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Abstract

In the context of MIMO maximum-likelihood detection, ef-
ficient iterative algorithms are proposed to solve the semi-
definite programming relaxation based on a reduced rank
non linear formulation. The convergence of the algorithms
is studied theoretically and experimentally. The influence
of various parameters on the performance is also analysed.
The overall complexity is evaluated and some implementa-
tion issues are pointed out.

1. Introduction

The use of multiple antennas (MIMO systems) to com-
bat fading effects in mobile communications has attracted
much attention in the past few years. Information the-
ory, via capacity considerations, predicts exceptionnal be-
haviour for MIMO systems compared to single antenna sys-
tems. Therefore, developing relevant detection algorithms
suited to MIMO systems is a crucial task. The sphere de-
coding algorithm, known to be an optimal algorithm in the
maximum-likelihood (ML) sense, was first introduced by
Viterbo et al. [1] and was modifed to reduce its complexity
in [2]. Sub-optimal algorithms developed for the multiuser
detection can be adapted to the problem at hand. The most
important class of such algorithms relies on the semidefi-
nite relaxation of the ML problem [3, 4, 5]. Semidefinite
relaxation principle is an active research field in the math-
ematical community and various published algorithms can
be adapted to our context [6]. In this paper, two efficient
algorithms which solve the semidefinite relaxation of the
MIMO ML detection problem are proposed. This paper is
organized as follows : the system model, the maximum-
likelihood detection problem and the semidefinite relaxation
are introduced in Section II. The novel algorithms and asso-
ciated theoretical convergence results are derived in Section
III. In Section IV, the performance is analysed by means
of extensive simulations and complexity characteristics are
presented. Section V is devoted to conclusions and perspec-
tives.

Throughout the paper, bold symbols denote vectors,
capital bold symbols denote matrices. Let M ∈ R

k,n be
a matrix. The (i, j)th entry of M is denoted by Mij and its
ith column by mi. Let x be a vector in R

n×r, xi is the ith

component of x and xi or (x)i is the ith sub-vector of x of
size r. Thus, we can write x as x = [xt

1, ..., x
t
n]

t where the
superscript (.)t stands for transposition. If X = [x1, ..., xn]

is a matrix, then vec(X) = [xt
1, ..., x

t
n]

t is a vector. The
standard Kronecker product of matrices A and B is denoted
by C = A ⊗B. ‖x‖ is the classical euclidean norm of x.
The largest eigenvalue of a matrix A is λ1(A) and its spec-
tral norm is ‖A‖ =

√

|λ1(A)|. Finally, In is the identity
matrix of size n.

2. System model and ML detection problem

The considered system model is described by

y = Hx + b (1)

where y ∈ R
m is the baseband received vector, H ∈

R
m,n is the channel matrix, x ∈ {−1, 1}n is the informa-

tion vector also called information frame, and b is a real-
valued Gaussian noise vector with zero mean and covari-
ance matrix N0Im (m and n are positive integers n ≤ m).
This general model may represent several system among
which MIMO communications and CDMA multiuser com-
munications. Note that only binary communications are
considered. An extension to the non-binary case is still
under investigation. The case of complex modulations
(QPSK) can be reduced to the model of (1) by separating
the real and imaginary part of the signals as done in [7].

It is well known that the maximum likelihood detec-
tor associated with model (1) can be written via a binary
quadratic programming problem as follows :

BQP: arg min
x∈{−1,1}n

1

2
‖y −Hx‖2 .

As shown in [3], the previous problem BQP can be re-
formulated :



arg min
x∈{−1,1}n+1,x(1)=1

1

2
xtQx

where

Q =

(

yty −ytH

−Hty HtH

)

.

For a generic semidefinite positive matrix Q, BQP can-
not be solved in polynomial time. To overcome this diffi-
culty, eq. (2) is rewritten by using xtQx = Tr(xxtQ) =
Tr(XQ) with X ≥ 0, Xi,i = 1, and rank(X) = 1.
Dropping the constraint rank(X) = 1 leads to the so-called
semidefinite relaxation (SDP) [6].

SDP : arg min
X∈Sn+1

+

∀i∈{1,n+1} Xii=1

1

2
Tr (XQ)

Obviously, SDP gives rise to a sub-optimal detector but
is a convex linear program. Many algorithms have been pro-
posed in the litterature to solve this formulation [6]. Some
of these have been adapted to solve the CDMA multiuser
detection problem [3, 4] but the complexity of the resulting
algorithms is prohibitive. Since the constraint of semidefi-
nite positivity is difficult to handle, Burer [8] proposed the
change of variable X → V where V is a square root of X

i.e. X = V tV . The drawback of this approach is that the
number of variables (n2) in the optimisation is prohibitive.
Thanks to [9], Burer proposed to add the following con-
straint : rank(X) ≤ r where r is a "small" integer. To force
V to satisfy rank(X) ≤ r, only its r main rows are kept.
Thus, V belongs to R

r,n+1 instead of R
n+1,n+1. Finally,

the following non linear formulation of SDP is obtained :

NLSDPr : min
V =[v1,...,vn+1]

vi∈R
r,‖vi‖

2=1

1

2
Tr

(

QV tV
)

Note that the change of variables transforms the con-
vex program SDP into a non-convex one. An algorithm has
been proposed for solving NLSDPr in the context of asyn-
chronous CDMA based on the coordinate ascent method
[5]. We propose here a different approach, leading to a less
complex algorithm. We adapt the projected gradient algo-
rithm, a well known algorithm solving convex constrained
programs [10], to our nonconvex optimisation problem.
First of all, by vectorizing the matrix V , we get a new but
equivalent formulation as follows:

NLSDPr : min
v∈S

F (v) =
1

2
vtQ̃v

with v = vec (V ), Q̃ = Q ⊗ Ir and S = {v ∈
R

(n+1)r| v =
[

vt
1, ..., v

t
n+1

]t
, (∀i ∈ {1, n + 1}) vi ∈

R
r, and ‖vi‖ = 1}.

The original formulation above highlights the quadratic
nature of the optimization problem with non-convex con-
straints. In order to solve the constrained optimisation prob-
lems, the standard unconstrained gradient algorithm can be
modified to take into account the constraints. The modified
gradient algorithm is called the projected gradient algorithm
and its iteration is defined as follows [10]:

vk+1 =
[

vk − γM−1
∇F

(

vk
)]+

P
(2)

In our context, ∇F (v) = Q̃v and ∇
2F (v) = Q̃. The

matrix M is usually chosen as the diagonal of the Hessian
matrix, i.e., here M = diag

(

Q̃
)

= diag (Q)⊗Ir. The pa-
rameter γ ensures the convergence of the algorithm. Finally,
[.]+P is a projection onto S which is defined below.

The iteration is divided into two steps : the first one is
the standard gradient iteration step and the second one con-
sists of a projection onto the constraint set S. For quadratic
programming, these algorithms are well studied if S is con-
vex. Unfortunately, in our case, S is nonconvex : no con-
vergence result can be found in the literature. However, we
show that these algorithms keep some of their theoretical
convergence properties despite the non-convexity.

The projection [.]+P must be carefully chosen for the
algorithm to converge to a local minimum of the func-
tion F [10]. A classical choice is the projection induced
by the norm ‖x‖M =

√
xtMx, defined by [v]+M =

arg min‖y‖∈S ‖y − v‖2M . Some properties of this projec-
tion are listed below.

Proposition 2.1 For M = diag (Q) ⊗ Ir, the projec-
tion [v]

+
M onto S of any v ∈ R

(n+1)r is well defined if
(∀i ∈ {1, n + 1}) vi 6= 0 and the projected vector is :

[v]
+
M =

[

(

[v1]
+
)t

, ...,
(

[vn+1]
+
)t

]t

where [vi]
+

= arg min‖y‖=1 ‖y − vi‖2 = vi

‖vi‖
.

Projecting a vector v is done by projecting each block vi

onto the unit sphere. Because the projection is not defined
for the vectors v ∈ R

(n+1)r such that vi = 0 for some i, we
must modify eq. (2).

3. Iterative algorithms for the NLSDPr problem

The two proposed iterative algorithms are based on the
modification/adaptation of the iteration step of the algo-
rithm introduced in (2) for the projected gradient algorithm:
the first one refers to the so-called Jacobi iteration and the
second one relies on the so-called Gauss-Seidel iteration.



3.1. Jacobi iterations of the projected gradient

Here, unlike eq. (2), we define a modified projection
taking into account vectors having null sub-blocks. The al-
gorithm first computes ṽk+1 = vk−γM−1

∇F
(

vk
)

, then
a modified projection along M onto S is performed which
gives vk+1 as follows : if the sub-block ṽk+1

i = 0 then

vk+1
i = vk

i else vk+1
i =

ṽ
k+1

i

‖ṽk+1

i ‖ according to proposition

2.1. The overall mapping defined over S by vk → vk+1

is easily shown to be continuous over S. We call this algo-
rithm the Jacobi iterations of the Gradient Projected Algo-
rithm (J-GPA) and summarize its operation in the flowchart
Algorithm 1:

k = −1;

v0 =
[

(

v0
1

)t
, ...,

(

v0
n+1

)t
]t

,v0
i ∈ R

r,
∥

∥v0
i

∥

∥ = 1 ;
repeat

k ← k + 1;
ṽk+1 =

(

I(n+1)×r − γM−1Q̃
)

vk;

if ṽk+1
i = 0 then
vk+1

i = vk
i ;

else
vk+1

i =
ṽ

k+1

i

‖ṽk+1

i ‖ ;

end
until

∣

∣F
(

vk+1
)

− F
(

vk
)∣

∣ < εF
(

vk
)

;

Algorithm 1: Jacobi iterations of the gradient projected
algorithm

The following proposition shows that every iteration of
the algorithm reduces the objective function.

Proposition 3.1 If γ ≤ mini∈{1,n+1} Qii

‖Q‖2 , then the sequence
{

F
(

vk
)}

k
decreases and converge.

This proposition gives the range of theoretically admis-
sible values for the step size γ. In practice, convergence is
observed even with higher values of γ.

The sequence of vectors generated by the algorithm is
bounded, so it admits limit points. Here is a proposition
giving an important property of these points :

Proposition 3.2 Any limit point v∞ of the sequence
{

vk
}

k

is stationary.

Stationnary points are points which satisfy first order
Lagrange necessary conditions for local optimality. We can-
not prove that the stationary points are local minimums be-
cause the problem is non-convex but we show through sim-
ulations in section 4 that the algorithm offers good conver-
gence behaviour in practice.

3.2. Gauss-Seidel iterations of the projected gradient

We introduce now a variant of the precedent al-
gorithm, based on the observation that the Jacobi it-
eration updates the vk+1

i by using only the old sam-
ples

{

vk
j

}

j∈{1,n+1}
. The Gauss-Seidel iteration updates

vk+1
i with the most recently computed

{

vk+1
j

}

j∈{1,i−1}

instead of the
{

vk
j

}

j∈{1,i−1}
. Defining zk,i =

[

(

vk+1
1

)t
, ...,

(

vk+1
i−1

)t
,
(

vk
i

)t
, ...,

(

vk
n+1

)t
]t

and using the
identity M = diag (Q) ⊗ Ir, a Gauss-Seidel iteration of
the gradient algorithm (GS-GPA) is :

(∀i ∈ {1, n + 1}) vk+1
i =

[

vk
i − γQ−1

ii

(

Q̃zk,i
)

i

]+

This is summarized in the flowchart Algorithm 2.

k = −1;

v0 =
[

(

v0
1

)t
, ...,

(

v0
n+1

)t
]t

,v0
i ∈ R

r,
∥

∥v0
i

∥

∥ = 1 ;
repeat

k ← k + 1;
for i ∈ [1, n + 1] do

ṽk+1
i = vk

i − γQ−1
ii

(

Q̃zk,i
)

i

if ṽk+1
i = 0 then
vk+1

i = vk
i ;

else
vk+1

i =
ṽk+1

i

‖ṽk+1

i ‖ ;

end
end

until
∣

∣F
(

vk+1
)

− F
(

vk
)∣

∣ < εF
(

vk
)

;

Algorithm 2: Gauss-Seidel iteration of the gradient
projected algorithm

Convergence properties of this algorithm are mentioned
in the propositions 3.3 and 3.4

Proposition 3.3 If γ ≤ 1, then the sequence
{

F
(

vk
)}

k

decreases and converges.

Proposition 3.4 Any limit point v∞ of the sequence
{

vk
}

k

is stationnary.

Notice that the proofs of all the propositions are omitted
due to the lack of space. One can show that the particu-
lar case γ = 1 leads to the algorithm introduced in [5] for
which no convergence proof was given.



4. Numerical analysis of proposed algorithms

4.1. Gauss-Seidel vs. Jacobi iterations

The J-GPA algorithm suffers from the classical slow
convergence of gradient based algorithms whereas GS-JPA
offers much faster convergence. Notice however that these
algorithms exhibit the same performance in terms of error
rates since they both solve exactly the same optimisation
problem. Therefore we focus on the latter algorithm for the
performance and complexity analysis.

4.2. Performance and influence of the algorithm param-
eters

The channel matrix H entries are gaussian i.i.d with
unit variance and m = n = 50. This is a very hard instance
of the detection problem and is therefore a good bench-
mark for comparing the performance of various detection
algorithms. The parameters of GS-GPA were optimized by
simulation. The minimum relaxation size incurring no per-
formance loss is found to be r = 3, which reduces dras-
tically the complexity compared to the full size relaxation
case r = n + 1. The minimum number of iterations needed
to achieve a precision of ε = 10−3 is 15 iterations with a
step size of γ = 1.6. Using these parameters, no perfor-
mance loss was observed when compared to the full size re-
laxation infinite iterations case. Figure 1 compares the per-
formance (in terms of Frame Error Rate (FER)) of our algo-
rithm to the optimal sphere decoder and other sub-optimal
decoders such as the generalised MMSE and the non linear
PIC described in [11]. The GS-GPA performs 3 dB better
than NL-PIC at FER = 10−3 but 2 dB worse than sphere
decoder.

4.3. Complexity study and implementation considera-
tions

The GS-GPA algorithm consists of matrix-vector prod-
ucts and scalar products for an overall complexity of
O(rn2) floating point operations per iteration. If we de-
note K the number of iterations, the overall complexity is
O(Krn2) per frame or O(Krn) per information bit. Usu-
ally, Kr ≈ n so the complexity is O(n2) which is compara-
ble to the complexity of the sphere decoder. However, from
an implementation point of view, our algorithm presents the
very interesting property that it is well suited for paralleliza-
tion, while the sphere decoder is not. Compared to the al-
gorithm of [5], the iterations of both algorithms are equally
complex. However our algorithm requires half less itera-
tions to converge.
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Figure 1: Performance comparison of NLSDP3 with vari-
ous detectors

5. Perspectives and conclusion

We presented two sub-optimal algorithms performing
close to the optimum decoder for MIMO systems, called
J-GPA and GS-GPA, based on the iterative solution of a re-
duced rank SDP relaxation of the ML decoding. GS-GPA
algorithm is less complex than other similar known algo-
rithms in the litterature. Moreover, our algorithms presents
interesting properties from an implementation point of view.
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