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ABSTRACT

We address the problem of harmonic retrieval in the presence of
multiplicative and additive noise. We derive the finite-sample Cra-
mér Rao Bound (CRB) as well as the asymptotic (large sample)
CRB when the multiplicative noise is complex-valued and non-
circular. These bounds are then analyzed with respect to the sig-
nal parameters. Finally, we prove that the Square-Power based
frequency estimate, which is equivalent to the so-called Nonlinear
Least Square estimate, is asymptotically efficient when the multi-
plicative noise is white.

1. INTRODUCTION

In many applications, such as non-data-aided frequency synchro-
nization in digital communications and direction of arrival (DOA)
estimation, the receiver needs to estimate a harmonic in the pres-
ence of multiplicative and additive noise sources. A well accepted
model for the discrete-time received signal in such a scenario is

y(n) = a(n)e2iπ(φ0+φ1n) + b(n) (1)

where φ0 is the phase and φ1 is the frequency shift to be estimated.
The random process a(n) represents, for example in digital com-
munications scheme, the convolution of the symbol stream with
the transmit/receive filters and physical channel. The random pro-
cess b(n) is an additive noise.

A considerable work has already been carried out on the deriva-
tion of the Cramér-Rao bound (CRB) for the above estimation is-
sue. Making the assumption that both a(n) and b(n) are Gaussian,
expressions for the CRB were developed in [1, 2, 3, 4, 5, 6]. How-
ever, these expressions are valid when either i) a(n) is real-valued,
([2, 3, 4, 5]), ii) or when a(n) is complex-valued and circular ([6]).

Furthermore, most of the above cited papers derived the finite-
sample (or exact) CRB only ([1, 2, 3, 4]). The expressions for
the exact CRB are often not interpretable and only their numeri-
cal evaluation can give some insights into their behavior with re-
spect to the relevant signal parameters. In order to overcome this
drawback, a few papers developed closed-form expressions for the
asymptotic CRB (i.e., in large sample context) ([5, 6]).

To the best of our knowledge, the CRB in the case of complex-
valued non-circular multiplicative noise has not been derived in
the literature. The objective of the paper is to fill this gap. Both
the exact CRB (section 2) and the asymptotic CRB (section 3) will
be investigated. Non-circular multiplicative noise is of interest be-
cause it occurs, for example, in digital communications when the
complex envelope of the received signal is the convolution of real-
valued symbols with the propagation channel ([7]).

The rest of the paper is organized as follows. In section 4,
the asymptotic CRB is compared with the asymptotic performance
of the Square-Power (SP)-based estimators ([8, 4, 5, 7]). Finally,
section 5 presents numerical simulations results which are found
to agree with the theory.

2. EXACT CRAMER-RAO BOUND

Throughout the paper, the model given in Eq. (1) is considered
under the following assumptions :
− a(n) is Gaussian complex-valued non-circular stationary pro-
cess with zero-mean, correlation ra(τ ) =

�
[a(n + τ )a(n)], and

conjugate correlation ua(τ ) =
�
[a(n + τ )a(n)] where the over-

line stands for complex conjugate. The spectrum and conjugate
spectrum are denoted respectively as follows

sa(e2iπf ) =
�
τ∈ � ra(τ )e−2iπfτ

and
ca(e2iπf ) =

�
τ∈ � ua(τ )e−2iπfτ .

By construction, one can remark that ca(e2iπf ) = ca(e−2iπf ).
− The entire statistics {ra(τ ), ua(τ )}τ∈ � of a(n) only depend on
a finite number K of real-valued unknown parameters denoted by
{ak}k=1,...,K .
− The additive noise b(n) is a Gaussian complex-valued and cir-
cular stationary process with zero-mean and unknown variance
σ2 =

�
[|b(n)|2 ].

The purpose of this section is to derive the exact CRB, or
equivalently the exact Fisher information matrix F, for the deter-
ministic parameter vector θ = [a1, . . . , aK , σ2, φ0, φ1] when N
samples of y(n) are available. Let YN = [y(0), . . . , y(N − 1)]T

where the superscript T stands for transposition.
In order to use well-known results on the Fisher information

matrix [9], we work with real-valued processes. We consider Y̆N =
[<[YN ],=[YN ]]T which is a multi-variate Gaussian variable with
zero-mean and covariance matrix R̆YN .

Due to frequency shift, y(n) is stationary with respect to its
correlation but cyclostationary with respect to its conjugate corre-
lation [7]. Thus R̆YN is symmetric but not block-Toeplitz. How-
ever formula (5.2.1) in [9] holds true as long as the covariance
matrix is symmetric. This leads to

Fk,l =
1

2
Tr � ∂R̆YN

∂θk
R̆

−1
YN

∂R̆YN

∂θl
R̆

−1
YN �



where Fk,l corresponds to the joint Fisher information for param-
eters (θk, θl) and where Tr(.) is the trace operator.

After straightforward algebraic manipulations, we show that

Fk,l =
1

2
Tr � ∂ �RYN

∂θk
�R−1

YN

∂ �RYN

∂θl
�R−1

YN �
where �RYN is the covariance matrix of the random vector �YN =
[Y T

N , Y H
N ]T, and takes the following form�RYN =

�
RYN UYN

UYN RYN �
with RYN = E[YNY H

N ] and UYN = E[YNY T
N ]. Superscript H

stands for the complex conjugate transposition.
Model (1) can also be written as follows

YN = ΓAN + BN

where AN and BN are defined in a similar way as YN , and Γ =
diag(e2iπ(φ0+φ1n), n = 0, . . . , N − 1). Consequently, we have
that �RYN = �Γ �RXN

�ΓH
and

where �Γ = [Γ,0N,N ;0N,N ,Γ], and �RXN = �RAN +σ2
I2N with�RAN defined as �RYN . Notice that �RXN does not depend on the

phase parameters. Therefore, we obtain the following expressions
for Fisher information matrix������������������ �����������������

Fak,al
= 1

2
Tr � ∂ �RAN

∂ak
�R−1

XN

∂ �RAN

∂al
�R−1

XN 	
Fσ2,σ2 = 1

2
Tr 
 �R−2

XN �
Fak,σ2 = 1

2
Tr � ∂ �RAN

∂ak
�R−2

XN 	
Fφk,φl

= 2π2Tr 
 Dk �RXN Dl �R−1
XN

+ Dl �RXN Dk �R−1
XN

−2DkDl)

Fak,φk
= iπTr � ∂ �RAN

∂ak
[ �R−1

XN
Dk − Dk �R−1

XN
] 	

Fσ2,φk
= 0

where Dk = [dk,0N,N ;0N,N ,−dk] with d0 = IN and d1 =
diag([0, · · · , N − 1]). The above expressions are similar to the
ones introduced in [6], because we have not used the specific form
of �RXN yet. Nevertheless we already observe differences: for in-
stance, the phase is identifiable (i.e., Fφ0,φ0 6= 0); whereas in the
case of zero-mean circular multiplicative noise the Fisher informa-
tion for the phase is zero [6].

3. ASYMPTOTIC CRAMÉR-RAO BOUND

We now focus on the asymptotic behavior of the Fisher informa-
tion matrix F and the CRB when N becomes large.

Unlike [6], here we can not apply Whittle’s formula [10] for
obtaining simple asymptotic expressions for the Fisher informa-
tion matrix because y(n) is cyclostationary. In the sequel, our
derivations rely on theorems dealing with the inversion of (large)
Toeplitz matrices ([11, 12]).

Let tN = (tl−k)−N<k,l<N be a Toeplitz matrix. Without loss
of generality, we assume that the sequence {tk; k = 0,±1, · · · } is
absolutely summable. Then

s(e2iπf ) =
�
k∈ � tke−2iπfk ⇔ tk = � 1

0

s(e2iπf )e2iπfkdf

Matrix tN can thus be entirely captured by f 7→ s(e2iπf ) which
justifies the following notation :

tN = TN (s).

Let AN and BN be two N×N bounded matrices. |AN | stands for
( 1

N
Tr(ANAH

N ))1/2. AN and BN are said asymptotically equiva-
lent (denoted by ∼) iff |AN − BN | → 0 as N → ∞.

One can remark that RAN and UAN are Toeplitz matrices and
can be written as follows

RAN = TN (sa) and UAN = TN (ca).

This implies that

RXN = TN (s) and UXN = TN (c) (2)

with s(e2iπf ) = sa(e2iπf ) + σ2 and c(e2iπf ) = ca(e2iπf ). Fur-
thermore, we get

RXN = TN (s) and UXN = TN (c)

with s(e2iπf ) = s(e−2iπf ) and c(e2iπf ) = c(e−2iπf ).
To obtain the asymptotic value of F, we firstly need an asymp-

totic equivalent for �R−1
XN

. According to Schur’s lemma, we get�R−1
XN

= 
 R−1
XN

+ R
−1
XN

UXN ∆
−1

UXN R
−1
XN

−R
−1
XN

UXN ∆
−1

−∆
−1

UXN R
−1
XN

∆
−1 �

with
∆ = RXN − UXN R

−1
XN

UXN .

Thanks to Eq. (2), we have

∆ = TN (s) − TN (c)TN (s)−1TN (c).

Since s is real-valued and does not admit zero over the interval
[0,1), we get TN (s)−1 ∼ TN (s−1) for large N ([11, 12]). Then

∆ ∼ TN (s) − TN (c)TN (s−1)TN (c)

Since s−1 and c are bounded over [0, 1), we have

∆ ∼ TN ([ss − cc]/s).

Let

X (e2iπf ) = s(e2iπf )s(e2iπf ) − c(e2iπf )c(e2iπf ).

One can see that X is real-valued and positive. This leads to

∆
−1 ∼ TN (s/X ).

After straightforward manipulations, we conclude that�R−1
XN

∼

�
TN (s/X ) −TN (c/X )
−TN (c/X ) TN (s/X ) � .

After simple but tedious calculations, the Fisher information
matrix is found to be�������������� �������������

limN→∞
1
N

Fak,al
= 1

2
αk,l

limN→∞
1
N

Fak,σ2 = 1
2
βk

limN→∞
1
N

Fak,φ0 = 4πδk

limN→∞
1

N2 Fak,φ1 = 2πδk

limN→∞
1
N

Fσ2,σ2 = 1
2
γ

limN→∞
1
N

Fφ0,φ0 = 16π2ξ

limN→∞
1

N2 Fφ0,φ1 = 8π2ξ

limN→∞
1

N3 Fφ1,φ1 = 16π2

3
ξ



where

αk,l = � 1

0

∂X(e2iπf )
∂ak

∂X(e2iπf )
∂al

X(e2iπf )2
+

V
(c)
k,l

(e2iπf )−V
(s)
k,l

(e2iπf )

X(e2iπf )
df

βk = � 1

0
1

X(e2iπf )

∂X(e2iπf )
∂ak

df

γ = � 1

0

s(e2iπf )2+s(e2iπf )2+2c(e2iπf )c(e2iπf )

X(e2iπf )2
df

δk = =[ � 1

0

∂c(e2iπf )
∂ak

c(e2iπf )

X(e2iπf )
df ]

ξ = � 1

0

c(e2iπf )c(e2iπf )

X(e2iπf )
df

with the following mapping

V
(ν)
k,l (e2iπf ) =

∂ν(e2iπf )

∂ak

∂ν(e2iπf )

∂al
+

∂ν(e2iπf )

∂ak

∂ν(e2iπf )

∂al

Next we study different scenarios. Firstly, we consider the
case where the receiver knows a = [a1, · · · , aK ] and σ2, i.e., the
statistics of multiplicative and additive noises. In this case, the
CRBs are given by

CRB(φ0)|(a, σ2) known ∼
1

4π2ξN

and

CRB(φ1)|(a, σ2) known ∼
3

4π2ξN3
.

Secondly, in the case when a = [a1, · · · , aK ] and σ2 are un-
known at the receiver, we obtain

CRB(φ0)|(a, σ2) unknown = CRB(φ0)|(a, σ2) known +
µ

16π2ξ2N

where µ is a bounded scalar taking the following form

µ = � T 
�� /2 − ��� T/ξ − ��� T/(2γ) � −1 � ,
where � = (αk,l)1≤k,l≤K , � = (βk)1≤k≤K , � = (δk)1≤k≤K .
Lastly

CRB(φ1)|(a, σ2) unknown = CRB(φ1)|(a, σ2) known.

Using the previous expressions for the asymptotic CRB, we
make the following comments :
− The convergence rates for the phase and frequency estimations
are 1/N and 1/N3 respectively regardless of the color of the mul-
tiplicative noise. Such rates correspond to the ones obtained in the
case of real-valued multiplicative noise [5]. Recall that for circu-
lar complex-valued processes, the phase is not identifiable and the
frequency is identifiable only if the multiplicative noise is colored,
with a convergence rate of 1/N . Thus, the non-circular complex-
valued case is closer (in terms of estimation performance) to the
real-valued case than to the circular complex-valued case. Con-
sequently, in terms of performance, the main cut-off is not com-
plex/real but circular/non-circular 1.
− Surprisingly, the same frequency estimation performance is ob-
tained whether the statistics of a(n) are known or not.
− The frequency estimation performance depends only on ξ, which
refers to an information rate provided by the non-circularity. In-
deed, the performance improves when ξ increases.
− In the noiseless case, we observe a floor effect (i.e., CRB 6= 0
when σ2 = 0). This effect vanishes iff sa(e2iπf )sa(e−2iπf ) =

ca(e2iπf )ca(e−2iπf ). This condition is fulfilled for example when
the multiplicative noise is real-valued.

1Notice that a real-valued process can be viewed as a specific case of a
non-circular complex-valued process where the imaginary part is zero.

4. LINK WITH SQUARE-POWER BASED ESTIMATOR

If the multiplicative noise is non-circular, the following estimate,
based on the Squaring loop [8], can be carried out

φ̂
(N)
1 = arg max

φ∈[0,1/2)

L�
l=−L

�����
1

N

N−1�
n=0

y(n)y(n + l)e−4iπφn

�����
2

.

In the real-valued case, this estimate with L = 0 is well-
known ([4, 5] and references therein). Surprisingly, the choice
L = 0 was always made even when the multiplicative process
was colored. In [4], the CRB and estimation performance are de-
rived for high SNR. In [5], the asymptotic CRB is compared with
the asymptotic estimation performance for arbitrary SNRs. It was
proven that the estimate is asymptotically efficient for high SNR.

In [7], the above estimate with any value of L was introduced
and analyzed in the context of non-circular and real-valued mul-
tiplicative noise. The asymptotic covariance of the estimates was
derived for any L and at any SNR. In [7], we show that the asymp-
totic covariance is minimum when L = M , where M is mem-
ory length of a(n) which is assumed to be finite. According to
Theorem 4 in [7], the asymptotic variance of the above frequency
estimate with L = M takes the following form

γf ∼
3η

4π2N3

with

η =
� 1

0
|c(e2iπf )|2X (e2iπf )df
 � 1

0
|c(e2iπf )|2df � 2 .

By using c(e2iπf ) = c(e−2iπf ) and Schwartz’s inequality, we
have η ≥ 1/ξ. Equality holds only if mapping f 7→ X (e2iπf )
is constant. This implies that Square-Power estimate (assuming
L = M ) is at least asymptotically efficient for any SNR if the
multiplicative noise is white.

5. NUMERICAL ILLUSTRATIONS

For sake of simplicity, the multiplicative noise is assumed to be an
AR(1) process, i.e. a(n) = s(n) + as(n − 1) where {s(n)}n∈ �
is a white non-circular Gaussian process with ρ =

�
[s(n)2 ]. In

each figure, we display four curves: dashed line corresponds to the
empirical mean square error (MSE) for the Square-Power estimate
(carried out with L = 1). Disk point represents the theoretical
MSE of the estimate computed via γf . The CRB and asymptotic
CRB are depicted using a solid line and circles respectively. We
have that SNR = 10 log10((1+a2)/σ2). Unless otherwise stated,
we set SNR = 10dB, N = 100, a = 0.75, and ρ = 0.75.

Figure 1 displays the performance measures versus SNR. We
observe that the CRB and asymptotic CRB are very close. Even if
the multiplicative noise is colored; the performance of the Square-
Power estimate almost reaches the CRB. The well-known outliers
effect obviously occurs at low and medium SNR [13].

Figure 2 display the different results versus N . The outliers
effect vanishes as soon as N is chosen large enough.

In Figure 3 depicts the results versus a. The performance de-
pends slightly on a. However the more a(n) is colored, the greater
the gap between CRB and Square-power’s estimate performance.

In Figure 4, the results are displayed versus ρ. One can notice
that the more a(n) is non-circular (i.e., larger values of ρ), the
better the estimation performance. Furthermore, the outliers effect
significantly degrades the performance if a(n) is not non-circular
enough.
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6. CONCLUSION

In this paper, a simple closed-form expression for the asymptotic
CRB is derived. Simulations results show that outliers effect no-
tably affects the performance. Therefore further investigations
should concentrate on the analysis of such phenomenon (perhaps,
by means of the Barankin bound).
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