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Abstract: In 112Gbit/s optical coherent transmission context, we develop decision-directed and
blind fractionally-spaced adaptive equalizer using variable step size suitable for 16-QAM. The con-
sidered algorithms offer better steady state performance and convergence speed than standard adap-
tive equalizers.
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1. Introduction

Coherent detection combined with multilevel modulation such as M-ary quadrature amplitude modulation formats are
one of the most promising techniques to increase the spectral efficiency and reach higher bit rates. Therefore, it is a
strong candidate for the implementation of the next generation optical networks (such as, 100Gbit Ethernet). However,
those modulation formats are more sensitive to signal distortions due to intersymbol interference (ISI) and the crosstalk
between the polarizations [2]. In [6], fractionally spaced equalizers (FSE) based on constant modulus (CMA introduced
in [1]) and radius directed (RDE initially developped by [3, 4]) algorithms are proposed to jointly compensate for the
residual chromatic dispersion (CD), PMD and the polarization dependent effects (PDE). Nevertheless, due to a constant
step size implementation of the gradient algorithm to adapt the equalizer components, these algorithms suffer from
slow convergence. In this paper, we propose a variable step-size version of the gradient algorithms for CMA, RDE,
and DD (Decision Directed) algorithms. The step-size is updated via the Pseudo-Newton method. We investigate their
performance through Monte Carlo simulations. We show that our approach enables us to get faster convergence and
better steady-state performance. For instance, we can compensate for a CD of 1500ps/nm with a 6-taps equalizer.

2. Gradient-descent and Pseudo-Newton based equalizers

Let ya(t) be the continuous-time signal associated with one polarization at the receiver. In order to improve the
performance, sampling the received signal at twice the symbol rate is of interest. Therefore we focus on y(n) =
ya(nTs/2) where Ts is the symbol period. As the transmitted symbol sequence x(n) does not have the same rate as the
oversampled received signal, a linear filter can not represent the link between these both sequences. To overcome this
problem, we stack two consecutive received samples into a bivariate process as follows: y(n) = [ya(nTs), ya(nTs +
Ts/2)]T where the superscript (.)T stands for the transposition. Now, if the received signal is only disturbed by
linear operations, the received signal is obtained by the convolution of symbol sequence x(n) with a SIMO (Single
Input/Multiple Ouput) filter. Therefore, to compensate for a SIMO filter, we need to introduce a MISO (Multiple
Input/Single Output) equalizer. Let w(n) be the nth component of the MISO equalizer. w(n) is actually a 1 × 2
vector. As the MISO filter is assumed to be an FIR of length L, we have

z(n) =
L∑

k=0

w(k)∗y(n− k) = W∗YL(n) (1)

where (.)∗ stands for complex conjugaison, W = [w(0),w(1), · · · ,w(L − 1)] and YL(n) = [y(n)T,y(n −
1)T, · · · ,y(n − L + 1)T]T. Notice that the rate of the sequence z(n) is 1/Ts as that of x(n). We now would like
to exhibit the filter W enabling us to have z(n) close to x(n). In blind context, one can based the equalizer derivations
on the CMA criterion [1] which looks for the minimization of the cost function JCMA(W) = E[JCMA,n(W)] with
JCMA,n(W) = (|z(n)|2 − R)2 and R = E[|x(n)|4]/E[|x(n)|2] or on the RDE criterion corresponding to an adapta-
tion of CMA to QAM constellations [3, 4]. The DD approach leads to the minimization of the following cost function
JDD(W) = E[JDD,n(W)] with JDD,n(W) = |z(n)− x̂(n)|2 and x̂(n) the current decision of symbol x(n).We recall



that the minimization of a cost function W 7→ J(W) = E[Jn(W)] can be implemented using the gradient descent
algorithm.

Wn+1 = Wn − µ∇Jn(W)|Wn
(2)

where µ is the constant step-size parameter, ∇Jn is the gradient at time n, and Wn is the equalizer at time n. The
choice of the step-size is a crucial task for gradient algorithm and arises from a trade-off between convergence speed
and steady-state performance. To overcome this problem, we propose to implement variable step-size approach by
replacing µ with µn in Eq. (2). To derive µn, we consider the Pseudo-Newton algorithm [5] that exploits the Hessian
matrix as follows

µn = µH−1
n (W), with Hn(W) =

∂2Jn(W)
∂WH∂W

(3)

where the (.)H denotes the complex-transpose operator. In order to reduce the computational load, the inverse Hessian
matrix can be updated as follows

H−1
n (W) = λ−1H−1

n−1(W)−
λ−2H−1

n−1(W)y(n)yH(n)H−1
n−1(W)

[(1− λ)f(n)]−1 + λ−1yH(n)H−1
n−1(W)y(n)

(4)

where λ is a forgetting factor (0 ≤ λ ≤ 1 and assuming λ+ µ = 1 [5]) and H−1
0 (W) = δId with the identity matrix

Id and a fixed positive number δ. In Table 1, we summarize the value of the gradient and f(n) for CMA and DD
algorithms. The computational load of the gradient (resp. Pseudo-Newton) approach isO(L) (resp.O(L2)). In the case

CMA DD
∇Jn(W) (|z(n)|2 −R)z(n)∗y(n) (z(n)− x̂(n))∗y(n)
f(n) 2|z(n)|2 1

Table 1. Gradient and f(n) for CMA and DD algorithms

of PolMux channels, we have to consider a MIMO equalizer (to compensate simultaneously for the polarization cross-
talk, CD and PMD) since there are two outputs: one per polarization. Then we have z1(n) = W∗

11y1(n) +W∗
12y2(n)

and z2(n) = W∗
21y1(n) + W∗

22y2(n) where index 1 (resp. index 2) corresponds to polarization X (resp. Y). Update
equations for filters Wij are the same as these described above.

3. Simulations and results

A 112Gbit/s transmission is achieved by multiplexing both polarizations with 16-QAM modulated signals which
corresponds to 14Gbaud transmission per polarization. In order to reduce the wide spectrum of the QAM signal, we
used a square root raised cosine filter with a roll-off factor equal to 1, each at the transmitter and the receiver side.
The received electrical signal is digitized using a 6bit resolution analog-to-digital converters at a rate of 2 samples
per symbol. A 5th order Bessel electrical filter with a -3dB bandwidth 80% of the Baud rate was included as the
anti-aliasing filter [4]. To evaluate the speed of convergence of the equalizers, we considered first a single polarization
transmission (56Gbaud), Fig.1 shows that Pseudo-Newton (PN) based algorithms converge faster and ensure lower
BER at the steady state. The OSNR penalties versus CD is depicted in Fig.2, the system can tolerate up to 1500ps/nm
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Fig. 1. convergence of the equalizers for OSNR=18dB, 6 taps FSE, µ = 10−3, δ = 0.9: (a) CD=500ps/nm, (b) CD=1500ps/nm.

of CD using 6 taps (and up to 2250ps/nm using 8 taps).
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Fig. 2. BER vs. CD in PolMux 16-QAM, 6-taps RDE and CMA equalizers,
(θ = π

4
, DGD=50ps and ∆ν=1.4MHz)
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Fig. 3. BER vs. CD in PolMux 16-QAM, 6-taps RDE and CMA
equalizers, (θ = π

4
, DGD=50ps and ∆ν=1.4MHz)
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Fig. 4. BER versus DGD in PolMux 16-QAM, 6-taps RDE and CMA
equalizers, (θ = π

4
, CD=500ps/nm and ∆ν=1.4MHz)
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Fig. 5. Dynamic response of the 6-taps equalizers, OSNR=20dB

The performance of the overall system (PolMux) is then investigated. Phase noise (laser linewidth ∆ν=1.4MHz),
CD, DGD and polarization rotation(angle θ) were included and the OSNR was set to 22dB. After equalization, the
carrier phase recovery algorithm[4] is applied. As shown in Fig.3, the BER is kept below 10−3 up to 1500ps/nm. The
constellations of the 16QAM signal in Fig.6 show that the PN based algorithms ensure better steady state. However,
PN algorithms do not compensate for bigger values of DGD, all the algorithms were shown to tolerate up to 80ps
of DGD (Fig.4). Finally, to evaluate the dynamic behavior of the equalizers, we considered an infinite rotation of the
polarization using Jones matrix[6], no phase noise was considered and the OSNR was set to 20dB, gradient based
algorithms showed better performance for rotations higher than 200Krad/s.
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Fig. 6. PolMux 16-QAM constellations (θ = π
4

,CD=1250ps/nm, DGD=50ps,∆ν=1.4MHz) (a)Input of the equalizers (b)-(c) equalized and
recovered (RDE)(d-e) equalized and recovered (PN-RDE)

4. Conclusion

ISI suppression and source separation in PolMux 16-QAM coherent optical transmission system using gradient descent
and Pseudo-Newton algorithms are compared. We showed that Pseudo-Newton algorithms can compensate up to
1500ps/nm using a 6 taps Ts/2 FSE equalizer, and offer better performances that the gradient descent ones when
tracking polarization fluctuations slower than 200Krad/s. thus is may remain a candidate for the implementation of
16-QAM coherent systems.
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