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Abstract—We consider a system where a local cache maintains
a collection of N dynamic content items that are randomly
requested by local users. A capacity-constrained link to a remote
network server limits the ability of the cache to hold the latest
version of each item at all times, making it necessary to design an
update policy. Using an age of information metric, we show under
a relaxed problem formulation that an asymptotically optimal
policy updates a cached item in proportion to the square root
of the item’s popularity. We then show experimentally that a
physically realizable policy closely approximates the asymptotic
optimal policy.

I. INTRODUCTION

Consider a local cache connected by a capacity-constrained
link to a remote network server, as shown in Figure 1. The local
cache maintains a collection of N dynamic content items that
are randomly requested by local users. These content items
are dynamic in that they are subject to random continuous
replacement by newer versions at the remote server. However,
the capacity-constrained remote link limits the ability of the
local cache to maintain the latest version of each item. When a
user requests a content item, the cache sends its local (possibly
outdated) version.

We observe that this system model arises in various settings.
For example, the content items could be records in a database
and the cache provides access to a local copy. The cache could
also represent a small-cell base station that delivers popular
content to nearby mobile users. Downloads by the mobile users
would occur over short-range links in unlicensed spectrum but
the remote link would be over a longer distance and in licensed
spectrum. In this case, a network operator will wish to limit the
rate of the remote link. In another scenario, the local caches
may be local storage in a TV/video news distribution system
with the remote link by a satellite that broadcasts the same
content updates to thousands of local caches.

In these examples, the remote link is slow and/or expensive
relative to the links from the cache to the local users; this
precludes going to the remote server to satisfy each local
request. Item downloads to the local users will occur at a much
higher frequency than downloads from the remote link to the
cache. Thus our goal is to try to ensure that the items delivered
by the cache to the local users are as up-to-date as possible.
Because the remote server has the current version of each item,
the question is how should updated items be downloaded from
the server. Put another way, how should the remote server send
updates to the local cache so that users receive the most recent
versions of the items they request?

To examine this question, Section II develops a simple
discrete-time model in which only one update can occur in
each slot. Based on an age of information metric to measure
how outdated are the cache’s responses to locally requested
items, we formulate a finite horizon update scheduling problem
to minimize the average age of a requested item. A relaxation
of this problem then provides a lower bound on the average
age. In Section III, we identify a simple asymptotic solution
to the relaxed problem. Since these steps relax the discrete-
time updating model, Section IV shows that a discrete-time
approximation of the optimal asymptotic policy suffers only
a small penalty. Performance results comparing analysis and
simulation appear in Section V. Section VI concludes the paper.

A. Related Work

In applying an age of information (AoI) metric to updates in
a cache, this paper is related to several recent works on AoI; see,
for example, [1]–[3]. These works employ the canonical setting
for AoI analysis: one or more sources send status updates
about processes to a monitor across a network service facility.
In this work, the remote server is the source, the dynamic
content items are the processes, and the local cache is the
monitor. As in [4], [5], multiple processes are being updated
simultaneously. However, in [5] each process is associated
with an independent updating source that is competing for
the service facility. Instead, the remote server here is a single
source that controls the updating of all processes. This work
also has some similarity to [6]–[8] in that updates are not
submitted as a Poisson process; rather, the source can control
the submission of updates. However, these prior contributions
control the updates to mitigate the impact of randomness in the
service times. In this work, the service time model is simply
that transmission of an update requires a deterministic unit of
service. With respect to AoI, the primary novelty of this work
is the use of a popularity-weighted AoI metric. The goal is to
minimize the average age of items requested from the local
cache. Thus the AoI of an item is weighted by how frequently
it is requested.

II. PROBLEM FORMULATION

We assume the cache hosts a set of N timestamped items
N = {1, . . . , N}. Because the items are subject to version
updates, we use Xn(t) to track the age of item n at time t.
That is, if the version of item n in the cache at time t is
timestamped vn(t) then Xn(t) = t− vn(t).
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Fig. 1. Local cache system.

We assume time is slotted such that the transmission of
an update from the server to the cache requires exactly one
slot. For an integer t, slot t refers to the unit time interval
(t− 1, t]. When item n is updated in slot t0, a version of item
n with timestamp t0 − 1 begins transmission at time t0 − 1
and becomes available for downloading from the cache at time
t0. At time t0 the age Xn(t) is reset to Xn(t0) = 1. If no
subsequent updates of item n occur in the time interval (t0, t1)
then Xn(t1) = t1−(t0−1). For convenience of exposition, we
assume every item is updated in slot zero so that Xn(0) = 1
for every item n. This yields the discrete-time sawtooth process
depicted in Figure 2.

Because the link to the remote server is constrained, the
local cache is able to download items at a rate λ, a fraction
of the rate at which items are delivered to local users. In time
slot t, a single file ut may be updated from the server. We
use ut = 0 to mark a slot t in which no file is updated. The
update vector u =

[
u1, . . . , uT

]
then specifies the age process

{Xn(t) : 0 ≤ t ≤ T} for each item n.
The items the cache hosts have varying degrees of popularity.

In particular, item n is requested from the cache with probability
pn > 0, independent of all other requests. We refer to pn as
the popularity of item n and to

p =
[
p1 · · · pN

]
(1)

as the popularity vector.
Given the update vector u, a request for item n made at a

time uniformly distributed over [0, T ] has average age

Xn(u) =
1

T

∫ T

0

Xn(t) dt. (2)

Based on the popularity model, the average age of a randomly
requested item from the cache is

X(u) =

N∑
n=1

pnXn(u). (3)

Our objective is to find the update sequence u1, . . . , uT that
minimizes X(u), i.e., we would like to solve the following
update scheduling problem:

X
∗
(K,T ) = min

u
X(u). (4a)

subject to
ut ∈ {0, . . . , N} for all t, (4b)
T∑
t=1

1{ut>0} = K. (4c)

As 1{A} = 1 if event A is true, and is otherwise zero, the
constraint (4c) limits the remote server to K updates over the
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Fig. 2. The discrete time age process Xn(t), with updates at times t1 = 5
and t2 = 9. The inter-update times are τ1 = 5, and τ2 = 4.

T slots. Furthermore, implicit in the definition of the update
vector u are the following constraints:
C1: Updates occur only in discrete time slots.
C2: Updates are collision-free; no more than one item is

updated in a slot.
While these constraints suggest (4) is an intractable combinato-
rial optimization problem, the complexity class of (4) remains
open. We sidestep this question with the following approach:

1) In Section II-A, we relax constraints C1 and C2 and
express the relaxed optimization problem in terms of the
inter-update times {τn,i}. In this relaxation, the transmis-
sion of an update is not limited to an integer slot time
and that multiple items can be updated simultaneously.

2) In Section III-A, we assume that kn updates are allocated
to item n, and find the age-minimizing update schedule
for item n.

3) Finally, in Section III-B, we optimize the allocation
k1, . . . , kN of updates across all N items in the limit
of large T ; integer optimization of kn is replaced by
continuous optimization of the asymptotic update rate
λn = limT→∞ kn/T .

The relaxation of constraints C1 and C2 leads to an approximate
problem that provides a lower bound on X

∗
(K,T ), denoted

by X
∗
lb(K,T ). In the asymptotic setting of large T , this lower

bound is optimized to yield X
∗
alb(p, λ), a function of the

popularity vector p and the overall update rate λ =
∑N
n=1 λn.

A. Relaxed Problem on Inter-Update Times

We start by reformulating (and then relaxing) Problem (4).
Given updates of item n occur in slots tn,0 = 0, tn,1, . . . , tn,kn ,
we define the inter-update times as

τn,i =

{
tn,i − tn,i−1, i = 1, . . . , kn,

T − tn,kn , i = kn + 1.
(5)

Referring to Figure 2, the average of Xn(t) in (2) can be
expressed as a function of the vector τn = (τn,1, . . . , τn,kn+1)
of inter-update times as

Xn(τn) =
1

T

kn+1∑
i=1

∫ τn,i

0

(t+ 1) dt =

kn+1∑
i=1

τ2n,i + 2τn,i

2T
. (6)

Since
∑kn+1
i=1 τn,i = T , it follows from (6) that

Xn(τn) =
1

2T

kn+1∑
i=1

τ2n,i + 1. (7)



We can reformulate Problem (4) by expressing the constraint
C2 in terms of τn,i; however, this fails to simplify the problem.
Instead, the relaxation of both constraints C1 and C2 leads to
the following approximate problem providing a lower bound
��ofon X

∗
(K,T ), denoted by X

∗
lb(K,T ).

X
∗
lb(K,T ) = min

τ1,...,τN

N∑
n=1

pnXn(τn) (8a)

subject to
τn,i ≥ 0, for all n, i, (8b)
τn,1 + · · ·+ τn,kn+1 = T, for all n, (8c)
N∑
n=1

kn = K with kn ∈ N. (8d)

III. RELAXED PROBLEM RESOLUTION

To solve Problem (8), we have to find the number of updates
kn and the inter-update times τn for all n. Given kn, however,
Problem (8) becomes separable. Therefore we can work item
by item, minimizing Xn(τn) in (7) for each item n.

A. Optimal Inter-Update Times for Each Item

For fixed kn, our relaxed subproblem for item n is:

X lb,n(τ ∗n) = min
τn

Xn(τn) (9a)

subject to
τn,i ≥ 0 for all i, (9b)
τn,1 + · · ·+ τn,kn+1 = T. (9c)

According to (7), this optimization problem is convex. From
the Karush-Kuhn-Tucker (KKT) conditions, we obtain

τ∗n,i =
T

kn + 1
, i = 1, . . . , kn + 1. (10)

This verifies that identical deterministic inter-update times is
an optimal policy for a limited number of updates of a single
item. Applying (10) to (7), this policy yields

X lb,n(τ ∗n) = X
∗
lb,n(kn) =

T

2(kn + 1)
+ 1. (11)

B. Optimal Update Frequencies

According to (8) and (11), we now would like to solve the
following optimization problem over the kn.

X
∗
lb(K,T ) = min

k1,...,kN

N∑
n=1

pnX
∗
lb,n(kn) (12a)

subject to
kn ∈ N, for all n, (12b)
N∑
n=1

kn = K. (12c)

Although (12) is substantially simpler than (8), it remains hard
to solve due to the integer assumption on kn. To overcome this
issue, we will consider an asymptotic approach (i.e., large T .)
We replace kn with λn = kn/T , where λn is now a positive

real-valued term. In the limit of large T , the relaxed average
age of item n in (11) becomes1

X
∗
alb,n(λn) = lim

T→∞
X
∗
lb,n(kn) =

1

2λn
+ 1. (13)

Problem (12) is thus reformulated as

X
∗
alb(p, λ) = min

λ1,...,λN

N∑
n=1

pnX
∗
alb,n(λn) (14a)

subject to
λn ≥ 0, (14b)
λ1 + · · ·+ λN = λ. (14c)

We note that the subscript “a” stands for asymptotic. Given
(13), one can readily see that optimization problem (14) is
convex. From its KKT conditions, we obtain

λ∗n =
λ
√
pn∑N

i=1

√
pi
. (15)

We remark the update rate of item n follows a square-root law
with respect to its popularity. Applying (13) and (15) to (14),
we find that the minimum asymptotic relaxed average age is

X
∗
alb(p, λ) =

∆∗(p)

λ
+ 1, (16)

with

∆∗(p) =
1

2

( N∑
i=1

√
pi

)2
. (17)

Since X
∗
alb(p, λ) was obtained by relaxing the integer-

assumption on the inter-update times, it forms a lower bound
on the average age of a requested item under the optimal
collision-free discrete-time schedule. Defining X

∗
a(p, λ) =

limT→∞X
∗
(λT, T ), we have

X
∗
alb(p, λ) ≤ X∗a(p, λ). (18)

C. Discussion

We observe in (15) that the update rate for item n should be
proportional to the square root of its popularity. “Square root”
proportional caching policies have appeared before in [9]. In
this work, each item was a file that was mirrored at a random
number of sites in a content distribution network (CDN). Each
site could hold only a fraction of the entire collection of files,
so a user requesting a file would randomly search sites in the
CDN until the file was found. It was shown that to minimize
the average number of sites searched, the fraction of sites that
host file n should be in proportion to the square root of the
popularity of file n. In the CDN, the item/file was sprinkled
over the sites and there was a linear cost in how many sites
must be visited to find the item. In version caching, item
updates are sprinkled through time and there is a linear cost in
how far back in time one must go to find the most recent item
update. In both cases, items (or item updates) are sprinkled in
proportion to the square root of their popularity.

1As λn = limT→∞ kn/T , we also have λn = limT→∞(kn + 1)/T .



IV. DISCRETE-TIME UPDATING

We now describe a practical update policy that takes into
account constraint C1 and approximates the ideal periodic
updating that led to X

∗
alb(p, λ) derived in the previous section.

Our approach is to update item n with randomly quantized
i.i.d. inter-update times Zn,1, Zn,2, . . .. Defining τn = dτ∗ne
and qn = τn − τ∗n (and so qn ∈ [0, 1]), each Zn,i is defined to
have PMF

PZn
(z) =


qn z = τn − 1,

1− qn z = τn,

0 otherwise.
(19)

It is straightforward to verify that

E[Zn] = τ∗n E
[
Z2
n

]
= [τ∗n]2 + qn(1− qn). (20)

Under the update policy Zn, the process Xn(t) is as shown
in Figure 2, with inter-update times Zn,i = τn,i. The value
of Xn(u) in (2) can be viewed as the average reward rate of
a renewal-reward process [10]. Each update marks a renewal
and renewal i earns a reward Ri = Z2

n,i/2 +Zn,i equal to the
integral of Xn(t) over the renewal period. (In Figure 2, the
shaded area depicts the reward Ri.) By the renewal-reward
theorem, the average reward rate of this discrete-time (dt)
updating policy is

Xadt,n = lim
T→∞

Xn(T ) =
E
[
Z2
n/2 + Zn

]
E[Zn]

=
E
[
Z2
n

]
2E[Zn]

+ 1.

(21)

Applying (20), we obtain

Xadt,n =
τ∗n
2

+
qn(1− qn)

2τn
+ 1

=
1

2λ∗n
+
qn(1− qn)λ∗n

2
+ 1. (22)

It follows from (15) that the average age of a requested item is

Xadt(p, λ) =

N∑
n=1

pnXadt,n

= X
∗
alb,n(p, λ∗) +

1

2

N∑
n=1

pnqn(1− qn)λ∗n. (23)

We define the quantization error associated with quantizing the
inter-arrival times to integer numbers of slots as

ε =
1

2

N∑
n=1

pnqn(1− qn)λ∗n. (24)

Since qn(1− qn) ≤ 1/4, it follows from (24) that ε ≤ λε(p)
where

ε(p) =
1

8

N∑
n=1

pnλ
∗
n =

1

8

∑N
n=1 p

3/2
n∑N

i=1 p
1/2
i

. (25)

Thus, by (18), we obtain the inequality

X
∗
alb(p, λ) ≤ Xadt(p, λ) ≤ X∗alb(p, λ) + λε(p). (26)

As pn ≤ 1, we get p3/2n ≤ p1/2n which implies that ε(p) ≤
1/8. As each item transmission requires one time slot, an extra
λ/8 of a time slot on the average is essentially negligible.

V. EXAMPLES AND SIMULATIONS

A. Popularity Distributions

For our experiments, we compare uniform (equal) and Zipf
popularity distributions.

Uniform Popularity: In this case, pn = 1/N , implying
λ∗n = λ/N , τ∗n = N/λ and

∆∗(p) =
N

2
ε(p) =

1

8N
. (27)

Uniform popularity induces round robin updating of each item
every N slots. Note that the age performance of uniform
popularity is achieved by any popularity vector p when the
items are updated in round robin fashion.

Zipf Popularity: For the Zipf distribution, pn = CN (s)/ns

where s ≥ 0and

CN (s) =
( N∑
n=1

1

ns

)−1
. (28)

From (17) and (25),

∆∗(p) =
CN (s)

2C2
N (s/2)

, ε(p) =
CN (s)CN (s/2)

8CN (3s/2)
. (29)

Thanks to Cauchy-Schwartz inequality, one can prove that
∆∗(p) for Zipf popularity is less than N/2 and so better than
the uniform popularity case.

B. Collision-Resolution Mechanism

In the development of the asymptotic lower bound, we have
ignored the effect of colliding updates on the network link. This
issue can be resolved by queuing. Unlike prior work, [1]–[5] for
example, in which queueing contributed substantially to the age,
a smart queuing technique for the problem at hand makes that
the performance loss related to queueing is practically nil. We
propose the following mechanism. If an update is scheduled in
slot t for which there is already a backlog of b queued updates,
then that update will be deferred to slot t+ b. However, the
server does not queue the slot t version of the item. Instead,
in slot t + b, the server sends the current slot t + b version.
The scheduling queue thus does not cause delivered updates
to become stale, but rather adds some additional randomness
to the inter-update times for each item.

C. Simulation Experiments

In our simulation experiments, we start with a given
popularity vector p and overall update rate λ. The update
rates λ∗n = 1/τ∗n are calculated using (15). For each item n, a
randomly quantized schedule of i.i.d. inter-update times Zn,i
based on (19) is then generated and the collision resolution
mechanism described in the previous subsection is applied. The
resulting system generates a slot-quantized collision-free update
schedule that was required by the original update scheduling
problem (4).

Except otherwise stated, we fix N = 50 items, and a
simulation time of T = 100 maxn τ

∗
n slots, which means

the least popular item is updated roughly 100 times. In each
figure, solid lines represent the closed-form asymptotic lower
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bound expressions obtained in Section III whereas the markers
correspond to the evaluations through the experimental protocol
described above.

For Zipf-distributed and uniform popularity vectors, Figure 3
plots the average age for each item n with overall update rate
λ = 0.5. In the figure, solid lines depict X

∗
alb,n(p, λ) in (16).

As expected, the proposed policy reduces the average age
of more popular items at the expense of less popular items.
Moreover, as the solid lines are close to the markers, the effects
of quantization and the scheduling queue are negligible for all
items, independent of an item’s popularity.

In Figure 4, we examine the average age (averaged over all
items) as a function of the overall update rate λ. The solid lines
show the asymptotic lower bound average age X

∗
alb(p, λ) for

each popularity vector p. We observe that at all arrival rates λ,
the experimental protocol essentially matches the corresponding
asymptotic lower bound. This figure also shows that as the
Zipf parameter s increases, optimization of the update rates is
able to exploit the concentration in the popularities.

In Figure 5, we show how the normalized average age
∆∗(p) varies with popularity for N = 50 items. Specifically,
for Zipf popularity, we see that increasing parameter s reduces
the average age as the popularity distribution concentrates
on fewer but more popular items. Similarly, as s → 0 and
Zipf approaches uniform, the average age approaches that of
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Fig. 5. The normalized average age ∆∗(p) for N = 50 items with Zipf (s)
popularity as a function of parameter s.

uniform popularity.

VI. CONCLUSION

This work introduces a popularity-weighted age of informa-
tion metric for updating dynamic content in a local cache. We
have shown that updating rates of the items in the local cache
should be proportional to the square-root of items’ popularity
among the requesting users. Finding a tractable solution to the
optimal update schedule has required an asymptotic treatment.
We have observed that the performance of a physical realizable
policy is indistinguishable from that of the asymptotic one.

An interesting future research direction for the proposed
framework is to consider item popularities that evolve in time
and are dependent on previous requests. This allows modeling
scenarios where a file can become more popular the more often
it is downloaded and viewed.
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