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Abstract 
B y  exploiting an unified cyclostationary (CS) statis- 

tics hased framework, this paper develops a rigorous 
and thorough performance analysis of blind feedfor- 
ward timing estimators for linear modulations. Within 
the introduced CS-framework, it is shown that several 
.estimators proposed in the literature can be asymptot- 
ically interpreted as Mwimum Likelihood {ML) esti- 
mators, and the timing estimator proposed by Oerder 
and Meyr in 161 achieves the 'lowest asymptotic (large 
sample) variance in the class of estimators which ex- 
ploit all the second-order statistics of the received sig- 
nal, and its performance is insensitive to the oversam- 
pling rate P as soon as P 2 3 .  Further, based on the 
presented theoretical analysis, we derive an Asymptoti- 
cally Best Consistent (ABC) estimator, which exhibits 
asymptotically the best performance among all the e n  
isting blind feedforwad timing estimators, especially 
when dealing with strongly bandlimited signaling. 

1 Introduction and Channel Model 

Figure 1: Common structure of blind feedforward tim- 
ing estimators 

Timing recovery is a challenging but very important 
task .for reliable detection in synchronous receivers. 
For bandwidth efficiency reasons, non-data aided or 
blind feedforward timing estimation architectures for 
linear modulations have received much attention dur- 
ing the last decade [3]-[7] .  

Consider the following standard baseband channel 
model' (see e.g., PI): 

z F ' ( t )  = x w ( l ) h y ) ( t  - ET - 1T) t v,(t) , (1) 

'The subscript is used to denote a continuoustime signal. 
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where { w ( l ) }  is the zero-mean independently and 
identically distributed sequence of transmitted sym- 
bols, hy)(t) denotes the transmitter's signaling pulse, 
vc(t) is the complex-valued additive white Gaussian 
noise with power spectral density No, T is the symbol 
period, and E stands for the (normalized) symbol tim- 
ing epoch. After matched filtering with ,!,,,I, the re- 
sulting signal x,(t) is oversampled with the sampling 
period T, := TIP ( P  2 3 ) .  The following discrete- 
time system model is obtained: 

where z(n) := (x?)(t)  * h!,,,)(t))jt=nT. (* denotes 
linear convolution), U(.) := (v,(t) * hkee)(t))/t=nT., 

h p ) ( t ) .  h,(t) is assumed to be a raised cosine pulse 
of bandwidth [-(1 + p ) / 2 T . ( 1  + p ) / 2 T ] ,  where the 
parameter p represents the rolloff factor (0 < p 5 1). 

As depicted by Eq. ( 2 ) ,  the problem that we pose 
is to estimate the unknown timing epoch E in a blind 
feedforward manner, assuming knowledge only of the 
received samples {z(n)}t::. Fig. 1 illustrates the 
common structure of the popular blind feedforward 
timing estimators proposed in the literature, which 
consists of filtering the received samples {z(n)}f:: 
through a nonlinearity that removes the modulation 
effects introduced by w(1) and generates a data se- 
quence y ( n )  that contains spectral components whose 
phase information is exploited to recover the unknown 
timing epoch E. The common-used nonlinearities are 
second-law (SLN) [3] ,  161, fourth-law (FLN) [7] ,  abso- 
lute value (AVN) [ l ] ,  [7 ] ,  and logarithmic nonlinearity 
(LOGN) [5] .  

Irrespective of the nonlinearity function used, one 
of the common features of all the above mentioned 
timing estimators is the exploitation of the cyclosta- 

and h,(n) := he(t)lt=nT,--aT with h,(t) := h, (tr) ( t )  * 
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tionary (CS) statistics induced by oversampling the 
received signal. The role of cyclostationarity in syn- 
chronization was clearly acknowledged in [l]. Our goal 
herein is to exploit optimally the CS-statistics of the 
received signal in order to develop efficient estimators, 
and rigorous and thorough performance analysis set- 
ups for the existing blind timing estimators. 

In the next section, first we briefly introduce the 
blind feedforward SLN timing estimators proposed in 
[3] and [6], and then propose a unifying hlL-framework 
that will enable to establish some interesting links with 
some of the existing estimators and to analyze their 
asymptotic performance. 

2 Second Order Timing Estimators 
2.1 The SLN Timing Estimators 

By exploiting Eq. (2), straightforward calculations 
show that the timevarying correlation of the nonsta- 
tionary process ~ ( n )  is given as 

T Z = ( ~ ; T )  := E { z ' ( ~ ) z ( ~ + T ) }  = r z Z ( n + P ; r ) ,  V ~ , T ,  

where the superscript * stands for complex conjuga- 
tion. Being periodic, rzZ(n; T )  admits a Fourier Series 
expansion, whose coefficients, also termed cyclic cor- 
relations, are given for k = 0,. . . , P - 1 by [3], 191: 

and H J F )  stands for the Fourier transform (FT) of 
h,(t). Since H,(F) is a real-valued even function, it 
is easy to check that G(k; T )  is a real-valued function, 
too. Moreover, due to the band-limited property of the 
filter h,(t), G(k; T )  and Rzz(k; T )  are nonzero only for 
cycles k = 0, +l. Since 

Rz5(k;7) = e v R . t , ( - k ;  -T) , (4) 
based on (3), it follows that only the subset 
{&(I; T ) } ,  VT, represents all the second-order statis- 
tics that may be used for estimating t. 

In practice, the cyclic correlations Rz. (k; T )  have to 
be estimated from a finite number of samples N, and 
the standard sample estimate of Rzz(k;  T )  is given for 
T 2 0 by (see e.g., [2], [3]): 

which is asymptotically unbiased and mean-square 
sense (m.s.s.) consistent [2]. 

Exploiting the second-order CS statistics of s(n), 
the following general SLN timing estimator is pro- 
posed: 

(6) 
1 

2n = -- arg{Eiz,(l; . 

Note that the second-order CS-based timing esti- 
mators choose different values for the timing lag T in 
(6) ([3] (T = 1) and [6] (T = 0)). 

2.2 The ML Estimator Links 
According to [2], the sample cyclic correlation es- 

timates {&=(I; T ) ) ,  VT, are asymptotically jointly 
normal. To show that the second-order CS-based 
timing estimators are asymptotically ML estimators, 
let us first define the vector of cyclic correlations': 
Rz2 := [ & ( I ;  -T,,,), . . . , R Z , ( ~ ; T , ) ] ~ ,  where T, is 
an arbitrary non-negative value. Denote the sample 
estimate of Rzz by RzZ. Thus, fi[Rzz - Rzz] is 
asymptotically jointly complex normal with zerwmean 
0 := [0, . . . , i l lT, and its covariance and relation ma- 
trices are given by: 

r := N-30 lim NE{(RzZ - RzZ)(Rz, - Rz, )~}  , 

r := lim NE{(Rz, - R2%)(Rzs - R z ~ ) ~ }  ~ 

- 
N - m  

respectively. 
Next, we transform the complex Gaussian prob- 

ability density function (pdf) Nc(O, r, r) into its 
equivaleqt algebraic form of the real Gaussian 
pdf fe(Uz,) by defining the (47, + '?)-vectors: 

:= [re(Rzz)T i m ( R ~ ~ ) ~ ] ~  and UZ, := 
[re(Rzz)T i m ( R ~ ~ ) ~ ] ~ ,  where the notations "re" and 
"im" stand for the real and imaginary part, respec- 
tively. Simple calculation shows that the covariance 
matrix of U,, is given by: 

A(€) := lim NE{(U~, - - u ~ , ) ~ }  
N-30 

1 .  =' [  r e ( r  + i;) im(F - r) 
2 im( i ;+ r )  re(r- i ; )  

Now define the error vector e := UzS - UzZ and 
consider the following nonlinear regression model: 

U z z  = uZ=(E) + e , (7) 

where both U,, and e deuend on the number of sam- 
_I 

ples N, and UZ, is a function of the unknown timing 
and " to denote ZIn this DaDer, we use the suDerscripts . .  . 

transposition and conjugate transposition, respectively. 
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epoch E. The ABC-estimator of E for the above non- 
linear regression problem is provided by the nonlinear 
least-squares estimator weighted by the inverse of the 
asymptotic covariance matrix of the error vector e, 
and takes the following form [8, pp. 91-95]: 

i = arg min J(i) , (8) 

1 -  
2 

J(i) = -[U'. - U~,(i)]~A(i)-'[fJz, - U2=(i)] , 

and the notation i stands for the trial value of E. As e is 
asymptotically normally distributed, one can observe 
that the ABC estimator (8) (thus (6)) is nothing else 
than the asymptotic ML estimator of < in terms of the 
obsermtions contained in the vector Uzz. 
2.3 Asymptotic Performance Analysis 

The asymptotic variance of ABC-estimate i can be 
established in the following theorem (c.f., [SI): 
Theorem 1: The mymptotic variance of the timing 
epoch estimator (8) w given by: 

avar(E^) := lim NE{(: - E)'} 
"30 

+ sin2(2?re) sin(4xt) 
- - 

where 

It is easy to show that when r, = 0, the general 
estimator (8) reduces to the O&M estimator [SI: 

(10) 
1 

2?r 
i = -- arg{Rzz(l; O)} , 

and the asymptotic variance of O&M estimate can he 
established from (9) as: 

Now it is of interest to ask whether the performance 
of the O&M estimator can be improved by exploit- 
ing additional cyclic correlations Rz,(l; T )  at lags 
T # 0. Surprisingly, from Fig. 2, the answer is no. In 
Fig. 2, we evaluate the theoretical mean square error 
MSE(I) = avar(P)/N of I for different values of im in 

the case of p = 0.9 and the number of samples N = 400 
(i.e., the observation length L = 100 symbols), assum- 
ing P = 4, E = 0.3 and QPSK input symbols. The 
modified CRB (MCRB) is adopted as a benchmark 
MCRB(<) = 1/(8n2L&SNR) , where the parameter E 
is given by [4, p. 651: 5 = (1/12) + p'(0.25 - 2 / 7 4 .  
Thus, asymptotically the O&M estimator achieves the 
best .performance in the class of SLN estimators. 

Figure 2: MSE(C) for different values of T,,, 

2.4 Influence of the Oversampling Rate P 
In this subsection, we analyze the effect of the over- 

sampling rate P on the SLN timing estimators. To 
properly inspect the influence of P, we need to eva- 
uate MSE. Then, by exploiting (3) and (ll), it yields 

wherefor l ,k=l :Z,  . . .  

Since NQ does not depend on P, MSE(E) is inde- 
pendent of P whenever P 2 3. One can observe that 
in the noiseless case (No + 0), the asymptotic vari- 
ance of the O&M estimate is equal to 0, which means 
that asymptotically in SNR and N ,  the variance of the 
O&M estimate converges to zero faster than O(l/N). 
Next, we will show further that this rate of conver- 
gence is even faster than O(1/N2) in the absence of 
additive noise. 
2.5 Further Results on the Convergence 

Rate of the O&M Estimator 
Define the following stochastic processes: 

eZ(n) := z'(n)z(n) - rzz(n;O) , 

and let T Q ~ ~ ( ~ ; T ~ . T Z )  := E { e ~ ( n ) e z ( 7 L + ~ ~ ) e 2 ( n + ~ ~ ) }  
denotes the third-order timevarying correlation of 
ez(n) .  Based on (lo), following a procedure similar to 
the one presented in [9, Appendix A], one can obtain 
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the following expression for the asymptotic variance 
of O&M estimate normalized by N 2  in noiseless case 
as: 

avarz(e) := lim N2E{(: - e)'}  
N-13 . .. 

- ~ 3 r e { e 6 ~ r ~ ~ 3 , ,  (3; +, +) - eZ'rfS3ez (I; +, +)} 
- 

8n2G3( 1; 0) 

where S3e2(k; f i ,  f 2 )  denotes the third-order cyclic 
spectrum of ez(n) .  

After some lengthy and tedious manipulations, we 
can obtain the following expressions for k = 1,3: 

1/p, 1/P) 
= (P2K6x;,, + 6P2~'H1,1Xz,2 + 2pZx3,3) . e-2tnkr , 

where n6 := cum(w(l),w(l), w(l ) ,  w*( l ) ,w*( l ) ,w*( l ) )  
and K stands for the kurtosis of w(J). 

Therefore, it turns out that avarz(2) is also equal to 
0, which means that the O&M estimate exhibits a rate 
of convergence faster than O ( l / N 2 )  when the number 
of samples N and SNR are large enough. Finding 
the exact convergence rate of the O&M estimator in 
the absence of additive noise appears computationally 
very tedious and remains open. 

3 Joint Second Order and Fourth Or- 
der CS-based Timing Estimator 

As we know, SLN timing epoch estimators exhibit 
bad performance with small rolloffs due to the lack 
of CS-information and their large self-induced noise 
effects, especially in high SNR range [4]. Therefore, 
when dealing with strongly bandlimited pulses, non- 
linearities other than the SLN must be considered. 
The most common used one is the FLN nonlinearity 
and the timing estimator with FLN nonlinearity takes 
a similar expression to (10) as: 

(13) 
1 

2rr 
e =  --arg{&4,(1;o,o,o)}, 

whose asymptotic variance can be established in a sim- 
ilar form to (11). 

Although the FLN estimator has a better perfor- 
mance than SLN in medium and high ranges with 
small rolloffs, it is inferior to the latter a t  low SNRs. 
Estimators (10) and (13) suggest designing a new o p  
timal timing estimator (OPT) of the following form: 

1 
2a 

? = - - arg{RzZ(1; 0) + cyR4=(1; 0, 0, 0)} , (14) 

to improve the performance of both SLN and FLN 
estimators. The real-valued parameter (Y is to be chc- 
sen so that the asymptotic variance is minimized. By 

adopting the derivation presented in the previous sec- 
tion, we can obtain a closed-form expression for the 
optimal value of cy. However, it turns out that this 
doPT) requires the knowledge of the operating SNR 
and the true value of timing epoch E, which makes 
the OPT estimator impractical. Fortunately, exten- 
sive simulation experiments suggest that for most a p  
plications of interest, we can always fix cy to a value 
in the range [-0.17, - 0.131 for implementing the es- 
timator (14) without incurring any performance loss. 

4 Simulations 
In this section, we conduct computer simulations 

to confirm the analysis presented in the previous sec- 
tions and to illustrate the performance of the proposed 
OPT estimator. All the experimental results are ob- 
tained by performing a number of lo6 Monte-Carlo 
trials assuming the normalized timing epoch E = 0.3 
and QPSK constellation. Unless otherwise noted, the 
oversampling rate P = 4. 

Ezperiment 1-Performance of the O&M estimator ver- 
sus P: By varying the oversampling rate P ,  we com- 
pare the experimental (Exp.) MSE of O&M estimator 
with its theoretical wriance. The number of symbols 
is set to L = 200, p = 0.5, and SNR=lOdB. The result 
is depicted in Fig. 3. It turns out that increasing P 
does not improve the performance of the O&M esti- 
mator as long as P 2 3. This result may be also pre- 
dicted using Shannon's interpolation theorem, since 
any P 2 3 guarantees the set of obtained statistics to 
be sufficient within the class of second-order statistics. 
Experiment 2-Comparison of theoretical variances of 
estimators (lo), (13) and (14) w.r.t. the MCRB: 
Fig. 4 depicts the theoretical MSEs of the SLN ( l o ) ,  
FLN (13), and OPT estimators (14), and MCRB, in 
a strongly bandlimited pulse shape p = 0.1. The per- 
formance of a practical implementation of (14) with 
fixed a = -0.165, which is just an approximation of 
the OPT estimator, therefore termed APP, is also il- 
lustrated. It can be seen that the OPT estimator out- 
performs both SLN and FLN estimators, and is closer 
to MCRB. As expected, APP is a satisfying realizable 
alternative to OPT except at very low S N h .  
Ezperiment PComparison of the MSEs of estimators 
versus SNR: In Fig. 5, the experimental MSE of the 
proposed APP estimator is compared with those of the 
existing methods (SLN (T,,, = 0), FLN, AVN [7] and 
LOGN [5]), assuming p = 0.1, L = 400. This figure 
corroborates the results of Experiment 2 and shows 
again the merit of the proposed APP estimator. 
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5 Conclusions 
In this paper, we have established a rigorous CS 

statistics-based ML-framework to design and analyze 
a class of blind feedforward timing estimators. We 
have shown that these estimators can be asymptoti- 
cally interpreted as ML estimators and the O&M esti- 
mator achieves asymptotically the best performance 
in the class of SLN estimators, whose performance 
is insensitive to the oversampling rate P as long as 
P 2 3. In the noiseless case, it has been shown 
that its rate of convergence is faster than O(l/N*). 
The proposed analysis framework of timing estimators 
can be extended straightforwardly to the case of cor- 
related symbol streams and timeselective flat-fading 
channels, and provides a systematic method to design 
optimal ML timing recovery schemes. Moreover, in 
this paper, based on the proposed performance analy- 
sis, we have introduced an efficient estimator (OPT). 
which fully exploits the second and the fourth-order 
CS statistics of the received signal, and improves sig- 
nificantly the performance of the existing methods, 
when dealing with narrowband signaling pulses. 
Acknowledgments 

No. CCR-0092901. 

References 

This work was supported by the NSF Career Award 

[7] E. Panayirci and E. Y .  Bar-Ness, “A new ap- 
proach for evaluating the performance of a sym- 
bol timing recovery system employing a general 
type of nonlinearity,” IEEE Trans. Commun., 
vol. 44, no. 1, pp. 29-33, Jan. 1996. 

[8] T. Soderstrom and P. Stoica, System Identifica- 
tion, PrenticeHall, 1989. 

[9] Y .  Wang, P. Ciblat, E. Serpedin and P. Loubaton, 
“Performance analysis of a class of non-data aided 
frequency offset and symbol timing estimators for 
flat-fading channels,” IEEE Trans. on Signal Pro- 
cessing, vol. 50, no. 9, pp. 2295-2305, Sept. 2002. 

Figure 3: MSE of the O&M estimator versus P 

. - - .  m..SLN --- m . . F L N  
Tn..: APP - _ -  m..:OPT - U r m s  

W. R. Bennett, “Statistics of regenerative digital 
transmission,” Bell Syst. Tech. J. ,  vol. 37, no. 6, 
pp. 1501-1542, Nov. 1958. 

A. V. Dandawatb and G. B. Giannakis, “Asymp 
totic theory of mixed time average and kth-order 
cyclic-moment and cumulant statistics,” IEEE 
Trans. on Information Theory, vol. 41, no. 1, pp. 
216-232, Jan. 1995. 

F. Gini and G. B. Giannakis, “Frequency offset 
and symbol timing recovery in flat-fading chan- 
nels: a cyclostationary approach,” IEEE Trans. 

.o 

Figure 4: Comparison of illSE(:) versus SNR 

on Commun., vol. 46, no. 3, pp. 400-411, March 
1998. 

ti. Mengali and A. N. D’ Andrea, Synchronization 
Techniques for Dzgztal Recewers, Plenum Press, , ~ . ~ ~  . .&. 
N Y ,  1997. $,e 0 - - -  -.._..._... 

-0- 

10- 

, a ’  

A l .  hlorelli, A. N. D’ Andrea and U. hlengali, 
“Feedforward ML-based timing estimation with 
PSK signals,” IEEE Commun. Letters, vol. 1, 

5 .a I S  *a *s s do no. 3, pp. 80-82, May 1997. 
U I  

M. Oerder and H. Meyr, “Digital filter and square 
timing recovery,” IEEE Trans. on Commun., 
vol 36, no. 5, pp. 605-612, May 1988 

Figure 5: Comparison of MSEs 

643 


