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Abstract—This paper focusses on performance bounds for the quantitiespy and; from the observation samples. Once
estimating the frequency and the phase of a received signal, the frequency offset and the phase shift have been estimated
when the complex amplitude of the signal is non-constant and e qemodulated signal ®rrectedin order to compensate for
unknown. In many application fields receivers need to perfom th The detecti it of th . b tlv @scid
such an estimation: digital communications, direction of arival eém. The ae e_c |0n_un| 0 " € re_celver subsequently eecl
estimation, Doppler radar, etc... While in digital communications Upon the received information bits based on the corrected
the non-constant complex signal amplitude is a discrete radom observation samples, assuming perfect frequency offsgt an
variable related to the transmitted information bits, in many phase shift compensation. A result of the latter assumgsion

other signal processing fields this non-constant amplitudés 4t the accuracy of the estimation unit has direct repsions
typically modelled as multiplicative Gaussian noise. Fundmental . .
on the accuracy of the detection unit.

lower bounds on the mean square error of any frequency offset i : . .
and phase shift estimator are continuously employed in allltese ~ Besides from a mismatch between transmit and receive

application fields. They serve as a useful benchmark to judgthe carrier frequency, the frequency offset; can also result
performance of practical estimators. We present an overvie of  from the so-called Doppler effect. If a vehicle is transingt
such bounds with their respective interests and their asséated ¢ormation to the receiver side and is simultaneously mgyi
derivations in closed-form. . . . o
the transmit carrier frequency is modified by the Doppleeeiff
and the receiver is not well adapted in frequency. This Deppl
I. INTRODUCTION AND MOTIVATION effect, which is a drawback in digital communications, can
Let us consider digital bandpass communication over &e of great interest in some applications. For instancearrad
additive white Gaussian noise (AWGN) channel using linedased on Doppler effect is able to find the velocity of
modulation. An information bit sequence is first channel target. In other applications, such as Direction-ofAgfri
encoded and then mapped to a block of complex numbers (dd¥®A) estimation, the spatial frequency related to angdle-o
symbols) belonging to a discrete symbol constellation(ket arrival in an array processing can be mathematically seen as
The channel encodeintroduces structured redundancy in tha carrier frequency offset. As a consequence, besidesadigit
transmitted bit sequences; this makes it possible to datett communications, there are a lot of applications for which it
correct some of the occurred bit errors at the receBgmbol is needed to estimate a frequency disturbed by a non-cdnstan
mappingis performed to improve the bandwidth efficiencyamplitude. Unlike digital communications, this non-c@mit
The resulting data symbols are first applied to a square-r@mplitude is not associated with information bits but withey
Nyquist transmit filter and then multiplied to a sinusoidgbarameters such as the Doppler spread for Doppler radae or th
transmit carrier signal in order to obtain a signal that ispatial distribution of the source for DOA estimation [13}]
suitable for transmission over the bandpass channel. At theEstimation accuracy is usually measured by the mean square
receiver end, the received signal is multiplied with a @arri estimation error (MSEE). This is the expected value of the
signal matched to the transmit carrier signal, applied titer fi squared difference between the estimated and the true walue
matched to the transmit filter and sampled at the correct tirttee frequency offset and the phase shift. The estimatioh uni
instants. which minimizes the MSEE is referred to as theénimum
To enable a reliable detection of the transmitted infororati mean square errorfMMSE) estimator. In many practical
bits from the resulting observation samples, it is impegeati situations MMSE estimation gives rise to a prohibitive com-
that the carrier signals at the transmitter and the recéigee putational burden and one has to resort to approximation
almost exactly the same frequency and phase. However, astd#ehniques. The various existing estimation units areelsalt
carrier oscillators at the transmitter and receiver argatpey of applying these techniques (see, e.g., [4]).
independently, their frequency and phase are not the sameRapid developments in digital communications [5]-[8] and
and the demodulation at the receiver is performed usinga losignal processing applications [1]-[3] cause a nonstopease
reference carrier signal that exhibits a frequency offseand of the requirements that are imposed on the estimation’units
a phase shif2ryp, vis-a-vis the received modulated carriedesign. This also provides a constant impulse to the researc
signal. In that case, the observation samples can be mddeti@ fundamental lower bounds on the attainable estimation
as a noisy version of a complex sinusoid with frequen@ccuracy (see, e.g., [1]-[3], [9]-[20], [20]-[31]). On thee
1 and phas@mryy and with a non-constant complex-valuedhand, such bounds serve as a useful benchmark to judge the
amplitude equal to the unknown transmitted data symbgierformance of practical estimators. On the other hand, if
or realizations of a multiplicative Gaussian noise procéss interpretable closed-form expressions exist, they alsghimi
order to cope with the unknown parameters and ¢; the provide useful insight into the influence of the various sign
receiver is fitted with an estimation unit which has to estamaparameters on the achievable estimation accuracy.



In this tutorial, we focus on the derivation and the analysis  such thatS ([0, ¢1]) S™ ([¢o, ©1]) = Ix.
of such bounds. One of the most celebrated performanceslimit The signal model (1)-(2) is encountered in several applica-
is the Cramer-Rao bound (CRB) [32], which is known to bgon fields. A first example is that of digital bandpass commu-
a tight bound for a wide class of estimators, provided that thjcation over an AWGN channel using linear modulation. In
SNR is sufficiently high. In the considered applications ththat caseq(n) represents theth data symbol passing through
statistics of the observation samples depend not only on @ digital bandpass communication channel. The data sigmbo
frequency offset and the phase shift to be estimated but ajg@ult from an information bit sequence which is first channe
on the statistics of the non-constant amplitude. This makegcoded (for better bit error protection) and then mapped (f
the Computation of the CRB far from trivial. In order to aVOi(higher bandwidth uti"zation) to a block of Comp|ex numbers
the Computational Complexity associated with the true C%k)ngmg to a discrete se®, referred to as the Symb0|
several alternative Cramer-Rao-like bounds have also begjhstellation. In the digital communications case, we alio
proposed in the literature (see, e.g., [2], [9], [10], [1¥6], consider thab2 = N,/E,, with Ny and E, assumed to be
[31]). We present an overview of these bounds with theihown. Here, N, denotes the noise power spectral density
respective interests and their associated derivationbosed- andE; is the symbol energy. The ratiB, /N, is an important
form for various cases (coded/non-coded digital modutatiomeasure for the signal quality at the receiver and is comynonl
circular/non-circular multiplicative noise). It is wetliown referred to as theignal-to-noise ratiqSNR).
that the CRB (and in particular the CRB for frequency offset As already evoked, other application fields where the signal
estimation) is not accurate at low SNR and/or when the numfrodel (1) can be encountered are that of DOA estimation and
ber of observation samples becomes too small [33]. The langgppler radar. In DOA estimatiom,(n) represents the spatial
gap between the CRB and the MSEE of practical frequengistribution of the source. In Doppler radar(n) represents
offset estimators is the result of the estimators spordiylicathe Dopp|e|’ Spread of the reference 5igna|_ In both cases, it
making large errors referred to as outliers. To analyze thisandard to model the non-constant amplitude as a Gaussian
phenomenon, we also discuss the Barankin bound (BB) [2@rocess [1], [3], [34]. Even in digital communications, the
[29] and the Ziv-Zakai bound (2ZB) [20] for frequency offsefprocessi(n) can be sometimes viewed a Gaussian one: indeed,
estimation which are more complicated bounds to compute bta flat fading channela(n) can be the product between
which are considerably tighter than the CRB at low SNR. a transmitted symbol and a non-constant complex amplitude
related to the channel quality. In a Non-Line-of-Sight (N&)O

Il. PROBLEM FORMULATION channel, due to the various scatterers, it is usual to censid
Throughout the paper, the following signal model is corthat non-constant amplitude as a Gaussian process and so its
sidered: magnitude as a Rayleigh process. Therefore it is also exferr
r(n) = a(n)e?™Potein) 4 yy(n), (1) to as the so-called Rayleigh channel, e.g., [35].

For the sake of completeness, we note that (1) is only

forn = ko, ... ko + N — 1, where approximate and in particular valid only whem | << 1[15].

e a(n) is a priori unknown and is referred to as eithe

"multiplicative noise" or ‘_'non-constant_amplitude". From the observation samplgs(n)} (1), we now want
* (o andy, are the normalized phase shit (at0) and the to recover the value of a deterministic parameter vector

normalized frequency offset of the received signal. Theaﬁ h componentsuo, uy, ... This vector contains (but is not

par%mets rs are alsodaT;?]rlorlbunrnownltc;tcr;ﬂe recever afliricted to) the unknown phase shiff and frequency offset
?heed;(f) € eSt'mate : b € afso Uts vla_ ut v elterrgwt\es 1. A common approach to evaluate the quality of an unbiased
e difference (in number of symbol intervals) betwee stimator foru consists in comparing its resulting MSEE with

the. start of the recgiveq Signal and the time instant 8'CRB or some other tight fundamental lower bound on the
which the phase shifp, is estimated. achievable MSEE

o w(n) is circularly-symmetric complex-valued AWGN
with zero-mean and varianeg’,.
By stacking all the available observations into a row vector
we have

IIl. DERIVING THE CRB

The CRB results from the inequalitR, — J~!' > 0
[32]. Here, R, is the error correlation matrix related to the
estimation of a deterministic parameter veatgrthe notation
where A > 0 indicates thatA is a positive semi-definite matrix,
« w is a Gaussian noise vector with zero mearmandJ~' denotes the inverse of the Fisher Information Matrix
E[w'w] = Oy, andE [w'w| = 021y, where0, (FIM) J. The elements of are given by
represents ak x k null matrix and I, represents a
k x k identity matrix. The superscripté)T and (.)H Jug = Bl (wir) & (wir)], 3)
stand for the transposition and the conjugate-transpositiyhere J,, ., corresponds to the joint Fisher information for
operators respectively. the parameterguy,w;), whereE[.] denotes averaging with
* S ([0, ¢1]) is a diagonal matrix with the:-th diagonal respect top (r|u), and where
element given by
_ Olnp(r|u)

S (n, n; [SOOa 901]) = 6277'7.(%0-’_%1”)1 ‘gk (u, r) - 8Uk

r = aS ([po, ¢1]) + W, )



is a short-hand notation for the derivative lafp (r ju) with  The joint symbol a posteriori probabilities (APPY [a |r, u]
respect to the:-th parameten, of u. It easily follows from in (6) can be computed from(r |a,u) andPr[a], according
Ry, —J ! >0 that to Pr fal p (+ . )
_ rlajp(rija,u
E {(Uk —ﬁk)ﬂ > CRB (ux) , (4) Priafr,u} = Yap(rla=au)Prla=al’ 0

where CRB(uy) is the k-th diagonal element of the inverseAlthough this procedure yields the exact derivativgs$u; r),

of the FIM J. The right-hand side of the above expression is = 0,1, the summations in (6) and (7) gives rise to a

referred to as the CRB. computational complexity that is exponential in the buizes
N.

A. Non-constant complex amplitude = digital data symbol
P P g y It is shown in [16], [37] that the computational complexity

In this section we derive the exact CRB, or equivalentlysgyciated with the evaluation of the CRB can be drastically
the exact FIM, for the deterministic parameter vector= eqyced by taking into account the specific (linearly modu-

[uo, ur] = [0, 1] from N samples of a received linearly|ateq) structure of the useful signal in (1).
modulated digital communication signal in AWGN. We recall gaocquses (u)S" (u) = Iy does not depend om, we

that we consider the signal model given by (1)-(2). As uguallyiain
done in digital communications, we model the symbol vector .
a as a discrete random vector with the following uniform a Olnp(rla,u) %% {r (88 (u)) aH}

priori distribution: ouy, Ny ouyp,
N, = I S :
Prla— 4] = 2 ae So ®) Substituting the above expression into (6), then yields
0 ,aec S\SO H
) 2E; 0S (u) H
Here,S denotes the set of all possible vectorsNéfsymbols b (ujr) = N, Rir A po(ru) e, (8)

taking values in the symbol constellation $gtandSy, C S

denotes the subset of these vectors that result from ergodjphere 4 (r,u) is a short-hand notation for the a posteriori

and mapping an information bit sequence. The distributigjyerage of the symbol vecte; with N components
(5) reflects that a one-to-one correspondence exists betwee

the set of all possible sequences®f information bits and p(nsr,u) = Eala(n)|r,u] 9)
the data symbol vectors ifiy, while the receiver has no prior — Z wPr[a(n) = w|r,u], (10)
knowledge about the transmitted information bit sequence. et

It is further standard to assume thBtla] = 0 and that

E [aa] = T. This assumption holds true for transmissionglh_ereﬂ denotes the set of constellation points and the aver-

without channel encoding and is approximately valid for mo&9iN9Ea [ [r, u] is with .re.speclt t((i;? [ |Ev uj. We je_(;nphhasriée
practical coded modulation schemes [36]. that no approximation is involved in obtaining (10); thehtig

hand side simply expresses the a posteriori average af-the
A brute force numerical evaluation of the FIM related td! data symbok(n) in terms of themarginal APP of a(n),

the estimation ofu involves replacing in (3) the statisticalratger thar.1 th@(;]mt APP.Of Ia” compfonentshafa: . il
averagek [.] by an arithmetical average over a large number omputing t el m_arglrr:a APPs from the 10|r_1t”AP\AI;’H;t|
of realizations ofr, that are computer-generated according fgauires a complexity that increases exponentially

the conditional distribution (r|u). The numerical evaluation Howbevle'rA,\PlrIL most %racc;u_cal Iscenanos, ;h(.e requwﬁe_d_ malgina
of the FIM further requires the computation of the derivasiv Symbo s can be directly computed in an efficient way,

¢ (w;r), k = 0,1 that correspond to the realizations of 2Y @PPlying the sum-product algorithm to a factor graph

givenu. These derivatives can be put into the following forrf ©) 'épresenting a suitable factorization of the joint bpin
[37]: APP [38]. The application of the sum-product algorithm on

~ a graph that corresponds to a tree (i.e., cycle-free FG) is
0 (wr) = Z dlnp(rla= aﬂl)Pr la=alr,u]l, (6) straightforwa_rd and yields the exact margina!s. When the
Z Oug graph contains cycles, the sum-product algorithm becomes
an iterative procedure that, after convergence, yieldy anl
approximation of the marginals. However, when the cycles
in the graph are large, the resulting marginals turn out to
be quite accurate. When using this FG-based approximation
technique to compute the required marginal symbol APPs,
computing the derivativeg,, (u;r), £ = 0,1 according to
(8), for a given realization of givenu, yields a complexity

As p(r|a,u) is Gaussian, the logarithnmp (r|a,u) is
readily available in closed-form:

B,
Inp(rja,u) x —== |r — aS (u)|*.
No

Differentiating with respect ta, yields

dlnp(r|a u) that is linear (and not exponential) in the number of data
Oug, symbols N. The above expression and evaluation procedure
2E;

u( 0S(u) is the main result for the CRB derivations. It allows a fast
=N R(r—aS(u)) (a 5 .
0 Uk

evaluation of the CRB and holds for any channel code and



any symbol constellation. analytical closed-form expression for the CRBs still ndsesx
The main contribution of the research conducted in [12]],[13
For specific hypotheses about the channel code and the syb%]-[19] lies in the derivation of new procedures that aila
bol constellation, the complexity associated with evahgt more efficient (hence faster) numerical evaluation of th&€R
the FIM, or equivalently the CRBs, can be further reduceddnfortunately, the expressions that lead to (and/or contgyas
(see, e.g., [12], [13], [15], [19]). We mention a result fronproducts of) these evaluation procedures usually dontidori
[15] for arbitrarily mapped uncoded linear modulation. @t much insight into the behaviour of the FIM (e.g., as a functio
case, all transmitted data symbols are statistically inddpnt of the parameters that describe the coded modulation sgheme
and equiprobable, such that the a priori distributionaof5) We will see in the simulation section of the paper that

reduces to: _ N e o For a given symbol constellation set, CRBs for coded
Prla=a]=2"" vaes. (11) and uncoded transmission are equal at sufficiently high
Taking into account (11) it is easily verified from (9)-(1G)ca SNR. At lower SNR, however, the CRB for coded trans-
(7) that the components of the a posteriori average of the dat  MISSIon IS significantly lower than the CRB for uncoded
symbol vectora reduce to: transmission. .
o For a given channel code, the CRBs increase when the
p(n;r(n), u) (12) minimum Euclidean distance between the constellation
 Yeco we(fﬁ(2%{’”(@@’2”(“’““’1"%*}—IwIQ)) points decreases.

Es (o fr(n)e—2milvoteimu=l —|w|? ’
Zweﬂe(NO( {rm o b=l )) To avoid the computational complexity associated with the
which only depend onr through r(n). Taking this into evaluation pf the true CRBs, asymptotic CRBs (ACRBs) have
account it was shown in [15] that, wittV odd-valued and Peen considered in [14] and [11], for the case of uncoded

ko = —1(N—1) (i.e., 0 is the phase shift at the burst center)inéar modulation. This has resulted in closed-form arnzayt
or high SNR. The high-SNR ACRBs are shown to coincide
- E E . e o
1_ g 2fs Lus with the Modified CRB (MCRB). This is another lower bound
(CRB (o))~ =8m NONRQ (NO) ’ (13) on the MSEE of any unbiased estimator which is simpler
(N2 B 1) to evaluate but looser than the exact (true) CRB. We will
(CRB (¢1)) " = (CRB (o))" - ~——2, (14) come back on the MCRB later in this paper. For the low-
12 SNR ACRBs the following expressions are presented in [14],
where assumingN odd-valued andiy = —3(N — 1):
()
Mo -1 2 [ Es g LQ|JCL|2
= Z2R [5 {ut (i () 0 r()S* (o wy sy AR 0 wsne = 5T (%) ¥
0
It is further shown in [15] thatJy, ., = Jp,.0, = O. . - -1 (N?—1)
This means that the estimation of the phase shift at (ACRB (#1)) 10w snr = (ACRB (20)) jow snr- 12 (1’6)

the center of the observation interval is independent of the )
frequencyy; estimation problem. We observe tH&RB (i) where L is related to the symmetry ang% of the constel-

is inversely proportional to the number of available signtion andf;, =E [(a (k))L}- We observe that at sufficiently
samplesN, whereasCRB(py) is inversely proportional to low SNR the CRBs are determined by the symmetry angle of
N(N? — 1) = N3, where the approximation holds for largethe constellation and evolve inversely proportional to fhth

N. We further observe thaCRB(yo) and CRB(¢1) are power of the SNR.

proportional to the same factaRg gi_“ that depends on

the symbol constellation and on the SNR, but not on th® Non-constant complex amplitude = a Gaussian process
number of available signal samples. The numerical evalnati
of the CRBs from (13)-(14) involves replacing in (15) th
statistical averagg [.] by an arithmetical average over a Iarg(f_|
number of realizations of (n) S* (n,n;u). This procedure
is significantly less complex than the evaluation of the FI

entries according to (3) and (8)-(10) using the FG-approaﬁat fading channel, the non-constant amplitude) is as-

because the a posteriori symbol average (12) is available In . ) .
umed to be a zero-mean Gaussian stationary process with
closed-form and the average that needs to be computed’in : y .
e correlationc, (1) = E[a(n + 7)a*(n)] and pseudo-correlation
(15) is with respect to a complex-valuedalar rather than a () = Ela(n+7)a(n)]. The spectrum and pseudo spectrum
complex-valued vector of siz&. PalT anTjarnl. b P b

are denoted respectively as follows

We recall that we consider the signal model given by (1).
e just assume, in the rest of this section thgt = 0.
owever, in this section, we add extra assumptions on the non
onstant amplitude(n). As usually done in Doppler radar,
I%"OA estimation or digital communication over a Rayleigh

In spite of all the efforts made in the literature with redpec Co(e21) = Z CaT)e 2T
to computing the FIM for linear modulation, an explicit ez



and the phase parameters, we obtain the following expressams f

P, (™) = Zpa(T)efm’Tf". the FIM
TEL =~ ~ _
i . Jak,al = %TI.((I;S:(CEI'FU%,IQN) 1
By construction, one can remark thaP,(e* /) = & = ) .
P,(e=2"1). Moreover, the entire statistids:, (1), pa(7)}rez X Gar(Ca+toylan)

of a(n) only depend on a finite numbés of real-valued un- ., ., = %Tr (éa + gfuIQN)ﬁ)
x.Thenon-constant " "

amplitude process(n) can be real-valued or complex-valued. Japoz = %Tr aaSZ (Ca+ 031121\7)72)

In the case of a complex-valued procesg;) can further be J,, ., = 272Tr (D (Ca + 02Ion)Dy(Ca + 02 Iy )~
circular (which means the process distribution is insensitive + Dl(éa + gfuIQN)Dk((ja +02Iyn) "

to any rotation and thus means thalu(n)a(n + 7)] = 0 ~ 2D,D))

for all 7) or non-circular (there exists at least ong such _ oRL 1/ ) .
thatE[a(n)a(n + 79)] # 0). One can notice that a real-valued Jox.ex = m1r (Ba: [(Ca + 0y lon) ™ Dy

process is, by definition, non-circular. Based on the CRB, we — Dy(Ca+ 012”12N)_1])

will see hereafter that the estimation quality can be sptib i — 0

two classes in regard with the circularity/non-circukaprop- Toee T

erty of the process. In contrast, the estimation performanehereDy, = [dy,0n;0x,—dy], for £ = 0,1 with dg = Iy
is independent of the nature of the process values (realamd d; = diag([0,---, N — 1]). The above expressions are
complex). To further information non-circularity propgrthe given in [31] and partially in [3] whena(n) is circular
reader may refer to [15], [39]. and complex-valued. When(n) is circular and complex-

In the sequel, we will first derive the FIM when the numbevalued, the term/,, ,, = 0 which means that the constant
of available samplesV is finite (i.e., non-asymptotic case).phase is not identifiable when the pseudo-correlation is.zer
As once again, the obtained expression for the FIM does rfdonsequently only a non-null pseudo-correlation enaldes u
provide additional insights, it is of great interest to het estimate the constant phase. Apart from this comment about
simplify the FIM expression by also considering the case fthe constant phase, it is difficult to provide more insighithw
N going to infinity (i.e., asymptotic case). The resulting GRBthese expressions and to distinguish the difference bettinee
are referred to as Gaussian CRBs (GCRB). circular case and the non-circular case. Therefore we move

1) Non-asymptotic casélle next derive the exact Gaussiamow on to the asymptotic case, i.e., fdr sufficiently large.
CRB, or equivalently the exact Gaussian FlMifor the deter- ~ 2) Asymptotic caseWhen N becomes large, we have to
ministic parameter vectar = [y, 1,02, a1,...,ax] when treat the circular case and the non-circular case separhéd|
N samples of-(n) are available. In order to use well-knownus begin with the circular case.
results on the FIM [40], we work with real-valued processes. a) Circular case: When the signat(n) is circular, one
We consideir = [R[r], 3[r]] which is a multi-variate Gaussiancan remark that(n) is stationary due to our signal model

variable with zero-mean and covariance mattlx. given in (1). This enables us to simplify the asymptotic
The FIM for a multi-variate Gaussian observation veator expressions for the FIM by applying Whittle’s formula [41].
has a special form. As one can check td3tis symmetric, In [3], the asymptotic expressions for the CRB are given for
formula (5.2.1) in [40] holds and this leads to C, (1) real-valued and positive. The latter assumption has been
o v justified by many other authors [1], [23]-[25]. For instance
y— le <6Cr é;lacr ér1> , if a(n) is associated with the Doppler spread phenomenon,
7 2 D uy C,(r) often follows the Jakes model [42], [43] and thus

Co(1) = 02Jo(AT) whereo? is the variance ofi(n), A is the

whereTr(.) is the trace operator. - - - )
Doppler spread andy(.) is the Bessel function of first kind.

After straightforward algebraic manipulations, we canvgho

that In such a case, one can prove that the estimategggfp: ]
1 9C, =~ 0C, ~ are decoupled from the other paramefets, a1, - - - , ax]. As
Juur = 5 C,! C.'. remarked in the previous subsection, the phasean not be
’ 2 8uk r 8ul r . . p ! p
estimated in the circular case. As a consequence, we cas focu
whereC, is the covariance matrix of the random vector= 0N Jo. .0, ONly. After tedious algebraic manipulations, one can
[r,r*] and takes the following form find that 1
_ C, P, A Ty o =0
Cr = ; :
) { P C; } with
] 1 C’ (eQiﬂ'f) 2
with Cr = E[I‘HI'] and Pr = E[I‘TI']. 0= / (W) df
One can remark that 0 a(€2)) + o

= S 3 d whereC’, (2" is the derivative function of”, (e"/)
C.=S (Ca 2 ) St an a lvative a
+owlaN ’ with respect tof. As the CRB is the inverse of the FIM, we

whereS = [S([¢o, 1)), On; Oy, S* ([0, 1)), and whereC, Nave L
is defined in a similar way a€,. As C, does not depend on GCRB(¢1) ~ 3N (circular case)



We remark that the frequency can be estimated as soon aSecondly, in the case whea?2, a1, - -, ak] are unknown
d # 0, i.e., as soon as the proces@:) does not have a flat at the receiver, we obtain (see [31])
spectrum. Thus, we need to have a coloured Gaussian non- m
constant amplitude process and not a white Gaussian n&HERB(20)[nose saisies o= GCRB(0) e sastes know#m
constant amplitude process to be able to estimate the fnegue ’
if the process is circular. Moreover the CRB is proporticioal and
1/N and_ so the minimum achievable MSEE decreases quite GCRB(1) s st unnoni= GCRB(1)
slowly with respect to the number of available samples.

b) Non-circular case:Unlike [3], here we can not apply Here,m is a bounded scalar taking the following form
Whittle’s formula [41] because(n) is not stationary with

| noise statistics known

-1
respect to its pseudo-correlation. In the sequel, the doiced m=p" (9/2 —pup’ )€~ ﬂﬂT/(QV)) K,

results are in fact obtained via theorems dealing with theh
where@

inversion of (large) Toeplitz matrices ( [44], [45]).

After simple but tedious calculations, the FIM is found to

= (O,)1<ki<i, B = (Br)i<i<i, b= (1k)1<k<K-

Using the previous expressions for the asymptotic CRB, we
make the following comments :

be in [31] _
) 1 1 « The convergence rates for the phase and frequency esti-
l?mNHOO TJQWL ? kil mations arel /N and1/N? respectively regardless of the
Imy oo 502,02 = 37 color of the multiplicative noise. Recall that for circular
Bmy oo mda, 02 = 20k complex-valued processes, the phase is not identifiable
N kT w 2
lm v oo %on_% = 167%¢ and the frequency is identifiable only if the multiplicative
lim 1 ' _ 16#25 ) noise is coloured, with a convergence ratd AWV. Notice
SN e neteen 8 that a real-valued process can be viewed as a specific
lme—’OO ?J%% = 8% case of a non-circular complex-valued process where
Iy oo dappo = 4mpk the imaginary part is zero. Consequently, in terms of
limpy oo vz Ja 27 g, performance, the main cut-off is not complex/real but
N ky¥P1
where circular/non-circular.
vins vins o We recall that the CRB associated with the "pure" fre-
P _ 1 ox(T) ox () L - )
k.l fo X272  dan oar—df guency estimation issue (i.e., only disturbed by a constant
i fl 1 (Q(Pa)(e%n—f) _ Q(Ca+ai)(esz)) df amplitude) is proportional td /N3 [46]. Consequently,
o X(ei”f) k.l von s , ’2‘“ thanks to the non-circularity property of the non-constant
v = X(e )2 ((Ca(e*™) +03) amplitude, the non-constant amplitude does not lead to a

+ (Ca(€®™) +07)? + 2Po (¥ ) Po(e*F) ) df

-1 X (et
B = Jo wratery w2l

e2imf e2im
%m[fl Pa(e*™F) 9P, (2 f)df]

significant loss in performance.
Surprisingly, the same frequency estimation performance
is obtained whether the statistics @frn) are known or

M = 0 X(FT)  dan not.
L Po(e¥T )Py (e o The frequency estimation performance depends only on
$ = Jo X (e ) &, which refers to an information rate provided by the
with non-circularity. Indeed, the performance improves when
2im Iy oy ¢ increases.
z((ey) f) = ZI(j Q?ﬂf;)a ) (eI (et . In the noiseless case, we observe a floor effect (i.e.,
Qui(e* ) = e e CRB(p1) # 0 when o2 = 0). This effect vanishes
X = (Ca(e¥™) 4 02)(Co(e¥™) + 02) it Ca(e?™/)Cule 277) = Py(e¥™/)P,(e~27). This
pa(e%ﬂf)pa(e?iﬂf)._ condition is fulfilled for example when the multiplicative

statistics of multiplicative and additive noises. In thiase,

the GCRBs result from the inverse of tBex 2 FIM

J[#”oytpl] =

J%’o#’o J#Po#m
J%’o#’l J<P17<P1

noise is real-valued.

As a conclusion, we remind that the Gaussian CRB is of
Next we study different scenarios. Firstly, we consider thfterest in many applications: Doppler radar, DOA estiomati
case where the receiver knows;,,a1,--- ,ak], i.e., the digital communication over Rayleigh flat fading channels.
If the non-constant amplitude is non-Gaussian, the Gaussia
CRB is not a lower bound for the estimation problem anymore.
Nevertheless it is still of interest since the Gaussian CRB i
a lower bound for any second-order-based estimator (well-

adapted to, e.g., digital BPSK modulation) [47]. Consediyen

This yields: it indicates what is the best expected performance if weycarr
1 out an estimator based only on mean and correlation.
GCRB(0) i sasics knowr= AT26N Actually in the non-Gaussian case, the non-circularity may
and also play a significant role. For example,dfn) is assumed
3 to belong to a QAM modulatiory(n) is circular at second

G C R B( SO 1 ) ‘ noise statistics known —

4m2EN3’

order (i.e.E[a(n)a(n)] = 0) but is non-circular at fourth order



(Ela(n)a(n)a(n)a(n)] # 0). Thanks to this fourth-order non-

circularity, we are able to build an estimator for which the

MSEE is proportional tal /N3 and notl/N [47], [48]. This

is not in contradiction with the previous results since a QAM
modulation is not Gaussian and so the high order statisfics o

a(n) strongly help to improve the estimation performance.

IV. DERIVING THE MODIFIED CRB

To overcome the complexity concern of deriving the true
CRB! in the non-Gaussian case, it is possible to define other
lower CRB-like bounds that are easier to compute but less
tight than the true one. The most well-spread is the sotalle

Modified CRB (MCRB) [9], [10]. Once again, we will restrict
our analysis to the estimation af = [¢g,¢1]. Then the
elements of theModified FIM (MFIM) are defined as follows

Olnp(rlu,a) dlnp(rju, a)

= Ea
Tonei Iy, Oy
After standard algebraic manipulations, we obtain that
82
‘-78%#/91 = G—QEa[adkdlaH]'

w

For largeN, the resulting MCRBs are given in [9], [10]. We
have that

(tho + N = 1)° = (k0)*) 02
272ca ()N

MCRB(pq) ~

and
302

~ w

MCRB(()Dl) ~ W.

values in the se{—1, 1} which implies that. = 2 and
fr = ca(0) = 1. We have

30121)
2m2 N3’
Due to previous item, there is equivalence between
MCRB and ACRB, at high SNR for BPSK, therefore

we know that

MCRB(¢1)BpPsk ~

ACRB(01) i — ﬁ
¥1)|high SNR,BPSK= 5573
and thanks to (16), we get
30t
ACRB(%)uow SNR, BPSK = I2N3

Obviously, at low SNR, the true CRB for BPSK starts
seriously deviating from the MCRB.

If we inspect the Gaussian CRB for uncorrelated and real-
valued Gaussian(n), we obtain

3 [2012“ + Uf;,]
472 N3

Surprisingly, the GCRB predicts well the performance of
a BPSK based non-constant amplitude for both low AND
high SNR whereas a BPSK constellation is not Gaussian
at all! Consequently, the GCRB is a powerful tool for
analyzing the frequency MSEE in BPSK context whereas
the MCRB is not (except at high SNR).

GCRB(¢1) =

V. DERIVING THE BB

Let us reconsider the signal model given in (1), with
ko = 0 and a(n) a zero-mean Gaussian stationary process

We note that in the case of linear modulation it was assum@éth correlationc, () and pseudo-correlatiop, (). For the
that ¢,(0) = 1 such that the above MCRBs, fd¥ large and Sake of simplicity, we further assume that the noise stesist
odd-valued andsy = (N — 1)/2, reduce to the CRBs from i-€-,{ca(7),pa(7)}rez andor,, are known at the receiver. This

(13)-(14) upon the factoRRq(o;2) from (15). We have the assumption is made in [49] and partially made in [28] for
following comments: deriving Barankin bounds (BB) because the computationél an

o The derivation of the MCRBs is very easy and enabl(ﬁ'alytical complexities are too high ojcher\{vise.. Ij[ can djeo

us to obtain simple closed-form expressions. noted that the CRB for frequency estimation is insensitove t
These expressions seem to be "too" simple and do ihe knowled_ge of the noise statistics as soon as thg num.ber
provide a lot of information since the CRB does no? samples is large enough (see [31] ar_1d GCRB dlscusspn
depend on the nature of(n) (circular/non-circular in above). We thus can expect that the error induced by negtecti

Gaussian case, channel code and symbol constellatiorm estimation step with respect to the noise statistickhail
non-Gaussian c’:ase) while we have seen before that thiStdficiently small so that our further conclusions still ¢ah

crucial information (see profound discussion in Gaussidii>° of Lljlnkngwn n0|§e hStaF'St'CS' ¢ other bounds th h
case and ACRB expressions in non-Gaussian case). To well understand the interest of other bounds than the

Nevertheless. the MCRB can be sometimes of gregBB' let us consider the following example. The signal model
interest. Indeed, it:(n) belongs to a finite set of symboliS the one from (1) withu(n) a regl-valued_ Gaussia_m PrOCEsS.
constellation points, the true CRB (for which no To estimate the frequency, agn) is non-circular (since real-

explicit expressions are available) is well approximategiall,’ed)' one can use the so-called square-power estindatpr |
by the MCRB at high SNR [11]. efined as follows:

An unexpected consequence of the previous remark is
the following. Let us consider the MCRB for estimating
the frequency offset in the case of digital communication
using a BPSK symbol constellation set, i.e(n) takes

2
T(n)2€72j7r(2ap)n

2

1
N

(]

Y1 = argmax
]

0

n

F(y)

1if the process is Gaussian, the Gaussian CRB is the true ahthare are In Fig. 1, W? plOt the MSEE of this estimator and the Modified
no more concerns due to the results introduced in the prewobsection. and Gaussian CRB versus the SNR whénr= 100.
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We observe that at high SNR, the estimator is powerful
and even efficient (MSEE equals CRB). In contrast, at low
SNR, there is a large mismatch between MSEE and CRB
The question is: is the considered estimator not relevant ¢
low SNR, or, is the CRB not tight enough at low SNR? We
will show that the CRB is not tight enough. To demonstrate

~
o
T

@
=}
T

FFT norm based on y2
B v
S =]
T

w
=)
T

that, we introduce other lower bounds on the MSEE which are ol
much tighter at low SNR than the CRB. “’/\W\/\]\/\/
Now, we can attempt to understand why the CRB is noi
tight enough at low SNR. In Fig. 2, we plot the cost function % 005 o1 015 02 025 03 035 04 045 05

frequency index

F(.) of the square-power estimator for SNR=-5dB (on top)
and SNR=5dB (on bottom).
The sought frequency ip; = 0.1. We remark that, at Figure 2. Cost function?(p) vs ¢ for SNR = —5dB (top) andSNR =
. 5dB (bottom)
high SNR, the peak around the true value of the frequency Is
well detected, whereas, at low SNR, there is a mis-detection
of the peak which significantly degrades the performance.
Consequently the performance degradation is due to a highée termsup stands for the smallest upper bound on the set
peak far away from the true frequency. These "bad" ré- FurthermoreB(€) = (Bj.i)1<k.i<p is the followingp x p
alizations are called "outliers". By inspecting in detdiet matrix
FIM from (3), we remark that it depends on the behaviour By = E[L(r,u, ¢(k))L(r,u, ¢(1))],
of the likelihood function around the true frequency since.
the involved derivative functions are calculated at theetrL)N'th (r|p(k))
frequency. Therefore the CRB is unable to take into account L(r,u,¢(k)) = PIPAR))
the mis-detection of the peak and automatically assumes a p(r|u)
correct detection of the peak even if it is wrong. Thus at low The MSEE of any unbiased estimator is greater than the
SNR (when the mis-detection of the peak occurs), the CRBBE&rankin bound of any ordes ( [40]). From an asymptotic
truly too optimistic. point of view (asp — o), the Barankin bound is even the
We are now interested in another bound that inspects tightest lower bound that one can find ( [27], [28]). As for the
likelihood function around the true frequency but not onlghoice of the test-points, it is usual to consider the foifayv
there. Therefore we introduce the following set of the sstructure for€ ( [28], [29]):
called "test-points{¢ (k) = [¢o(k), ¢1 (k)] }1<k<n at which
the likelihood function will be evaluated. We are now able to &= {

%—¢o 0 } — diageo,e1).  (17)
define the Barankin bound of ordgras follows :

0 $1— 1
BB ) = sup S, (€) Our main concern hereafter is to derive in closed-form espre
p(0, 1) = sup S ( sion the matrixB for such test-points.
_ Let us now remind some notations. The covariance matrix

where S - :
C.(¢) of the multivariate process can be written as follows

Sp(€) = EB(E) — 1,17)71eT
with € = [¢(1) — u”,...,$(p) — u”], and1, = onegp, 1). Ce(9) = 8(0) (Ca+ 02 Lan ) S™(e) (18)



where In [20], [50], it was proved that the following inequality

3 S(¢) On } holds for an tow =
S(¢) = _ . y vector = [z, z1]
@=1 %0 s N
After straightforward algebraic manipulations, we finatllp- zEuz" > / A ( [nax f(so@l)) dA (29)
tain that 0 2050+2161=A
1 if Qu; >0 whereE,, denotes the error correlation matrix related to the
B, =< Vdet(Qry) ’ , estimation of a random variabie = [y, ¢1] and
’ +00 otherwise
it flener) = [ min(p(u),pla+ €)P (wu+ e)du,  (20)
= (Colop(k)) ™ + Cu(d(1))}) Co(u) — Ly.  With e = [0, e1].
Q. ( (6(k))™" + Crl(8(D)) ) (W) —Ion The functionp(u) is thea priori density function of the bi-

These expressions have been introduced in [49] and [28] ivariate parameten, and P.(u, u + ¢) is the error probability
slightly different form (due to the circularity assumptiom when the optimal detector (namely, the ML detector) is used
the non-constant amplitude) and in [31] for the general cad® decide between the following two hypotheses

We now just focus on our main pargmeter of_inter_est: the Hy: yn) = a(n)e2im(eorein) 4 y(n)
frequencyga.l. For the standard test-pomt§ described in (17), Hi: y(n) = a(n)eim((poteo)tlpitenn) 4 oy(p)
the Barankin bound fop; takes the following form [28]:

where hypothesef; and H; are equally likely.
BB(y1) = su e? The right hand side of (19) is called the Ziv-Zakai Bound.
i) = 5072 (Byq— 1) — (Bo.i—1)2" By inspecting (19), one can remark that the likelihooduof

(Bo.o—1) is scanned over the entire search intervalipfas is also the

The term(Bo 1 — 1)?/(Bo,0 — 1) represents the loss in perfor-case for the Barankin bound [31]. Once again, this contrasts

mance due to joint phase and frequency parameter estimatieith the CRB where the likelihood function is only evaluated
We remark that the Barankin bound is not strictly speakirground the true point. Therefore we expect that the ZZB can

obtained in closed-form since the maximum operator stifiredict the outliers effect at low SNR.

occurs. Nevertheless the existing expressions enable us tbet us focus now on the ZZB fop,, which is obtained by

compute very fastly the Barankin bound. settingz = [0, 1]. Therefore
As we will see in the simulation part, the Barankin bound oo
enables us to predict partially the outliers effect, i.e this- ZZB(p1) = / €1 <H§:X f(é‘o,€1)> dey.
0

match between the CRB and the real estimator performance. . .
Consequently the poor estimation performance of the standgctually th_e MSEE of any (even biaised) estimator for the
square-power estimator (well adapted to BPSK or a redfeduency is greater than the ZZg, ) [20].

valued Gaussian process) is shown to be connected to th h% fkey ti?k now is _to lexgrefss _the functigit.) in h
poor tightness of the CRB. Thus decreasing the gap betw&é pead-form. _ter some simple erlvat_lons, one can see tha
u,u-+e) is independent ofi, so that it can be denoted by

the CRB and the estimator performance for a given numbg? A h 50
of samples at very low SNR is impossible. The CRB is tobe (€0-€1)- AS a consequence, we have [50]
optimistic in such a context and has to be replaced with the f(g0,e1) = g(20,€1) Pe(0,€1)

BB. where

VI. DERIVING THE ZZB 9(c0,1) = /mln(p(u)’p(u+ &))du.

To analyze the mismatch between the CRB and the real estince we have na priori information onu, we assume that
mator performance, we have considered the so-called Baranko and 1 are uniformly distributed ovej0,1/2], i.e., thea
bound in the previous section. Even though this Barankiiiori distribution of the parameters of interggt) is flat. We
bound is much tighter than the CRB and predicts roughfpnsider rather the intervad, 1/2] than[—1/2,1/2] because
the outliers effect, there is still a mismatch between bourige Phase and the frequency can only be estimated modulo
and estimator performance. In this section, we will therefol/2 when multiplicative noise occurs [50]. Consequently
iqtroduce_ a third, much more powerful bound, the so-called gleo,e1) = (1/2 — g0)(1/2 — £1).

Ziv-Zakai bound (ZZB). ,

We note that the ZZB needs a new paradigm on tiis leads to 1o
sought parameters: the so-called Bayesian approach. éJnli .
previously done, we have to consider the sought parameters (p1) _/0 (1/2=¢1)e1 Hi-%x((lﬂ ~c0)Pe(e0, €1)) det.
as a realization of a random variable. This random variableThe rest of the section deals with the evaluation of
is further described by a distribution, which charactesiee P€(€O751)' After tedious a_|gebraic derivations that can be
a priori information available on the sought parameters. F@und in [53], we have
instance, for frequency offset estimation, we only knowt tha aN—1

m—1
the frequency is normalized and thus it may take values in thePe(50751) — Prob Z A2 < Z A2 ) (21)
interval [—1/2,1/2] uniformly. = o=



where

o {v,} is areal-valued i.i.d. Gaussian random process with

zero-mean and unit-variance.

e« A forn= 0,---,m—1 (with A > 0) are them
negative eigenvalues, av\é[” >0forn=m,--- ,2N—
1 are the positive or null eigenvalues of tB&/ x 2N
matrix T(e) defined as follows

T(e) = (Cele)™ = €a(0) ") €u(0),
where C,.(e) = E[fT#) with ¥ = [R[r], 3[r]] andr the

received signal disturbed by phasgand frequency;.

We now wish to derive a closed-form expression for the

following term

P.(g9,e1) = Prob (py < p-) (22)

where p. = 3 /\S[)v?I is a weighted sum of squared

independent Gaussian variables. Notice that, by conginyct
p+ andp_ are independent.

If ALY = A (resp.AS) = M) for all corresponding:,
thenp, (resp.p_) obeys ax? distribution with (2N — m)

(resp. m) degrees of freedom. However, if the weighting

coefficients are different, the.’s are not x? distributed
anymore. Further, expressing the distributiorpefin closed-
form is not tractable. Nevertheless, it can be well appretéed
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by means of the Gamma distribution [51]' We recall that th—%gure 3. CRBsrelated to the estimationof, resulting from the observation

Gamma distribution, denote@(R, p), is defined as follows
INfl
Py () = W

whereT'(.) is the so-called Gamma function.
Hence, the distribution of+ is next approximated by the

e~ /P

model (1) as a function of the SNR, /Ny for random, linear,\/PAM and
MQAM, coded and uncoded, modulation

expression is not interpretable, its numerical computatvdl
provide interesting results as seen below. Notice alsottieat

Gamma distribution whose first and second moments are eqgiglained expressions for the ZZB are not a bound anymore

to those ofp. We thus obtain

P+~ Gy, pp) and p_ ~GR_, o)

with
2
R0 Db \od) NN Db Vi
M= g e, AN =2
Zn:m )\n Zn:m )\n
and
m— - m— -2
N_ = E(anol A'El ))2 a.nd _ 2277,:01 A'El :
T2 1 ()2 p-= m—1(-) "
ano An Zn:O )\n

stricly speaking since we are not able to prove that the ap-
proximate expressions are less than the exact (but unbigila
bound. But, by checking the approximation numerically, we
have observed that the approximation is very tight.

VII. SIMULATION RESULTS
A. Non-constant complex amplitude = digital data symbol

Fig. 3 presents some numerical results for the true CRB
regarding the estimation of the frequency offset from the
observation ofN = 999 linearly modulated signal samples
that were obtained by means of computer simulations. The

As p. is now assumed Gamma distributed, (22) can ljgllowmg signalling cor?stellatlonﬁ ar.e considered: .
simplified. Indeed, by using the fact that the square root of a* M -ary Pulse Amplitude Modulatio}/-PAM) for which

Gamma distributed random variable is Nakagami distributed

and by using equation (46) in [52], we have that
P+

( >N+ TRy +R_)
o

Ny T(Ry)
Y (N+ + RN Ry +

P.(g0,€1)

1;_&

:)

wheres Fy (.) is the so-called hyper-geometric function.
The above expression faP.(¢g,e1) represents the main

available result on the ZZB derivations [53]. Although this

/ 3
Q= mza,{.

o M-ary Quadrature Amplitude Modulatio\/-QAM) for
which

Q—{w: %{w},%{w}é“ﬁl\/ﬁ},

where® {.} and$ {.} denote the real and the imaginary
part of a complex number.
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In the above, out to be very well approximated by the corresponding

MCRBSs.
T = {&1, £3, .., £(m—1)}. (23)

We further consider uncoded and turbo-coded linear moduf- Non-constant complex amplitude = Gaussian
tion. The turbo-coded transmission scheme encompasses thehe multiplicative noiseu(n) is hereafter assumed to be
parallel concatenation of two identical binary 16-stat&e+a a white non-circular Gaussian process with zero-mean; unit
1/2 recursive systematic convolutional encoders with gEne variance, and pseudo-varianeg = E[a(n)?]. For sake of
polynomials(21), and (37)g in octal notation, via a pseudosimplicity, we also assume that the real part afn) is
random interleaver with block lengtN; information bits, and independent of its imaginary part. This implies tkatis real-
an appropriate puncturing pattern so that the block at thelued. Ifc, = 0, thena(n) is circular; if ¢, = 1, thena(n)
turbo encoder output comprise$. coded bits. This binary is real-valued. Thus;, quantifies the non-circularity rate of
turbo code is followed by conventional Gray-mapped 2PAM(r). We also seSNR(in dB) = 101log;,(1/02).
or 4QAM modulation, giving rise to a block oV random  |n each figure, we display four curves. Dashed lines cor-
data symbols, withV. = N, = 3N, for the case 2PAM and respond to the empirical MSEE for the well-known Square-
N = N./2 = N, for the case of 4QAM. Power (SP) estimate [1], [31], [34]. Solid lines with staape
Our simulation results confirm that the high-SNR limiimarkers represent the ZZB. Solid lines with triangulargsith
of the CRBs equals the MCRB. Comparing the CRBs fanarkers represent the BB. Solid lines with circular-shaped
coded and uncoded transmission we observe that for a givaarkers represent the CRB. [31], [53]
constellation type they are equal at sufficiently high SNRs. In Fig. 4, we plot all the curves versus tI#&NR with
At lower SNRs, however, there is a gap between the CRBS = 64, ¢, = 1. We observe that the well-known outliers
for coded and uncoded transmission. Wheyy N, decreases, effect occurs at low and medium SNR [33]. We also observe
a point (Es/Ny),,, is reached where the CRBs start tahat the ZZB is significantly tighter than the BB. The SNR
diverge from their high-SNR limit. For coded transmissiorthreshold corresponding to the SP-based estimate is much
(Es/No),y, corresponds to a coded BER of abddt . For larger than that one observed with the BB while the threshold
uncoded transmissioif, /Ny),,,,. corresponds to an uncodedvalue predicted by the ZZB is quite close to that obtained
BER of about10~%, and consequently exceed&,/No),,, empirically with the SP estimate. As a consequence, the ZZB
for coded transmission by an amount equal to the coding gaseems to be more powerful than the BB.

For uncoded transmission the following observations car

further be made: 4 ‘ ‘ [ —o— Gaussian Cramer-Rao Boun

—~A— Barankin Bound

o For both constellation types (PAM, QAM), we observe w0 | T 2iv—Zakai Bound

| — — — MSEE for SP estimator

that for a given value ofE;/N, the CRB increases
with M, which indicates that for the larger constellations
carrier recovery is inherently harder to accomplish. This
effect is clearly evident forM QAM, in which case
the curves corresponding to lardgé exhibit an almost
horizontal portion, but almost unnoticeable fbfPAM.
Fig. 3 also shows the limiting curve fat/ approach-
ing infinity; this situation corresponds to data symbols
that are continuous random variables, that are uniformly
distributed in the interval—+/3, /3] for PAM and in a ! ‘ ‘
square with side/6 for QAM. In the case of infinite- -15 -10 -5
size constellations the CRBs do not necessarily converg -

to the corresponding MCRBs for large SNR; according to

[11]. This is due to the non-diagonal nature of the FIM'?Igure 4. MSEE versus SNR
related to the joint likelihood functiop (r |a,u) of a

andu, with u = [po, ¢1]. In Fig. 5, we plot the curves versu$ with SNR= 10dB,

« For finite M, the CRB does converge to the MCRBc, = 0.9. Even though the ZZB offers a more realistic value
when E /N, is sufficiently large. The value of /Ny, for the N threshold than the BB, the mismatch between the
at which CRB is close to MCRB, increases by about BZB and the SP MSEE performance is still quite large.
dB whenM doubles (PAM) or quadruples (QAM). This In Fig. 6, the curves are displayed versyswith N = 64,
indicates that for uncoded pilot-symbol-free transmissioSNR = 10dB. One can notice that the morgn) is non-
the convergence of the CRB to the MCRB is mainlgircular (i.e.,c, increases), the better the estimation perfor-
determined by the value (ﬁ—o (dM)Q, with dj; denoting mance. Furthermore, the outliers effect rapidly degrades t
the minimum Euclidean distance between the constellperformance ifa(n) is not non-circular enough. The figure
tion points. Furthermore, at the normal operating SNR @bnfirms that accurate frequency estimation is really diffic
uncoded digital communication systems, the CRBs tutno achieve when the white signal is not non-circular enough.

MSEE

i
0 10 15
SNR (N=64,,=1)
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VIIl. CONCLUSIONS [19]

In this tutorial, we have focussed on the derivation and the
analysis of fundamental lower bounds on the achievable MSEZE]
for estimating the frequency and the phase of a receiveakign
when the complex amplitude of the signal is non-constant apd,
unknown. In particular, the following application fieldsviea
been considered: digital communications, direction oivalr 22]
estimation, Doppler radar, etc... An overview of lower bdsin
(CRB, MCRB, BB and ZZB) with their respective interests and
their associated derivations in closed-form for variousesa 23]
has been presented.
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