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Abstract—In this paper, two spectrum sensing procedures are
studied. The first one is based on a modification of the Energy
Detector (ED) and the second one is based on a two-sample
Goodness-of-Fit (GoF) test. The two procedures require a vector
of noise samples, and are robust against noise uncertainty. Exact
probability of detection are given for deterministic and Gaussian
signal over additive white Gaussian noise (AWGN) and Rayleigh
flat fading channel for the modified ED. Simulations show that
the two procedures outperform previous schemes.

I. INTRODUCTION

The objective of Spectrum Sensing is to detect whether a
given frequency band is being used or not. Several spectrum
sensing schemes have been developed in the literature. These
schemes can be classified in two categories. The first category
includes schemes that requires prior knowledge about the
signal to detect (feature-based detector), such as cyclostation-
arity [1], matched filtering [2] and filter-bank techniques [3].
The procedures of the second category do not require any
prior knowledge about the signal. This paper focuses on
this later category, and especially on the Energy Detector
(ED) [4] and on the two-sample Goodness-of-Fit (GoF) based
techniques [5].

The ED is one of the most popular spectrum sensing
scheme since its implementation is easy. However, the ED
requires to know accurately the noise power [6]. When the
noise power is unknown, it has to be estimated, leading to a
non-Constant False Alarm Rate (CFAR) detector. Moreover,
the exact threshold of the ED can be calculated only if the
distribution of the noise energy is known. Recently, the authors
of [7] have proposed a method called Generalized Energy
Detector (GED), and proved that when the sample size goes
to infinity, the GED is CFAR. Notice that the GED requires a
set of noise samples.

The GoF procedures based on a distribution comparison are
more recent. One of the first paper dealing with this approach
is [8], where the authors use the well known Anderson-Darling
(AD) test to detect a constant signal. In [5], the authors use a
two-sample Kolmogorov Smirnov (KS) test. The Cramer Von
Mises test has also been used for spectrum sensing purpose [9].
An approach based on Student t-test is proposed in [10].
In [11] and [12], the authors show that whereas the AD test
is more powerful than the ED to detect a constant signal, the
ED outperforms the AD test when the signal varies during

time. In this study, we focus on the two-sample tests, such as
proposed in [5] because these tests do not require knowledge
on the noise distribution, unlike the other GoF-based methods.
These techniques only require a set of noise only samples, as
the GED. The drawback of GoF techniques is that they are
generally less powerful than the ED.

In this paper, two configurations are investigated. First, the
noise is assumed to be Gaussian with unknown power. Second,
the statistical distribution of the noise is unknown. In both
cases, it is assumed that two sets of data are available: a set
of noise only, and a set of samples of the signal that we want
to sense.

The contributions of this paper are the following. First,
we show that there is a mismatch between the asymptotic
distribution of the statistic of the GED proposed in [7] and its
distribution when the sample size is finite. We derive the exact
distribution of this statistic, and provide exact expressions
of the probability of detection when the transmitted signal
is deterministic or Gaussian for both the Additive White
Gaussian Noise (AWGN) and the Rayleigh channels. To the
authors’ knowledge, these performance have not been derived
yet. The second contribution of this paper is to propose the
use of a GoF test developed in [13] in order to improve the
one proposed in [5]. It is shown by simulation that this new
test outperforms previous two-sample GoF schemes.

This paper is organized as follows. In section II, the problem
statement is formulated. The GED is presented in section III,
where its exact performance are derived. The two-sample GoF
procedure is set out in section IV. Simulations are performed
to compare the performance of the two methods with existing
schemes in section V under Gaussian and non-Gaussian noise.
Section VI concludes this paper.

II. PROBLEM STATEMENT

First, let N denote the number of samples available to
perform the sensing, and y = (y[1], ..., y[N ]) denote a vector
of complex received samples that we want to sense. Spectrum
sensing problem can be formulated as a two hypothesis
testing problem where the null hypothesis H0 corresponds to
the absence of signal, y = n where n = (n[1], ..., n[N ]) is a
vector of noise samples, while the alternative hypothesis H1

corresponds to the presence of the sum of a noise process
with a non-zero energy signal s = (s[1], ..., s[N ]) in this band



y = s + n. The two hypothesis can be written as

H0 : y = n,
H1 : y = s + n.

As said in the introduction, it is assumed that aside from
the set of received samples y, M noise samples n2 =
(n2[1], ..., n2[M ]) are also available to perform the sensing.
In practice, noise samples can be collected by listening to
rarely used channels [5] for instance.

III. GENERALIZED ENERGY DETECTOR

A. Procedure

The ED procedure is based on the following statistic S :=∑N
i=1 |y[i]|2. The statistic S is compared with a threshold T ,

and H0 is rejected if S > T . In this section, the noise is
assumed to be circular complex, white and Gaussian with zero-
mean and variance 2σ2 in order to derive analytical results.
Let χ2

n denote the chi-square distribution with n degrees
of freedom, and Fχ2

n
its cumulative density function (cdf).

Under H0, S/σ2 follows a χ2
2N distribution. Then, for a

given probability of false alarm Pfa = α, the threshold T
is computed by:

T = σ2F−1
χ2
2N

(1− α), (1)

where F−1
χ2
2N

is the inverse of Fχ2
2N

. However, it must be
highlighted that the threshold T depends on σ2. Therefore,
when σ2 is unknown, it has to be estimated from the noise
samples n2. Nevertheless, if the noise power is estimated, the
Pfa obtained by simulation does not match the target Pfa
[5]. Moreover, the ED is not a CFAR detector when the noise
power is estimated since the Pfa obtained by simulation varies
with the number of samples used to estimate the variance (see
Fig. 7).

An interesting modification of S taking into account the
noise samples has been proposed in [7]. The authors proved
that, under H0, the GED is asymptotically normally distributed
and independent of σ2 (and thus CFAR) when the number of
samples goes to infinity. They also provide the asymptotic
probability of detection of a Gaussian signal over AWGN
channel.

The GED considered in this paper is written as follows:

SGED :=
M

N

S

B
, (2)

where B :=
∑M
i=1 |n2[i]|2. Note that (2) has a different nor-

malization than the one in [7] for technical reasons explained
later.

First, we prove that the GED is CFAR regardless of the
number of samples. Since n2[i] is a circular zero-mean Gaus-
sian random variable with variance 2σ2, it is possible to write
n2[i] = σn̄2[i], where n̄2[i] is a circular Gaussian random
variable whose real and imaginary part have unit variance.
Similarly, under H0, it is possible to write y[i] = σȳ[i]
where ȳ[i] follows a circularly-symmetric complex Gaussian

distribution whose real and imaginary part have unit variance.
The statistics B and S can be written B = σ2B̄ and S = σ2S̄,
where B̄ =

∑M
i=1 |n̄2[i]|2 and S̄ =

∑N
i=1 |ȳ[i]|2. The statistic

B̄ (resp. S̄) follows a χ2
2M (resp. χ2

2N ) distribution, which is
independent of σ. Therefore, the ratio of S and B, which is
equal to the ratio between S̄ and B̄, does not depend on σ2,
and thus it leads to a CFAR detector whatever the value of
M and N . Moreover, the ratio of two chi-square distributed
random variables normalized by their respective degrees of
freedom follows a F distribution [14], which explains the
normalization done in (2).

More precisely, SGED is F2N,2M distributed and its cdf,
denoted by FF2N,2M

, takes the following form [14]

FF2N,2M
= I

(
Nx

M +Nx

∣∣∣N ;M

)
, (3)

where I(.|., .) is the incomplete regularized beta function. The
threshold for a given Pfa = α can then be computed by

TGED = F−1F2N,2M
(1− α), (4)

where F−1F2N,2M
is the inverse of FF2N,2M

. The threshold
TGED does not depend on σ2, which renders it CFAR as a
consequence. This modification of ED should be of practical
interest to achieve a constant false alarm rate. As said before,
the authors of [7] proved that, under H0, the GED statistic
is asymptotically normally distributed when the sample size
goes to infinity. However, when the sample size is finite, the
distribution of SGED is different from the normal distribution,
as illustrated in Fig. 1. We also represent on the same figure
the difference between the target Pfa and the Pfa obtained
by simulation with the asymptotic and the exact distribution.
It is clear that the Pfa obtained by simulation using the
asymptotic distribution of SGED is not exactly the target Pfa.
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Fig. 1. Difference between asymptotic distribution and histogram of
SGED (top) and between Pfa obtained by simulation using asymptotic
approximation and exact distribution (bottom), N = 20, M = 50, 106 trials.



B. Probability of Detection of a Deterministic Signal Over
AWGN and Rayleigh Fading Channel

In this section, the signal samples s are considered as
unknown and deterministic, with ssH = E where E is
a constant and the subscript (.)H represents the transpose
conjugate. The received samples when H1 hypothesis is true
are y[i] = hs[i]+n[i], where h is the complex attenuation coef-
ficient of the channel (h = 1 corresponds to AWGN channel).
Under H1 hypothesis, S/σ2 has a non-central χ2

2N distribu-
tion with non-centrality parameter NC(|h|2) = |h|2E/σ2. It
follows that SGED has a non-central F2N,2M distribution with
non-centrality parameter NC(|h|2). Let Fν1,ν2,δ(.) denote the
cdf of the non-central Fν1,ν2 distribution with non-centrality
parameter δ. The expression of Fν1,ν2,δ(.) is [14]

Fν1,ν2,δ(x) = e−
δ
2

∞∑
j=0

δj

2jj!
I

(
ν1x

ν2 + ν1x

∣∣∣ν1
2

+ j;
ν2
2

)
. (5)

The probability of detection Pd is then

Pd = 1− F2N,2M,NC(|h|2)(TGED). (6)

If the channel is AWGN, the probability of detection is given
by (6) with h = 1. However, when the channel is flat fading, h
varies from one realization to another. The average probability
of detection is

P̄d,det = 1− E|h|2 [F2N,2M,NC(|h|2)(TGED)], (7)

where E|h|2 [.] denotes the mathematical expectation over |h|2.
Here, we consider the Rayleigh fading model [15]. The
coefficient h follows a complex Gaussian distribution with
zero-mean and variance 2β2, so |h|2 follows an exponential
distribution with parameters 1/(2β2) [15]. Therefore, using (5)
in (7), we have

P̄d,det,R = 1

− 1

2β2

∞∑
j=0

(
E
2σ2

)j
j!

g(TGED, N,M, j).

∫ +∞

0

xje
−x

(
E

2σ2
+ 1

2β2

)
dx,

(8)

where

g(TGED, N,M, j) = I

(
NTGED

M +NTGED
|N + j;M

)
. (9)

Direct calculation leads to

P̄d,det,R = 1− 1

2β2

∞∑
j=0

(
E
2σ2

)j
Cj+1

g(TGED, N,M, j), (10)

where C = E(2σ2)−1 + (2β2)−1.

C. Probability of Detection of Gaussian Signal Over AWGN
and Rayleigh Fading Channel

The signal samples s[i] are now considered as i.i.d zero-
mean Gaussian random variables. The value ssH = E is
not constant and varies between realizations. Without loss
of generality, the real and imaginary part of the signal are
considered to have unit variance. Under H1, for a given
realization, SGED follows a non-central F2N,2M distribution
with non-centrality parameter NC(|h|2E) = |h|2E/σ2. The
probability of detection for one realization is then

Pd = 1− F2N,2M,NC(|h|2E)(TGED). (11)

If the channel is AWGN, |h| = 1 and the average probability
of detection is

P̄d,g,AWGN = 1− EE
[
F2N,2M,NC(S)(TGED)

]
, (12)

where EE [.] is the mathematical expectation over E. Since E
follows a χ2

2N distribution, calculation leads to

P̄d,g,AWGN = 1−

1

2NΓ(N)

∞∑
j=0

(
1

2σ2

)j
j!Cj+N2

Γ(j +N).

g(TGED, N,M, j),

(13)

where C2 = (2σ2)−1 + 1/2. Let us now consider a Rayleigh
fading channel. Let A denote the product between |h|2/β2

and E. Since |h|2/β2 follows a χ2
2 distribution and E follows

a χ2
2N distribution, and h and E are independent, A is the

product of two independent χ2 distributed random variables.
The distribution of A is given by [16]

fA(x) =
x−

1
2+

N
2 K1−N (

√
x)

2NΓ(N)
, (14)

where Kν(.) is the modified Bessel function of the second
kind of order ν.

The non-centrality parameter of SGED is β2A/σ2. The
average probability of detection of a Gaussian signal over
Rayleigh fading channel is, using the expression (5)

P̄d,g,R = 1−

EA

 ∞∑
j=0

(
β2A
2σ2

)j
j!

e−
Aβ2

2σ2 g(TGED, N,M, j)

 , (15)

where EA[.] is the expectation over A. The equation (15)
transforms into

P̄d,g,R = 1−

∞∑
j=0

(
β2

2σ2

)j
j!

g(TGED, N,M, j)

∫ +∞

0

xje−x
β2

2σ2 fA(x)dx.

(16)



After some algebra, using [17, eq. (6.643)], the average
probability of detection is

P̄d,g,R = 1−

1

2N (N − 1)!

(
β2

2σ2

)−N
2

e
σ2

4β2

∞∑
j=0

g(TGED, N,M, j).

Γ(j +N)W−j−N2 ,
1−N

2

(
σ2

2β2

)
,

(17)

where Wλ,µ(z) is the Whittaker function [17]. The probability
of detection derived in this part have been validated through
various simulations. These expressions should be useful for
system designers to simply evaluate the performance of the
GED.

IV. TWO-SAMPLE GOF TEST

In this section, the assumption that the noise has a Gaus-
sian distribution is relaxed. Two-sample GoF tests are non-
parametric hypothesis tests, whose objective is to compare the
distributions of two sets of data. These tests are based on the
measurement of a distance between the empirical cdf of the
two sets of data. The empirical cdf of a given set of data
(x1, ..., xN ) is defined as

FN (y) =
1

N

N∑
n=1

1(xi ≤ y), (18)

where 1(A) is the indicator function whose value is one if A
is true, and zero otherwise. The two-sample KS test is based
on the statistic

Dn,n′ = sup
y
|F1,n(y)− F2,n′(y)|, (19)

where n (resp. n′) is the number of samples in the first (resp.
second) set of data, and F1,n(.) (resp. F2,n′(.)) is the empirical
cdf of the first (resp. second) set of data. The statistic Dn,n′

is compared with a threshold, and the hypothesis that the
two sets the same distribution is rejected if Dn,n′ is greater
than this threshold. The analytical expression of the threshold
can be found in [5], where authors use a two-sample KS
test to compare the distribution of samples from y and n2.
Notice that the two-sample GoF test can be applied to both
complex samples or their magnitude. We will consider here
tests based on the samples magnitude since it has been shown
by simulation in [7] that testing magnitudes allows better
performance than testing complex samples.

In [13], Zhang proposes several two-sample tests that
outperform the KS one and we thus investigate here the
application of these tests to the spectrum sensing context.
Especially, we focus on the test based on the statistic ZC ,
which is defined as follows. First, let x1 = (x1,1, · · · , x1,M )
with x1,i = |n2[i]|, x2 = (x2,1, · · · , x2,N ) with x2,i = |y[i]|,
and x = (x1,x2) of length P = M + N . Let X1(j) (resp.
X2(j)) denote the jth order observation of x1,i, i = 1, ...,M
(resp. x2,i, i = 1, ..., N ) where the jth order observation of a
set of data is the jth largest element of this set. Finally, let

Rkj denote the rank of Xk(j) in x. The statistic ZC is defined
as, [13, eq. (9.3) pp. 42]

ZC =
1

P

2∑
k=1

nk∑
j=1

log

(
nk

j − 0.5
− 1

)
log

(
P

Rkj − 0.5
− 1

)
,

(20)
where n1 = M and n2 = N . The statistic ZC is compared
with a threshold, and the hypothesis that x1 and x2 have the
same distribution (H0 hypothesis) is accepted if the statistic
is greater than the threshold. Let G0 denote the cdf of x1 and
x2 under H0. In [13], it is proved that the test statistic does
not depend on G0 which implies the threshold is insensitive
to noise distribution and allows to compute a unique lookup
table giving the threshold with respect to the target Pfa. For
example, when M = 50, N = 20 and Pfa = 0.01, the
threshold is 2.9214.

V. SIMULATION RESULTS

In this section, the performance of the two proposed ap-
proaches are compared by simulations with the ED and with
the two-sample test described in [5]. The channel is assumed
to be AWGN, and the transmitted signal is complex and
Gaussian. To perform the ED, the noise variance is estimated
from the M noise samples. Let σ̂2 = B/(2M) denote the
estimation of the noise variance. The threshold of the ED is
then computed substituting σ2 by its estimation in (1). First,
the noise is considered as Gaussian, then, this assumption is
relaxed and a Gaussian mixture is considered.

A. Performance Under Gaussian Noise

1) Fixed Pfa: First, the Pfa is set to 0.01, with N = 20
and M = 50. The SNR in dB varies from −8 dB to 4 dB by
step 2 dB. The number of trials for every values of the SNR
is 20, 000. The probability of false alarm and the probability
of detection obtained by simulation are shown as a function
of the SNR in Fig. 2 and Fig. 3. As observed in [5], when
the variance of the noise is unknown and has to be estimated,
the resulting probability of false alarm using ED is higher
than the target probability of false alarm. For this reason, we
also represent the probability of detection of ED with a target
Pfa of 0.0014 since this value allows the Pfa obtained by
simulation to be 0.01.

It can be seen that the ED with the target Pfa = 0.0014
gives the same probability of detection as the GED. However,
the GED allows to find analytically a threshold to achieve
this Pfa. The GED outperforms the two-sample GoF tests.
Moreover, the GED exhibits a very good agreement between
theory and simulation. The two-sample GoF test based on ZC
outperforms the two-sample KS test.

2) ROC curve: In this section, the SNR has been fixed to
0 dB with N = 20 and M = 50. The Pfa varies between 0.01
and 0.1 by step 0.01. The number of trials for every values
of the Pfa is 20, 000. The ROC curve is shown in Fig. 5 as
a function of the target Pfa. As previously, the Pfa obtained
by simulation for the ED is higher than target Pfa (Fig. 4).
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For this reason, the probability of detection as a function of
the Pfa obtained by simulation is also shown on Fig. 6.

Once again, the GED outperforms the two-sample GoF, and
ZC outperforms the two-sample KS test. Again, there is a very
good agreement between theory and simulation for the GED.

3) Influence of M : The influence of M is studied. The
value of M varies between 10 and 40 by step 5 and 20, 000
iterations are performed for every values of M . The Pfa is
set to 0.01, and the SNR to 0 dB. Fig. 7 shows that the ED
is not CFAR when the power of the noise is estimated since
the Pfa obtained by simulation depends on M . The GED and
ZC outperform previous schemes for every values of M , as it
can be seen on Fig. 8.

B. Performance Under Non-Gaussian Noise

In this section, the noise is assumed to be non-Gaussian.
The considered distribution is a Gaussian mixture [18], which
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Fig. 5. ROC curve of different detectors in AWGN channel with N = 20
and M = 50, SNR = 0 dB.

is sometimes used to model man-made noise [19]. The real
and the imaginary part of the noise are i.i.d, according to the
following mixture. The number of component in the mixture is
set to 3. The means of the components are µ1 = 0, µ2 = 4 and
µ3 = 8 respectively. The weights of the different components
are w1 = 0.6, w2 = 0.2 and w3 = 0.2 respectively. The
variance is set to σ2

1 = 1 for the first component, σ2
2 = 0.5 for

the second one and σ2
3 = 0.5 for the third one. The probability

density function (pdf) of the described Gaussian mixture is
illustrated in Fig. 9. For the simulation, 20, 000 trials are
performed for every value of the SNR. The target probability
of false alarm is 0.01. The probability of detection and the
probability of false alarm are shown in Fig. 10 and Fig. 11.

When the noise is non-Gaussian, the ED and the GED are
unusable because they give Pfa higher than the target Pfa. It
can be explained because the calculation of the thresholds for
those two detectors is designed assuming Gaussian noise.
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However, the two-sample GoF tests do not assume any
distribution for the noise. These two approaches are CFAR
detectors even when the noise is non-Gaussian. It can be seen
that the test based on ZC outperforms the two-sample KS test.

VI. CONCLUSION

In this paper, we studied two CFAR detectors based on
modified ED and two-sample GoF tests for blind spectrum
sensing under the hypotheses that a vector of noise samples
is available. When the noise is Gaussian, the threshold for
the GED is simple to obtain, and this detector allows better
performance than the two-sample GoF schemes on AWGN
channel. The threshold for the GoF test has to be obtained
by Monte Carlo simulation and is more computationally
expensive. However, under non-Gaussian noise, the proposed
GoF test outperforms the conventional one from literature.
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