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ABSTRACT

In this paper, we propose a new semi-parametric approach for
blind source separation (BSS) with application to heavy-tailed sig-
nals. The semi-parametric statistical principle is used to formu-
late the BSS problem as a maximum likelihood (ML) estimation.
More precisely, this approach consists of combining the log-spline
model for sources density approximation with a stochastic version
of the EM algorithm for mixing matrix estimation. The proposed
method is truly blind to the particular underlying distribution of
the mixed signals and performs simultaneously the estimation of
the unknown probability density functions (pdf) of the source sig-
nals and the estimation of the mixing matrix. In addition, it is
robust against outliers and impulsive effect. To illustrate that, the
new method is compared with a previously proposed parametric
approach for heavy-tailed signals which is based on alpha-stable
parametric model and on the minimum dispersion (MD) criterion.

1. INTRODUCTION

Blind source separation is a rapidly developing technology that
attracts a lot of attention in the signal processing literature [6].
Applications can be found in a variety of fields, e.g. multiuser
multi-access communications, speech processing, bioengineering
and seismology. In order to perform the BSS task, a measure of the
amount of independence between signals is required. Many mea-
sures of independence exist, based on which, different algorithms
have been proposed to solve the BSS problem [6]. A very popular
parametric approach for estimating the BSS model is the maxi-
mum likelihood method. It is not difficult to derive the likelihood
function using a parametric model of source densities. However,
the distribution model mismatch between the output pdf and the
chosen underlying distribution model is a serious problem in such
approaches. Incorrect assumptions on the source distributions can
result in poor estimation performance or in a complete failure to
achieve the source separation. This issue does not arise in the case
of cumulant maximization based solutions [4]. However, these
approaches usually rely exclusively on third or fourth order cross-
cumulants in order to measure independence, and represent just an
approximation of the mutual information minimization principle
[6]. Alternative methods that employ a non-parametric density es-
timation have been introduced in [3]. These methods usually con-
sist in a density estimation technique that alternates with a cost
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function optimization step in an iterative approximation frame-
work. Although these approaches do not require the definition
of a specific model for the density functions, neither their con-
vergence properties, nor their capability of separation arbitrarily
distributed sources, have been fully assessed. Thus, finding a com-
promise between computational complexity, performances and the
robustness to the source’s pdf mismatch in a blind signal separa-
tion framework is still an open and challenging problem. In this
paper, we propose a new semi-parametric BSS method using the
ML approach and an approximation of the sources densities by
the log-spline function. This method can be applied in particular
to heavy-tailed signals. Moreover, to assess the problem of para-
metric versus non-parametric modelling, we compare the proposed
method with the (parametric) minimum dispersion based method
and discuss the robustness of the two methods against modeliza-
tion errors.

2. PROBLEM FORMULATION

2.1. Linear instantaneous mixtures

In this paper, we consider the classical linear BSS model with in-
stantaneous mixtures given by:

x(t) = As(t)+e(t), t=1...T )

where A is a n x m unknown full column rank mixing matrix. The
sources s1(t),- -, sm(t) are collected in a rn x 1 vector denoted
s(t) and are assumed to be mutually independent identically dis-
tributed (i.i.d) under the common distribution density . We also
suppose that the components 1 (t), . . ., £, (¢) of the noise vector
e(t) are independent and Gaussian distributed with zero mean and
unknown variance o2

The goal of a BSS method is to find a separating matrix i.e. an
m x n matrix B such that the recovered sources are as independent
as possible. Model (1) admits a unique solution up to scaling and

permutation indeterminacy y(t) = Bx(t) such that C ABA=
PA, where A is a diagonal scaling matrix and P is a permutation
matrix (see [6]). At most one source is allowed to be Gaussian to
ensure the identifiability.

1The assumptions of a common source pdf and gaussian noise pdf can
be relaxed easily at the expense of extra computationa cost (in the general
case, we would have to approximate m different source pdfsinstead of one
single pdf common to all sources).



2.2. Heavy-tailed a-stable sources

Recent experimental measurements have demonstrated that many
signals are decidedly non-Gaussian due mostly to impulsive phe-
nomena (see [1] and references therein). It has been shown that
impulsive signals are heavy-tailed in nature and can be better mod-
eled by using distributions with algebraic tails rather than Gaussian
or other exponentially tailed distributions [1]. A popular member
of the class of heavy-tailed distributions is the a-stable distribu-
tion. Recently, the alpha-stable statistical model of heavy-tailed
signals has been proposed for signal processing applications [1].
The class of symmetric alpha-stable (SaS) distributions is best de-
fined by its characteristic function p(w) = exp (jpuw — y|w|*),
where a €]0; 2] is the characteristic exponent that determines the
shape of the distribution. The smaller « is, the heavier the tails of
the a-stable density. x4 € IR is the location parameter, and y > 0
is the dispersion index that determines the spread of the distribu-
tion around its location parameter . No closed-form expressions
exist for a-stable density other than the cases of o = 2 (Gaus-
sian distribution), @« = 1 (Cauchy distribution) and of @ = 1/2
(Levy distribution). Alpha-stable densities obey three important
properties which further justify their role in data modeling.

Proposition 1

1) Stability: A weighted sum of independent «-stable random
variables is a-stable with the same a.

2) Generalized central limit theorem (GCLT): Without limitation
of finite variance, stable models are the only distribution that can
be the limit in distributions of i.i.d. random variables.

3) Heavy-tailed asymptotic behavior: Let X be an a-stable r.v.
witha < 2. Then: P(X > z) ~yCoz™® as z — oo where
C,, is a positive constant depending only on «.

GCLT implies that if the observed randomness is the result of
many cumulative effects and these effects follow a heavy-tailed
distribution, then a stable model may be appropriate. In contrast of
the Gaussian distribution, which has exponential tails, stable laws
have inverse power, i.e. algebraic tails. An important consequence
of this property is the non-existence of the second and higher order
moments of stable distributions, except for the special case a: = 2.
For this reason, most classical BSS methods are inadequate in this
context and divergence behaviors may be observed.

3. SEMI-PARAMETRIC SEPARATION OF
HEAVY-TAILED SOURCES

Our purpose is to estimate by maximum likelihood the density 7,
the mixing matrix A and the noise-variance 2. In this section,
we present a new semi-parametric method to BSS using maxi-
mum likelihood estimation in a log-spline model in order to avoid
any assumption of the source distribution. Nevertheless we sup-
pose that all sources are independent and have the same common
distribution (as mentioned previously, this assumption is just for
simplification and can be alleviated at the cost of extra compu-
tational load). We use log-spline models for two reasons: on
one hand, they have good functional approximation properties,
on the other hand, they are well-adapted to the implementation
of the SAEM (Stochastic Approximation version of the Expecta-
tion Maximization) algorithm [8] allowing to compute easily our
estimator. Moreover, this estimation technique is inherently ro-
bust towards outliers and impulsiveness effects. For this reason,

we apply this method to impulsive random variables with possi-
bly heavy-tailed distributions characterized by infinite second and
higher order moments.

3.1. Non-parametric estimation of the source distribution

In order to get a non parametric estimate of the source density
function 7, we propose to use the log-spline models. We denote
S the vector space of spline functions of a given positive order ¢
on an interval Z, namely piecewise polynomials function of de-
gree ¢ — 1. Given a subdivision of Z, the space S has a finite
dimension J and admits a B-spline basis denoted By, --- , By
(see [2] for more details) having the following properties: the
(Bj)1<j<J are nonnegative and their sum is equal to 1 on Z. So
ford = (01,...,605)" inR’, we define the density function
forall sin Z by:

J
w9 (s) = exp LZ 0;B;(s) — 0(9)]

J
where ¢(f) = log (/I exp [; 0; B; (s):| ds) .
We choose the dimension J of the log-spline model in function
of the sample size T' such that J = o(v/T) (see [7] for more
details). Then we consider the value éT,J of 6 that maximizes
the log-likelihood of the observations (x(¢),t = 1...T') and the
estimate my, ~ of the density 7.

3.2. The SAEM algorithm

To compute the unknown parameters n £ (87, vec(A)7, )7,
we use the SAEM algorithm coupled with a MCMC (Markov Chain
Monte-Carlo) procedure presented in [8], [7]. Here we apply this
algorithm for estimating the mixing matrix A and the variance o>
using the log-spline model to approach the estimate LI The

minimal sufficient statistics used are S(s) = (% Ethl B;(s(t)),
1 < j < J) and we implement the k-th iteration of the SAEM
algorithm as follows:

e S-step: Generate a realization s’ using as proposal distribu-
tion the prior distribution g, and take s, equal to s’ or to
sx—1 according to the value of the acceptance probability.

e A-step: Update the minimal sufficient statistics according
to the stochastic approximation.

o M-step: Update i by maximizing the complete log-likeli-
hood of the model evaluated in the observations and in the
current value of the minimal sufficient statistics.

This algorithm converges a.s. toward a local maximum of the log-
likelihood of the observations under very general regularity condi-
tions (see [8] and [7] for theoretical convergence results). More-
over, in practice, the algorithm is easy to implement and has a
relatively low computational cost.

4. APARAMETRIC BSSMETHOD FOR HEAVY-TAILED
SOURCES

In this section we assume that the sources s(t) are impulsive ran-
dom variables with symmetric a-stable distributions with the same



index a. Few algorithms exist for blind heavy-tailed source sepa-
ration. We briefly describe here a parametric approach using min-
imum dispersion criterion [9] for comparison with the new semi-
parametric approach introduced above.

4.1. Minimum dispersion (MD) based BSS method

The MD method is a two-step separation procedures that achieves
the BSS through minimization of a dispersion criterion. The first
step is a whitening procedure that *orthogonalizes’ the mixture ma-
trix.

Whitening: Here, we search for a matrix W which transforms
mixing matrix A into a unitary matrix. Classically, for a finite
variance signal, the whitening matrix is computed as the inverse
square root of the signal covariance matrix. In our case, the impul-
sive a-stable source signals have infinite variances. However, it is
proven in [10] that the normalized covariance matrix converges to
a finite matrix with the appropriate structure when the sample size
T tends to infinity. More specifically, we have the following result:

Theorem 1 Under the previous data model assumptions, the nor-
malized covariance matrix of x defined by:

an A Rs T T
R, = ———— with R, = = x(t)x(t

Trace(Rg) T Et: (#)x(t)
converges asymptotically (i.e. when the sample size T tends to in-
finity) to the finite matrix ADAT, where D is a positive diagonal
matrix.

Hence, the normalized covariance matrix has the appropriate struc-
ture and the whitening problem becomes standard. One can com-
pute W as the inverse square root matrix of RZ. The latter can
be obtained from the eigendecomposition of R? = UX>UT as
W = ;U7 where X, (resp. U,) corresponds to the diagonal
(resp. unitary) matrix of the m largest eigenvalues (resp. eigen-
vectors) of R?.

The Minimum Dispersion Criterion: Let z(t) 4 Bx(t) where
B is unitary, x denotes the whitened data, i.e, x = Wxand B isa
’separating’ matrix to be estimated. z(¢) is an orthogonal mixture
of the sources and can be written as z(t) = Cs(t) with C orthog-
onal. Let consider the global MD criterion given by the sum of
dispersions of all entries of z, i.e.

JB) & Sy,
i=1

where v, denotes the dispersion of z;(t) the i-th entry of z(¢). It
is shown in [9] that one can estimate the remaining unitary matrix
as the minimum argument of the MD criterion J(B):

Theorem 2 J(B) reaches its minimum value in the set of unitary
matrices if and only if BW (W being the previously computed
whitening matrix) is a separating matrix.

Theorem 2 proves that under unitary transform the signal has min-
imum dispersion if its entries are mutually independent. To mini-
mize a cost function under unitary constraint different approaches
can be considered. The one chosen in [9] consists in estimating
B iteratively as a product of Givens rotations in such a way that
we estimate by line-search one scalar parameter (the angle of the
Givens rotation) at each iteration.

4.2. Parametric versus non-parametric approaches

The MD method is said to be parametric in the sense that it relies
on the a priori knowledge of the exact source pdf. In this case, we
have a finite set of parameters to estimate. On the other hand, the
SAEM method is said to be non-parametric or semi-parametric in
the sense that the source pdf is unknown and need to be jointly es-
timated with the desired parameters (i.e. mixing matrix). Clearly,
estimating a pdf is a difficult problem as the number of parameters
to be estimated is infinite. In the semi-parametric approach, we es-
timate a limited number of parameters by replacing the estimation
problem by an approximation one (at the cost of certain loss in the
estimation accuracy).

As a consequence, the parametric approach is preferred when-
ever a reliable a priori knowledge on the source pdf is available.
In the situations where the pdf is only partially or inaccurately
known, semi-parametric methods should be used because of their
robustness against modelization errors as shown next by simula-
tion results.

5. PERFORMANCE EVALUATION & COMPARISON

In this section we compare our proposed semi-parametric method
to the parametric MD algorithm. All simulation results are aver-
aged over 100 Monte-Carlo runs and the mixing matrix A is gener-
ated randomly at each run. In experiments 1 and 2, the considered
source signals are heavy-tailed with alpha-stable distribution. To
measure the quality of a-stable sources separation, we did use the
generalized rejection level criterion defined as follows [10]:

1 & C;
REMEE PRI

where 4; denotes the dispersion of source s; and C < BA.

e Experiment 1: In this experiment, mixtures of three (m = 3)
heavy-tailed symmetric standard a-stable (x = 0 and v = 1) sig-
nals with characteristic exponent o = 1.5 are considered. The
number of observations is n = 3 and the mixture is noise-free.
Figure 1 presents the generalized mean rejection level (2) versus
the sample size for the two methods. From this results, we can ob-
serve that the new proposed non-parametric approach can separate
correctly the a-stable mixtures even for short sample sizes but is
less accurate (eventhough it relies on the ML principle) than the
MD method.

e Experiment 2: Here, the same three mixtures considered in ex-
periment 1 are corrupted by additive white Gaussian noise. The
sample size is set to T = 500.

Figure 2 presents the mean rejection level (2) versus the noise
power. Similarly to the first experiment, the MD method outper-
forms the SAEM based method.

e Experiment 3: In this experiment, we consider m = 3 impul-
sive sources with generalized gaussian distribution of parameter
p = 1.5 (i.e. the source pdf is proportional to exp(—|z|”)). In that
case, the signals are of finite variances and thus the standard rejec-
tion level criterion [5] is used as a performance measure. n = 4
noise free mixtures are considered.
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Fig. 1. Generalized mean rejection level versus the sample size.

\pe" Generalized mean rejection level

I I I
-30 -25 -20 -15 -10 -5 0
noise power in dB

Fig. 2. Generalized mean rejection level versus the noise power.

As can be observed from figure 3, the MD method fails to
separate correctly the sources as it relies on the SaS source pdf
assumption that is not verified in this example. This illustrate the
robustness of the SAEM compared to the MD method with respect
to the pdf modelization errors.

6. CONCLUSION

In this work, we developed a new semi-blind BSS method using
the SAEM algorithm. The proposed method is applied for the
blind separation of linear instantaneous mixtures of heavy-tailed
sources. The SAEM based method is compared with the mini-
mum dispersion (MD) method and shown to be more general (as it
can be applied to a larger class of source signals) and outperforms
the MD method in terms of robustness against modelization errors.
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Fig. 3. Generalized mean rejection level versus sample size.
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