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Abstract— This paper proposes to analyze the perfor-
mance of a family of non-data aided open-loop carrier fre-
quency offset (FO) estimators for a linearly modulated
signal transmitted through an unknown flat-fading (pos-
sibly frequency-selective) channel. The exact asymptotic
(large sample) performance of these estimators is estab-
lished and analyzed as a function of the received signal
sampling frequency, signal-to-noise ratio (SNR), timing
delay, and number of samples (N). It is shown that in
the presence of timing errors, the performance of the es-
timators can be improved by oversampling (fractionally
sampling) the received signal and by taking into account
the entire cyclostationary information that is present in
the received sequence.

I. INTRODUCTION

In mobile wireless communication channels, loss of syn-
chronization may occur due to carrier frequency offset
and/or Doppler effects. It appears that non-data aided
(or blind) open loop carrier frequency offset estimation
schemes that do not require training sequences and ne-
cessitate short acquisition time present high potential for
synchronization of burst mode transmissions and spec-
trally efficient modulations.

Non-data aided open-loop carrier frequency offset esti-
mators that exploit the cyclostationary (CS) statistics of
the received waveform have been proposed and partially
analyzed by many researchers (see e.g., [1]-[7]). The com-
mon feature of these algorithms relies on exploiting the
CS statistics that are induced either by oversampling of
the received analog waveform [5] or by processing the re-
ceived discrete-time sequence through a nonlinear device
[1], [3], [4], [6]. This later category of estimators ex-
ploit the second and/or the fourth-order CS statistics of
the received sequence and exhibit high convergence rates
(asymptotic variance on the order of O(N−3), where N
stands for the number of samples).

This paper proposes to study in a rigorous and sys-
tematic way the exact asymptotic (large sample) perfor-
mance of these estimators and to propose new algorithms
that improve the performance of the existing estimators.
Due to space limitations, we will present our study only
for real-valued (BPSK and PAM) and general QAM con-
stellations transmitted through flat-fading channels.

II. MODELING ASSUMPTIONS

Suppose that a linearly modulated signal is transmit-
ted through a flat-fading channel. The complex envelope
of the received signal is affected by a carrier frequency
offset and/or Doppler shift Fe [2] and is given by1:

rc(t) = ej2πFet
∑

l

w(l)h(tr)
c (t − lT − εT ) + vc(t) , (1)

1The subscript c is used to denote a continuous-time signal.

where w(l)’s are the transmitted symbols, h
(tr)
c (t) denotes

the transmitter’s signaling pulse, vc(t) is the complex-
valued additive noise assumed independently distributed
with respect to (w.r.t.) the input symbol sequence w(n),
T is the symbol period, and ε is an unknown timing er-

ror. After matched filtering with h
(rec)
c (t), the resulting

signal is (over)sampled at a period Ts := T/P , where the
oversampling factor P ≥ 1 is an integer. The following
equivalent discrete-time model can be deduced:

x(n) = ej2πfen
∑

l

w(l)h(n − lP ) + v(n) , (2)

where fe := FeTs, x(n) := (rc(t) ⊗ h
(rec)
c (t))|t=nTs

(⊗

denotes convolution), v(n) := (vc(t)⊗h
(rec)
c (t))|t=nTs

and

h(n) := (h
(tr)
c (t) ⊗ h

(rec)
c (t))|t=nTs−εT .

In order to simplify the derivation of the asymptotic
performance of the FO-estimators, the following assump-
tions are imposed:
(AS1) w(n) is a zero-mean i.i.d. sequence with values
drawn from a linearly modulated complex constellation
with unit variance, i.e., σ2

2w := E|w(n)|2 = 1.
(AS2) vc(t) is circularly white normally distributed with
zero mean and variance σ2

v .
(AS3) the transmit and receive filters are square-root
raised cosine pulses of bandwidth [−(1 + ρ)/2T, (1 +
ρ)/2T ], where the parameter ρ represents the roll-off fac-
tor (0 ≤ ρ < 1).
(AS4) frequency offset Fe is small enough so that the
mismatch of the receive filter due to Fe can be neglected
[5]. Generally, the condition FeT < 0.1 is assumed.

III. CARRIER FREQUENCY OFFSET
ESTIMATORS

Estimating fe from x(n) in (2) amounts to retrieving
a complex exponential embedded in multiplicative noise∑

l w(l)h(n − lP ) and additive noise v(n) [6]. The un-
derlying idea for estimating the frequency offset is to in-
terpret the received signal higher order statistics as a
sum of several constant amplitude harmonics embedded
in noise, and to extract the carrier offset from the fre-
quencies of these spectral lines. We will solve this spec-
tral analysis problem by mapping this problem into a
CS-statistics framework. It turns out that if the input
symbol constellation is real-valued (BPSK, PAM), then
it follows that E{w2(n)} 6= 0, and thus the second-order
CS statistics of x(n) can be used to recover fe. Due
to their π/2-rotationally invariant symmetry properties,
all QAM constellations satisfy the moment conditions
E{w2(n)} = E{w3(n)} = 0, E{w4(n)} 6= 0, and con-



sequently FO-estimators may be designed based on the
the fourth-order CS-statistics of the received sequence.

A. BPSK or PAM Constellations

Since E{w2(n)} 6= 0 for real-valued constellations, the
second order unconjugated cyclic correlations of x(n)
will be exploited to estimate the carrier frequency offset.
First, in the case P = 1, the unconjugated time-varying
correlation of the output is given by:

c̃2x(n; τ):=E{x(n)x(n+τ)}=ej2πfe(2n+τ)
∑

l

h(l)h(l+τ).

Being almost periodic with respect to n, the generalized
Fourier Series (FS) coefficients of c̃2x(n; 0), termed un-
conjugated cyclic correlations, are given by (c.f. [2]):

C̃2x(α; 0) := lim
N→∞

1

N

N−1∑

n=0

c̃2x(n; 0)e−j2παn

= C̃2x(α0; 0)δ(α − α0), (3)

where C̃2x(α0; 0) :=
∑

l h2(l) and α0 := 2fe. From (3),

it follows that C̃2x(α; 0) consists only one spectral line
located at cycle 2fe. An estimator of fe can be obtained
by measuring the location of this spectral line:

fe =
1

2

(
arg max

α∈(−0.5, 0.5)

∣∣∣C̃2x(α; 0)
∣∣∣
)

. (4)

In practice, a computationally efficient FFT-based imple-
mentation of (4) can be expressed as:

f̂e =
1

2

(
arg max

α∈(−0.5, 0.5)

∣∣∣∣∣
1

N

N−1∑

n=0

x2(n)e−j2παn

∣∣∣∣∣

)
. (5)

In the case when P > 1 (for simplicity, we assume P ≥ 4),
an alternative expression of (3) can be expressed as:

C̃2x(α; 0) =

P−1∑

k=0

C̃2x(k; 0)δ(α − (
k

P
+ α0)) , (6)

where C̃2x(k; 0) := (1/P )
∑

n h2(n) exp(−j2πkn/P ).

Due to (AS3), it is easy to check that C̃2x(k; 0) are non-

zero only for cycles k = 0, ±1. Thus, C̃2x(α; 0) consists of
three spectral lines located at cycles 2fe+k/P, k = 0, ±1
[6]. It is possible to extract fe solely from the loca-
tion information of the spectral line of highest magnitude
(k = 0) and to obtain again the estimator (5). A different
alternative is to extract the frequency offset by exploiting
jointly the location information of all the three spectral
lines. In this case the following FFT-based FO-estimator
is obtained:

f̂e=
1

2

(
arg max

|α|<1/(2P )

1∑

k=−1

∣∣∣∣∣
1

N

N−1∑

n=0

x2(n)e−j2π(α+ k
P

)n

∣∣∣∣∣

)
.

(7)

The condition |2fe| ≤ 1/(2P ) is assumed in order to en-
sure identifiability of fe.

It is interesting to remark that the previous estimators
have been developed by exploiting the CS-statistics in-
formation present in the unconjugated time-varying cor-
relation c̃2x(n; τ), for fixed time lag τ = 0. However, by
exploiting the information provided by the correlations
c̃2x(n; τ) for all the possible values of τ , one may expect
to improve the performance of the estimators that rely
solely on c̃2x(n; 0). Some calculations show that the esti-
mator that exploits all the lags τ and only the information
provided by the spectral line of largest magnitude takes
the form:

f̂e =
1

2

(
arg max

α∈(−0.5, 0.5)

∑

τ

∣∣∣∣∣
1

N

N−1∑

n=0

x(n)x(n + τ)e−j2παn

∣∣∣∣∣

)
.

(8)
In [2], we have established the asymptotic performance
of the estimator (8) and shown that its performance im-
proves significantly the performance of estimator (5).

B. QAM Constellations

Define the fourth-order unconjugated time-varying cor-
relation of the received sequence x(n) via: c̃4x(n;0) :=
E{x4(n)}, with 0 := [0 0 0]. For P = 1, it turns out that:

c̃4x(n;0) = κ̃ej2π4fen
∑

l

h4(l) , (9)

with κ̃ := E{w4(n)}. Similarly for P > 1, we obtain:

c̃4x(n;0) = κ̃ej2π4fen
∑

l

h4(n − lP ) . (10)

It can be shown that C̃4x(α;0), the generalized FS coeffi-
cient of c̃4x(n;0), consists of a single spectral line located
at 4fe (when P = 1) and P spectral lines located at the
cyclic frequencies 4fe + k/P, k = 0, 1, . . . , P − 1 (when
P > 1). Similar to (5) and (7), the following FFT-based
estimators can be obtained if we only consider the spec-
tral line located at k = 0:

f̂e=
1

4

(
arg max

α∈(−0.5, 0.5)

∣∣∣∣∣
1

N

N−1∑

n=0

x4(n)e−j2παn

∣∣∣∣∣

)
, (11)

and when all the spectral lines are taken into account, we
obtain for P > 1 the following FO-estimator:

f̂e=
1

4

(
arg max

|α|<1/(2P )

P−1∑

k=0

∣∣∣∣∣
1

N

N−1∑

n=0

x4(n)e−j2π(α+ k
P

)n

∣∣∣∣∣

)
.

(12)
As before, the assumption |4fe| ≤ 1/(2P ) is necessary in
(11) and (12) to ensure identifiability of fe.

IV. PERFORMANCE ANALYSIS

In this section, we will establish first the asymptotic
performance of the FO-estimator (7) and extend later on
this analysis to the estimators (5), (11) and (12). Due to
lack of space the asymptotic performance of estimator (8)



and its variants (for BPSK/QPSK constellations, P = 1
and P > 1) will be reported in a future paper. From
the definition of unconjugated cyclic correlation and (6),
the unconjugated time-varying correlation c̃2x(n; 0) can
be expressed as:

c̃2x(n; 0)=

1∑

k=−1

C̃2x(k; 0)ej2π( k
P

+α0)n=

1∑

k=−1

λkej(ωkn+φk),

where: λkejφk := C̃2x(k; 0), and ωk := (2πk/P ) + 2πα0.
Defining the zero-mean stochastic process e(n) as:

e(n):=x2(n)−E{x2(n)} = x2(n)−

1∑

k=−1

λkej(ωkn+φk), (13)

it follows that:

x2(n) =

1∑

k=−1

λkej(ωkn+φk) + e(n) .

Thus, x2(n) can be interpreted as the sum of three con-
stant amplitude harmonics corrupted by the cyclosta-
tionary noise e(n) [2], [6]. Consider the nonlinear least-
squares estimator (NLS):

θ̂ := argmin
θ

J(θ) , (14)

J(θ) :=
1

N

N−1∑

n=0

∣∣∣∣∣x
2(n) −

1∑

k=−1

λkej(ωkn+φk)

∣∣∣∣∣

2

, (15)

where θ := [λ−1 φ−1 λ0 φ0 λ1 φ1 α0]
T . It can be

shown that the FFT-based estimator (7) is asymptoti-
cally equivalent to the NLS-estimator (14) (see e.g., [7]).
Hence, in order to compute the asymptotic performance
of estimator (7), it suffices to establish the asymptotic
performance of NLS-estimator (14) [6]. By adopting the
lines of proof presented in [7], some lengthy calculations
lead to the following expression for the FO-estimator’s
asymptotic variance:

lim
N→∞

N3E{(α̂0 − α0)
2} = 6

P−1∑

k=0

P−1∑

l=0

λkλl

· Re{ej(φk−φl)S2e(k − l; ωk)}/(

P−1∑

k=0

λ2
k)2 . (16)

As a particular case of (16), the asymptotic variance of
estimator (5) can be expressed as:

lim
N→∞

N3E{(α̂0 − α0)
2} =

6S2e(0; ω0)

λ2
0

, (17)

where S2e(0; ω0) denotes the cyclic spectrum of e(n).
Note that when P = 1, e(n) is stationary w.r.t. its auto-
correlation function and the cyclic spectrum S2e(0; ω0)
coincides with the second order stationary spectrum
S2e(ω0).

It is not difficult to find that the previous derivations
also hold for the estimators (11) and (12). Just by re-
placing (13) with the following expression:

e(n) := x4(n) − E{x4(n)} = x4(n) −

P−1∑

k=0

λkej(ωkn+φk) ,

(18)
with:

λkejφk := C̃4x(k;0) =
κ̃

P

∑

n

h4(n)e−j2πkn/P ,

ωk :=
2πk

P
+ 4πα0 ,

and by repeating the same calculations as above, the
same asymptotic variance expressions (16) and (17) are
obtained for estimators (11) and (12).

Evaluation of asymptotic variance (17) requires calcu-
lation of cyclic spectrum: S2e(0, ω0). In what follows, we
will present the closed-form expressions of the station-
ary/CS spectra S2e(ω0) and S2e(0; ω0).

A. BPSK or PAM Constellations

Define the second-order conjugated autocorrelations
and cyclic correlations of the received sequence x(n) as:

c2x(n; τ) := E{x∗(n)x(n + τ)}

= ej2πfeτ
∑

l

h(n − lP )h(n + τ − lP ) + σ2
vg(τ),

C2x(k; τ)=
ej2πfeτ

P

∑

n

h(n)h(n + τ)e−
j2πkn

P + σ2
vg(τ)δ(k),

where g(n) stands for the raised-cosine pulse shape. The
following results hold:
Proposition 1. The stationary spectrum of e(n) (P =
1) is given by:

S2e(ω0)=2
∑

τ

c2
2x(τ)e−jω0τ+κ4

∑

τ

∑

l

h2(l)h2(l + τ),(19)

where κ4 denotes the kurtosis of w(n).
Proposition 2. The cyclic spectrum of e(n) (P > 1) is
given by:

S2e(0; ω0) = 2
∑

τ

[
2C2x(−1; τ)C2x(1; τ) + C2

2x(0; τ)
]

·e−jω0τ + κ4P |C̃2x(0; 0)|2 , (20)

B. QPSK or QAM Constellations

As opposed to the real-valued constellations mentioned
above, the FO-estimators corresponding to QAM constel-
lations rely on the higher-order statistics of x(n). Define
the variables:

σ2
4w := E{w∗2(n)w2(n)} , σ2

6w := E{w∗3(n)w3(n)} ,

κ8 := cum{w∗(n), w∗(n), w∗(n), w∗(n), w(n), w(n),

w(n), w(n)} ,



and the fourth and sixth-order unconjugated autocorre-
lations/cyclic correlations of x(n) as:

c4x(n; 0, τ, τ) := E{x∗2(n)x2(n + τ)} ,

C4x(k; 0, τ, τ) :=
1

P

P−1∑

n=0

c4x(n; 0, τ, τ)e−j2πkn/P ,

c6x(n; 0, 0, τ, τ, τ) := E{x∗3(n)x3(n + τ)} ,

C6x(k; 0, 0, τ, τ, τ) :=
1

P

P−1∑

n=0

c6x(n; 0, 0, τ, τ, τ)e−j2πkn/P.

After some straightforward but lengthy calculations, the
following results can be established:
Proposition 3. The stationary spectrum of e(n) (P =
1) is given by:

S2e(ω0) =
∑

τ

[
16c2x(τ)c6x(0, 0, τ, τ, τ) + 36c2

4x(0, τ, τ)

− 72c2
2x(τ)c4x(0, τ, τ) + 24c4

2x(τ)]e−jω0τ

+ κ8

∑

τ

∑

l

h4(l)h4(l + τ) . (21)

Proposition 4. The cyclic spectrum of e(n) (P > 1) is
given by:

S2e(0; ω0) =
∑

τ

(16V1 + 36V2 − 72V3 + 24V4)e
−jω0τ

+
κ8P

κ̃2
|C̃4x(0;0)|2 , (22)

where

V1 :=

1∑

k=−1

C2x(k; τ)C6x(−k; 0, 0, τ, τ, τ) ,

V2 :=

P−1∑

k=0

C4x(k; 0, τ, τ)C4x(P − k; 0, τ, τ) ,

V3 :=

1∑

k=−1

1∑

l=−1

P−1∑

m=0

k+l+m≡0 mod P

C2x(k; τ)C2x(l; τ)C4x(m; 0, τ, τ),

V4 :=

1∑

ki=−1∑
i ki≡0 mod P

3∏

i=0

C2x(ki; τ) .

V. SIMULATIONS AND RESULTS

In this section, the experimental mean-square error
(mse) results and theoretical asymptotic bounds will
be compared. The experimental results are obtained
by performing a number of 100 Monte Carlo trials as-
suming that the transmitted symbols are selected from
BPSK/QPSK constellations with σ2

w = 1. The trans-
mit and receive filters are square-root raised cosine filters
with roll-off factor ρ = 0.5, and the additive noise is gen-
erated by passing Gaussian white noise with variance σ2

v

through the square-root raised cosine filter. The signal-
to-noise ratio is defined as: SNR:= 10 log10(σ

2
w/σ2

v). All
the simulations are performed assuming the frequency
offset feT = 0.011. In [2], we have found that the perfor-
mance of estimator (8) is very close to the performance
achieved by the estimator (5) in an ideal case of no ISI-
effects (i.e., perfect knowledge of the time delay). The
theoretical asymptotic variance of estimator (8) is de-
picted in Fig. 1 and Fig. 3 by the dash-dot line. In Fig-
ures 1–6, the theoretical bounds of estimators (5) and
(11) for P = 1 and P = 4 are represented by the solid
line and the solid line with stars, respectively. The ex-
perimental results of estimators (5) and (11) for P = 1
and P = 4 are plotted using dash lines with circles and
squares, respectively.

Experiment 1-Performance w.r.t. SNR: Assuming the
timing error εT = 0.3, we compare the MSEs of the FO-
estimators (5) and (11) with their theoretical asymptotic
variances. The results are depicted in Figures 1–2. Fig. 1
shows the results for a BPSK input constellation assum-
ing a number of symbols N = 50. Fig. 2 shows the re-
sults for a QPSK input constellation with symbol number
N = 100. It turns out that in the presence of ISI, the
performance of FO-estimators (5) and (11) can be signifi-
cantly improved by oversampling (fractionally-sampling)
the output signal. This result is further illustrated by
Figures 3–4.

Experiment 2-Performance w.r.t. timing error: In
Figs. 3 and 4, the theoretical and experimental MSEs
of the FO-estimators (5) and (11) are plotted versus
the timing error εT , assuming the following parameters:
SNR= 20 dB, N = 50 for BPSK constellation (Fig. 3)
and N = 100 for QPSK constellation (Fig. 4). It turns
out once again that oversampling of the received signal
(P = 4) helps to improve the performance of estimators
(P = 1) and to make the frequency offset estimators more
robust to timing errors.

Experiment 3-Performance w.r.t. the number of input
symbols N: The theoretical and experimental MSEs of
the FO-estimators are plotted versus the number of input
symbols N in Figs. 5 and 6 for BPSK and QPSK input
symbol constellations, respectively, assuming the follow-
ing parameters SNR= 20 dB and timing delay εT = 0.3.
It can be seen that when the input symbol number N
increases, the experimental results are well predicted by
the theoretical bounds derived in Section IV. These plots
also show that the proposed frequency estimators pro-
vides very good frequency estimates even when a reduced
number of samples are used (N = 20÷40 samples). This
shows the potential of these estimators for fast synchro-
nization of burst transmissions.

Experiment 4-Taking into account all harmonics does
not improve the performance of FO-estimators: Assume
that the input symbol constellation is BPSK and P = 4.
In this experiment, we want to compare the performance
of estimator (5) with the one (7) which estimates fe

by taking into account all the three spectral lines of

C̃2x(α; 0). In Fig. 7, the solid line and solid line with
stars denote the theoretical bounds of the estimators (7)
and (5), respectively. Their experimental results are rep-
resented by dash line with circles and squares, respec-



tively. Both theoretical and experimental results de-
picted in Fig. 7 show that estimator (7) does not improve
significantly the performance of (5). In fact, the exper-
imental mse-results of (7) are even worse than those of
(5) in the lower SNR regime. This is due to the fact that
the harmonics near the cycles of ±1/P have small magni-
tudes and can be corrupted easily by the additive noise.
Thus, taking into account all the harmonics is not jus-
tifiable from a computational and performance analysis
viewpoint.

In a future paper, a complete analysis of these estima-
tors will be presented together with extensions to other
types of modulations (MSK, CDMA).
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Fig. 1. MSEs of f̂eT versus SNR for BPSK constellation.
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Fig. 2. MSEs of f̂eT versus SNR for QPSK constellation.
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Fig. 3. MSEs of f̂eT versus timing error εT for BPSK constellation.
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Fig. 4. MSEs of f̂eT versus timing error εT for QPSK constellation.
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Fig. 5. MSEs of f̂eT versus symbol number N for BPSK constel-
lation.
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Fig. 6. MSEs of f̂eT versus symbol number N for QPSK constel-
lation.

0 5 10 15 20 25 30 35 40
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

ms
e(f

e)

Fig. 7. MSEs of f̂eT of the estimators considering all harmonics
and only one harmonic.


