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Abstract

By exploiting an unified cyclostationary (CS) statis-
tics based framework, this paper develops a rigerous
and thorough performance analysis of blind feedfor-
ward timing estimators for linear modulations. Within
the introduced CS-framework, it is shown that several
.estimators proposed in the literature can be asymptot-
ically interpreted as Mazimum Likelihood (ML) esti-
mators, and the timing estimator proposed by Oerder
and Meyr in [6] achieves the lowest asymptotic {large
sample) variance in the class of estimators which ez-
ploit all the second-order statistics of the received sig-
nal, and its performance is insensitive to the oversam-
pling rate P as soon as P > 3. Further, based on the
presented theoretical analysis, we derive an Asymptoti-
cally Best Consistent (ABC) estimator, which exhibits
asymptotically the best performance among oll the ex-
isting blind feedforward timing estimators, especially
when dealing with strongly bandlimited signaling.

1 Introduction and Channel Model
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Figure 1: Common structure of blind feedforward tim-
ing estimators

Timing recovery is a challenging but very important
task “for reliable detection in synchronous receivers.
For bandwidth efficiency reasons, non-data aided or
blind feedforward timing estimation architectures for
linear medulations have received much attention dur-
ing the last decade [3]-[7].

Consider the following standard baseband channel
model! (see e.g., [3]):

200 = Y vt - T -1 +oet), (1)
!

1The subscript  is used to denote a continuous-time signal.
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where {w(l)} is the zero-mean independently and
identically distributed sequence of transmitted sym-
bols, h.(:”)(t) denotes the transmitter’s signaling pulse,
ve(t) is the complex-valued additive white Gaussian
noise with power spectral density Ny, T is the symbol
period, and ¢ stands for the (normalized) symbol tim-
ing epoch. After matched filtering with hE_.’”“’, the re-
sulting signal z.(¢} is oversampled with the sampling
period Ty := T/P (P > 3). The following discrete-
time system model is obtained:

z(n) =Y w(lhe({n—LP) +v(n), (2)
i

where z{n) = (m.(:tr)(t) * hiree) (t))lt=nT, (* denotes
linear convolution), v(n) := (ve(t) * A (&) |1=nT,,
and he(n) == ho(t)imnt,—er With ho(t) = hE™(8)
REeNt). hy(t) is assumed to be a raised cosine pulse
of bandwidth [—(1 + p)/2T, (1 + p)/2T], where the
parameter p represents the rolloff factor (0 < p < 1}

As depicted by Eq. (2), the problem that we pose
is to estimate the unknown timing epoch € in a blind
feedforward manner, assuming knowledge only of the
received samples {z(n)}2-;. Fig. 1 illustrates the
common structure of the popular blind feedforward
timing estimators proposed in the literature, which
consists of filtering the received samples {z(n)}} )
through a nonlinearity that removes the modulation
effects introduced by w(l) and generates a data se-
quence y(n) that contains spectral components whose
phase information is exploited to recover the unknown
timing epoch e. The common-used nonlinearities are
second-law (SLN) [3], [6], fourth-law (FLN) [7], abso-
lute value (AVN} [1], [7], and logarithmic nonlinearity
(LOGN) 3. {

Irrespective of the nonlinearity function used, one
of the common features of all the above mentioned
timing estimators is the exploitation of the cyclosta-



tionary (CS) statistics induced by oversampling the
received signal. The role of cyclostationarity in syn-
chronization was clearly acknowledged in [1]. Our goal
herein is to exploit optimally the CS-statistics of the
received signal in order to develop efficient estimators,
and rigorous and thorough performance analysis set-
ups for the existing blind timing estimators.

In the next section, first we briefly introduce the
blind feedforward SLN timing estimators proposed in
[3] and [6], and then propose a unifying ML-framework
that will enable to establish some interesting links with
some of the existing estimators and to analyze their
asymptotic performance.

2 Second Order Timing Estimators
2.3} The SLN Timing Estimators

By exploiting Eq. (2), straightforward calculations
show that the time-varying correlation of the nonsta-

tionary process x{n) is given as
rog(n; 7) i= E{z*(n)ax{n+7)} = roz(n+ P;7), Yn,7,

where the superscript * stands for complex conjuga-
tion. Being pericdic, r2,(n; 7) admits a Fourier Series
expansion, whose coeflicients, also termed cyclic cor-
relations, are given for k=0,...,P — 1 by [3], [9]:

E T‘2m nT

2 . .
i’gem*ﬁe-?”kea(k; 7) + hye(1)8(R) ,

Roplk;7) = e~ 2T

(3)

where hyc(n) := he(t)|t=nT, and
P/2T k k
kry==] HJ{F——
Glki7) _me( 2T T
and H.(F) stands for the Fourier transform (FT) of
he(t). Since H.(F) is a real-valued even function, it
is easy to check that G{k; 7} is a real-valued function,
too. Moreover, due to the band-limited property of the
filter he(t), G(k; ) and Ra(k; 7) are nonzero only for
cycles k = 0, £1. Since

Roo(k;7) = PRy (~k; —7) , (4)

based on (3), it follows that only the subset
{R3.(1;7)}, V7, represents all the second-order statis-
tics that may be used for estimating e.

In practice, the cyclic correlations Ra; (k; 7) have to
be estimated from a finite number of samples N, and
the standard sample estimate of Ry (k; T) is given for
7 > 0 by (see e.g., [2], [3]):

N-1-—1

Z 2 (n)z(n + r)e HF

n=0

VH(F + —)e2m 5 dF,

Rgx(k; T)=— (5
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which is asymptotically unbiased and mean-square
sense (m.s.s.) consistent [2].

Exploiting the second-order CS statistics of z(n),
the following general SLN timing estimator is pro-
posed:

—i7r~r/P} ] (6)

Note that the second-order CS-based timing esti-
mators choose different values for the timing lag 7 in

(6) ([3] (= =1) and [6} (v = 0)).

2.2 The ML Estimator Links

According to [2], the sample cyclic correlation es-
timates {Rs.(1;7)}, Vr, are asymptotically jointly
normal. To show that the second-order CS-based
timing estimators are asymptotically ML estimators,
let us first define the vector of cyclic correlations?:
Ry, = [Rzz(l;—Tm),...,Rzz(l;Tm)]T, where Ty, is
an arbitrary non-negative value. Denote the sample
estimate of Ro, by Ro;. Thus, vN [Rgz — Rgg} is
asymptotically jointly complex normal with zero-mean

1 .
é= 5 arg{ Ha-(1;7)e

= [0,...,0]T, and its covariance and relation ma-
trices are given by:
= lim NE{(Rz — Rz.)(Ra — R2o)"},
N—oo

r Nh_r'na0 NE{(Rz; — Ro;){Ra, — Rz:z)T} N
respectively.

Next, we transform the complex Gaussian prob-
ability density function (pdf) A¢(0,T,T) into its
equivalent algebraic form of the real Gaussian
pdf f{(Us,;) by defining the (47, + 2)-vectors:
Uzm [I'e(Rzm)T im(Rzm)T]T and ﬁgm
[re(Rzz)T im(Ra,)T]T, where the notations “re” and
“im” stand for the real and imaginary part, respec-
tively. Simple calculation shows that the covariance
matrix of Uy is given by:

Ale) = I}gnm NE{(Us; — Uy} Uz, — U,)™}
_1 re(l" + f‘} im(f -I)
T2l im(T+T) re(T -T)

Now define the error vector e := Uz, — Us, and
consider the following nonlinear regression model:

Uz = Uzz(e) + e, (7)

where both Uz, and e depend on the number of sam-
ples N, and Us, is a function of the unknown timing

2In this paper, we use the superscripts T and H to denote
transposition and conjugate transposition, respectively.



epoch e. The ABC-estimator of € for the above non-
linear regression problem is provided by the nonlinear
least-squares estimator weighted by the inverse of the
asymptotic covariance matrix of the error vector e,
and takes the following form [8, pp. 91-95]:

(8)

[Oap — Usa ()] TAE) 1 U2z — Usalé)],

2
and the notation ¢ stands for the trial value of €. Aseis
asymptotically normally distributed, one can observe
that the ABC estimator (8) (thus (6)) is nothing else
than the asymptotic ML estimator of € in terms of the
observations contained in the vector Us,.
2.3 Asymptotic Performance Analysis
The asymptotic variance of ABC-estimate é can be
established in the following theorem (c.f., [8]):
Theorem 1. The asymptotic variance of the timing
epoch estimator {8) is given by:

avar(é) := lim NE{(¢é - ¢)?}
N—=oo
__ sin’(4nwe) Qoo |, ©1p 460, } (9)
~ 1672 | cos?(2me) ' sin®(2me)  sin(dme) |’
where
_[©00©0a] _ gz1a-141-1
0= eo’lem] =(®TAT'®)?,
2
_ 0 P B2
=3[0 %)
TTm : A7 y1 T
&, = [G(l,—rm)cos(—uf,—)...G(l,rm)cos( P )] )
(. FTm o Vsin( )] T
B, [G(l,—Tm)sm(A?)...G(I,Tm)sm( = )] .

It is easy to show that when 7,, = 0, the general

estimator (8) reduces to the O&M estimator [6]:
R 1 S

€= _ﬂ aIg{Rzz(l;U)} s (1(})

and the asymptotic variance of O&M estimate can be
established from (9) as:

P2

_ 4i-rref1 .
87T2G2(1;0) [I‘U,O re(e D,D)]

avar(é) = (11)
Now it is of interest to ask whether the performance
of the O&M estimator can be improved by exploit-
ing additional cyclic correlations Rz (1;7) at lags
7 # 0. Surprisingly, from Fig. 2, the answer is no. In
Fig. 2, we evaluate the theoretical mean square error
MSE(£) = avar(é)/N of € for different values of 7, in
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the case of p = 0.9 and the number of samples N = 400
(i.e., the observation length L = 100 symbols), assum-
ing P =4, € = 0.3 and QPSK input symbols. The
modified CRB (MCRB} is adopted as a benchmark
MCRB(é) = 1/{87°L£SNR) , where the parameter £
is given by [4, p. 65): £ = (1/12) + p?(0.25 — 2/7?).
Thus, asymptotically the O&M estimator achieves the
best performance in the class of SLN estimators.
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Figure 2: MSE(&) for different values of 7,

2.4 Influence of the Oversampling Rate P

In this subsection, we analyze the effect of the over-
sampling rate P on the SLN timing estimators. To
properly inspect the influence of P, we need to eval-
uate MSE. Then, by exploiting (3) and (11), it yields

that:
_ 8(2N0H2,1 -+ N3H1,1)

MSE(é) = AT ; (12)
where for Lk =1,2,...
1 [fF ) 1
Hik :iw“m/_%Hc(F‘*'ﬁ:)Hc (F - ﬁ)dF-

Since M does not depend on P, MSE(¢) is inde-
pendent of P whenever P > 3. One can observe that
in the noiseless case {Ny — 0), the asymptotic vari-
ance of the O&M estimate is equal to 0, which means
that asymptotically in SNR and N, the variance of the
O&M estimate converges to zero faster than O{1/N).
Next, we will show further that this rate of conver-
gence is even faster than O(1/N?) in the absence of
additive noise.

2.5 Further Results on the Convergence
Rate of the O&M Estimator

Define the following stochastic processes:
ez{n) = z*(n)x(n) — sz(n;Q) ,

and let 130, (n; 71, 72) := E{et(n)ea(n + m)ea(n + w)}
denotes the third-order time-varying correlation of
ea(n). Based on (10), following a procedure similar to
the one presented in {9, Appendix A], one can obtain



the following expression for the asymptotic variance
of O&M estimate normalized by N? in noiseless case
as:

avarg(€) :=

Pare{eﬁi“55352 (3; %, %) — 575y, (1; L, %) }
= ' 872G3(1;0) :

where Sie,(k; f1, f2) denotes the third-order cyclic
spectrum of ea(n). '

After some lengthy and tedious manipulations, we
can obtain the following expressions for £ =1,3:

Ssea(k;1/P,1/P)
= (P?reM3 ) + 6P kHy 1 Hys + 2P Hg 3) - €73,

where x5 := cum{w(l), w(l), w(l), w* (), w* (D), w*(]))
and k stands for the kurtosis of w({).

Therefore, it turns out that avarp(é) is also equal to
0, which means that the O&M estimate exhibits a rate
of convergence faster than O(1/N?) when the number
of samples N' and SNR are large enough. Finding
the exact convergence rate of the O&M estimator in
the absence of additive noise appears computationally
very tedious and remains open.

3 Joint Second Order and Fourth Or-
der CS-based Timing Estimator

As we know, SLN timing epoch estimators exhibit
bad performance with small rolloffs due to the lack
of CS-information and their large self-induced noise
effects, especially in high SNR range [4]. Therefore,
when dealing with strongly bandlimited pulses, non-
linearities other than the SLN must be considered.
The most common used one is the FLN nonlinearity
and the timing estimator with FLN nonlinearity takes
a similar expression to (10) as:

lim N2E{(¢é - €)?}
N— .

¢ =~ arg{Rua(130,0,0)} (13)

whose asymptotic variance can be established in a sim-
ilar form to (11).

Although the FLN estimator has a better perfor-
mance than SLN in medium and high ranges with
small rolloffs, it is inferior to the latter at low SNRs.
Estimators (10) and (13) suggest designing a new op-
timal timing estimator (OPT) of the following form:

1 n ..
E=—o- arg{R22(1;0) + aR42(1;0,0,0)}, (14)

to improve the performance of both SLN and FLN
estimators. The real-valued parameter « is to be cho-
sen so that the asymptotic variance is minimized. By
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adopting the derivation presented in the previous sec-
tion, we can obtain a closed-form expression for the
optimal value of . However, it turns out that this
&(OFT) requires the knowledge of the operating SNR
and the true value of timing epoch €, which makes
the OPT estimator impractical. Fortunately, exten-
sive simulation experiments suggest that for most ap-
plications of interest, we can always fix & to a value
in the range [—0.17, —0.13] for implementing the es-
timator (14) without incurring any performance loss.

4 Simulations

In this section, we conduct computer simulations
to confirm the analysis presented in the previous sec-
tions and to illustrate the performance of the proposed
OPT estimator. All the experimental results are ob-
tained by performing a number of 10° Monte-Carlo
trials assuming the normalized timing epoch € = 0.3
and QPSK constellation. Unless otherwise roted, the
oversampling rate P = 4.

Ezxperiment 1-Performance of the O&M estimator ver-
sus P: By varying the oversampling rate P, we com-
pare the experimental (Exp.) MSE of Q&M estimator
with its theoretical variance. The number of symbols
is set to L = 200, p = 0.5, and SNR=10dB. The result
is depicted in Fig. 3. It turns out that increasing P
does not improve the performance of the O&M esti-
mator as long as P > 3. This result may be also pre-
dicted using Shannon’s interpolation theorem, since
any P > 3 guarantees the set of obtained statistics to
be sufficient within the class of second-order statistics.

Ezperiment 2-Comparison of theoretical variances of
estimators (10), (18) and (14) w.rt. the MCRB:
Fig. 4 depicts the theoretical MSEs of the SLN (10),
FLN (13), and OPT estimators {14), and MCRB, in
a strongly bandlimited pulse shape p = 0.1. The per-
formance of a practical implementation of (14) with
fixed @ = —0.165, which is just an approximation of
the OPT estimator, therefore termed APP, is also il-
lustrated. It can be seen that the OPT estimator out-
performs both SLN and FLN estimators, and is closer
to MCRB. As expected, APP is a satisfying realizable
alternative to OPT except at very low SNRs.

Ezperiment 3-Comparison of the MSEs of estimaftors
versus SNR: In Fig. 5, the experimental MSE of the
proposed APP estimator is compared with those of the
existing methods (SLN (r, = 0), FLN, AVN [7] and
LOGN [5]), assuming p = 0.1, L = 400. This figure
corroborates the results of Experiment 2 and shows
again the merit of the proposed APP estimator.



5 Conclusions

In this paper, we have established a rigorous CS
statistics-based ML-framework to design and analyze
a class of blind feedforward timing estimators. We
have shown that these estimators can be asymptoti-
cally interpreted as ML esiimators and the O&M esti-
mator achieves asymptotically the best performance
in the class of SLN estimators, whose performance
is insensitive to the oversampling rate P as long as
P > 3. In the noiseless case, it has been shown
that its rate of convergence is faster than Q(1/N?).
The proposed analysis framework of timing estimators
can be extended straightforwardly to the case of cor-
related symbol streams and time-selective flat-fading
channels, and provides a systematic method to design
optimal ML timing recovery schemes. Moreover, in
this paper, based on the proposed performance analy-
sis, we have introduced an efficient estimator (OPT),
which fully exploits the second and the fourth-order
CS statistics of the received signal, and improves sig-
nificantly the performance of the existing methods,
when dealing with narrowband signaling pulses.
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