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Abstract: In the blind equalization problem, one can recently observe that the sought
unknown filter can be performed from the sole knowledge of second order statistics
of the received signal. According to this fact, a powerful algorithm which is the so-
called subspace method has been developed. The subspace method was previously
described in rational spaces framework which seemed to be unappropriated. Indeed,
the filter to identify is polynomial. In this paper, we show how the module theory
over the polynomial ring

�
[z] and, in particular, the duality of modules can highlight

the previous proof of the subspace method and lead to generalize its results.
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1. INTRODUCTION

In a wireless communication scheme, in order to
retrieve the transmitted information, the receiver
has to remove an Inter Symbol Interference arising
from the propagation channel (Proakis, 1989). It
is the so-called equalization problem. Obviously
the channel is unknown and has to be identified.
The so-called blind identification problem consists
in estimating the disturbing channel from the
sole knowledge of the received signal. (Tong et
al., 1991) has recently noticed that the channel
could be estimated from the sole knowledge of its
second order statistics. This problem is equivalent
to determine the coefficients of a SIMO (Single
Input/Multi Output) MA process from its power
spectral density. This analysis led to introduce
new algorithms. The most popular one is the
subspace method (Moulines et al., 1995). An ex-
tension to a MIMO (Multi Input/Multi Output)
case is addressed in (Abed-Meraim et al., 1997).

For a few years, the interest of the MA process has
grown up in control theory again. Although the

module theory (Bourbaki, 1980; Rotman, 1979)
has been already used for analyzing the control
systems (Kalman et al., 1969), many results rely-
ing on module theory have been recently obtained
in control theory (Oberst, 1990; Fliess, 1990; Pom-
maret and Quadrat, 1999). The module theory
enables us to reformulate the problems in a more
appropriate way and to highlight some well-known
results. Furthermore, this new point of view leads
to obtain some theorems which cannot be proved
in another way (Pommaret and Quadrat, 1999).

In blind equalization problem, we wish to de-
termine the components of a polynomial trans-
fer function. Although the subspace method only
deals with polynomial matrix operators, its anal-
ysis is based on the rational spaces associated
with the rational functions. This rational spaces
approach however leads to some interesting results
(Abed-Meraim et al., 1997). It is clear that the
polynomial matrix set can strongly be linked with
modules structure. Therefore, the module theory
should be a more relevant framework.



In this paper, we analyze the subspace method
by means of the module theory. The modules ap-
proach leads to highlight some well-known results
and to generalize some others.

This paper is organized as follows. In Section
2, we review the blind identification problem. In
Section 3, we briefly remind of the module theory.
In Section 4, we address the subspace method.
Finally, Section 5 is devoted to proofs.

2. REVIEW ON BLIND IDENTIFICATION

We consider a i.i.d. zero-mean unit-variance circu-
lar symbol sequence {sn}n∈� containing the dig-
ital information to transmit. The sequence is as-
sumed to be linearly modulated and to be shaped
thanks to a Nyquist filter g(t) at the baud rate
1/Ts. Hence, the continuous-time transmitted sig-
nal xa(t) writes as follows

xa(t) =
∑

k∈�

skga(t− kTs).

In a wireless communication system (see, e.g.,
GSM standard), the signal passes through a multi-
path propagation channel. At the receiver, a single
antenna is used. For sake of clarity, we only
treat the noiseless case. Then, the continuous-time
received signal ya(t) is as follows

ya(t) =
∑

n∈�

snha(t− nTs)

with ha(t) depending on the shaping filter and
on the propagation channel. Without restriction,
ha(t) is assumed to be causal and time-limited.

At the receiver, we wish to retrieve the transmit-
ted information, i.e., the symbol sequence. The
convolution filter ha(t) spans an Inter-Symbol In-
terference (ISI) which disturbs the information
retrieval. Removing ISI is thus necessary. Due to
the unknown multi-path propagation channel, the
mapping t 7→ ha(t) is also unknown. Therefore, we
may identify it (or one of its sampled versions).
In most cases, the transmitter sends a training
sequence which is a small symbol sequence known
from the receiver. Sampling the continuous-time
received signal corresponding to the transmitted
training sequence at baud rate 1/Ts and then
matching the obtained discrete-time signal with
its theoretical closed-form expression enables us
to estimate the filter accurately. Unfortunately,
this method decreases the effective transmission
rate. Moreover, in some contexts (e.g., military
context), this approach fails because the training
sequence is not available.

Therefore, several works focus on the channel
identification from the sole data ya(t), i.e., with-
out any deterministic knowledge on {sn}n∈�. This
problem can be solved by exploiting either the

high order statistics or the second order cyclic
statistics of the received signal.

One avoids to use high order approaches because
they have some numerical drawbacks. One can
notice that the second order statistics of the
continuous-time received signal is cyclostationary
and not stationary. This means that the correla-
tion mapping (t1, t2) 7→ rya

(t1, t2) =
�
[ya(t1 +

t2)y
∗
a(t1)] is periodic in the variable t1 with the

period T (see (Proakis, 1989) and references
therein). The notation

�
[.] stands for the math-

ematical expectation. More precisely, Ts is the
cyclic period of ya(t). If the receiver samples the
continuous-time received signal at the baud rate
1/Ts, the discrete-time sampled signal becomes
stationary. Then, it is well known that the fil-
ter estimation is not possible. In order to keep
the cyclostationary property on the discrete-time
sampled signal, (Tong et al., 1991) proposes to
oversample the continuous-time received signal at
baud rate 1/Te = q/Ts with q an integer strictly
greater than 1. In such a case, y(n) = ya(nTe)
takes the following form

y(n) = [h(z)].vn (1)

where h(z) =
∑L′

l=0 ha(lTe)z
−k. L′ is equal to

the integer part of LaTe, where La is the length
of the time support of ha(t). The notation [.]
stands for a convolution operator. {vn}n∈� is the
“pseudo-symbol” sequence obtained by inserting
(q − 1) zero between two consecutive symbols sn.
In this way, the second order information is con-
tained in the set of the following so-called cyclo-
spectra {h(e2iπf )h(e2iπ(f−k/q))∗, k ∈ {0, · · · , q −
1}}. (Tong et al., 1991) has proved that this set
provided enough information to blindly identify
the channel under the following condition on the
filter : the polyphase components of h(z) get no
common zero.

The model (1) can be rewritten in the following
form. We stacked the data in a q-variate process
{Y (n)}n∈�. Hence, Y (n) = [y(qn), · · · , y(qn + q−
1)]T . The multivariate process Y (n) is stationary.
Moreover we obtain that

Y (n) = [H(z)].sn

where H(z) =
∑L

k=0 Hkz−k is a causal FIR q × 1
transfer function. L represents the nearest upper
integer of L′/q. More precisely, we have

H(z) = [h0(z), · · · , hq−1(z)]T ,

with hk(z) the kth polyphase component of h(z).
This stationary SIMO model is equivalent to
the previous cyclostationary SISO (Single In-
put/Single Output) model. The second order
statistics of Y (n) are described by the multivari-
ate power spectral density

SY (e2iπf ) : f 7→ H(e2iπf )H(e2iπf )∗. (2)



It is well known that if H(z) is minimum phase,
then SY (e2iπf ) determines H(z) perfectly. Fortu-
nately, in the multivariate case, H(z) is minimum
phase if the previous assumption on h(z) holds.

Several algorithms relying on oversampling ap-
proach have been introduced. Among them, the
most popular one is the subspace method intro-
duced by (Moulines et al., 1995) because its the-
oretical performance is good and its computation
complexity is low. Unfortunately, it is not widely
used because the performance is poor in the band-
limited case (Ciblat and Loubaton, 1998).

The previous scheme can be extended to the p-
variate input case (with 1 < p < q). The exten-
sion makes sense in a multi-user communication
system. The model is modified as follows

Y (n) = [H(z)].Sn (3)

where H(z) is henceforth a q×p transfer function

and Sn = [s
(1)
n , · · · , s

(p)
n ]T is a p-variate process

and each of its components s
(j)
n represents a trans-

mitted source. Without loss of generality, {Sn}n∈�
is assumed to be a zero-mean, unit-variance and
i.i.d. process. Recovering the different inputs from
the received signal is the so-called source separa-
tion problem. We still wish to identify the polyno-
mial matrix H(z) only from the spectral density
function of Y (n) which has the same form than
in (2). This problem is connected to the spectral
factorization problem. Indeed, equation (3) repre-
sents a MA process. It is well known that H(z) can
be identified up to a p×p orthogonal matrix under
certain might conditions (Rozanov, 1967). The
above mentioned subspace algorithm tries to solve
this factorization problem. In the case p = 1, the
subspace method is powerful. Therefore, (Abed-
Meraim et al., 1997) has adapted it to the multi-
input case. Unfortunately, in such a case, the
subspace method fails (Abed-Meraim et al., 1997).
In this paper, even if the subspace method is not
relevant in the case p > 1, we continue to consider
this extended case in order to show the power of
the module tools.

3. REVIEW ON MODULE THEORY

In the sequel, we shall note by
�
[z] the

�
-algebra

of polynomials ring in z−1 with coefficients in
�
.

Recall that
�
[z] is a commutative integral domain

(∀ a, b ∈
�
[z], a b = 0, a 6= 0⇒ b = 0) as well as a

principal ideal domain, i.e. any ideal I of
�
[z] has

the form of I =
�
[z] a for a certain a ∈

�
[z].

d denotes the q × p matrix with entries in
�
[z]

(0 < p ≤ q). We define the
�
[z]-morphism d. by

d. :

{ �
[z]p −→

�
[z]q

y(z) = [y1(z), · · · , yp(z)]T −→ d(z) y(z),

and the
�
[z]-module (Malgrange, 1962)

coker (d.) =
�
[z]q/im(d.) =

�
[z]q/d(z)

�
[z]p .

The dual of d. is the
�
[z]-morphism .d defined by:

.d :

{ �
[z]p ←−

�
[z]q

y(z) d(z) ←− y(z) = [y1(z), · · · , yq(z)].

We denote

coker (.d) =
�
[z]p/im(.d) =

�
[z]p/

�
[z]pd(z)

We now recall certain concepts of useful homolog-
ical algebra (Bourbaki, 1980; Rotman, 1979).

Definition 1. Let Pj and Pj−1 be
�
[z]-modules.

• A complex is a sequence of
�
[z]-morphisms

dj : Pj → Pj−1 such that:

dj ◦ dj+1 = 0⇔ im dj+1 ⊂ ker dj , ∀ j ∈ �.

• A complex is exact at Pj if im dj+1 = ker dj .
• A complex is exact if im dj+1=ker dj , ∀j ∈ � .
• Finally, a complex is usually denoted by:

. . .
dj+1

−→ Pj
dj

−→ Pj−1
dj−1

−→ Pj−2
dj−2

−→ . . .

The following theorem provides a relationship
between ker(dj) and coker(dj).

Theorem 1. Let i and π denote the canonical in-
clusion and surjection respectively. The following
exact sequence is exact.

0 −→ kerdj
i
−→ Pj

dj

−→ Pj+1
π
−→ cokerdj −→ 0

We introduce usual properties of a module.

Definition 2. A finitely generated
�
[z]-module M

is

(1) free if M ∼=
�
[z]n for a certain n ∈ �+,

(2) torsion-free if its torsion-submodule, namely

t(M) = {m ∈M | ∃ 0 6= a ∈
�
[z], a m = 0},

is trivial, i.e. t(M) = 0. Any element m ∈
t(M) is called a torsion element of M ,

(3) torsion if t(M) = M .

The following theorem describes the link between
the freeness and torsion notions.

Theorem 2. Let M be a
�
[z]-module, then M is

free iff it is torsion-free.

Recall that
�
(z) is called the quotient field of

�
[z].

Let us note S =
�
[z] \ 0. If M is a

�
[z]-module,

then we can define the
�
(z)-vector space S−1M

by : S−1M = {m/s | m ∈M, 0 6= s ∈
�
[z]}.

Definition 3. The rank of a
�
[z]-module M is

defined by rank(M) = dim� (z) (S
−1M).



One can obtain the following theorems.

Theorem 3. We consider the following exact se-
quence of

�
[z]-modules

0→M
f
−→ N

g
−→ P → 0. (4)

Then the following sequence is exact :

0→ S−1M
S−1f
−→ S−1N

S−1g
−→ S−1P → 0,

with S−1f(a⊗m) = a f(m), ∀ (a, m) ∈
�
(z)×M.

Corollary 1. Let (4) be an exact sequence of
�
[z]-

modules, then rank(N) = rank(M) + rank(P ).

Let us finally denote by hom� [z] (M,
�
[z]) the

�
[z]-

module of
�
[z]-morphism from M to

�
[z]. M? =

hom� [z] (M,
�
[z]) is called the dual module of M .

We now provide a few propositions dealing with
the dual module (Bourbaki, 1980; Rotman, 1979).

Proposition 1. We have the following assertions:

(1) M is a torsion
�
[z]-module iff rank(M) = 0.

(2) M is a torsion
�
[z]-module iff M? = 0.

Proposition 2. Let N be a
�
[z]-module. Let M be

a submodule of N . The so-called orthogonal set of
M is defined by M⊥ = {f ∈ N?|∀m ∈M, f(m) =
0}. Then, M⊥ = (N/M)?.

Proposition 3. Let M , N and P be
�
[z]-modules.

We consider the
�
[z]-morphisms .d1 : M → N

and .d2 : N → P . If the sequence

0 −→M
.d1−→ N

.d2−→ P −→ 0

is exact then, the following complex is also exact.

0 −→ P ? d2.
−→ N? d1.

−→M?

4. THE SUBSPACE METHOD

At first, we review the subspace method. The
transfer function H(z) to identify is a q × p
polynomial matrix (with p < q). Let Hj(z) =
∑Lj

l=0 Hj,lz
−l be a q × 1 polynomial vector of

degree Lj and H(z) = [H1, · · · , Hp(z)]. By defini-
tion, the degree of H(z) is equal to L =

∑p
j=1 Lj

(Kailath, 1980). In practice, these degrees are un-
known. We denote {L̂j}j=1,···,p and L̂ =

∑p
j=1 L̂j

the estimated degrees. In fact, the model can
be always overdetermined, i.e., we get L̂j ≥ Lj

for each j and so L̂ ≥ L. We introduce a few
definitions (Abed-Meraim et al., 1997).

Definition 4. A q × p polynomial matrix F (z) is
full-rank iff rank(F (z)) = p for each complex-
valued number z, except at a finite number of
points. It is irreducible iff rank(F (z)) = p for

each complex-valued number z, including the
infinity. H(z) is said to be column-reduced iff
rank([H1,L1

, · · · , Hp,Lp
]) = p.

In the sequel, H(z) is assumed to be full-rank but
not necessary irreducible and/or column-reduced.
If H(z) is full-rank, then it can be decomposed
into the following way H(z) = H ′′(z)R(z), where
H ′′(z) and R(z) are a q×p irreducible polynomial
matrix and a p × p full-rank polynomial matrix
respectively. L′′ and {L′′

j }j=1,···,p stand for the
degree of H ′′(z) and the degree of its column
polynomial vectors respectively.

Let us inspect the subspace algorithm now (see
(Moulines et al., 1995; Abed-Meraim et al., 1997)
for more details). We consider the stacking vector

YN (n) = [Y (n)T , · · · , Y (n−N)T ]T

and its correlation matrix

RN (h) = TN (h)TN (h)∗,

where TN (h) is the q(N + 1) × p(N + Ls + 1)
Sylvester matrix associated with the polynomial
H(z) =

∑Ls

l=0 Hlz
−l where each Hl is a scalar-

valued component matrix and Ls = supj{Lj}.
We consider the mapping Φ : H(z) 7→ h such
as h = vec(H0, · · · , HLs

). vec(.) is the operator
reshaping any matrix into a column vector. Since
q(N + 1) ≥ p(N + Ls + 1), the matrix RN (h)
is deficient rank and get a left kernel. We denote
ΠN , the orthogonal projector on this kernel. The
subspace method consists in looking for the filter
F (z) minimizing the mapping f 7→ ||ΠNTN (f)||2,
whose behaviour is described by the following
theorem proved in (Abed-Meraim et al., 1997) by
means of rational spaces.

Theorem 4. Assume that H(z) is irreducible and
column-reduced. (H(z) = H ′′(z) thus holds)

Let F (z) = [F1(z), · · · , Fp(z)] be a q × p full-rank
polynomial matrix such as deg(F1(z)) ≤ · · · ≤
deg(Fp(z)) (this condition is necessary to avoid
undetermined permutations).
This matrix solution ΠNTN(f) = 0 admits

• no solution if deg(Fj(z)) < Lj, for each j.
• infinite number of solutions if deg(Fj(z)) ≥

Lj for each j. In fact, F (z) = H(z)R(z) with
R(z) a p × p full-rank polynomial matrix.
If deg(Fj(z)) = Lj for each j, then R(z)
is reduced to a block triangular polynomial
matrix with constant block diagonal matri-
ces. Moreover, if L = Lj for each j, R(z) is
reduced to a constant p×p invertible matrix.

The filter H(z) has to satisfy some restrictive as-
sumptions. Thanks to our new forthcoming proof
based on module theory, we shall show that this
theorem can be extended to a full-rank filter H(z).



Corollary 2. We consider the Single Input case
(p = 1). We assume that H(z) is irreducible
and column-reduced, i.e, its components have no
common zero. Theorem 4 implies that if F (z) is a
q × 1 polynomial matrix (with degree L̂),

ΠNTN (f) = 0 ⇐⇒ F (z) = H(z)r(z)

with r(z) a (L̂− L) degree scalar polynomial.

In the Single Input case, if the degree is known
(i.e., the subspace method seeks a filter F (z) such
as L̂ = L), then the filter H(z) is obtained up to
a constant. In contrast, in the Multi Input case,
the subspace method is not relevant because the
sought filter is undetermined up to an unknown
matrix, whatever the degree constraints.

The subspace method is now rewritten in a more
suitable form for the modules approach. We con-
sider the correlation matrix RN (h) for a fixed
N satisfying N ≥ L̂ (so q(N + 1) ≥ p(N +
Ls + 1)). This matrix gets a left kernel, called
noise subspace and denoted ker(RN (h)). Let g =
[g0, · · · ,gN ] be a row vector (each of its blocks is
of size 1× q) belonging to Ker(RN (h)). We get

ΠNTN (h) = 0 ⇐⇒ G(z)H(z) = 0 (5)

with G(z) =
∑N

k=0 gkz−k. We set

BN = {G(z) ∈
� 1×q

N [z] | G(z)H(z) = 0}

where
� p,q

N [z] is the restriction of
� p,q [z] to the

polynomial of degree strictly smaller than (N +1).
The subspace method is based on the sole knowl-
edge of the noise subspace of RN (h), i.e., BN .
Indeed, according to Equation (5), the method
tracks the q × p polynomial filtering matrix F (z)
belonging to the set C which is defined by

C={E(z) ∈
� q×p [z]|∀G(z) ∈ BN , G(z)E(z) = 0}.

Therefore, we now wish to describe C completely.
In fact, such a description is given by Theorem 4,
under some restrictive assumptions. We set

D={D(z) ∈
� q×1 [z]|∀G(z) ∈ BN , G(z)D(z) = 0}

which represents any column of the elements of
C. Therefore, characterizing D is equivalent to
characterizing C. We henceforth focus on the
description of D. We set

B = {G(z) ∈
� 1×q [z] | G(z)H(z) = 0}.

Theorem 1 leads to the following exact sequence

0← coker(.H)←
�
[z]p

.H
←

�
[z]q

i
← ker(.H)← 0.

Let us notice that:

ker(.H) = {G(z) ∈
�
[z]1×q |G(z)H(z) = 0} = B.

Thus, B is a submodule of the free
�
[z]-module

�
[z]q . By Theorem 2, B is a torsion-free

�
[z]-

module. In contrast, as H is full-rank, coker(.H)

is a torsion
�
[z]-module. According to point 1 of

Proposition 1, we get rank(coker(.H)) = 0. This
result does not mean that coker(.H) is reduced to
0, but only that the torsion-free part of coker(.H)
is reduced to 0. By Corollary 1, we get:

rank(B) = q − p + rank(coker(.H)) = q − p.

Therefore, B is a free
�
[z]-module of rank q − p.

There exists a polynomial basis {gj(z)}j=1,···,q−p.
Their degrees {Kj}j=1,···,q−p are the so-called
Kronecker indices of B. There also exists an or-
thogonal set denoted B⊥. It is a free module of
rank p. Its Kronecker indices are {K⊥

j }j=1,···,p.

We assume that N >
∑p

j=1 K⊥
j . According

to the forthcoming theorem, this condition is
not restrictive because it holds if N > L̂. As
∑q−p

j=1 Kj =
∑p

j=1 K⊥
j (Abed-Meraim et al.,

1997), we get N ≥ supj=1,···,q−p Kj . The poly-
nomials {gj(z)}j=1,···,q−p thus belong to BN .

Lemma 1. If N ≥
∑p

j=1 K⊥
j , then span(BN ) =

B. span(.) stands for the space spanned by all the
linear combinations of the considered set.

According to Lemma 1, D = B⊥. Therefore B is
completely determined by BN . We set

B′′ = {G(z) ∈
� 1×q [z] | G(z)H ′′(z) = 0}.

One can easily prove the following lemma.

Lemma 2. As H(z) is full-rank, we get B′′ = B.

It turns out that, B′′⊥ is equal to D. The char-
acterization of B′′⊥, given by the characterization
of D, is provided in the following theorem. The
proof based on the modules approach is given in
Section 5.

Theorem 5. If N ≥
∑p

j=1 K⊥
j and H(z) full-rank,

then D = {H ′′(z)r(z) | r(z) ∈
�

p×1 [z]}
and C = {H ′′(z)R(z) | R(z) ∈

�
p×p [z]}.

Our contribution has consisted in proving Theo-
rem 4 in a different way. Because the assumptions
on H(z) are less strong, Theorem 5 is an extension
of Theorem 4. One can restrict the sought space
by constraining the matrix R(z) to get a certain
form (see Theorem 4) thanks to a knowledge on
the degrees of H(z).

5. PROOF OF THE MAIN THEOREM

We consider the
�
[z]-morphism H ′′. associated

with the matrix H ′′(z) and its dual .H ′′. Applying
Theorem 1 on the morphism .H ′′ and noticing
B′′ = ker(.H ′′) lead to the following exact se-
quence

0→ B′′ i
−→

�
[z]q

.H′′

−→
�
[z]p

π
−→ coker(.H ′′)→ 0



As B′′ is a free
�
[z]-module of rank (q− p), there

exists an isomorphism φ : B′′ →
�
[z]q−p . The

previous sequence can be simplified as follows

0→
�
[z]q−p .F

→
�
[z]q

.H′′

→
�
[z]p

π
→coker(.H ′′)→0 (6)

where .F is a morphism corresponding to i ◦ φ−1

in the canonical basis of
�
[z]q−p and

�
[z]p . This

obviously implies that ker(.H ′′) = im(.F ). Hence
B′′ = ker(.H ′′) = im(.F ). Thus, B′′⊥ = im(.F )⊥.
According to Proposition 2, we get

im(.F )⊥ = (
�
[z]q/im(.F ))? = coker(.F )?

It remains to inspect the orthogonal set of im(.F ).
According to the previous sequence, the complex

0 →
�
[z]q−p .F

→
�
[z]q is exact. It yields that .F

is an injective morphism, i.e., ker(.F ) = 0. Then,
applying Theorem 1 on the morphism .F leads to
the following exact sequence

0→
�
[z]q−p .F

−→
�
[z]q

π
−→ coker(.F )→ 0

Dualizing the previous sequence and using Propo-
sition 3 lead to the following exact complex.

0 −→ coker(.F )? i
−→

�
[z]q

F.
−→

�
[z]q−p

The morphism i represents a canonical injection.
Hence, im(i) = coker.(F )?. Thus we obtain that

im(.F )⊥ = coker(.F )? = ker(F.)

Therefore, B′′⊥ = ker(F.). So characterizing
ker(F.) enables us to describe B′′⊥.

We introduce the well-known theorem extending
Bezout identity (Bourbaki, 1980).

Proposition 4. Let F (z) be a q × p polynomial
matrix. The following assertions are equivalent :

(1) There exists E(z) ∈
�
[z]p×q such that

E(z)F (z) = Ip, with Ip the p × p identity
matrix.

(2) rank(F (z)) = p, ∀ z, i.e, F (z) is irreducible.

As H ′′(z) is irreducible, there exists a p × q
polynomial matrix G(z) such that

G(z)H ′′(z) = Ip, ∀z

We denote G(z) = [g1(z)T , · · · , gp(z)T ]T , where
gj(z) corresponds to a row of G(z). It follows that,

gj(z)H ′′(z) = ej(z), ∀z,

where ej(z) = [01×(j−1), 1, 01×(p−j)]
T is an ele-

ment of the canonical basis of
�
[z]p . We have

proved that each element of the canonical basis
of

�
[z]p belonged to im(.H ′′). As coker(.H ′′) =

�
[z]p/im(.H ′′), we get coker(.H ′′) = 0. We can

reduce the sequence (6) as follows

0 −→
�
[z]q−p .F

−→
�
[z]q

.H′′

−→
�
[z]p −→ 0

Thanks to Proposition 3, dualizing the previous
expression leads to the following exact complex

0 −→
�
[z]p

H′′.
−→

�
[z]q

F.
−→

�
[z]q−p .

Thus, we finally obtain ker(F.) = im(H ′′.).

6. CONCLUSION

Introducing the module theory approach is rel-
evant to study a Signal Processing problem. In-
deed, the analysis of the subspace method can
be performed powerfully. This leads to highlight
known results and to generalize them. Beyond this
new proof of the subspace method, we also wish
to emphasize the fact that the module theory is
not restricted to control theory.
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