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Abstract— One of the main task to be done by a cognitive the autocorrelation at lag equal to the inverse of interearr
receiver is to sense its spectral environment in order to dis gpacing is significantly reduced.
tinguish surrounding systems from each others. Actually met In this paper, we propose to estimate the intercarrier agaci

systems (such as WiMAX, WiFi, DVBT) are based on OFDM Ivi Maxi Likelihood orinciole. A S
modulations but differ from their intercarrier spacing used in on relying on Maximum Likelihood principle. As no training

OFDM modulation. Therefore carrying out accurate intercarrier ~ S€quence may be available, we concentrate on Non-Data
spacing estimator is a crucial step in cognitive radio. In tfis paper, Aided estimation technique. Then one can define a number

we propose a new efficient algorithm to estimate the intercarer  of Maximum Likelihood estimators [12]. Here we focus on
spacing based on maximum-likelihood principle. Its perfomance e 54 calledDeterministicMaximum Likelihood (DML) and
is analysed through numerical simulations and compared to G ianMaxi Likelihood (GML). Th h i
standard existing approaches. aussianMaximum Likelihoo ( ). Though more com
plex, these Maximum-Likelihood based methods are robust
|. INTRODUCTION to small length cyclic prefix and multipath environment in
The underlying idea for cognitive radio concept firstly aitr opposition to autocorrelation based method. It can also be
duced by [1] consists in carrying out terminal which is alde tsuitable for time synchronization.
modify its transmission parameters and even its used systerThis paper is organized as follows: in Section II, we describ
with respect to its own electro-magnetic environment. €herthe receive signal model thanks to matrix framework. Sectio
fore, first of all, a terminal based on cognitive radio coricejil is dedicated to the introduction of the cost functionagbd
needs to characterize its spectral environment and to nio®g on the Maximum Likelihood). We also introduce simplified
the standard used by others cognitive terminals/accesdspocriteria. For sake of simplicity, novel algorithms are deped
blindly. Most popular standards (e.g. WiFi [2], WIMAX [3], in Gaussian channel context. Section 1V is devoted to numer-
DAB [4], DVB-T [5], 3GPP/LTE [6]) are now based on OFDMi ical simulations. We especially inspect the robustnessunf o
modulations. However the value of their intercarrier spgci proposed algorithms to the presence of small cyclic prefixes
enables to distinguish them form each others. Indeed tee intor of multipath channels, or of timing offset. Comparisomhwi
carrier spacing is equal t05.625kHz, 10.94kHz, 312.5kHz, autocorrelation based method is also drawn.
1kHz 1.116kHz, 15kHz for Fixed WiIMAX, Mobile WIMAX,
WiFi, DAB, DVBT, 3GPP/LTE respectively. Consequently Il. SIGNAL MODEL

estimating the inter-carrier spacing of an OFDM modulated |n additive white Gaussian channel, we consider that the

signal is equivalent to identifying the used standard. Plaiser continuous-time OFDM receive signal takes the following
thus addresses blind estimation issue of intercarriefispdor form

OFDM signal. Obviously, the proposed estimation algorithm

K—1N-1
also applies to military contexts. P —2in MUSLIeMT) o 4m
The estimation of the intercarrier spacing for OFDM signazfa( ) VN = r;) (Whon€ gal )
has already given rise to several contributions [7], [8], [®0], ba(t) 1)

[11]. All these methods are developed in the context of cycli

prefixed OFDM and are based on the second-order statistishiere N is the number of subcarriers and whergT, is
Actually the useful time of the OFDM symbol (which isthe information symbol rate in absence of guard intervak Th
equal to the inverse of the intercarrier spacing) is esehély intercarrier spacing is then equal 19NT... The length of the
detecting the main peak of the autocorrelation functiorhef t cyclic prefix is set toDT,. The duration of a whole OFDM
received signal. Indeed, as cyclic prefix occurs, a peakrsccgymbol isT, = (N+D)T,. The sequencguy, » } . » represents
at the lag equal to the useful time of the OFDM symbol. Whethe transmit unknown data symbols at subcartiend OFDM
the ratio between cyclic prefix and OFDM symbol duration iblock k. The shaping filtew, (¢) is assumed to be equal 1o
small or when the multipath propagation channel is almost #is0 < ¢ < T and 0 otherwise. The complex-valued noise
large as the cyclic prefix, the autocorrelation based ambroa,(t) is assumed to be circularly-symmetric zero-mean white
does not work well or even falls down. Obviously, undeGaussian noise. Its variance is equalNg per real dimension.
one out of these two assumptions, the peak magnitude Fihally we consider the transmission &f OFDM symbols for



an observation window of duratidfy. We haveK = [Ty /T5] I1l. M AXIMUM -LIKELIHOOD BASED ALGORITHMS

where [X'] stands for the smallest integer not less tian In blind estimation context, we recall that transmit data-

The. continuous-time received s.igngi(t) is s.ampled. at roduced in Eqg. (3) are unknown at the receiver. Consequentl
Samp'"?g frequencyt /7. where T is _the sampling p(_erlod. carrying out the true Maximum-Likelihood based estimatbr o
The ratiog = TC/Te _denotes the sampling factor. The dlscretqv’ DT,, and NT, is complex since the likelihood of given
time receive signal is denoted hym) = y,(mT.). In order to a, N, DT., andNT, has to be averaged over the vecioro

keep the information carrying by the continuous-time signg, ercome the problem, it is proposed to consider the vector

the sampling frequency must be larger than the OFDM signal,q narameters of interest too which leads to the so-called

bandwidth, i.e., greater thatyT.. The number of available peaterministic Maximum Likelihood or to consider vectoas

samples is _then equal o/ = |To/T. | where|X | stands for Gaussian (even th is not Gaussian vector) which leads to the
the largest integer not greater than We get so-called Gaussian Maximum-Likelihood [12].

K—-1N-1
y(m) = o5 Z Z ak,ne—sznmNT—TceQwrn(k-ﬁ-l)f,;c A. Determ~|n|st|c Maximum-Likelihood approach (DML)
N =0 n=0 _ Let p(y[@,a) be the likelihood ofy given the trial values
X go(mT. — k(N + D)T.) + b(m) (2) 6 = [N,DT.,NT, and a. The deterministic Maximum-

_ Likelihood is defined as follows [12]
with b(m) = b, (mT).

In practice, the terminal just has the knowledge of [6,4] = arg H~1a~xp(y|é, a)
{y(m)}M=3, M, Ty, T. and wishes to estimate the values of 6.4

N, NT., DT.. For selecting the used standard, the cognitive In practice, the signal bandwidth (given by7.) can be
terminal firstly needs the knowledge of the intercarrieccspg,  assumed to be roughly known. This enables us to choose a
given by the inverse ofVT.. Notice that, in Eq. (2)/ and reasonnable value fdr/T, and also to filter the receive signal

akn are unknown as well. by an ideal low-pass filter of unit-magnitude and bandwidth
We stack all the receive samples in an unique vegter 1/7.. This induces that the discrete-time noise has the follow-
[y(0),- -+ ,y(M—1)]T where(.)T stands for the transposition.ing autocorrelation function
Since Eq. (2) is linear with respect to transmit data, it #&xis
a matrixHg of size M x KN depending onV, DT, et NT, ry(n) = E[b(m + n)b(m)] = 2No sinc (L”) )
such that ¢ q
y=Hpa+b (3) The discrete-time noise is not white. In order to simplify
the DML estimator, the discrete-time noise will be however
where assumed to be white. Obviously, in simulation part, the eois
e« 6 =[N,DT., NT,] process color will not be neglected.
e ap = [aro, - ,arn—_1)T Of size N x 1 By assuming the noise vectér uncorrelated and by con-
ea=Jaj, - ,a)_ 4|7 of size KN x 1 sidering KN < M, it is well known that the DML estimator
e b=[b0), - ,b(M —1)]" of size M x 1 can take the following form [12]
Before going further, we will obtain a closed-form expressi S AT N . o
for Hg. As g,(t) is only non-null on the interval0, 7], we [N, DTe, NT.] = arg Nf)r%mﬁ Jo(N, DTe, NTo) - (4)
have with

0<mT,—k(N+ D)T. < (N+ D)T. o )
Jo(N, DT., NT.) = H Idy — H, (HYH,) ' HY H
which implies that n( ) ( v~ Ha (Hy Hp) 9) Y
T and where(.)! stands for the conjugate-transposition.
"¢ 1 <k<m—" ; ;
m(N DT, <k< m(N T DT, If Ty/Ts is an integer, one can prove that

k, denoted byk,,. Hg is then composed by null components o
except the next ones

C

Consequently, for a givem, it exists only an unique value of HYH, — g (1 n DTc> Ido - ®)
6 — KN-

If To/Ts is not an integer, the previous equation does not
Ho(m, kN +n) = 1 o~ 2imnmgf 2imn (kmn +1) §78 hold. Nevertheles_s, ir_1 order to remove the matrix invergaon
VN Eq. (4) and to simplify the DML estimator, we propose an

form=0,....M—1andn=0,---, N — 1. approx/iTate DML estimator wherHIgHé is replaced with

Once this signal model provided, we are able to carfifl + DTe/NTc)Id; 5 even ifTy/T. is not an integer. Thus
out Maximum-Likelihood based estimators for paramefés We obtain
DT, and]_VTC._We remind that we are particularly interested [KEE\TCJVTC] —arg  min JAD(N,Z)\iaN\Tc) (6)
by the estimation ofVT.. N,DT.,NT.



with with

G T o HyHY Jac(N,DT,,NT,) = KN1 22~1+@)+2N)
Jan(N, DT, NT) = || (Tdy — ———=0 | y|.  Jac(N,DTe, NTo) = KN InQogq(l + == 0
G(1+ DT./NT.) o2 /N) e
. - . ~ — al 0 yHHéHgy.
Notice thatg depends on the trial valug. 2(02§(1 + L) + Ny)
a NT.
B. Gaussian Maximum-Likelihood approach (GML) Notice thatj and K depend on the tested paramet@rsSo,

In this subsection, the transmit data vectoiis assumed &S done in [13], the first term of the RHS can not be removed.
to be an i.i.d. random vector. Its true power density funrctig/ioreover Signal-to-Noise Ratio (provided by, /No) has to

(pdf) is a product of a sum of Dirac distribution for whichP€ estimated prior to computing GML estimators.
the location is given by the used constellation (either PAM o V. SIMULATIONS

PSK or QAM). Due to the high complexity of derivations, itis g section is devoted to numerical simulations in order

usual to model the vectaras a circularly-symmetric Gaussiary, gya|yate the performance and the merit of proposed algo-
multivariate process with zero mean and covariangeper inms Except otherwise stated, the number of carrievy (
real dimension [12]. Then the so-called Gaussian likelthooig fiyeq 1064, the ratio between the cyclic prefix length over
denoted by, (y|6), can be expressed in closed-form when o ,seful OFDM symbol time((P := D/N) is equal tol /8.

is assumed as above. The duration of the useful part of OFDM symbaWV{.) is

Consequently the multivariate process is circularly- 64ys. The number of available OFDM symbol&y(/T}) is 5.
symmetric Gaussian process with zero mean and covariaR¢g, sampling ratd}, is chosen ad, = T,./2, i.e.,q = 2.

matrix Elyy"] = 207HeHy + 2NoIdy and yields the |y practice, the receive continuous-time signal is not only
following likelihood disturbed by additive white Gaussian noise but also by mul-
. 1 tipath propagation continuous-time channel for which the
pe(yl0) = - dispersion time is denoted l#y;. Actually the receive discrete-
(2m)M det (QU?IHéHé T 2N01dM) time signal, now denoted by(m), can be modeled as
y ef%yH(agHéHg+NoIdM)7ly I
§(m) = hex(m — £) + b(m)
Let Id and A be the identity matrix and an other matrix £=0

compatible in size respectively. We remind thédt(Id + wherexz(m) is the noiseless part af(m) defined by Eq. (2)
AAY) = det(Id+A"A) and(Id+AA")"" =Td-A(Id+ and wherel = [T,;/T,]. Each component of channel impulse

AYA)"'AM. This leads to response is assumed to be Gaussian distributed with zeno mea
R 1 and same variance. Then each channel realization is normal-

py(yl0) o ized. Unless otherwise stated, the continuous-time cHanne

det (203H3Hé + QNOIde) dispersion time is fixed to be a quarter of the cyclic prefix

duration, which means that,;/DT. = 1/4. No frequency
offset has been considered. We firstly assume that the takmin

N P . . ... Is perfectly time-synchronized. Each curve is averaged ove
As maximizing p,(y|f) is equivalent to minimizing ;) Monte-Carlo runs. The SNR is defined a/N, and

2
(Ta

H 2 H —lygqH
% Ty Hg (202HY Hy+2Nold g ) Hiy

—logpy(y16). we get fixed to 10dB.
[N,ﬁ:,ﬁc] —arg  min JG(N,DTC,NTC) _ As our practical issue _rglat_ed to cognitive rgdlo consists
N.DT..NT, in operating system identification, we are only interesied t
_ the estimation accuracy oNT,.. Therefore, in the sequel,
with the performance onV and DT, is omitted. Actually we

- have observed that performance &8¥,, DT,, or N always
o 2 I~{ . o c c
JG(N’DTC’NTC)_log(det(%aHe Hp +2Nold 7)) yields close performance. In addition, identifying thehtig

O Hyr_ (~217HET. _ \ LgH  system (WIMAX, WiFi, DAB, DVB-T or 3GPP/LTE, etc)
- H,(c>HIH,;+NoId Hiy. SYS  DAB, DV ,
2N, o(7aHgHo+Nold i) Hgy boils down to comparingVT, to its theoretical value for

Notice thati d d the trial valug Simil timat each considered system. Since the smallest gap between two
otice tha epends on he trial val imiiar eSimator ;o carrier spacing values is little larger thi# (cf. Section
has been already introduced by [13] in the context of symbﬁl

iod . ion f ingl ) dulated si | , we do not need a tight estimation @f7,. but we only
period estimation for single carrier modulated signal. need an estimation af/NT, up to 1%. Consequently rather

Once again, if Eq. (5) holds, the GML estimator can be Wef, 5, considering the Mean Square Error as usually done in

approximated by estimation issue, we prefer considering the detection rate

[N,l/)i,ﬁi] —arg min JAG(N,ﬁ;,ﬁc) def_med_ as follows: we assert that the inter-carrier spacing
N,DT,.,NT. estimation is correct ifl /NT. is close tol/NT, up to 1%.




In practice, to obtai@c, we have calculated the cost — wiong detectonversust
function for each trial N7, belonging to the grid of step 0ol o |
0.64us starting at25us and ending atl0Ous. This leads osl zggﬁét
to a gap equal tol% between two adjacent tested inter-
carrier spacing compared to the true valigs. For each
considered value oNT., DT. takes values in the se¥ T x
{1/2,1/4,1/8,1/16,1/32}, and N takes its value in the set
{256,128, 64, 32}. Finally the performance has been evaluated

o
3

Error probability detection
)
@
\

as the number of wrong detection, i.e. the number of realiza- ool asr
tions for which theNT, is different fromNT, up to 0.64us. ol

In Figure 1, we display the wrong detection rate for pro- e i _A%
posed algorithms and autocorrelation based method (dgnote O ot GuRet0e a0y
by COR) versusCP in AWGN context (i.e., 7y = 0). We
remark that ifCP is equal tol/4, proposed algorithms and Fig. 2. Wrong detection rate vd}; /DT,

autocorrelation based algorithm offer the same performanc
In contrast, our algorithms are more robust to small values

of CP. For instance AGML and ADML algorithm Still work: o4 fajls whatever the SNR. Proposed algorithms (espe-

well in absence of cyclic prefix. Notice that standai#l varies .
: - cially, GML, and AGML) are able to offer good performace
from 1/32 (DVB-T in France) tol/4 (WiFi). Consequently, even at low SNR such aB.

our proposed algorithms are more appropriate for the cog-

nitive radio than the autocorrelation based method. Indeed Wrong detection versus SNR
autocorrelation method does not enable system identditati —_—
if encountered systems employ small cyclic prefix as done in il o I
DVB-T and some Wimax configurations. °'8‘\\\ fzfizmt’
0.7 ~ -v- H
- — COR

Wrong Detection versus D/N
T T T T T

—&— DML
—o—GML |]
- 8 - ADML
- —AGML ||
——COR

Error probability detection
)
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Fig. 3. Wrong detection rate vVSNR
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In Figure 4, we analyse the wrong detection rate versus

CP=DIN (AWGN ; SNR=10dB ; N=64) Ty/Ts for proposed algorithms and autocorrelation based
method. Once again, &P = 1/8 andT;/DT. = 1/4, the
Fig. 1. Wrong detection rate v&P autocorrelation based method fails whatever the observati

window length. In contrast, proposed algorithms (espbgial

) ) GML, and AGML) yield interesting performance even when
In Figure 2, we plot the wrong detection rate versysDT one OFDM symbol is available. We remark that in four

for proposed algorithms and autocorrelation based meilived. already-introduced figures, the Gaussian ML algorithms are

oberve that our algorithms are more robust to the presenceyatier than the Deteministic ones. Morever, the AGML isdrett

multipath c_hannels. For Instance, even ”_c the channel iseuly,, ML and easier to be computed since it does not require
response lies on the entire cyclic prefix, DML, GML an atrix inversion

AGML still perform well. In contrast, the autocorrelation We now consider that the receive signal is not time-
based met_hod falls down as soon as the continuous-time Ché&/'ﬁﬁchronized that is to say that the beginning of the receive
nel length is more tha®T,./10. Notice that the performance

. . ; X signal does not coincide with the beginning of an OFDM
of the autocorrelation based method in previous-cited mpgymbol. Then the receive signalm) takes the following form
is usually evaluated by numerical simulations wilk = 1/4 ‘

and AWGN which prevents to show these drawbacks. ~ L
In Figure 3, we plot the wrong detection rate versus SNR g(m) = Z hea(m — £ —17) + b(m).
for proposed algorithms and autocorrelation based methed. =0

CP = 1/8 andT;/DT. = 1/4, the autocorrelation basedIn Figure 5, we inspect the wrong detection rate versUs,



Wrong detection versus TO
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Fig. 4. Wrong detection rate vy /T

Wrong detection versus SNR in time-desynchronized context
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Fig. 6. Wrong detection rate vs. SNR in time-missynchrdiasacontext

for proposed algorithms and autocorrelation based methodye have observed that our algorithms are once again very
AWGN context ([; = 0). Our algorithms are just slightly sensitive to frequency offset whereas autocorrelatioredas
robust to time offset. As it is well-known, the autocorr@at method performance is independent of frequency offset. As
is insensitive to time offset. Consequently to carrying oone in time-missynchronisation context, the frequendsesf
proposed algorithms, we need either implementing a priggs to be added into the vector of parameters of interest.

time-synchronisation or adding parameteio the parameters
of interesté.

Wrong detection versus T

BUR IR e 2 \

o = To---%

0.5

Error probability detection

i i i i i ¥
03 04 05 06 07 08 )
UTs (AWGN ; SNR=10dB ; N=64 ; D=8)

Fig. 5. Wrong detection rate vs./Ts

In Figure 6, we modify our algorithms by considering the
vector of parameter® [N, DT., NT.,7]. We plot the
performance of proposed algorithms and autocorrelatisedba

V. CONCLUSION

In this paper, we proposed new ML based algorithms.

(1]

(2]
(3]
(4]
(5]

(6]
(7]

method versus SNR when the signal is time-desynchronizd®

and when the channel is AWGN. Compared to Figure 3 (don

e

in frequency-selective channel context and not in AWGN congg)

text), we observe that our algorihms are now insensitiveigas m

synchronisation. In return, we have increased the complexflo]

of our algorithms.

We now consider that the received signal is not perfectly in

baseband. Consequently the receive signal writes as

L

(m) = e¥imAIm Z hex(m — £) + b(m)
=0

where Af is the so-called frequency offset. Due to the lack

y

; Their performance has been evaluated by means of numerical
= simulations. We showed that new methods outperform auto-
correlation based method in some useful contexts.
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