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ABSTRACT 

Blind carrier frequency offset and symbol timing delay 
estimators for linearly modulated waveforms transmit- 
ted thro7Lgh flat-fading channels have been recently de- 
veloped by en;ploiting the received signal’s second-order 
cyclostationary statistics in (21, (31, and (61. The goal 
of this paper is to establish and analyze the asymptotic 

(large sample) performance of the estimators (21 and 
(31, as a f~mction of the pulse shape bandwidth and the 

oversampling factor. It is shwn that the performance 

of these estimators impro7)e.s as the pulse shape band- 
width increases and by selecting small values for the 

oversampling factor. 

INTRODUCTION 

In digital communication system+ the re-acquisition 
of synchronization must often be performed in a fast 
and reliable way without sacrificing bandwidth for 
periodic retraining. Therefore, developing optimal 
non-data aided (or blind) synchronization architectures 
appears as an important problem. Recently, blind 
carrier frequency offset and symbol timing delay 
estimators that exploit the second-order cyclostation- 
ary (CS) statistics, introduced by oversampling the 
continuous-time received waveform at a rate faster 
than Nyquist rate have been proposed in 121, 131, and 161. 

The goal of this paper is to analyze and design cri- 
teria for improving the performance of the feedforward 
non-data aided carrier frequency offset and symbol tirn- 
ing delay estimators 121 and 131 with respect to (w.r.t.) 
the pulse shape bandwidth and oversampling factor. 
The theoretical asymptotic (large sample) performance 
of the Gini-Giannakis (GG) 131 and Ghogho-Swami- 
Durrani (GSD) 121 jj t es imattors is established, and it is 
shown that the performance of these estimators irn- 
proves by selecting a small value for the oversampling 

factor (P = 3) and pulse shapes with larger band- 
widths. By properly taking into account the aliasing 
effects, it is shown that the symbol timing delay esti- 
mates corresponding to the GG and GSD estimators 
take a slightly different form than the expressions re- 
ported in 121 and 131 in the case when P = 2. 

MODELING ASSUMPTIONS 

Consider the baseband representation of a linearly mod- 
ulated signal transmitted through a flat-fading channel. 
The receiver output can be expressed as1 (see e.g., 121 
and 131): 

c&(t) = pc(t)ej2Tf”t x w(Z)h,(t - tT - IT) + vc(t) , (1) 
1 

where pc(t) is the fading-induced noise, 741)‘s are 
independently and identically distributed (i.i.d.) input 
symbols, h,(t) d en&es the convolution of the trans- 
mitter’s signaling pulse and the receiver filter, 71,(t) 

is the complex-valued additive noise, T is the symbol 
period, fe and E stand for carrier frequency offset and 
symbol timing delay, respectively, and represent the 
parameters to be estimated. 

By oversampling the received signal z,(t) (see eq. (1)) 
with the sampling period i”, := T/P (P > 2), the fol- 
lowing discrete-time channel model is obtained: 

x(n) = lL(n)e~2~S”‘l’nlP x w(Z)h(n - ZP) + v(n) ) (2) 
1 

with2 z(n) := Z,(dr,), p(n) := pc(nTs), 7l(4 := 

74nTs), and h(n) := h,(nT, - CT). In order to sirn- 
plify the derivation of the asymptotic performance of 
estimators 121, 131, we assume the following: 
(ASl) 711(n) is a zero-mean i.i.d. sequence with a: = 1. 
(AS2) p(n) is a constant noise with unit energy. Later 

‘The subscript c is used to &note a continuous-time signal. 
2Thc notation := stands for is defined as. 
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on, this assumption will be relaxed by considering that 
p(n) is a time-selective fading process. 
(AS3) 71(n) is a complex-valued zero-mean white pro- 
cess independent of 711(n), with variance a:. 
(AS4) the cornbined filter h,(t) is a raised cosine pulse 
of bandwidth I-- (1 + p)/2T, (l-t- p)/2T], where the roll- 
off factor p satisfies (0 < p < 1) 14, Ch. 91. 
(AS5) frequency offset fe is small enough so that the 
mismatch of the receive filter due to fe can be neglected 
131. Generally, the condition feT < 0.2 is assumed. 

BLIND CARRIER FREQUENCY OFFSET 
AND TIMING DELAY ESTIMATORS 

In this paper, the time-varying correlation of z(n) is 
defined as caz(n; 7) := E{z*(n)z(n + T)}, where 7 is 
an integer lag. Based on the eq. (2), straightforward 
calculations lead to the following relation: caz(n; 7) = 
c&L + P;7), h,7. Being periodic, cz2 (n; 7) admits 
a Fourier Series (FS) expansion whose FS-coefficients, 
termed cyclic correlations, are given by the following 
expression according to Eq. (2): 

c2z(k. cJ2 
,T ) = wp+F 

P’ CC 
h*(n)h(n + .)e-j2T+ 

> n 

+&ww > (3) 

where 6(.) stands for the Kronecker’s delta. Based on 
the Parseval’s relation, an alternative expression for 
C22 (k; T) is next derived when P > 3 121, 131: 

where: 

In the case when P = 2, the aliasing effects due to 
frequency-shifting can not be avoided. By properly tak- 
ing into account the aliasing effects, one can show that 
for P = 2 the following eq. holds: 

2cJ2 c2z (1; T) = wpn.fe’~‘lP 
P ’ 

cosj27r(c+~)] 

Due to the symmetry properties of the raised-cosine 
function h,(t), it is easy to check that Ga(k; 7) and 
G3 (k; 7) are real-valued functions and non-zero only for 

cycles k = 0, fl. Furthermore, from these cyclic corre- 
lations, it is usual to define a cyclic spectrum for each 
cyclic frequency k, as follows: 

We also define the 
varying correlation of 

c2rc (n; T) 

conjugated second-order time- 
x(n) as 

:= E{z(n)z(n + T)}. 

It is easy to check that &(7~; 7) can be expressed as 

k=O 

where 

with a:, := E{711~(n)}. In a similar way, we can 

define thk conjugated cyclic spectrum !!&,(k; f) as the 
Fourier transform (FT) of the sequence {62,(k; T)}~. 

In practice, the cyclic correlations C?J~(,+; 7) have to be 
estimated from a finite number of samples N. The stan- 
dard sample estimate of Cz2 is given by (see e.g., [l] and 
14): 

N-T-1 

&(k; 7-) = ; x z*(n)z(n + 7-)e-j2Tkn’p ) 7-20. 
n=O 

Relying on the eqs. (4 and 5), we can obtain the follow- 
ing estimators for the frequency offset fe and the timing 
delay E: 

.L = & arg{C?2,(1; 7)e2z(-l; T)> , 

i = -& arg{&,(l; 7)e- 
3nmp) >, p L 3, 

(6) 

(7) 

P = 2 . (8) 

As described in 121, the performance of the frequency 
offset and timing delay estimators does not change sig- 
nificantly with 7. In this paper, we choose 7 = 1 for 
the GG estimator. One can see that in this case, the 
frequency offset estimators corresponding to the GSD 
12, eq. (7)j and GG 13, eq. (lo)] algorithms coincide. 
However, in the case of the timing delay estimators cor- 
responding to the GSD algorithm, 7 is set to 0. 

PERFORMANCE ANALYSIS 

2 
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The estimators of fe and E are asymptotically unbiased 
and consistent 121, 131. In this section, we will establish 
the asymptotic variances of fe and i, which are defined 
as 

yscc :=di,,m NE{ (fe - fe)‘} , y’:=$:; NE{ (i - t)“} , (9) 

respectively. If we define the normalized unconjugatted 
and conjugated asymptotic variances of the cyclic cor- 
relations by means of the following relations 111: 

I I, r&4 2Lv :=,!$mNE{ (&,(k;zr) -C&u)) 

. 
( 
&z(m,v) - C ( '2x m, VI)*} , 

I I, f+v4 2Lv :=d$mNE{ (i;,(k;zr) -C&u)) 

. 
( 
&z(m,v) - C ( /2x m,vl)} , 

where k, m = fl, then the following proposition, which 
is an extension of the result presented in 111, can be 
established: 
Proposition 1. The asymptotic variances of the cyclic 
correlations are given by: 

+;,I) =z: r;(h,-l) , ri-;,-l) =z: C.?2~Wr~;11u , 

and K denotes the kurtosis of w(n), Q(P) = 1 for 
P > 3 and Q(P) = 2 for P = 2. 
In the above proposition, some terms within the sums 
may cancel out. Indeed, since the filter h,(t) is band- 
limited, the cyclic spectra at cycles lkl > 1 are zero. 
This remark implies, for example, that if P > 4, then 
only the terms driven by the index k = 0 remain in the 
expression of I?(’ ) ‘1 and k = 1 in I’(l>-l). When P = 2, 
only I?(‘>‘) is needed since Czz(l; 7) = C22(-1; 7). 
Since Cz2 (/c; 7) = , ~~~~~~~~~~~ (-k; -7), it follovie also 
that: 

By exploiting Proposition 1 and the eqs. (6), (7) and 
(8), the asymptotic variances of fe and i for GG and 
GSD estimators can be obtained and are given by3: 
Proposition 2. The asymptotic variance of the GG 
and GSD frequency offset estimators for P > 3 is given 
by: 

r= 
i 

r(l,l) 
&,l) 

r(l,-l) 

I,1 

,(~:,-l) ) 

l,l J 

and r is defined in a similar way as I’. 
For P = 2, the asymptotic variance takes the en;pres- 
sion: 

l”rl - re{e-P~Scc7’133) 

‘Se = &r2T2c$ sin’ (27rt)G~(l; 1) ’ 

with 1 = 11, 11”. 
Proposition 3. The asymptotic variance of the GG 

timing delay estimator for P > 3 is given by: 

For P = 2, the asymptotic variance takes the en;pres- 
sion: 

r(l>l) 1,1 + re{e-j2TfeTF~‘;1)} 

YE = 87r%J$ cos’(27rt)G:(l; 1) . 

Proposition 4. The asymptotic variance of the GSD 
timing delay estimator for P > 3 is given by: 

P2 
yc = ( 

rhl;l’) - rc{c~““+@‘}) 

87r24,G;(1;0) ’ 

For P = 2, the asymptotic variance takes the form: 

rhl;l’) + rc{Sb]b”} 

‘YE = 87r2~$ sin2(2m)Gz(l; 0) ’ 

EXTENSION TO TIME-SELECTIVE 
CHANNELS 

Due to the assumption (AS2), the foregoing discussion 
applies only to time-invariant channels. In this section, 
we will see that the results obtained in the last section 
can be extended to the case of time-selective fading 

’ “re” and “im” stand for the real and imaginary part, respec- 
tively. 
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effects as long as the fading distortion p&t) is approxi- 
mately constant over a pulse duration or, equivalently, 
the Doppler spread B,T is small, where B, denotes 
the bandwidth of pc(t) 131. 

Assuming now that p(n) is a stationary complex pro- 
cess with autocorrelation rp(7) := E{p*(n)p(n + T)} 
131, we can rewrite Eq. (3) for k = f 1 as: 

Czz(k; r)=+rp(~)e’2”~C h*(n)h(n + 7)e-jzT% . (10) 
n 

Based on Eq. (lo), it is not difficult to find that all the 
previous estimators (Eqs. (6)-(8)) still hold true except 
that for P = 2 they take the form: 

1 ^ t = 71- a-mm rc ‘l ( 

e2,(l; l)e-~“(fe’l’+l) 

>> 
1 -- 

c~$Gs(l; l)r,(l) 4’ 

^ 1 
‘l ( 

ez,(l; 0) 
en = G arccos lY2 ($p+(l; ())r,(()) >> ’ (11) 

respectively. 

Compared with the performance analysis reported 
in the last section, the exact asymptotic variance of 
GG and GSD estimators in the case of time-selective 
channels supports several modifications. Introduce 
now an additional assumption on the fading channel: 
(AS6): th, 1 d- e an mobile channel is a Rayleigh fad- 
ing channel, which means that p(n) is a zero-mean 
complex-valued circular Gaussian process 141. 

For general land-mobile channel models, the autocorre- 
lation of p(n) is proportional to the zero-order Bessel 
function, i.e., rp(7) oc &(2?rB,7-) (c.f. IS]). Based on 
the assumption (AS6), r,(n; 7) = 0 and the higher- 
order curnulants of .x(n) are also zero. Therefore, one 
can find that in the presence of time-selective fading 
effects, the performance analysis can be established in 
a similar way as in the case of time-invariant fading 
channels. In fact, considering the assumption (AS6), 
only the first terms of l$;” and l$” in Proposition 
1 survive, and the asymptotic variances rf, and yc for 
the GG and GSD estimators in Propositions 2-4 still 
hold true except that some constants related to rp(l) 
or rp(0) should be added. For example, when P = 2, 
based on Eq. (ll), we now obtain the following expres- 
sions for the asymptotic variances corresponding to the 
GG and GSD timing delay estimators: 

r(l,l) 1,1 + re{e-P7w’~~‘;l)} 

‘YE = 87r2c$ cm2 (27rt)cg (1; lyri (1) ’ 

r&‘) + rc{j$&“} 

‘YE = 87r2c$ sin2(2m)Gg(l; O)ri(O) ’ 

respectively. 

In closing this section, it is interesting to remark that 
for implementing the GG and GSD frequency-offset es- 
timators no information regarding the time-varying fad- 
ing process p(n) is required. If the oversampling factor 
satisfies P > 3, then the implementation of the GG 
and GSD timing delay estimators does not require any 
knowledge of p(n), too. However, when P = 2 knowl- 
edge of the second-order statistics rp(0) and rp(l) is 
required for implementing the GG and GSD timing de- 
lay estimators (11). However, simulation experiments, 
reported in the next section, show that from a computa- 
tional complexity and performance viewpoint the best 
value of the oversampling factor is P = 3. Thus, esti- 
mation of parameters rp(0) and rp(l) can be avoided 
by selecting P > 2. 

SIMULATIONS 

In this section, the experimental Mean-Square Error 
(MSE) results and theoretical asymptotic bounds of 
estimators (6)-(8) are compared. The experimental 
results are obtained by performing a number of 400 
Monte Carlo trials assuming that the transmitted 
symbols are i.i.d. linearly modulated symbols drawn 
from a QPSK constellation with a: = 1. The number 
of symbols is set to N = 200 in all simulations. The 
transmit and receive filters are square-root raised 
cosine filters, and the continuous-time additive noise 
71,(t) is generated as Gaussian white noise with 

2 variance (TV,. The signal-to-noise ratio is defined as: 
SNR:= 10loglO(a~/a~,). Experiments 1 to 2 assume 
time-invariant channels corrupted by additive white 
discrete-time noise, and the parameters feT = 0.011 
and CT = 0.37. To render the discrete-time noise un- 
correlated, a front-end filter with two-sided bandwidth 
P/T is used 121. Experiments 3 to 4 are performed 
assuming time-selective Rayleigh fading with CT = 0.37 
and a larger frequency offset feT = 0.2, and the perfor- 
mance analysis of GG and GSD estimators is evaluated 
in the presence of additive colored discrete-time noise, 
i.e., when there is no front-end filter placed before the 
matched filter. In this scenario, for Experiments 3 and 
4 the additive noise l>(n) is generated by passing 71,(t) 

through the square-root raised cosine filter to yield 
a discrete-time noise with autocorrelation sequence 

rw b-1 := E{q/*(n)ll(n + T)} = az,h,(7) 131. In our 
simulations, the Doppler spread is set to B,T = 0.005 
(very slow fading), p(n) is created by passing a 
unit-power zero-mean white Gaussian noise process 

4 

0-7803-7227-1/01/$17.00 (c) 2001 IEEE1392



through a normalized discrete-time filter, obtained by 
bilinearly transforming a third-order continuous-time 
all-pole filter, whose poles are the roots of the equation 
(s2 + 0.35~0~ + wi)(s + wo) = 0, where wg = 27rB,/1.2. 

In all figures, the theoretical bounds of GG and GSD 
estimators are represented by the solid line and the dash 
line, respectively. The experimental results of GG and 
GSD estimators are plotted using dash-dot lines with 
stars and squares, respectively. 
Experiment 1 : Performance versus the oversampling 
rate P. By varying the oversampling rate P, we conx- 
pare the MSE of GG and GSD estimators with their 
theoretical asymptotic variances. The roll-off factor of 
the pulse shape is p = 0.5, and SNR=20dB. The results 
are depicted in Figure 1. 
Experiment 2 : Performance uersus the filter band- 
width. Figure 2 depicts the MSE of the estimators 
versus the roll-off factor p assuming oversampling rate 
P = 4 and SNR=20 dB. 
Experiment 3 : Performance uersus the oversampling 
rate P in time-selective channels. We repeat the Exper- 
iment 1 by assuming a time-selective channel corrupted 
by additive discrete-time colored noise. The roll-off fac- 
tor of the pulse shape is p = 0.5, and SNR=lOdB. The 
results are depicted in Figure 3. 
Experiment 4 : Performance uersus the filter band- 
width in time-selective channels. Figure 4 depicts the 
MSE of the estimators versus the roll-off factor p in 
the presence of time-varying fading effects, assuming 
oversampling rate P = 4 and SNR=lO dB. 

Both experimental and theoretical results show that 
larger oversarnpling factors are not justifiable from a 
computational and performance analysis viewpoint. A 
smaller oversampling rate (P = 3) and a wider pulse 
shape bandwidth (p E 10.6, 0.91) are preferred. 
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