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ABSTRACT

We focus on harmonic retrieval in multiplicative and additive noise.
At low SNR, Maximum-Likelihood based estimate does not reach
the Cramer-Rao bound. Actually, at low SNR, the Cramer-Rao
bound is not a tight bound anymore and has to be replaced with
the so-called Barankin bound which is tighter but more complicate.
In this paper, we derive the Barankin bound when the multiplica-
tive noise is complex-valued and non-circular. We observe that the
Barankin bound is much more greater than the Cramer-Rao bound,
especially when the multiplicative noise is not non-circular enough.

1. INTRODUCTION

Estimating harmonic corrupted by multiplicative and additive noise
has received increasing interest during the last decade ([1, 2],
[3, 4, 5]). Indeed such concern may occur in non-data-aided carrier
frequency offset synchronization or in direction of arrival (DOA) es-
timation. Nevertheless the most of attention deals with Cramer-Rao
Bound (CRB) derivations ([1, 2, 5] and references therein). How-
ever, as SNR is low and/or when the number of available samples
is small, the Cramer-Rao bound does not predict well the perfor-
mance bound. Indeed one can observe the so-called outliers effect,
that is to say that, the mean-square error for any unbiased estimate
is strongly larger than the Cramer-Rao bound when the SNR or the
number of available samples is below a certain threshold. Actu-
ally the tightest lower bound is provided by the so-called Barankin
bound. Therefore this previous bound has been already introduced
for analyzing the outliers effect ([6, 7, 8], [9, 10, 11], [12, 13]).
For harmonic retrieval in additive noise, several works focus on
Barankin bound ([9, 12, 13] and references therein). Conversely,
derivations for Barankin bound for harmonic embedded in multi-
plicative noise is seldom.

In the literature, only two main works addressed Barankin
bound in presence of multiplicative noise ([10, 11]). These pa-
pers focus on DOA estimation which boils down to estimate ex-
ponential frequency disturbed by multiplicative noise described by
a complex-valued and circular process. Furthermore, even if their
main derivations hold for any complex-valued and circular multi-
plicative noise, their comments and their numerical illustrations are
strongly connected to DOA estimation field.

Therefore this paper focuses on the derivations of Barankin
Bound (BB) when the multiplicative noise is assumed to be
complex-valued and non-circular. We will see further that our
derivations correspond to an extension of those introduced in
[10, 11] and can be done by using similar tools. Notice that such
multiplicative noise can be encountered in digital communications
context when the complex envelope of the receive signal corre-
sponds to the filtering of real-valued symbols with propagation
channel ([14]) or when offset modulation are employed ([15]).

This paper is organized as follows : in section 2, we provide
closed-form expressions for Barankin Bound. In section 3, we
recall Square-Power based estimate which is close to Maximum-
Likelihood based estimate and also exhibits SNR threshold ([3, 4]).

Finally section 4 is devoted to the analyze of the influence of vari-
ous design parameters by means of numerical computations of the
Barankin bound. We especially remark that more the multiplicative
noise is non-circular, less the outliers effect degrades the optimal
performance provided by the Barankin bound.

2. BARANKIN BOUND

We consider to receive the following discrete-time process y(n)

y(n) = a(n)e2iπ(φ0+φ1n) +b(n) (1)

where the phase φ0 and the frequency φ1 are the parameters of in-
terest. Multiplicative noise a(n) is complex-valued and non-circular
stationary process. It is assumed to be Gaussian with zero-mean,
correlation components ra(τ) =

�
[a(n + τ)a(n)], and conjugate

correlation components ua(τ) =
�
[a(n + τ)a(n)] where the over-

line stands for complex conjugate. Additive noise b(n) is Gaus-
sian complex-valued circular stationary process with zero-mean and
variance σ2 =

�
[|b(n)|2 ].

For sake of simplicity, we assume that noise statistics, i.e.,
{ra(τ),ua(τ)}τ∈Z

and σ2, are known at the receiver. This as-
sumption is usually done in [10] or partially done [11] for deriv-
ing Barankin bound because the computational and analytical com-
plexities are too high if not. Moreover, notice that the Cramer-Rao
bound for the frequency estimator is insensitive to the knowledge
of noise statistics as soon as the number of samples is large enough
[16]. We thus can expect that the error induced by neglecting the
estimation step of noise statistics may be sufficiently small to guess
that our further conclusions (especially about SNR threshold) still
hold in case of unknown noise statistics.

Our purpose now is to derive Barankin Bound for unknown
deterministic vector φ = [φ0,φ1]

T. We assume that N samples
of y(n) are available and are stacked into the following vector
yN = [y(0), . . . ,y(N−1)]T where the superscript T stands for trans-
position.

Before going further, we define the following set of the so-
called ”test-points”{ψ(k) = [ψ0(k),ψ1(k)]

T}1≤k≤n. We are now
able to define the Barankin bound of order n as follows :

BBn(φ0,φ1) = sup� Sn( � )

where
Sn( � ) = � (B( � )−1n1

T
n )−1 � T

with � = [ψ(1)− φ , . . . ,ψ(n)− φ ], and 1n = ones(n,1). Further-
more B = (Bk,l)1≤k,l≤n is the following n×n matrix

Bk,l =
�
[L(yN ,φ ,ψ(k))L(yN ,φ ,ψ(l))]

with

L(yN ,φ ,ψ(k)) =
p(yN |ψ(k))

p(yN |φ)



and p(yN |θ) means the likelihood of phase parameters θ .
The mean square error of any unbiased estimator is greater than

Barankin bound of any order ([17]). In an asymptotic point of view
(as n → ∞), the Barankin bound is even the tightest lower bound
that one can found ([6, 11]). As for the choice of the test-points, it
is usual to consider the following ones ([12, 11])

� =

[
ψ0 −φ0 0

0 ψ1 −φ1

]
= diag(ε0,ε1). (2)

Our main concern hereafter is to derive in closed-form expres-
sion the matrix B for such previous test-points.

Since yN is complex-valued and non-circular, we need to intro-
duce the following process ỹN = [yT

N,yH
N ]T in order to encompass

all the second-order statistics of yN . The superscript H stands for
complex conjugate transposition.

Let us now introduce some notations. The covariance matrix
R̃φ of multivariate process ỹN can be written as follows

R̃φ = Γ̃φ

(
R̃a +σ2Id2N

)
Γ̃

H
φ (3)

where R̃a is the covariance matrix of ãN = [aT
N ,aH

N ]T with aN =

[a(0), . . . ,a(N − 1)]T and where Id2N is the 2N × 2N identity ma-
trix. Moreover we get

Γ̃φ =

[ Γφ 0N,N
0N,N Γφ

]

with
Γφ = diag(e2iπ(φ0+φ1n),n = 0, . . . ,N −1).

The probability density of yN writes as follows

p(yN |ψ) =
1

πN
(

det(R̃ψ )
)1/2

exp

{
−1

2
ỹH

NR̃−1
ψ ỹN

}

According to Eq. (3), one can see that det(R̃ψ ) is independent of
ψ . This implies that

L(yN ,φ ,ψ(k)) = exp

{
−1

2
ỹH

N

(
R̃−1

ψ(k)− R̃−1
φ

)
ỹN

}

Finally we wish to derive the following term

Bk,l =
� [

exp

{
−1

2
ỹH

NWk,l ỹN

}]

with
Wk,l = R̃−1

ψ(k) + R̃−1
ψ(l)−2R̃−1

φ .

In order to calculate properly the previous term, we first rewrite it
in terms of y̆N = [ℜ[yN ]T,ℑ[yN ]T]T. We obtain that

Bk,l =
� [

exp

{
−1

2
y̆T

NW̆k,ly̆N

}]

where W̆k,l = PHWk,lP with P = [IdN , iIdN ;IdN ,−iIdN ]. Let

R̆φ = E[y̆Ny̆T
N ] be the covariance matrix of the real-valued pro-

cess y̆N . Since R̆φ is symmetric, it can be diagonalized as follows

R̆φ = DT
x ΛxDx where Dx is the orthogonal matrix composed by

the eigenvectors and where Λx is the diagonal matrix composed by
the eigenvalues. Let x = Λ−1/2

x Dxy̆N . By construction, vector x is

still Gaussian with covariance matrix Id2N . Thus each component
of x is independent of another one. Then

Bk,l =
� [

exp

{
−1

2
xTVk,lx

}]

with Vk,l = Λ1/2
x DxW̆k,lD

T
x Λ1/2

x . Once again, as matrix Vk,l is

symmetric, it can be decomposed as follows Vk,l = DTΛD where
D is the orthogonal matrix composed by the eigenvectors and where
Λ = diag([λ0, · · · ,λ2N−1]) is the diagonal matrix composed by the
eigenvalues {λm}0≤m≤2N−1. Let z = [z0, · · · ,z2N−1]

T = Dx. Vec-
tor z is still Gaussian with covariance matrix equal to the identity
matrix, i.e., with independent components. Therefore we get

Bk,l =
� [

exp

{
−1

2
zTΛz

}]

=
�

[
exp

{
−1

2

2N−1

∑
m=0

λmz2
m

}]

=
2N−1

∏
m=0

� [
exp

{
−1

2
λmz2

m

}]

One can easily check that z2
m follows a Chi-square distribution with

one degree of freedom. This leads to [17, 18]

Bk,l =

{
∏2N−1

m=0
1√

1+λm
if (1+λm) > 0,∀m

+∞ otherwise
.

Last expression can be compacted as follows

Bk,l =

{
1√

det(Id2N+Vk,l)
if Id2N +Vk,l > 0

+∞ otherwise
.

After straightforward algebraic manipulations, we finally obtain
that

Bk,l =

{
1√

det(Qk,l)
if Qk,l > 0

+∞ otherwise
,

with

Qk,l = Id2N +Wk,lR̃φ

= (R̃−1
ψ(k) + R̃−1

ψ(l))R̃φ − Id2N

Obviously, we get

R̃φ =

[
Rφ Uφ
Uφ Rφ

]

with Rφ = E[yNyH
N ] and Uφ = E[yNyT

N ]. Matrix Uφ refers to
conjugate correlation of the received signal and is non-null because
of the non-circularity of the signal. In [10] and [11], the expres-
sion for Bk,l is slightly different : the square root is removed and

Qk,l depends only on Rφ instead of R̃φ . Actually, our expres-
sion is an extension of that one obtained in [10] and [11]. Indeed,
by setting Uφ = 0, R̃φ is block-diagonal and then our expression
is equal to that one introduced in [10] and [11]. Notice that the
difference between our expression and that one presented in afore-
mentioned papers are exactly similar to the difference existing be-
tween Chi-square characteristic function with one degree of free-
dom (real-valued case) and with two degrees of freedom (circular
complex-valued case).

In the sequel, we focus rather on the frequency parameter
because we have observed numerically that the outliers effect is



“stronger” for such a parameter, i.e., the difference (at low SNR)
between Cramer-Rao bound and Barankin bound is larger for the
frequency estimation issue. For standard test-points described in
Eq. (2), the Barankin bound for φ1 takes the following form [11]

BB(φ1) = sup
ε0,ε1

ε2
1

(B1,1 −1)− (B0,1 −1)(B0,0 −1)−1(B0,1 −1)
.

The term (B0,1 − 1)(B0,0 − 1)−1(B0,1 − 1) represents the loss in
performance due to joint phase parameter estimation.

The next step would be to derive closed form expression for
SNR threshold, i.e, the SNR beyond which the Barankin bound and
the Cramer-Rao bound are equal. In order to yield closed-form ex-
pression (by following approach given in [12]), parameter has to be
considered unknown one by one. Obtaining such an expression re-
quires further work and so is beyond scope of this communication.
Nevertheless the corresponding complicated derivations should be
drawn in the journal version paper.

3. REVIEW ON SQUARE-POWER BASED ESTIMATOR

In the section, we briefly review the well-known Square-Power es-
timate for frequency shift which is strongly related to the so-called
Non-Linear Least Square (NLLS) estimate ([19, 3, 4, 5]). We herein
introduce this estimate in order to compare it with the Barankin
bound in the section devoted to numerical simulations. The compar-
ison is not sound because this estimator is not unbiased but asymp-
totically unbiased whereas the Barankin bound makes sense for un-
biased estimate only. However such a comparison is of interest as
mentioned in [7] and [13].

The Square-power estimate can be defined as follows

φ̂1 = arg max
φ∈[0,1/2)

L

∑
l=−L

∣∣∣∣∣
1
N

N−1

∑
n=0

y(n)y(n+ l)e−4iπφn

∣∣∣∣∣

2

. (4)

This estimate has been deeply analyzed in many papers when L = 0
and when the multiplicative noise was real-valued ([19, 3, 4, 5, 20]
and references therein). The extension and the analysis for any
L and for non-circular complex-valued multiplicative noise have
been performed in [16]. The comparison between Square-Power
estimate and the Cramer-Rao bound has led to a lot of papers
([19, 3, 4, 5, 16]). It is especially shown that Square-Power estimate
is asymptotically efficient either for any SNR if the multiplicative
noise is white or for high SNR whatever the color of noise. More-
over Square-Power based estimate is numerically close to Cramer-
Rao Bound anyway except when outliers effect obviously occurs.

The cost function to be maximized in Eq. (4) admits numerous
local maxima. In practice, in order to minimize the estimation error,
L is fixed to the memory of the process y(n) ([14]). However it has
generally a particular shape which can be exploited. Indeed, the
cost function usually can be depicted as a flat ground-level noise
plus a peak around the true value φ1. Therefore one can proceed
into two steps to compute the maximization in Eq. (4) :
• the first step, also called coarse step, detects the main peak by

means of FFT. If the estimate works well, this main peak is
around the true value φ .

• the second step, also called fine step, refines the estimation
around the detected peak by means of Gradient-descent algo-
rithm initialized by the coarse estimate provided by the first step.

Generally the outliers effect corresponds to the failure of the coarse
step [7].

4. NUMERICAL ILLUSTRATIONS

For sake of simplicity, the multiplicative noise is assumed to be
AR(1) as follows : a(n) = s(n) + as(n − 1) where {s(n)}n∈Z

is
white non-circular Gaussian process with ρ =

�
[s(n)2 ]. Notice that

the colorness rate given by |ra(1)|/|ra(0)| is maximum iff a = 1

and that ρ refers to a noncircularness rate. In each figure, we dis-
play four curves : dashed line corresponds to the empirical mean
square error (MSE) for the Square-Power estimate. Dash line with
disk point represents the theoretical MSE for the estimate ([14, 16]).
Solid line without point and with circle point plot the Cramer-
Rao Bound (see [16]) and Barankin Bound respectively. We get
SNR = 10log10((1+a2)/σ2). Finally L = 1 since we treat a AR(1)
process.

In Figure 1, we plot all the curves versus SNR with N = 100,
ρ = 0.75 and a = 0.75. We notice that there is a large gap between

−5 0 5 10 15 20 25
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

M
S

E

SNR (N=100 ; rho= 0.75 ; a=0.75)

MSE versus SNR

Cramer−Rao Bound
Barankin Bound
Theoretical MSE for NLS
Empirical MSE for NLS

Figure 1: MSE versus SNR

the Barankin bound and the real performance of the Square-Power
estimate.

In Figure 2, we plot all the curves versus a with SNR = 5dB,
N = 32, ρ = 0.25. The outliers effect is slightly more important
when the signal becomes less colored (a 6= 1). Besides, we have
also remarked that the influence of the color vanishes as soon as N
is sufficiently large (N ≥ 128 when ρ = 0.25).
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Figure 2: MSE versus a

In Figure 3, we plot all the curves versus ρ with SNR = 10dB,
N = 64, a = 0.75. The signal being highly colored (a = 0.75), the
Barankin bound is not affected by the outliers effect. In contrast, as



the Square-Power estimate fails once again because the colorness
information is not cleverly used.
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Figure 3: MSE versus ρ (high a)

In Figure 4, we plot all the curves versus ρ with SNR = 10dB,
N = 64, a = 0.10. The outliers effect is now slightly visible on
the Barankin bound because the considered signal is not colored
enough. Finally we also observe that more a(n) is non-circular (i.e.,
ρ large), better is the performance.
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