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Fifth-order Volterra series based Nonlinear Equalizer
for long-haul high data rate optical fiber communications

Abdelkerim Amari, Philippe Ciblat, and Yves Jaouën

Abstract—We propose a fifth-order Inverse Volterra Series
Transfer Function based nonlinearities compensation for
ultra high data rate optical fiber communications using
OFDM. Compared to the third-order case, we significantly
improve the performance in terms of BER and/or transmis-
sion distance.

I. Introduction

Concerning ultra high data rate optical communications for
core and metroplitan networks, coherent detection along with
digital signal processing has recently received a lot of attention
due to its high ability to compensate for linear distorsions and
to handle multi-level modulation formats (16QAM, 64QAM,
etc). More precisely, next generation long haul wavelength-
division multiplexing (WDM) transmission system has to reach
from 400 Gb/s to 1 Tb/s as target data rates. Such data rates
can be only reached by using multi-level modulation formats.
However, such formats require high Optical Signal-to-Noise
Ratio (OSNR) and so high input powers. Unfortunately, such
input powers give rise to nonlinear impairments through the
fiber transmission which reduce significantly the transmission
distance. Therefore, mitigating nonlinear impairments is a hot
topic for long-haul high data rate optical communications.

Several approaches have been proposed for mitigating these
nonlinearites: Digital Back Propagation [1], Adaptive Loading
Algorithm [2], and Inverse Volterra Series Transfer Function
(IVSTF) based Nonlinear Equalizer (NLE) [3]. The main in-
terest of IVSTF-NLE compared to other techniques is its
computational load since parallel processing can be done. So
far, only third-order IVSTF-NLE has been proposed.

Our contribution in this paper is to propose the fifth-order
IVSTF-NLE. Firstly, we derive the fifth-order Volterra kernels
of the receiver. Secondly, we show that such a IVSTF-NLE
can be implemented. Finally, through simulations, we observe
a significant gain in BER and transmission distance compared
to its third-order version. In this summary, we focus on single-
polarization multi-band OFDM systems with multi-span fibers.
Due to lack of space, the dual-polarization case will be only
treated in the final version.

II. VSTF based optical fiber model

Like [3], we consider a communication system with N spans:
each of them is of length L and is built with a single mode fiber
(SMF) of attenuation coefficient α, second-order dispersion
parameter β2, and nonlinear coefficient γ. In [4], it is shown
that the Volterra Series Transfer Function (VSTF) is a powerful
tool for solving the so-called NonLinear Schrödinger Equation
(NLSE) that governs the propagation within a span and shows
that the link, in the frequency domain, between the output
Y (ω) of the N -th span and the input X(ω) of the first span
can be modelled as follows

Y = H1[X] +H3[X] (1)
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where H1 and H3 are the first-order and third-order VSTF
operators respectively given by

Y1 = H1[X] ⇔ Y1(ω) = h1(ω)X(ω)

Y3 = H3[X] ⇔ Y3(ω) =

∫∫
h3(ω1, ω2, ω − ω1 + ω2)

.X(ω1)X∗(ω2)X(ω − ω1 + ω2)dω1dω2.

The kernels h1 and h3 are available in [3] and equal to

h1(ω) = e−jω
2β2NL/2 (2)

h3(ω1, ω2, ω − ω1 + ω2) =
−jch1(ω)

4π2

N−1∑
k=0

e−jkβ2∆ΩL (3)

with ∆Ω = (ω1 − ω)(ω1 − ω2) and c = γ(1− e−αL)/α.

III. Fifth-order IVSTF based nonlinear equalizer

We propose to make the decision on Z obtained as follows

Z = K1[Y ] +K3[Y ] +K5[Y ] (4)

where K1, K3, and K5 are the so-called Inverse VSTF operators
(up to fifth-order) associated with the system (H1, H3) given
by Eq. (1). Note that we can omit the even-order terms for the
IVSTF since the even-order terms in Eq. (1) vanish. According
to [5], [6], we know that

K1 = H−1
1 (5)

K3 = −K1H3K1 (6)

K5 = K1[−H3[K1 +K1H3K1]− 3H3K1] (7)

+ K1[0.5H3K1H3K1 + 0.5H3[2K1 +K1H3K1]].

In [3], explicit expressions for Z1 = K1[Y ] and Z3 = K3[Y ]
have been developed when H1 and H3 are given by Eqs. (2)-(3).
Our main contribution is to exhibit a closed-form expression
for the operator K5 for which the input is Y and the output is
denoted Z5 when H1 and H3 follow Eqs. (2)-(3). For any H1

and H3, we first obtain after simple derivations that

Z5(ω)

k1(ω)
= −

∫∫∫∫
h3(ω1, ω2, ω − ω1 + ω2)k1(ω1)k∗1(ω2)

× k3(ω3, ω4, ω − ω1 + ω2 − ω3 + ω4)y(ω1)y∗(ω2)

× y(ω3)y∗(ω4)y(ω − ω1 + ω2 − ω3 + ω4)dω

−
∫∫∫∫

h3(ω1, ω2, ω − ω1 + ω2)k1(ω − ω1 + ω2)

× k1(ω1)k∗3(ω3, ω4, ω2 − ω3 + ω4)y(ω1)y∗(ω3)

× y(ω4)y(ω − ω1 + ω2)y∗(ω2 − ω3 + ω4)dω

−
∫∫∫∫

h3(ω1, ω2, ω − ω1 + ω2)k1(ω − ω1 + ω2)

× k∗1(ω2)k3(ω3, ω4, ω1 − ω3 + ω4)y∗(ω2)

× y(ω − ω1 + ω2)y(ω3)y∗(ω4)y(ω1 − ω3 + ω4)dω

with ω = [ω1, ω2, ω3, ω4]. Note that k1 and k3 are the kernels
of K1 and K3 respectively.
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Using Eqs. (2)-(3), we obtain after tedious algebraic manip-
ulations that

Z5(ω) =

N∑
k,`=1

(
S

(k,`)
1 (ω) + S

(k,`)
2 (ω)

)
with

S
(k,`)
1 (ω) = − 2c2

(2π)4
hNcd(ω)

∫∫∫∫
ejβ2L(k∆Ω+`∆Ω1)Y ∗(ω2)

× Y (ω − ω1 + ω2)Y (ω3)Y ∗(ω4)Y (ω1 − ω3 + ω4)dω

and

S
(k,`)
2 (ω) =

c2

(2π)4
hNcd(ω)

∫∫∫∫
ejβ2L(k∆Ω−`∆Ω2)Y (ω1)

× Y (ω − ω1 + ω2)Y ∗(ω3)Y (ω4)Y ∗(ω2 − ω3 + ω4)dω

with ∆Ω1 = (ω3 − ω1)(ω3 − ω4), ∆Ω2 = (ω3 − ω2)(ω3 − ω4),

and hcd(ω) = ejβ2ω
2L/2.

The above fourth-order multiple integrals seem to be impos-
sible to implement in practice. Actually, it is possible to remove
all integrals by working in the frequency and time domains
successively. Let us first focus on S

(k,`)
1 (ω). Let yk(t) be the

Inverse Fourier Transform of Yk(ω) = hkcd(ω)Y (ω). By replacing
hcd with its expression, after tedious derivations, we obtain

S
(k,`)
1 (ω) = −hN−k

cd (ω)U
(k,l)
1 (ω)

where the Inverse Fourier Transform of U
(k,l)
1 (ω), denoted by

u
(k,l)
1 (t), writes as follows

u
(k,l)
1 (t) =

(√
2c|yk(t)|2

)
.
(
h̃k,`(t) ? (

√
2c|y`(t)|2y`(t))

)
where ? denotes the convolution product and h̃k,`(t) is the
Inverse Fourier Transform of hk−`cd (ω). So instead of doing four
integrals, we just have to multiply signals in time domain and
apply some Fourier Transform. Obviously, similar expressions
can be found for S

(k,`)
2 (ω). This leads to the practical imple-

mentation scheme given by Fig. 1.

Figure 1. Fifth-order IVSTF-NLE scheme for single-polarization

In Fig. 1, we only report the computation of fifth-order terms.
The first-order and third-order terms can be found in [3] and
computed in parallel due to the additive structure of Eq. (4).

IV. Numerical results

In this simulation part, the setup is inspired from the SASER
European project whose the goal is to design a 400Gb/s system
for long-haul communications. As we consider here one polar-
ization, the data rate is only 200Gb/s. We have four bands
of bandwidth 20GHz each and spaced by a 10GHz interval
guard. On each band, we consider a 16-QAM OFDM with 512
subcarriers. The communication is done over 20 spans of 100km
each. Each span is a standard SMF with α = 0.2dB.km−1,
β2 = 17ps.nm−1.km−1, and γ = 0.0014m−1.W−1. We use
Erbium-Doped Fiber Amplifier (EDFA) with a 5.5dB noise
figure and a 22dB gain at each span.

In Fig. 2, we plot BER vs. input power (Pin) when only one
band is active. The fifth-order IVSTF-NLE outperforms the
third-order one and the smallest BER is really improved.
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Figure 2. BER vs. Pin for single-band transmission

In Fig. 3, we plot the reached transmission distance for a
target BER@10−2 when the four bands are active. Compared
to the third-order IVSTF-NLE, the gain is around 100km.
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Figure 3. Pin vs. transmission distance for multi-band transmission

The fifth-order IVSTF-NLE is rather efficient for combating
the intra-band nonlinear effect (see single-band case) than the
inter-band effect (see multi-band effect).
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