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Abstract— In this communication, we address the performance lower
bounds for harmonic retrieval in multiplicative noise. The new results are
twofold : we derive the asymptotic (large sample) Gaussian Cramer-Rao
bound as well as Barankin bound when the multiplicative noise is complex-
valued and non-circular. The theoretical closed-form expressions are then
analyzed with respect to design parameters.

I. INTRODUCTION

We consider the following discrete-time process y(n)

y(n) = a(n)e2iπ(φ0+φ1n) + b(n) n = 1, · · · , N (1)

where φ0 and φ1 are the parameters of interest. This model
holds for many applications, especially, for blind frequency
synchronization in digital communications. In such a case,
a(n) represents the convolution of the information symbols with
physical propagation channel. The random process b(n) refers
to noise and is assumed to be Gaussian complex-valued circular
stationary with zero-mean and variance σ2 = E[|b(n)|2].

The literature about Cramer-Rao bound for harmonic retrieval
in multiplicative noise is prolific. As a = [a(1), · · · , a(N)] cor-
responds to parameters of nuisance, one can introduced several
types of Cramer-Rao bounds [1] :
• The True/Unconditional CRB which is the standard shape of
Cramer-Rao bound is defined as follows

UCRB =
1
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with the likelihood
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.

In most practical problems, the UCRB is not tractable in closed-
form expressions. To overcome this difficulty, other Cramer-
Rao bounds have been studied.
• The average Conditional CRB takes the following form
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The parameters of nuisance are thus viewed as deterministic
ones and estimated jointly with the parameters of interest.
• The modified CRB is given by

MCRB =
1
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The MCRB is less tight than the UCRB [2]. Nevertheless this
bound is of great interest since the derivations for providing its
closed-form expressions are much easier.
• Finally, the so-called Gaussian CRB (GCRB) is equal to
the UCRB by assuming (even if it is not accurate) that a =
[a(0, · · · , a(N − 1)] is a Gaussian vector.
Actually the MCRB is mostly used by the Digital Communi-
cations community (e.g., synchronization issue). In contrast,
the GCRB is rather spread in the Signal Processing community
(e.g., Radar and DOA issues).

We hereafter only focus on the GCRB while, in the confer-
ence talk, we also overview the various kinds of CRB more
deeply. To obtain interpretable expression, it is worth work-
ing with asymptotic (large sample) GCRB instead of with exact
GCRB. ([3], [4]). In previously-mentioned papers, a(n) were
considered either real-valued or circular complex-valued. Our
first contribution consists of providing asymptotic GCRB when
the multiplicative noise a(n) is assumed to be complex-valued
and non-circular. Such multiplicative noise can be encountered
in digital communications when received signal corresponds to
the filtering of real-valued symbols with propagation channel
([5]) or when offset modulations are employed ([6]).

Moreover, in harmonic retrieval ([7]), outliers effect occurs
for which the performance of any estimate is far away from
the CRB at low SNR. Actually the so-called Barankin bound
which is tighter than the CRB at low SNR can be introduced to
analysis such a phenomenon. The second contribution of this
communication is to derive the Barankin bound for harmonic
retrieval whatever the nature of the multiplicative noise (real-
valued/complex-valued, circular/non-circular).

II. ASYMPTOTIC GAUSSIAN CRAMER-RAO BOUND

Due to the lack of space, we only put the main results.
For more details, the reader may refer to submitted papers in
ICASSP’2004 and EUSIPCO’2004.

Throughout the paper, we consider that a(n) is Gaussian
complex-valued non-circular stationary process with zero-mean,
correlation r(τ) = E[a(n + τ)a(n)], and conjugate correlation
u(τ) = E[a(n+ τ)a(n)] where the overline stands for complex
conjugate. The spectrum and conjugate spectrum are denoted
respectively as follows

s(e2iπf ) =
∑

τ∈Z

r(τ)e−2iπfτ and c(e2iπf ) =
∑

τ∈Z

u(τ)e−2iπfτ .

The entire statistics {r(τ), u(τ)}τ∈Z of a(n) only depend on
a finite number K of real-valued unknown parameters denoted
by {θk}k=1,...,K .

To analyze the asymptotic GCRB, we proceed into two steps :
• The first step corresponds to express in closed-form the Fisher
information matrix for parameters [φ0, φ1, θ1, · · · , θK ].



• The second step relies on following theorem dealing with
the inversion of (large) Toeplitz matrix [8]. Let tN =
(tl−k)−N<k,l<N be a Toeplitz matrix entirely described by

s(e2iπf ) =
∑

k∈Z

tke
−2iπfk ⇔ tk =

∫ 1

0

s(e2iπf )e2iπfkdf

which justifies the following notation : tN = TN (s). Under
mild conditions on {tk; k = 0,±1, · · · }, we get forN large that

TN (s)−1 ∼ TN (s−1). (2)

According to expressions obtained in the first step and result (2),
straightforward but tedious calculations leads to

CRB(φ1) ∼
3

4π2ξN3

where

ξ =

∫ 1

0

c(e2iπf )c(e−2iπf )

X (e2iπf )
df

with

X (e2iπf ) = (s(e2iπf ) + σ2)(s(e−2iπf ) + σ2)

− c(e2iπf )c(e−2iπf ).

Previous expressions enable us to yield following comments :
i) The convergence rate of frequency estimation are 1/N 3 re-
gardless the colorness of multiplicative noise.
ii) The frequency estimation performance depends only on ξ.
Herein ξ refers to an information rate provided by the non-
circularity. Indeed larger is ξ, and better is performance.
iii) In noiseless case, we observe a floor effect (i.e., CRB 6= 0
when σ2 = 0). This effect vanishes iff s(e2iπf )s(e−2iπf ) =

c(e2iπf )c(e−2iπf ). For instance, later condition is at least ful-
filled when the multiplicative noise is real-valued.

III. BARANKIN BOUND

For sake of simplicity, we assume that noise statistics, i.e.,
{r(τ), u(τ)}τ∈Z and σ2, are known at the receiver. This as-
sumption is usually done in [9] or partially done [10].

We define φ = [φ0, φ1]
T and the so-called ”test-points”

{ψ(k) = [ψ0(k), ψ1(k)]
T}1≤k≤n where the superscript T

stands for transposition. Then the Barankin bound of order n
is defined as follows :

BBn(φ0, φ1) = sup
E

Sn(E)

where
Sn(E) = E(B(E) − 1n1T

n )−1ET

with E = [ψ(1) − φ, . . . ,ψ(n) − φ], and 1n = ones(n, 1).
Furthermore B = (Bk,l)1≤k,l≤n is the following n× n matrix

Bk,l = Ey

[
p(y|ψ(k))

p(y|φ)

p(y|ψ(l))

p(y|φ)

]

and y = [y(0), . . . , y(N − 1)]T the N available samples.
The mean square error of any unbiased estimator is greater

than any Barankin bound of any order. As n→ ∞, the Barankin
bound becomes the tightest lower bound ([11], [10]).

Since y is complex-valued and non-circular, we introduce the
following process ỹ = [yT,yH]T and its associated covariance
matrix R̃φ which depends on the phase parameters φ. The su-
perscript H stands for complex conjugate transposition.

After straightforward algebraic manipulations based on expo-
nential moments and Wishart distribution ([12]), we get

Bk,l =

{
1√

det(Qk,l)
if Qk,l > 0

+∞ otherwise
,

with
Qk,l = (R̃−1

ψ(k) + R̃−1
ψ(l))R̃φ − Id2N .

In the literature, the following test-points are usually consid-
ered ([10])

E =

[
ψ0 − φ0 0

0 ψ1 − φ1

]
= diag(ε0, ε1).

Then the Barankin bound for frequency parameter φ1 takes the
following form

BB2(φ1) = sup
ε0,ε1

ε21
(B1,1 − 1) − (B0,1 − 1)2/(B0,0 − 1)

.

The term (B0,1 − 1)2/(B0,0 − 1) represents the loss in perfor-
mance due to joint phase parameter estimation.

Due to the lack of space, we do not display numerical illus-
trations. However, we may establish that more colored is the
multiplicative noise, smaller is the Barankin bound of order 2.
In contrast the asymptotic GCRB is quite insensitive to the col-
orness of the multiplicative noise.
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