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ABSTRACT weighted gossiprinciple and taking benefit of the broadcast na-

f the ch l. Igorith h h i
The distributed estimation of the average value of the sensors in{iuerr?e?it tofet\hce gpor;%czg? ;S;?ggsﬁ ?f:s?g(r)lavr:rg:rt]C(;r:;a:drjeasrgectlve
tial measures is one of the most popular issue in the Wireless Sens\?/{aighted gossip approach (the true consensus). The main contribu-

Networks (W.SN) area. In V_VSNS' broadcasting data seems natura#n of the paper is twofold: the algorithm design and its theoretical
to exchange information quickly because of the broadcast nature erformance analysis

the Wireless channel. Nevertheless, although broadcast-based algo- The paper is organized as follows: in Section 2, we introduce
rithms converge faster than pairwise algorithms, the obtained CON5 i+ broadcast-based weighted gossip- algorithm Inl Section 3. we
sensus is not necessarily the true average. By the means of additio Ll)ve that the proposed algorithm converges to tlhe true averag,e In
side-infc_;rmatio_n exchange, we propose a broadcast-based algorit ction 4, we prove that the square error is upper-bounded by an .ex-
converging rapldly_to the true_average. The convergence O.f t.h's ne onentially decreasing function with high probability. In Section 5,
algorithm is established and its convergence speed is exhibited.

! o e provide an heuristic improvement to our algorithm by modify-
remark that the proposed algorithm outperforms the existing ones. ing the sensor clocks in a distributive manner without any additional

Index Terms— distributed estimation, averaging, sensor net-cost. Our results are numerically illustrated in Section 6. Finally
work, broadcast, consensus Section 7 is devoted to concluding remarks.

1. INTRODUCTION 2. PROPOSED ALGORITHM

Distributed algorithms over Wireless Sensors Networks (WSN) hav@.1. Signal Model
been widely studied since the pioneer work in [1]; in particular, a lot id K modeled b iahted
of results have been obtained for the problem of averaging [2, 3]tet us consider av-sensors network modeled by an unweighte

However, only a few averaging algorithms take benefit of the broadundirected graply = (V, E) whereV is the set of vertices/sensors
(JV] = N) andE is the set of edges/perfect links between the sen-

ﬁprs. We assumg is connected. Each sensomay exchange data
ith its neighborhoodV; = {j € V|(i,7) € E}. Letd; = |N;]

cast nature of the wireless communication channels [4, 5]. In [4]
at each clock tick, one (randomly chosen) sensor broadcasts its i
formation to all its neighbors, then each neighbor averages its ow ) :
value with the received one. With such an algorithm, the network'd€note the degree of the sensore also defineA the so-called
global sum is not preserved. This implies that the corresponding ugidiacency matrix of the grapl) = diag(ds, - -+, dw) the degree
date matrix is not doubly-stochastic, and so preventing the algorithf"@(rix and the Laplacian matri = D — A [8].

to converge to the true average. Recently, to overcome this draw- E@ch sensor has its own independent Poisson clock of param-
back, [5] has proposed a new broadcast-based algorithm relying er)\;. At first, we will consider that all\; are identical and equal

the transmission of two variables (instead of one) at each clock tick® A+ Which is equivalent to a global clock of parametéi and uni-

Nevertheless any convergence speed analysis is provided. form selgction of the awaking sensor. We will nmttﬁe instant of
In the literature, some algorithms have efficiently overcome théhe_t'th '.['Ck of the global clock. At = 0, the senﬁor only knows
non doubly-stochasticity of the update matrix by introducing the!tS individual measure:; (0). Letzave = 1/N 3,2, 2:(0) be the
principle of theweightedgossip [6, 7]. In such a scheme, the sensordverage value of the_lnltlal measures. At tiend sensoi, the estl_-
exchange two variables: the first one represents the sum of the rB12t€ average value is denotediyt). The purpose of an averaging
ceived information while the second one represents the importancd90rithm is thate; (¢) goes tara.. whent goes to infinity for each
level of the received information. In [6], suchveeighted gossip S€NSOR-
principle is applied to a wired synchronous network without feed-
back. The absence of feedback leads to non doubly-stochastic up-2. Broadcast based Weighted Gossip algorithm
date matrix. In [7], this principle is applied to wireless asynchronou
network without feedback: actually, the (randomly chosen) senso
sends its variables to one (and only one) neighbor which does n
send back its own variables.
In this paper, we thus propose to build an algorithm (calle
Broadcast based Weighted Gossip -BWGo$siplying on the

ike [6, 7], the sensoi will update two local values; (t) andw; (t)
t time t) whereas, in standard gossip algorithm, the senapr
ates directlyr;(¢t). More precisely,s;(t) andw;(t) represent the
dsumof the received information and itgeightrelated to how much
information is passed through respectively. In the sequel, we denote
s(t) = [s1(t),--,sn()]", w(t) = [wi(t), -, wn(t)]", and
This work was partially funded by the French Defense Agem@A) x(t) = [z1(t), -~ 7CUN(75)}T
and the "Blecom/Euecom Carnot Institute. The proposed algorithm is initialized as follows




e s(0) =x(0)

e w(0)=1
with 1 the column vector composed By ones.

At time ¢, the vector of average estimates is obtaineckfy =
s(t)/w(t) where the division is done element-wise, and whste

andw (¢) are updated as follows :
assuming that, at time the sensof wakes up

; si(t) . _wi(t)
» Sensot broadcast{ RAFSE \MIH)

» At sensors in the neighborhodd;, we have:
si(t+1) = s5(t) + vic N
_ wi () V) ENi
wj(t + 1) - wj(t) + N +1
» At sensori, we have :
(1
{ el = |;,(\(+)j
wi(t+1) = 57
» All other sensors stay idle.

Using the matrix formalism, the proposed algorithm can be re-

written as follows

L

whereP(¢) = K(1)K(2)..
sor+ is active at time, and

(t—l)K():
Tt - 1DK()

.K(t), K(t) is equal toK; if the sen-

TOP()
17P() @

X

K;=I—¢ee] (I+D) 'L )

with e; thei-th canonical vector. Notice that, albeit the matrix for-

matrix of a connected grapBm > 0, (I + A)
the samen, E[K]™ > 1/(dmeaN + N)™ (I +
implies thatE[K] is a primitive matrix.

In [7] (Theorem 4.1), it is proven that any weighted gossip algo-
rithm such thalP1, P2, andP3 hold forK(¢) converges to the true
average. Therefore our proposed algorithm converges,to ast
goes to infinity.

> 0. Hence, for
)m > 0, which

4. CONVERGENCE SPEED

In this section, we will put the main contributions of the paper cor-
responding to the analysis of the Square Error (SE) of the proposed
algorithm. We will prove that the SE is upper-bounded by an ex-
ponentially decreasing function with high probability. The conver-
gence rate of this function is also exhibited.

First of all, one can easily remark that

2 _ I5i(t) — avewi()
wi(t)Q
S0 5(0) (Pis(h) — & L, Pult))|

wi(t)?

2

|:I:’L(t) — Zave

By lower boundingw;(¢) with its minimum and using Cauchy-
Schwartz inequality, we obtain that

%(t) = zavelll3 =

malism is identical to [6, 7], the algorithms are different since the

matricesK; are different.
One can easily check thE(¢) is row-stochasticife., K(t)1 =
1) which leads to the followingnass-conservatioproperty

{ Sy si(t) =L, 2(0) =
SN wilt) = N.

N‘rave (3)

3. CONVERGENCE

One can straightforwardly check that the set of matrid&st)}, .
satisfy the following properties.

P1) These matrices are (row) stochastic non-negative matrices

with positive diagonals.
P2) The sequence if these matrices is i.t.d.
We also have
P3) E[K] is a primitive matrix.

To prove the previous property, we firstly lower-bouBfd] as fol-
lows

N
EK] = NZ —eie; +eie; (I+D) ' (A+T)]
i=1
N-1 1
> I A+1) >
Z N Yy ATD20

where> stands for the element-wise inequality afd.. denotes

the maximum degree of all the vertices. Sinkeis the adjacency

SE(t) = Z |£L‘Z _ Iaue
< \111( VWa(t) 4)
where Uy(t) = %
W) = > (PT(t)(I—J))Zj

i=1 j=1

with J = (1/N)117.

In the sequel, we will prove, on the one hand, tHat(t) is
bounded with high probability and, on the other hand, Bidt,(¢)]
goes exponentially to zero when the number of iterations goes to
infinity.
We prove the following theorem meaning that it is unlikely
¥, (t) becomes very large, so a sensor talks too much compared to
the other ones.

Theorem 1.
Wi (t) = Op (1)

where X,, = Op(Y,) stands forvsd > 0, 3Cs such thatvn,
P{|X,| > Cs|Yn|} < 4.

Proof. As in [6], in order to lower boundnin; w;(t), we con-
sider a timetp and a nodeno whose weight is greater thah
(there is obviously one because of the mass conservation ex-
hibited in Eq. (3)). We know from [9] that the expectation of
the diffusion timet, (that is the time for any node to dissemi-
nate its information to the whole network) while broadcasting is
Elts] AN+ NA -1)In((N —1)/(A = 1)) = tmaz With A

the diameter of the graph. Hence, by Markov’s inequality we know

lpecause at each global timea sensor (hence a matrix) is chosen uni- that the diffusion time is bounded in probablllty which means that at

formly as they have independent Poisson clocks with the sanaeneter).

timet = to+t4, all the sensors will be informed with a small portion



of the weight ofno which is greater than = (dmax + 1) 7% > 0 Proof. By constructionE[K ® K] is a non-negative matrix. It is

because at each iteration the weights can be at most divided kyiso a primitive matrix. IndeedE[K ® K])N > (Hﬁ‘il K)) ®

dmaz + 1. Finally, let us remark that at= 0, all the sensors have (TTIY, K:) > 0. Let us remark thaf [V, K; > (1/(dmas +

weight 1 hence the established relation is true fortallSo, for all 1))5\7[1 4+ A] > 0. AsA s the adjacerllgy matrix of a connected

t > 0, all weights will be greater than > 0 with high probability graph, we know that it is irreducible sbn’ € N.m' < N — 1 -

so W (t) is bounded with high probability. I A)m/ > 0. So, by takingm = Nrm', (E [7K®K})’" >0
L . ) ) which means thdk [K ® K] is primitive.

_Our objective now is to find the behavior B(t) whent goes  Aqp (K ¢ K]isa ([row)-stc})chgstic non-negative matrix, its spectral
to infinity. Actually, we will prove thatVs(t) is upper-bounded by 1 js is1 (see Lemma 8.1.21 in [10]). Moreover, it is easy to see
an exponentially decreasing function with high probability. To doy,5¢1 j5 an eigenvalue associated with the eigenvettand by the
that, let us focus on the analysis®$ (¢) = E[V2(t)]. Peron-Froebenius theorem, we know that this eigenvalue has multi-

Let us introduce plicity 1. So, as this matrix is primitivel is the unique eigenvalue
_ of maximal modulus and its eigenspace is spannetl. by
EO)=I-NPHeI-J)P() ®) By using the Jordan normal form and the simple multiplicitylof

. we know that i) it exists a vectov; equal to the left eigenvector
where@ stand? for the Krcz)negker product. .Slnﬁ&(t) can b,e corresponding to the eigenvalde and ii) that the eigenvalues of
rewritten asf| P~ ()(I — J) /= WlthYUvHF denoting ghe Froebenius (K © K] — 1v7 are exactly the eigenvalues BfK © K] except
norm, W»(t) is the sum of the((P (¢) (I — J));;)". These ele- ¢, e eigenvalua which is nowo. As a consequence, the modulus

m(intary terms are coefficie_nts of the matig). Consequently, if of the eigenvalues & [K @ K] — 1v7 is strictly lower thanl. I
E[=(¢)] vanishes exponentially to zer®,(¢) also does at least at

the same speed. Therefore, we will focus®E(¢)]. Putting Lemmas 1, 2 and 3 together, we get :

Using basic properties of the Kronecker product and operating
the mathematical expectation given the natural filtration of the past p(I-INI-J)EK®K]) <1. (8)
events7;_; enables us to obtain that We are now able to find an upper bound fbs(¢) decreasing

0 exponentially to zero.
=(t) =
and E [E(t)|]:t71] =

(t=1). (K(t) @ K(t)) Theorem 2. There is a constanf’ > 0 such thatve > 0
t-1).EK®K].

i Yt >0, ®(t) <C(I'+e€)
hi=1®1leadsto withT = p ((1—J) ® (I - J)) E[K @ K]).

Proof. From Eq. (7), and by using Lemma 5.6.13 in [10] and the ma-
trix norm submultiplicativity, we obtain that there exists a constant
C’ > 0 such thawt > 0,Y(i,5) € {1,---,N}?,

EE®]),; <C (p(A-T) e d-1T) EKoK)) .
As ®,(t) corresponds to a sum o2 elements oft [Z()], we have
Da(t) < NC"(p((I-T)@(1-T) EKK]) +¢).

which concludes the proof. O

(1 [1]

Then, remarking tha&(t)1 = 0 wi

=3

EE@Q)|Fi-a] =

(1]

(t —1). (IE KeK]|— ivT)
andthen E[2(1)] = =(0). (E[K©K] - ivT)t ©)

for any vectorv and with=(0) = (I — J) ® (I — J). This enables
us to prove the following result.

Lemma 1. If there is a vectow such thap (E [K ® K] — 1v") <
1, thenE [E(t)] converges to zero asgoes to infinity.

) o By using Markov's inequality on Theorem 2, we directly obtain
Proof. For all matrix norms, we can apply the submultiplicative in- the following theorem.
equality on Eq. (6) and follow the proof of Theorem 5.6.12 in [10]
O

to obtain the result. Theorem 3. For anye > 0, we have
\I’Q(t) =0Op ((F + E)t) .

In Theorem 3, one can choos&s small as possikﬂeThus, as
I' < 1 (see Eqg. (8))¥2(t) vanishes exponentially with high prob-
EE#)] =(1-Ned-J)]EKeK]) . @) abi_lity., Combining Eq. (4), Eq._ (8), Theorer_n 1, Theorem 3 and an
Union’s bound leads to the main result of this paper.

By remarking(I-J)P(¢t) = I-J)P() (I—-J), Eq. (5
leads to the following result

Lemma 2. E [E(t)] converges to zero dgyoes to infinity ifand only  Theorem 4. There exist® < I' < 1 such thatve > 0
if I-J I-J)EK®K]) <1.
p((1-3) @ (1-3)EK @ K]) SE(t) = Op (T + €)1

Proof. Given Eq. (7).E [E(t)] can be written aM” whereM is Roughly speakingife. by neglectinge), one can write that
anN x N real matrix. Then, using directly Theorem 5.6.12in [10] SE(t) < exp{—|log(I")|t} wherea < b stands for & is less or
leads to the result. O equal to a term proportional towith high probability”. The term

|log(I")| corresponds to the convergence slope. Concerning our
The above lemmas enable us to see that the convergence BWWGossip algorithm, we have thus exhibit a lower-bound of its
E [Z(t)] is closely related to the spectrumBfK ® K]. convergence slope.

2 t i t
Lemma 3. If K is as in Eq. (2), then it exists a vectersuch that but one cannot choose= 0 because even [fiM||| behave likep(M)
asymptotically for any norm, it is not necessary true for itefticients (see

p(EK®K]-1v") < 1. p.299 in [10]).



5. AN INTUITIVE IMPROVEMENT: CLOCK CONTROL o

So far, all the Poisson coefficients of the clocks were equals. Thit
mean that all sensors were waking up uniformly and independentl
from their past actions. Intuitively, it would be more logical that a s
sensottalking a lot became less active during a long period. -
Thanks to our BWGossip algorithm, each sensor knows whethe
it talks frequently or not (without additional cost) through its own ‘ ‘ ‘ ‘ ‘ :
weight value. Indeed, the more a sentdks, the smaller its weight °
is. Therefore, our idea is to control the Poisson coefficient of each (a) Comparison with other averaging algorithms
sensor with respect to their weight. We thus propose to consider th
following rule for each Poisson coefficient

X(t) = o+ (1 - aui(t) I

wherea € (0, 1) is a tuning coefficient. Notice that the global clock

Normalized MSE
/

remains unchanged singé > 0, >°~ | \i(t) = N. The network o = |
does not so communicate more, but the talking sensors are just be - :

ter chosen. The complexity of the algorithm is the same because tr ‘ ‘ ‘ ‘ ;
sensor whose weight changes has just to relaunch its Poisson cloc ° 2°° “ Bovaeme e e
Even if the convergence and the convergence speed of the BWGos- (b) Effects of clock control

sip with clock improvement have not been formally established, our

simulations (see Fig. 1) show that it also converges exponentially to Fig. 1. Performance of thBWGossimlgorithm.

the average with higher speedhifis well chosen.

6. SIMULATIONS ooer,

——Lower bound on convergence slope : | log(T) |

0,05 . + Empirical convergence slope

In Figure 1, we plot the normalized mean square error for various av
eraging algorithms versus the number of clock ticks whem sen-
sors are selected in a Random Geographic Graph [11] with a radit
r = y/4log(N)/N. As already remarked, the Broadcast Gossip
[4] does not converge to the average but decreases rapidly for tt ‘ ‘
first iterations. The algorithm introduced by [5] has quite poor per- ) e S
formance compared to the Random Gossip [2]. The BWGossip is
clearly the fastest one, especially, when clock control management F
operates with appropriate. In Figure 2, we plot the theoretical
upper-bound of the convergence slodeg(I")| derived in Theo- o )
rem 2 and the convergence slope obtained by linear regression offt] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione,
the logarithm of the empirical mean squared error (in Fig. 1(a), the ~ ‘Broadcast Gossip Algorithms for ConsensusEEE Trans.

g. 2. Convergence slope of tie/NVGossimlgorithm.

BWGossip MSE (in log scale) is almost linear fotarge enough Signal Processvol. 57, no. 7, pp. 2748-2761, 2009.
suggesting the exponential decreasing of the MSE) versus the numf5] M. Franceschelli, A. Giua, and C. Seatzu, “Distributed Aver-
ber of sensorsV. We observe a very good agreement. aging in Sensor Networks Based on Broadcast Gossip Algo-
rithms,” IEEE Sensors Jvol. 11, no. 3, pp. 808-817, 2011.
7. CONCLUSION [6] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based compu-

tation of aggregate information,” iRroc. 44th Annual IEEE
We provided a new averaging algorithm over Wireless Sensor Net-  Symp. Foundations of Computer Scigr2@03, pp. 482—-491.
works combining the speed of the broadcast-based algorithm and thm F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli,

convergence of the pairwise-based algorithm. We especially gave & ~ «egighted Gossip: Distributed Averaging using non-doubly

good approximation of the convergence speed. stochastic matrices,” iRroc. (ISIT) Symp. IEEE Int Informa-
tion Theory 2010, pp. 1753-1757.
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