (0) interval. Fig. 3 shows that when traffic flows
are concentrated within groups, the group membership should
be taken into account during cluster building. This result has
been achieved thanks to the introduction of the benchmark
network cost function J (0).

Fig. 4 illustrates the benefit of operational clustering, using
the same example of the TDMA based MAC as in sec-
tion III-B. This figure plots, for one particular network, the
histogram of the average delay between nodes of the same
group, calculated over all groups. Thanks to J (0), for each
value of α the best partitions p ∈ P∗ have been found and
the associated delays have been determined. Fig. 4 shows that
when α increases the average delay decreases. Additionally,
the lower α is, the higher is the number of pairs of nodes in
the same group with a minimum delay of 100 ms. This is a
practical example of the benefit provided to the end-user when
the group structure is taken into account.

Another result achieved thanks to J (0) is that the naive
clustering strategy consisting in trying to build one cluster
per group is not the best way to build clusters. Out of the 100
networks clustered using this heuristic, only 56 satisfied the
cluster size constraints, the remaining ones included clusters
with only 1 or 2 nodes. Fig. 5 plots the c.d.f. of δg(α) for these
56 networks. This figure shows that the need for a clustering
solution more clever than the naive one increases when α
decreases. For example when α = 0.9, about 80% of these
partitions have a J (0) value in the first 10% of the J (0) interval.
These 80% are reduced to about 55% when α = 0.7, and are

Fig. 5. c.d.f. of δg(α).

close to 0% when α < 0.5.

V. CONCLUSION

The cost function J (0) which can be used as a benchmark to
compare different clustering solutions is a first result provided
in this document. This function measures the quality of a
network partition using end-to-end path calculations with
additive metrics. It takes into account the fact that inter-cluster
and intra-cluster communications have different costs and is
flexible enough to cover both cases when the traffic distribution
depends on the groups or not. A second result that we achieved
is that making use of group information for clustering leads
to better network performance. This result was illustrated with
the practical application of J (0) to intra-group delays. Thanks
to our new cost function we have also shown that using a
simple naive approach consisting of building one cluster per
group does not lead to the best network performance. This
justifies the need for more advanced clustering solutions using
group information. Further work will investigate how J (0) can
be used to design distributed clustering algorithms.
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