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Abstract

This paper deals with the problem of non-data-aided
carrier frequency offset estimation of non-circular modu-
lations transmitted through unknown frequency-selective
channels. By exploiting the unconjugated cyclostationary
statistics induced by oversampling the received waveform,
an optimized carrier frequency offset estimator is proposed
and its asymptotic (large sample) performance analyzed. In
order for the proposed frequency estimator to achieve the
minimum mean-square estimation error, it is shown that the
oversampling rate need not be larger than twice the symbol
rate. It is also shown that the proposed synchronizer is
asymptotically jitter-free, admits a feedforward structure
that may be implemented in digital form and is suitable for
burst transmissions.

1 Introduction

The growth of mobile wireless communications systems has
prompted an increased interest in designing digital receivers
operating on samples of the fractionally-sampled (oversam-
pled) received signal. The main reason is that oversampling
gives rise to cyclostationarity (CS), which implies that more
statistical information can be used for designing digital re-
ceivers with improved performance.

Several carrier frequency-offset estimators for flat-fading
channels that exploit the conjugated second-order cyclosta-
tionary statistics of the oversampled received signal were
proposed in [1, 4, 6]. A high performance blind Maxi-
mum Likelihood (ML) framework to estimate the Doppler
shift in the presence of an unknown frequency selective
channel was proposed in [7]. However, the proposed ML-
solution relies on an iterative Baum-Welch type algorithm,
whose large numerical complexity and possible lack of con-
vergence prohibit its use for many practical applications

[7]. Reference [8] proposed a different solution for blind
joint detection and carrier recovery in the presence of an
unknown multipath channel using a Viterbi-like algorithm.
Since this solution relies on a critical channel identifiability
condition, which may not be always satisfied, the applica-
bility of this algorithm is also limited [8].

The above mentioned considerations hold irrespective of
the nature of the transmit signal constellation: circular or
non-circular. This paper shows that the estimation of the
carrier frequency offset estimation can be significantly sim-
plified when the constellation is non-circular (e.g., real-
valued constellation such as BPSK). Under this assump-
tion, this paper proposes a blind frequency offset estima-
tor that does not require knowledge of the multipath chan-
nel and transmitted data sequence. The proposed synchro-
nizer admits a feedforward structure that may be easily im-
plemented in digital form, does not present high computa-
tional complexity, exhibits much faster convergence rates
(O(1/N3), N denotes the number of available data sam-
ples) than the algorithms [1, 4, 6], whose convergence rates
areO(1/N), and its convergence and consistency are guar-
anteed even in the presence of unknown multipath effects.

In this paper, the frequency offset estimator is designed
in an optimized manner by exploiting efficiently all the un-
conjugated second-order statistics that are present in there-
ceived waveform. By performing a rigorous performance
analysis, the mean-square error (MSE) of the resulting car-
rier estimator is shown to be invariant with respect to (wrt)
the oversampling factorP as soon asP ≥ 2 and its mini-
mum MSE is achieved whenP = 2. Thus, selecting a low
oversampling factor (e.g.,P = 2) leads to an optimal carrier
recovery scheme that requires a low complexity receiver,
and without being necessary to adopt large oversampling
factors. From this perspective, the present carrier synchro-
nizer represents a generalization of the estimators reported
earlier by the authors in [2] and [10], and which exploit only



a subset of the received signal’s unconjugated second-order
CS statistics.

We remark also that [9] represents a different extension
of the results reported in [2]. Reference [9] proposes a uni-
fying carrier frequency estimation framework that can be
used for systems employing linear block precoders at the
transmitter. However, only CDMA and OFDM modulation
schemes are analyzed within this unifying transmitter pre-
coding set-up [9].

Since the operation of oversampling the received wave-
form may be interpreted as a transmitter precoding scheme,
the theoretical asymptotic performance analysis framework
in [2, 3] and [9] is exploited herein to design optimized
frequency recovery schemes that operate on asynchronous
signal samples taken at a rate faster than the symbol rate
(Ts). Thus far, to the best knowledge of the authors, such an
analysis has not been reported in the literature and our goal
herein is to complete this analysis by choosing the optimal
set of parameters (in particular, number of cyclic correlation
lags and oversampling rate) that have to be considered in the
frequency offset estimator so that its asymptotic varianceis
minimized.

2 Proposed Estimator

We focus on single-carrier and single-user wireless com-
munications channels. The continuous-time base-band re-
ceived signalya(t) can be expressed as follows :

ya(t) = (
∑

k∈Z

skha(t − kTs))e
2iπfat + wa(t),

where the symbol sequence{sk} transmitted at the baud
rate1/Ts is assumed to be non-circular (i.e.,E[s2

k] 6= 0),
independently and identically distributed (i.i.d.) with zero-
mean and unit-variance. The filterha(t), which is assumed
to be time-limited and causal, and results from the convo-
lution of the multipath propagation channel and the shaping
filter, supposed of bandwidth[−(1 + ρ)/2Ts, (1 + ρ)/2Ts],
with the roll-off factorρ ∈ [0, 1]. The additive noisewa(t)
is assumed to be white circularly and normally distributed
with power spectral density2N0. Finally, fa stands for the
analog carrier frequency offset, which may be induced by
the local oscillator drifts and Doppler effects.

In general, the parametersfa and ha(t) are unknown
and have to be estimated in order to detect the transmitted
datask. This paper proposes an optimized frequency-offset
compensator that does not require knowledge of the chan-
nel impulse response or training sequence. The proposed
frequency estimator is implemented digitally and assumes
at the front end of the receiver an anti-aliasing filter (AAF)
ga(t), whose output is sampled at the rate1/T = P/Ts,
where the oversampling factorP is an integer (see e.g., [5,

p. 139]). The AAF is assumed to be an ideal low-pass
filter (although less stringent conditions on the frequency
response of the AAF may be adopted ) with bandwidthB
sufficiently large in order to preserve all the signal compo-
nents at the filter output. The output of the AAF, denoted
by za(t), is sampled so that Nyquist’s condition is satisfied
1/T = 2B (i.e.,B = P/2T ). Sinceza(t) := ga(t) ∗ ya(t),
where∗ stands for the convolution operation, the following
discrete-time channel model is obtained:

z(k) := za(kT ) =

(
L∑

m=0

lmvk−m

)
e2iπfdk + n(k), (1)

where{vk} stands for the sequence obtained by padding
P − 1 zeros between any two consecutive symbols{sk}.
Define also:l(z) :=

∑L
m=0 lmz−m, with lm := (ga(t) ∗

ha(t))|t=mT , the digital frequency offsetfd := faT , and
the discrete-time white noise sequencen(k) := (ga(t) ∗
wa(t))|t=kT of varianceσ2 := E[|n(k)|2] = 2N0/T .
Our goal is to build an optimal frequency offset estima-
tor based on the sole knowledge of the observation sam-
ples{z(k)}N−1

k=0 . In essence, we propose an estimator that
optimally exploits all the unconjugated second-order cyclic
statistics of the received data and show that its asymptotic
variance is invariant with respect to the oversampling factor
P as soon asP ≥ 2.

Since the channel model (1) works as if one has transmit-
ted the block sequence[vkP , · · · , vkP+P−1] = k

T sn, with
k = [1, 01,P−1]

T , (1) can be interpreted as a linearly pre-
coded system. Consequently, we can use the frequency off-
set estimator [9] that holds for general linear precoders, de-
scribed by a tall matrixK. Letrc(n, τ) := E[z(n+τ)z(n)]
denote the unconjugated correlation at lagτ of z(n), and
defineα0 := (2fd modulo1). Considering a Fourier series
expansion ofrc(n, τ), we obtain:

rc(n, τ) =

P−1∑

p=0

r(α0+p/P )
c (τ)e2iπ(α0+p/P )n, (2)

wherer(α)
c (τ) stands for the unconjugated cyclo-correlation

at lagτ and cyclic frequencyα. Let A0 be a compact set
included in(0, min(1/2, 1/P )). According to (2), we get

∀α ∈ A0, α 6= α0, ∀τ, ∀p, r(α+p/P )
c (τ) = 0.

Then, an asymptotically unbiased and consistent estimate
α̂N of α0 is obtained as follows:

α̂N := arg maxα∈A0
JN (α),

with

JN (α) :=

P−1∑

p=0

∣∣∣
∣∣∣r̂(α+p/P )

c,N

∣∣∣
∣∣∣
2

Wp



wherer̂
(α)
c,N := [r̂

(α)
c,N (−M), · · · , r̂

(α)
c,N (M)]T, M denotes a

positive integer (M ≥ L), and{Wp}
P−1
p=0 is a sequence of

positive-definite Hermitian matrices1. The term

r̂
(α)
c,N(τ) := (1/N)

N−1∑

n=0

z(n)z(n + τ)e−2iπαn

denotes a sample estimate ofr
(α)
c (τ), assumingN observa-

tions available.
A few observations are now in order. The introduced es-

timate is an extension of the estimator [10], which exploits
only one cyclic correlation lag (M = 0). Second, the in-
troduced estimator may be interpreted as a special case of
the estimators proposed in [9], which are associated with
different precoding schemes. Nevertheless, the design and
analysis of the new estimator reported herein remain of in-
terest and have not been reported in the literature.

By exploiting the results of [9], the consistency and
asymptotic normality of̂αN can be established. In addition,
a closed-form expression for the asymptotic covariance de-
fined as:

γ := lim
N→∞

N3
E[(α̂N − α0)

2] , (3)

may be obtained. Furthermore, in order to minimize the
asymptotic varianceγ, it can be shown that it is optimal to
considerM = L andWp = δ0,pI2L+1, whereδ andI2L+1

denote the Kronecker index and the(2L + 1) × (2L + 1)-
identity matrix, respectively [9]. Simply stated, the ex-
traction of the frequency offset should be performed based
solely on the harmonicα0 + p/P with p = 0, and all the
cyclic correlation lags have to be taken into account. These
results may be derived using similar techniques as the ones
presented in [2] and [9], and will not be detailed herein. In
the sequel, we focus on the estimate associated with such
an optimal design setting and analyze its asymptotic perfor-
mance.

3 Influence of the oversampling fac-
tor

As M = L andWp = δ0,pI2L+1, the closed-form expres-
sion ofγ given in [9] can be reduced to

γ =
3Pσ2

π2a2
(Pσ2a + 2b) ,

with:

a :=

∫ 1/2

−1/2

|l(e2iπf )|2|l(e−2iπf )|2df,

1If x andW denote a vector and a positive Hermitian matrix, respec-
tively, then by definition||x||2

W
:= xHWx. SuperscriptsT andH stand

for transposition and complex-conjugate transposition, respectively.

and

b :=

∫ 1/2

−1/2

|l(e2iπf )|4|l(e−2iπf )|2df.

To properly study the influence of the oversampling fac-
tor P on the performance of frequency estimatorα̂N , we
evaluate the following term:

EP = E[(faTs − f̂aTs|P,Ns
)2] , (4)

with f̂aTs|P,Ns
:= α̂NP/2 andNs := N/P . In fact,EP

represents the theoretical mean-square error of the analog
frequency offset estimate normalized with the symbol dura-
tion, assuming that the duration of the observation window
is NsTs. From (3) and (4), it turns out that:

EP =
γ

4PN3
s

. (5)

After some quite straightforward but very long calculations
based on Poisson’s formulae, (5) can be expressed as:

EP =
3N0

π2N3
s ζ

(1)2

P

(N0Tsζ
(1)
P + ζ

(2)
P ) ,

with:
{

ζ
(1)
1 :=

∫ 1/2Ts

−1/2Ts
|Ha(f)|2|Ha(−f)|2df

ζ
(2)
1 :=

∫ 1/2Ts

−1/2Ts
|Ha(f)|4|Ha(−f)|2df

for P = 1,

and
{

ζ
(1)
P :=

∫ 1/Ts

−1/Ts
|Ha(f)|2|Ha(−f)|2df

ζ
(2)
P :=

∫ 1/Ts

−1/Ts
|Ha(f)|4|Ha(−f)|2df

for P ≥ 2.

As soon asP ≥ 2, ζ
(1)
P and ζ

(2)
P do not depend onP .

Thus, the theoretical mean-square error is independent of
P , a result which intuitively might be predicted based on
Shannon’s interpolation theorem, and is equal to zero in the
noiseless case(N0 = 0) (i.e., an asymptotically jitter-free
timing recovery scheme).

4 Simulations

The Signal-to-Noise Ratio (SNR) is expressed regardless of
the oversampling factor asSNR :=

∫
R
|Ha(f)|2df/2N0.

We fix also ρ = 0.2, fd = 0.05, Ts = 3µs, and
the circularly distributed noisen(k) is assumed white and
Gaussian. The theoretical and experimental MSE of the
frequency estimator are obtained by averagingEP and
||faTs − f̂aTs|P,Ns

||2 over MC = 100 Monte-Carlo tri-
als, respectively. At each trial, a (slow Rayleigh) fading
multipath propagation channel with three paths is adopted.
The complex amplitudes of the paths are normally dis-
tributed and the timing delays assume uniform distributions



in [0, 3Ts]. As it is usually performed, we proceed in two
steps to obtain the frequency offset estimate: first, acoarse
search step is performed to maximize the criterionJN (α)
via a Fast Fourier Transform (FFT). Then, afine search
step is performed based on a gradient algorithm, initialized
with the estimate provided by the coarse search step. Since
the asymptotic analysis studies the behavior of the criterion
around the true pointα0, this analysis does not provide any
relevant information on the performance of the first step,
which optimizes the criterion over an FFT grid of frequen-
cies spread on the entire interval[0, 1/P ]. The performance
of the first step can be relevantly evaluated by means of
the occurrence probability of a wrong detection of the peak,
which normally should occur aroundα0. Figure 1 depicts
the number of samplesNs with respect to SNR for which
the probability of failure is less than1%.
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Figure 1: Lower bound forNs versus SNR

In fact, the amplitude of the spectral line localized at fre-
quencyα0 depends on the termsζ(k)

P , k = 1, 2. We have
observed that the false detection occurs whenever the terms
ζ
(k)
P , k = 1, 2, are numerically weak, in general smaller

than the noise variance.
In the sequel, we only consider the trials which succeeded

to detect the right peak. Figure 2 plots the MSE versusNs.
We observe that the MSE is proportional toO(1/N3

s ).
For the remaining simulations, we fixNs = 500. Figure 3
plots the MSE versus SNR, and shows that the performance
of the baud-rate estimator is worse than the performance of
the oversampled estimator.

In Figure 4, we depict the MSE versusρ.
For P ≥ 2, the performance is quite the same with re-

spect toρ. On the contrary, forP = 1, the theoretical and
experimental performances slightly degrade asρ increases.
Indeed, as the roll-off factor increases, the loss of informa-
tion becomes more important. Judicious exploitation of the
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Figure 2: Theoretical and experimental MSE versusNs
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Figure 3: Theoretical and experimental MSE versus SNR

entire statistical information requires to selectP > 1. In all
the figures, one can observe that the performance is inde-
pendent of the oversampling factorP as soon asP ≥ 2. In
addition, the estimation performance corresponding to the
oversampled case (P ≥ 2) is always better than the baud-
rate case (P = 1).

5 Conclusions

We have investigated the theoretical and experimental MSE-
performances of a blind frequency offset estimator based on
the unconjugated cyclostationary statistics of the oversam-
pled received signal. In perfect agreement with Shannon’s
interpolation theorem, we deduced that for optimum perfor-
mance the oversampling factor does not need to be larger
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Figure 4: Theoretical and experimental MSE versusρ

than two. Consequently, receivers with reduced sampling
rates (complexity) may be designed without any loss in per-
formance.
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