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Abstract We propose a block equalization algorithm using optimal step size. The algorithm shows fast
convergence, low steady-state error and good tracking capacity in comparison to standard equalizers
operating on a sample-by-sample basis.

Introduction
Phase modulated formats, such as QPSK, com-
bined with polarization multiplexing (PolMux)
have shown the capability to reach 100 Gb/s
or above using coherent detection associated
with digital signal processing (DSP). This DSP
deals at least with the compensation of the Inter-
Symbol Interference (ISI) genererated by polar-
ization mode dispersion (PMD) and residual chro-
matic dispersion (CD). M-ary quadrature am-
plitude modulation (M-QAM) formats appear as
promising candidates to reach 400 Gb/s, with the
current state of the art of ADC and FPGA cir-
cuits1. In Fig. 1, we describe the DSP structure
of a PolMux coherent receiver for which our goal
is to improve the block in gray color correspond-
ing to MIMO equalization, i.e., PMD/residual CD
mitigation. Usually the ISI is mitigated by means
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Fig. 1: DSP structure for PolMux coherent receiver.

of an adaptive equalizer based on the stochas-
tic gradient descent algorithm for sake of simplic-
ity2,3 using either the constant modulus (CM), the
multi-modulus (MM) or the decision-directed (DD)
criterion. Moreover, in the state-of-the-art, the
stochastic gradient descent algorithm is carried
out with a constant step size during all the track-
ing sequence. The choice of this step size is con-
nected to the trade-off between the convergence
speed and the steady state performance. In order
to overcome the problem of suboptimal step size,
we proposed the stochastic Pseudo-Newton algo-
rithm based on the computation of the inverse of
the Hessian matrix4. The main advantage of an
adaptive approach is its ability to track propaga-
tion channel variation. However in optical commu-

nications, the propagation channel may vary quite
slowly compared to the symbol period5,6, i.e., the
channel can be assumed to be constant over a
large observation window. Therefore it is worthy
treating the data block-by-block and not sample-
by-sample.
The proposed algorithm is a block one (i.e., op-
erating block-by-block) instead of being adaptive
(i.e., operating sample-by-sample). The main
advantage of this new approach is to improve
the statistics estimation and so the algorithm be-
havior. In the sequel of this paper, we intro-
duce our blockwise algorithm which relies on the
(non-stochastic) gradient-descent algorithm as-
sociated with the CM criterion and an optimal step
size implementation. Derivations and simulations
are done using 16-QAM modulation format.

Proposed algorithm
Let x(n) be the transmitted sequence of QAM
modulated signal and ya(t) the continuous-time
signal associated with one polarization at the re-
ceiver. As it is usual to oversample the received
signal at twice the baud rate, we focus on y(n) =
ya(nTs/2) where Ts is the symbol period. In order
to ”work” at the symbol rate, we stack two consec-
utive received samples into a bivariate process as
follows:

y(n) = [ya(nTs), ya(nTs + Ts/2)]T (1)

where (.)T stands for the transposition. If the re-
ceived signal is only disturbed by linear opera-
tions (such as CD and 1st order PMD), y(n) is fil-
tered version of x(n) that takes the following form

y(n) =
K∑
k=0

h(k)x(n− k) + b(n) (2)

where h(k) is the k-th component of the filter,
and b(n) is the additive noise indenpendent of the
data. In order to compensate for the channel re-
sponse, we introduce a Ts/2-fractionally spaced
equalizer (FSE). Let w(n) be the n-th component
of the FSE assumed to be a FIR of length L, we
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have

z(n) =
L∑
k=0

w(k)∗y(n− k) = WHYL(n) (3)

where (.)H stands for conjugate transposition,
W = [w(0),w(1), · · · ,w(L − 1)]T and YL(n) =
[y(n)T,y(n − 1)T, · · · ,y(n − L + 1)T]T. We now
would like to exhibit the filter W enabling us to
have z(n) close to x(n). To do that, it is relevant
to use the CM criterion defined as the minimiza-
tion of the following cost function7

J(W) = E[Jn(W)] (4)

with Jn(W) = (|z(n)|2 − R)2 and R =
E[|x(n)|4]/E[|x(n)|2]. In order to estimate the
mathematical expectation, we propose to mini-
mize the following estimated cost function

ĴN (W) =
1
N

N−1∑
n=0

Jn(W) (5)

where N is the number of available bivariate sam-
ples y(n). Our purpose is now to find the mini-
mum of W 7→ ĴN (W). To do that, we suggest
to use the (non-stochastic) gradient descent al-
gorithm with optimal step size. If Wi is the esti-
mated equalizer at the i-th iteration (note that the
data block is the same for each iteration), we have
the following update relation10,11

Wi+1 = Wi − µi∆i (6)

where ∆i = ∂ĴN (W)/∂W∗
|Wi

writing as

∆i =
1
N

N−1∑
n=0

(|z(n)|2 −R)z(n)∗YL(n) (7)

and where (.)∗ stands for complex conjugation.
In order to find the optimal step size µi at the i-
th iteration, we proceed into the minimization the
estimate cost function with respect to µi, i.e.,

µi = arg min
µ
ĴN (Wi − µ∆i). (8)

The derivative of µ 7→ ĴN (Wi − µ∆i) is the fol-
lowing 3-rd degree polynomial.

Pi(µ) = p3,iµ
3 + p2,iµ

2 + p1,iµ+ p0,i (9)

where

p3,i =
1
N

N−1∑
n=0

a2
n, p2,i =

1
N

N−1∑
n=0

anbn,

p1,i =
1
N

N−1∑
n=0

(2anbn + b2n), p0,i =
1
N

N−1∑
n=0

bncn

with an = |z(n)|2, bn = −2<(z(n)δ∗n,i), cn =
(|z(n)|2 − R) and δn,i = ∆H

i YL(n). To minimize
Eq. (8), we derive in closed-form the roots of poly-
nomial Pi(.) and we select the real-valued root
prodiving the minimum value of µ 7→ ĴN (Wi −
µ∆i). In Fig. 2, we summarize the architecture of
the proposed equalizer.

#iterations

Decision

y(kN)

...
y(n)

y(kN + N − 1)

W x̂(n)

x̂(kN + N − 1)

k-th block Update

x̂(kN)
...WH

Fig. 2: Structure of the proposed blockwise equalizer.

Note that similar approach can be done with DD
criterion. In such a case, we have

∆i,DD =
1
N

N−1∑
n=0

(z(n)− x̂(n))∗YL(n) (10)

where x̂(n) is the current decision on the symbol
x(n), and

µi,DD =

∑N−1
n=0 <{δ∗n,i,DD}(z(n)− x̂(n))∑N−1

n=0 2|δ∗n,i,DD|2
(11)

where δn,i,DD = ∆H
i,DDYL(n).

Our algorithm can be adapted in order to treat
the two polarizations jointly. Moreover our ap-
proach can be straightforwardly applied for the
MM algorithm (MMA)3. We limit our study to the
CM criterion in this paper.

Simulations results
A 112Gbit/s transmission was achieved by mul-
tiplexing both polarizations with 16-QAM mod-
ulated signals which corresponds to 14Gbaud
transmission per polarization. The transmit shap-
ing filter is a square root raised cosine filter with
a roll-off factor equal to 1. A matched filter to the
shaping filter is applied at the receiver side. The
received electrical signal is sampled at a rate of
2 samples per symbol. A 5-th order Bessel filter
with a 3dB bandwidth equal to 80% of the symbol
rate was used as anti-aliasing filter. The perfor-
mance of the algorithm is evaluated using 1000
Monte Carlo trials.
Except otherwise stated, we considered a trans-
mission line that exhibits a 1000ps/nm of CD, a
π/4 polarisation rotation and a 50ps DGD8. The
OSNR was set to 20dB and no phase noise was
considered. The equalizer length L is fixed to 6.
This equalizer W is estimated using the proposed
method and applied to both polarizations.
The speed of convergence of the algorithm for
different block sizes is depicted in Fig. 3. We
observe that the convergence is obtained after
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nearly 50 iterations. Secondly, we can also re-
mark that lower BER (below the FEC limit ∼
2.10−3) is reached as soon as the block size is
larger than 1000.
We now would like to compare our algorithm
with the standard CM algorithm (CMA) and the
Pseudo Newton (PN) CMA4 operating adaptively,
i.e., sample-by-sample. In Fig. 4, we analyse
the BER for different sizes of observation win-
dow (the observation window per polarization is
denoted by N ). We remind that the proposed

0 2000 4000 6000 8000 10000 12000
10

−4

10
−3

10
−2

10
−1

10
0

Length of the observation window

B
E

R

 

 

CMA, µ=10−3

PN CMA, µ=10−3, δ=0.9 

B−CMA

Fig. 4: BER vs. the length of the observation win-
dow. (#iterations= 50 for the Block CMA, OSNR=20dB,
DGD=50ps, polarization rotation= π

4
)

algorithm (called Block (B) CMA) evaluates the
cost function ĴN (.) along the entire observation
window (which is then associated with one block)
and then iterates to find the minimum of this cost
function (50 iterations have been considered here
to obtain Fig. 4) whereas the adaptive based al-
gorithm iterates at each sample n with a new cost
function Jn(.) until the end of the observation win-
dow. The B-CMA improves significantly the con-
vergence speed with regard to the observation
window size. The steady-states however are sim-
ilar for all the approaches.

As noticed by some authors5,6, the propaga-
tion channel has a coherence time around a

few milliseconds. In addition, experimental mea-
surements9 have shown that the maximum state
of polarization (SOP) variation is about 26rad/s
which corresponds a coherence time equal to
3.8ms (if the coherence time is defined as the
maximum delay for which the normalized mean
square error between both channel impulse re-
sponse is less than 1%). As we consider a
14Gbaud transmission per polarization, the sym-
bol period is equal to 71ps and the block size
with N=1000 has a duration of 71ns. As a con-
sequence, we have checked that the channel is
stationary or slowly-varying throughout one block.

Let us now comment on the tracking ability of
the proposed blockwise algorithm. By observing
Fig. 4, we remarked that the blockwise algorithm
is able to estimate the channel with a few thou-
sands of samples. As a consequence, if the chan-
nel is dramatically modified inside one block, the
blockwise algorithm will be able to find fastly the
new channel value with the next block while the
adaptive equalizer will find this new channel value
after at least a few tens of thousands iterations
and thus samples. Surprisingly the blockwise ap-
proach is more adapted to channel variation than
the adaptive one. Actually, the adaptive one may
be interesting when the channel is varying oftenly
(i.e., inside each block for example) but the mea-
surments done in installed fibers in5,9 show that it
is not the case in optical communications.

Conclusion
We proposed a block blind equalizer using an
optimal step size. Simulations showed faster
convergence than CMA and PN-CMA algorithms,
and excellent tracking capabilities. Avoiding op-
erating on a sample-by-sample basis relaxes the
constraints on real-time implementation, there-
fore our proposal is an attractive solution for QAM
coherent systems using polarization multiplexing.
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