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† Institut Télécom ; T́elécom ParisTech ; CNRS LTCI
‡ CNRS LTCI ; T́elécom ParisTech

ABSTRACT

The distributed estimation of the average value of the sensors ini-
tial measures is one of the most popular issue in the Wireless Sensor
Networks (WSN) area. In WSNs, broadcasting data seems natural
to exchange information quickly because of the broadcast nature of
the Wireless channel. Nevertheless, although broadcast-based algo-
rithms converge faster than pairwise algorithms, the obtained con-
sensus is not necessarily the true average. By the means of additional
side-information exchange, we propose a broadcast-based algorithm
converging rapidly to the true average. The convergence of this new
algorithm is established and its convergence speed is exhibited. We
remark that the proposed algorithm outperforms the existing ones.

Index Terms— distributed estimation, averaging, sensor net-
work, broadcast, consensus

1. INTRODUCTION

Distributed algorithms over Wireless Sensors Networks (WSN) have
been widely studied since the pioneer work in [1]; in particular, a lot
of results have been obtained for the problem of averaging [2, 3].
However, only a few averaging algorithms take benefit of the broad-
cast nature of the wireless communication channels [4, 5]. In [4],
at each clock tick, one (randomly chosen) sensor broadcasts its in-
formation to all its neighbors, then each neighbor averages its own
value with the received one. With such an algorithm, the network’s
global sum is not preserved. This implies that the corresponding up-
date matrix is not doubly-stochastic, and so preventing the algorithm
to converge to the true average. Recently, to overcome this draw-
back, [5] has proposed a new broadcast-based algorithm relying on
the transmission of two variables (instead of one) at each clock tick.
Nevertheless any convergence speed analysis is provided.

In the literature, some algorithms have efficiently overcome the
non doubly-stochasticity of the update matrix by introducing the
principle of theweightedgossip [6, 7]. In such a scheme, the sensor
exchange two variables: the first one represents the sum of the re-
ceived information while the second one represents the importance
level of the received information. In [6], such aweighted gossip
principle is applied to a wired synchronous network without feed-
back. The absence of feedback leads to non doubly-stochastic up-
date matrix. In [7], this principle is applied to wireless asynchronous
network without feedback: actually, the (randomly chosen) sensor
sends its variables to one (and only one) neighbor which does not
send back its own variables.

In this paper, we thus propose to build an algorithm (called
Broadcast based Weighted Gossip -BWGossip-) relying on the
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weighted gossipprinciple and taking benefit of the broadcast na-
ture of the channel. Our proposed algorithm gathers the respective
benefit of the broadcast approach (fast convergence speed) and of the
weighted gossip approach (the true consensus). The main contribu-
tion of the paper is twofold: the algorithm design and its theoretical
performance analysis.

The paper is organized as follows: in Section 2, we introduce
our broadcast-based weighted gossip algorithm. In Section 3, we
prove that the proposed algorithm converges to the true average. In
Section 4, we prove that the square error is upper-bounded by an ex-
ponentially decreasing function with high probability. In Section 5,
we provide an heuristic improvement to our algorithm by modify-
ing the sensor clocks in a distributive manner without any additional
cost. Our results are numerically illustrated in Section 6. Finally
Section 7 is devoted to concluding remarks.

2. PROPOSED ALGORITHM

2.1. Signal Model

Let us consider aN -sensors network modeled by an unweighted
undirected graphG = (V,E) whereV is the set of vertices/sensors
(|V | = N ) andE is the set of edges/perfect links between the sen-
sors. We assumeG is connected. Each sensori may exchange data
with its neighborhoodNi = {j ∈ V |(i, j) ∈ E}. Let di = |Ni|
denote the degree of the sensori. We also defineA the so-called
adjacency matrix of the graph,D = diag(d1, · · · , dN ) the degree
matrix and the Laplacian matrixL = D−A [8].

Each sensori has its own independent Poisson clock of param-
eterλi. At first, we will consider that allλi are identical and equal
toλ, which is equivalent to a global clock of parameterNλ and uni-
form selection of the awaking sensor. We will notet the instant of
the t-th tick of the global clock. Att = 0, the sensori only knows
its individual measurexi(0). Let xave = 1/N

∑N

i=1 xi(0) be the
average value of the initial measures. At timet and sensori, the esti-
mate average value is denoted byxi(t). The purpose of an averaging
algorithm is thatxi(t) goes toxave whent goes to infinity for each
sensori.

2.2. Broadcast based Weighted Gossip algorithm

Like [6, 7], the sensori will update two local valuessi(t) andwi(t)
(at time t) whereas, in standard gossip algorithm, the sensori up-
dates directlyxi(t). More precisely,si(t) andwi(t) represent the
sumof the received information and itsweightrelated to how much
information is passed through respectively. In the sequel, we denote
s(t) = [s1(t), · · · , sN (t)]T , w(t) = [w1(t), · · · , wN (t)]T , and
x(t) = [x1(t), · · · , xN (t)]T .

The proposed algorithm is initialized as follows



• s(0) = x(0)

• w(0) = 1

with 1 the column vector composed byN ones.
At time t, the vector of average estimates is obtained byx(t) =

s(t)/w(t) where the division is done element-wise, and wheres(t)
andw(t) are updated as follows :
assuming that, at timet, the sensori wakes up

◮ Sensori broadcasts
(

si(t)
|Ni|+1

; wi(t)
|Ni|+1

)

◮ At sensors in the neighborhoodNi, we have:
{

sj(t+ 1) = sj(t) +
si(t)

|Ni|+1

wj(t+ 1) = wj(t) +
wi(t)
|Ni|+1

, ∀j ∈ Ni.

◮ At sensori, we have :
{

si(t+ 1) = si(t)
|Ni|+1

wi(t+ 1) = wi(t)
|Ni|+1

◮ All other sensors stay idle.

Using the matrix formalism, the proposed algorithm can be re-
written as follows

{

s
T (t) = s

T (t− 1)K(t) = x
T (0)P(t)

w
T (t) = w

T (t− 1)K(t) = 1
T
P(t)

(1)

whereP(t) = K(1)K(2) . . .K(t), K(t) is equal toKi if the sen-
sori is active at timet, and

Ki = I− eie
T
i (I+D)−1

L (2)

with ei the i-th canonical vector. Notice that, albeit the matrix for-
malism is identical to [6, 7], the algorithms are different since the
matricesKi are different.

One can easily check thatK(t) is row-stochastic (i.e., K(t)1 =
1) which leads to the followingmass-conservationproperty

{
∑N

i=1 si(t) =
∑N

i=1 xi(0) = Nxave
∑N

i=1 wi(t) = N.
(3)

3. CONVERGENCE

One can straightforwardly check that the set of matrices{K(t)}t>0

satisfy the following properties.

P1) These matrices are (row) stochastic non-negative matrices
with positive diagonals.

P2) The sequence if these matrices is i.i.d.1.

We also have

P3) E [K] is a primitive matrix.

To prove the previous property, we firstly lower-boundE[K] as fol-
lows

E[K] =
1

N

N
∑

i=1

I− eie
T
i + eie

T
i

[

(I+D)−1 (A+ I)
]

≥
N − 1

N
I+

1

(dmax + 1)N
(A+ I) ≥ 0

where≥ stands for the element-wise inequality anddmax denotes
the maximum degree of all the vertices. SinceA is the adjacency

1because at each global timet, a sensor (hence a matrix) is chosen uni-
formly as they have independent Poisson clocks with the same parameterλ.

matrix of a connected graph,∃m > 0, (I + A)m > 0. Hence, for
the samem, E[K]m ≥ 1/(dmaxN + N)m(I + A)m > 0, which
implies thatE[K] is a primitive matrix.

In [7] (Theorem 4.1), it is proven that any weighted gossip algo-
rithm such thatP1, P2, andP3 hold forK(t) converges to the true
average. Therefore our proposed algorithm converges toxave ast
goes to infinity.

4. CONVERGENCE SPEED

In this section, we will put the main contributions of the paper cor-
responding to the analysis of the Square Error (SE) of the proposed
algorithm. We will prove that the SE is upper-bounded by an ex-
ponentially decreasing function with high probability. The conver-
gence rate of this function is also exhibited.

First of all, one can easily remark that

|xi(t)− xave|
2 =

|si(t)− xavewi(t)|
2

wi(t)2

=

∣

∣

∣

∑N

j=1 xj(0)
(

Pji(t)−
1
N

∑N

l=1 Pli(t)
)∣

∣

∣

2

wi(t)2
.

By lower boundingwi(t) with its minimum and using Cauchy-
Schwartz inequality, we obtain that

SE(t) = ‖x(t)− xave1‖
2
2 =

N
∑

i=1

|xi(t)− xave|
2

≤ Ψ1(t)Ψ2(t) (4)

where Ψ1(t) =
‖x(0)‖22

|min
k

wk(t)|2

Ψ2(t) =
N
∑

i=1

N
∑

j=1

∣

∣

∣

∣

(

P
T (t)(I− J)

)

ij

∣

∣

∣

∣

2

with J = (1/N)11T .
In the sequel, we will prove, on the one hand, thatΨ1(t) is

bounded with high probability and, on the other hand, thatE[Ψ2(t)]
goes exponentially to zero when the number of iterations goes to
infinity.

We prove the following theorem meaning that it is unlikely
Ψ1(t) becomes very large, so a sensor talks too much compared to
the other ones.

Theorem 1.
Ψ1(t) = OP (1)

whereXn = OP (Yn) stands for∀δ > 0, ∃Cδ such that∀n,
P{|Xn| ≥ Cδ|Yn|} < δ.

Proof. As in [6], in order to lower boundmini wi(t), we con-
sider a timet0 and a noden0 whose weight is greater than1
(there is obviously one because of the mass conservation ex-
hibited in Eq. (3)). We know from [9] that the expectation of
the diffusion timetd (that is the time for any node to dissemi-
nate its information to the whole network) while broadcasting is
E[td] ≤ ∆N + N(∆ − 1) ln ((N − 1)/(∆− 1)) = tmax with ∆
the diameter of the graph. Hence, by Markov’s inequality we know
that the diffusion time is bounded in probability which means that at
timet = t0+td, all the sensors will be informed with a small portion



of the weight ofn0 which is greater thanα = (dmax + 1)−td > 0
because at each iteration the weights can be at most divided by
dmax + 1. Finally, let us remark that att = 0, all the sensors have
weight 1 hence the established relation is true for allt. So, for all
t > 0, all weights will be greater thanα > 0 with high probability
soΨ1(t) is bounded with high probability.

Our objective now is to find the behavior ofΨ2(t) whent goes
to infinity. Actually, we will prove thatΨ2(t) is upper-bounded by
an exponentially decreasing function with high probability. To do
that, let us focus on the analysis ofΦ2(t) = E[Ψ2(t)].

Let us introduce

Ξ(t) = (I− J)P(t)⊗ (I− J)P(t) (5)

where⊗ stands for the Kronecker product. SinceΨ2(t) can be
rewritten as‖PT (t)(I − J)‖2F with ‖.‖F denoting the Froebenius
norm, Ψ2(t) is the sum of the((PT (t) (I− J))ij)

2. These ele-
mentary terms are coefficients of the matrixΞ(t). Consequently, if
E[Ξ(t)] vanishes exponentially to zero,Φ2(t) also does at least at
the same speed. Therefore, we will focus onE[Ξ(t)].

Using basic properties of the Kronecker product and operating
the mathematical expectation given the natural filtration of the past
eventsFt−1 enables us to obtain that

Ξ(t) = Ξ(t− 1). (K(t)⊗K(t))

and E [Ξ(t)|Ft−1] = Ξ(t− 1).E [K⊗K] .

Then, remarking thatΞ(t)1̃ = 0 with 1̃ = 1⊗ 1 leads to

E [Ξ(t)|Ft−1] = Ξ(t− 1).
(

E [K⊗K]− 1̃v
T
)

and then E [Ξ(t)] = Ξ(0).
(

E [K⊗K]− 1̃v
T
)t

(6)

for any vectorv and withΞ(0) = (I− J) ⊗ (I− J). This enables
us to prove the following result.

Lemma 1. If there is a vectorv such thatρ
(

E [K⊗K]− 1̃v
T
)

<
1, thenE [Ξ(t)] converges to zero ast goes to infinity.

Proof. For all matrix norms, we can apply the submultiplicative in-
equality on Eq. (6) and follow the proof of Theorem 5.6.12 in [10]
to obtain the result.

By remarking(I− J)P(t) = (I− J)P(t) (I− J), Eq. (5)
leads to the following result

E [Ξ(t)] = ([(I− J)⊗ (I− J)] .E [K⊗K])t . (7)

Lemma 2. E [Ξ(t)] converges to zero ast goes to infinity if and only
if ρ (((I− J)⊗ (I− J))E [K⊗K]) < 1.

Proof. Given Eq. (7),E [Ξ(t)] can be written asMk whereM is
anN ×N real matrix. Then, using directly Theorem 5.6.12 in [10]
leads to the result.

The above lemmas enable us to see that the convergence of
E [Ξ(t)] is closely related to the spectrum ofE [K⊗K].

Lemma 3. If K is as in Eq. (2), then it exists a vectorv such that
ρ
(

E [K⊗K]− 1̃v
T
)

< 1.

Proof. By construction,E[K ⊗ K] is a non-negative matrix. It is
also a primitive matrix. Indeed,(E[K ⊗ K])N ≥ (

∏N

i=1 Ki) ⊗

(
∏N

i=1 Ki) ≥ 0. Let us remark that
∏N

i=1 Ki ≥ (1/(dmax +

1))N [I + A] ≥ 0. As A is the adjacency matrix of a connected
graph, we know that it is irreducible so∃m′ ∈ N,m′ < N − 1 :

(I + A)m
′

> 0. So, by takingm = Nm′, (E [K⊗K])m > 0
which means thatE [K⊗K] is primitive.
AsE [K⊗K] is a (row)-stochastic non-negative matrix, its spectral
radius is1 (see Lemma 8.1.21 in [10]). Moreover, it is easy to see
that1 is an eigenvalue associated with the eigenvector1̃ and by the
Peron-Froebenius theorem, we know that this eigenvalue has multi-
plicity 1. So, as this matrix is primitive,1 is the unique eigenvalue
of maximal modulus and its eigenspace is spanned by1̃.
By using the Jordan normal form and the simple multiplicity of1,
we know that i) it exists a vectorv1 equal to the left eigenvector
corresponding to the eigenvalue1, and ii) that the eigenvalues of
E [K⊗K]− 1̃v

T
1 are exactly the eigenvalues ofE [K⊗K] except

for the eigenvalue1 which is now0. As a consequence, the modulus
of the eigenvalues ofE [K⊗K]− 1̃v

T
1 is strictly lower than1.

Putting Lemmas 1, 2 and 3 together, we get :

ρ (((I− J)⊗ (I− J))E [K⊗K]) < 1. (8)

We are now able to find an upper bound forΦ2(t) decreasing
exponentially to zero.

Theorem 2. There is a constantC > 0 such that∀ǫ > 0

∀t > 0, Φ2(t) ≤ C (Γ + ǫ)t

with Γ = ρ (((I− J)⊗ (I− J)) .E[K⊗K]).

Proof. From Eq. (7), and by using Lemma 5.6.13 in [10] and the ma-
trix norm submultiplicativity, we obtain that there exists a constant
C′ > 0 such that∀t > 0, ∀(i, j) ∈ {1, · · · , N}2,

(E [Ξ(t)])ij ≤ C′ (ρ (((I− J)⊗ (I− J)) .E[K⊗K]))t .

AsΦ2(t) corresponds to a sum ofN2 elements ofE [Ξ(t)], we have

Φ2(t) ≤ N2C′ (ρ (((I− J)⊗ (I− J)) .E[K⊗K]) + ǫ)t .

which concludes the proof.

By using Markov’s inequality on Theorem 2, we directly obtain
the following theorem.

Theorem 3. For anyǫ > 0, we have

Ψ2(t) = OP

(

(Γ + ǫ)t
)

.

In Theorem 3, one can chooseǫ as small as possible2. Thus, as
Γ < 1 (see Eq. (8)),Ψ2(t) vanishes exponentially with high prob-
ability. Combining Eq. (4), Eq. (8), Theorem 1, Theorem 3 and an
Union’s bound leads to the main result of this paper.

Theorem 4. There exists0 < Γ < 1 such that∀ǫ > 0

SE(t) = OP

(

(Γ + ǫ)t
)

.

Roughly speaking (i.e., by neglectingǫ), one can write that
SE(t) � exp{−| log(Γ)|t} wherea � b stands for ”a is less or
equal to a term proportional tob with high probability”. The term
| log(Γ)| corresponds to the convergence slope. Concerning our
BWGossip algorithm, we have thus exhibit a lower-bound of its
convergence slope.

2but one cannot chooseǫ = 0 because even if‖|Mt‖| behave likeρ(M)t

asymptotically for any norm, it is not necessary true for its coefficients (see
p.299 in [10]).



5. AN INTUITIVE IMPROVEMENT: CLOCK CONTROL

So far, all the Poisson coefficients of the clocks were equals. This
mean that all sensors were waking up uniformly and independently
from their past actions. Intuitively, it would be more logical that a
sensortalkinga lot became less active during a long period.
Thanks to our BWGossip algorithm, each sensor knows whether
it talks frequently or not (without additional cost) through its own
weight value. Indeed, the more a sensortalks, the smaller its weight
is. Therefore, our idea is to control the Poisson coefficient of each
sensor with respect to their weight. We thus propose to consider the
following rule for each Poisson coefficient

λi(t) = α+ (1− α)wi(t)

whereα ∈ (0, 1) is a tuning coefficient. Notice that the global clock
remains unchanged since∀t > 0,

∑N

i=1 λi(t) = N . The network
does not so communicate more, but the talking sensors are just bet-
ter chosen. The complexity of the algorithm is the same because the
sensor whose weight changes has just to relaunch its Poisson clock.
Even if the convergence and the convergence speed of the BWGos-
sip with clock improvement have not been formally established, our
simulations (see Fig. 1) show that it also converges exponentially to
the average with higher speed ifα is well chosen.

6. SIMULATIONS

In Figure 1, we plot the normalized mean square error for various av-
eraging algorithms versus the number of clock ticks when100 sen-
sors are selected in a Random Geographic Graph [11] with a radius
r =

√

4 log(N)/N . As already remarked, the Broadcast Gossip
[4] does not converge to the average but decreases rapidly for the
first iterations. The algorithm introduced by [5] has quite poor per-
formance compared to the Random Gossip [2]. The BWGossip is
clearly the fastest one, especially, when clock control management
operates with appropriateα. In Figure 2, we plot the theoretical
upper-bound of the convergence slope| log(Γ)| derived in Theo-
rem 2 and the convergence slope obtained by linear regression on
the logarithm of the empirical mean squared error (in Fig. 1(a), the
BWGossip MSE (in log scale) is almost linear fort large enough
suggesting the exponential decreasing of the MSE) versus the num-
ber of sensorsN . We observe a very good agreement.

7. CONCLUSION

We provided a new averaging algorithm over Wireless Sensor Net-
works combining the speed of the broadcast-based algorithm and the
convergence of the pairwise-based algorithm. We especially gave a
good approximation of the convergence speed.

8. REFERENCES

[1] J.N. Tsitsiklis,Problems in decentralized decision making and
computation, Ph.D. thesis, M. I. T., Dept. of Electrical Engi-
neering and Computer Science, 1984.

[2] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized
gossip algorithms,”IEEE Trans. Inf. Theory, vol. 52, no. 6, pp.
2508–2530, 2006.

[3] A. D. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, “Ge-
ographic Gossip: Efficient Averaging for Sensor Networks,”
IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1205–1216,
2008.

0 200 400 600 800 1000 1200

10
−2

10
−1

10
0

Global time

N
or

m
al

iz
ed

 M
S

E

 

 

Random Gossip

BWGossip

Franceschelli BroadCast

BroadCast Gossip

(a) Comparison with other averaging algorithms

0 200 400 600 800 1000 1200

10
−2

10
−1

10
0

Global time

N
or

m
al

iz
ed

 M
S

E

 

 

BWGossip (α = 1)

BWGossip with α = 0.5

BWGossip with α = 0

(b) Effects of clock control

Fig. 1. Performance of theBWGossipalgorithm.

10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of sensors

 

 

Lower bound on convergence slope : | log( Γ) |

Empirical convergence slope

Fig. 2. Convergence slope of theBWGossipalgorithm.

[4] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione,
“Broadcast Gossip Algorithms for Consensus,”IEEE Trans.
Signal Process., vol. 57, no. 7, pp. 2748–2761, 2009.

[5] M. Franceschelli, A. Giua, and C. Seatzu, “Distributed Aver-
aging in Sensor Networks Based on Broadcast Gossip Algo-
rithms,” IEEE Sensors J., vol. 11, no. 3, pp. 808–817, 2011.

[6] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based compu-
tation of aggregate information,” inProc. 44th Annual IEEE
Symp. Foundations of Computer Science, 2003, pp. 482–491.

[7] F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli,
“Weighted Gossip: Distributed Averaging using non-doubly
stochastic matrices,” inProc. (ISIT) Symp. IEEE Int Informa-
tion Theory, 2010, pp. 1753–1757.

[8] N. Biggs, Algebraic graph theory, Cambridge University
Press, 1993.

[9] F. Iutzeler, J. Jakubowicz, W. Hachem, and P. Ciblat, “Dis-
tributed estimation of the maximum value over a Wireless
Sensor Network,” accepted to the 45-th Asilomar Conference
on Signals, Systems, and Computer, available athttp:
//perso.telecom-paristech.fr/ ˜ ciblat/ .

[10] R.A. Horn and C.R. Johnson,Matrix analysis, Cambridge
University Press, 2005.

[11] M. Penrose, Random geometric graphs, Oxford University
Press, 2003.


