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Overview on Performance Lower Bounds for Blind
Frequency Offset Estimation

N. Noels, P. Ciblat, and H. Steendam

Abstract—This paper focusses on performance bounds for
estimating the frequency and the phase of a received signal,
when the complex amplitude of the signal is non-constant and
unknown. In many application fields receivers need to perform
such an estimation: digital communications, direction of arrival
estimation, Doppler radar, etc... While in digital communications
the non-constant complex signal amplitude is a discrete random
variable related to the transmitted information bits, in many
other signal processing fields this non-constant amplitudeis
typically modelled as multiplicative Gaussian noise. Fundamental
lower bounds on the mean square error of any frequency offset
and phase shift estimator are continuously employed in all these
application fields. They serve as a useful benchmark to judgethe
performance of practical estimators. We present an overview of
such bounds with their respective interests and their associated
derivations in closed-form.

I. I NTRODUCTION AND MOTIVATION

Let us consider digital bandpass communication over an
additive white Gaussian noise (AWGN) channel using linear
modulation. An information bit sequence is first channel
encoded and then mapped to a block of complex numbers (data
symbols) belonging to a discrete symbol constellation setΩ.
The channel encoderintroduces structured redundancy in the
transmitted bit sequences; this makes it possible to detectand
correct some of the occurred bit errors at the receiver.Symbol
mapping is performed to improve the bandwidth efficiency.
The resulting data symbols are first applied to a square-root
Nyquist transmit filter and then multiplied to a sinusoidal
transmit carrier signal in order to obtain a signal that is
suitable for transmission over the bandpass channel. At the
receiver end, the received signal is multiplied with a carrier
signal matched to the transmit carrier signal, applied to a filter
matched to the transmit filter and sampled at the correct time
instants.

To enable a reliable detection of the transmitted information
bits from the resulting observation samples, it is imperative
that the carrier signals at the transmitter and the receiverhave
almost exactly the same frequency and phase. However, as the
carrier oscillators at the transmitter and receiver are operating
independently, their frequency and phase are not the same,
and the demodulation at the receiver is performed using a local
reference carrier signal that exhibits a frequency offsetϕ1 and
a phase shift2πϕ0 vis-à-vis the received modulated carrier
signal. In that case, the observation samples can be modelled
as a noisy version of a complex sinusoid with frequency
ϕ1 and phase2πϕ0 and with a non-constant complex-valued
amplitude equal to the unknown transmitted data symbols
or realizations of a multiplicative Gaussian noise process. In
order to cope with the unknown parametersϕ0 and ϕ1 the
receiver is fitted with an estimation unit which has to estimate

the quantitiesϕ0 andϕ1 from the observation samples. Once
the frequency offset and the phase shift have been estimated,
the demodulated signal iscorrectedin order to compensate for
them. The detection unit of the receiver subsequently decides
upon the received information bits based on the corrected
observation samples, assuming perfect frequency offset and
phase shift compensation. A result of the latter assumptionis
that the accuracy of the estimation unit has direct repercussions
on the accuracy of the detection unit.

Besides from a mismatch between transmit and receive
carrier frequency, the frequency offsetϕ1 can also result
from the so-called Doppler effect. If a vehicle is transmitting
information to the receiver side and is simultaneously moving,
the transmit carrier frequency is modified by the Doppler effect
and the receiver is not well adapted in frequency. This Doppler
effect, which is a drawback in digital communications, can
be of great interest in some applications. For instance, radar
based on Doppler effect is able to find the velocity of
a target. In other applications, such as Direction-of-Arrival
(DOA) estimation, the spatial frequency related to angle-of-
arrival in an array processing can be mathematically seen as
a carrier frequency offset. As a consequence, besides digital
communications, there are a lot of applications for which it
is needed to estimate a frequency disturbed by a non-constant
amplitude. Unlike digital communications, this non-constant
amplitude is not associated with information bits but with other
parameters such as the Doppler spread for Doppler radar or the
spatial distribution of the source for DOA estimation [1]–[3].

Estimation accuracy is usually measured by the mean square
estimation error (MSEE). This is the expected value of the
squared difference between the estimated and the true valueof
the frequency offset and the phase shift. The estimation unit
which minimizes the MSEE is referred to as theminimum
mean square error(MMSE) estimator. In many practical
situations MMSE estimation gives rise to a prohibitive com-
putational burden and one has to resort to approximation
techniques. The various existing estimation units are the result
of applying these techniques (see, e.g., [4]).

Rapid developments in digital communications [5]–[8] and
signal processing applications [1]–[3] cause a nonstop increase
of the requirements that are imposed on the estimation units’
design. This also provides a constant impulse to the research
on fundamental lower bounds on the attainable estimation
accuracy (see, e.g., [1]–[3], [9]–[20], [20]–[31]). On theone
hand, such bounds serve as a useful benchmark to judge the
performance of practical estimators. On the other hand, if
interpretable closed-form expressions exist, they also might
provide useful insight into the influence of the various signal
parameters on the achievable estimation accuracy.
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In this tutorial, we focus on the derivation and the analysis
of such bounds. One of the most celebrated performance limits
is the Cramer-Rao bound (CRB) [32], which is known to be
a tight bound for a wide class of estimators, provided that the
SNR is sufficiently high. In the considered applications, the
statistics of the observation samples depend not only on the
frequency offset and the phase shift to be estimated but also
on the statistics of the non-constant amplitude. This makes
the computation of the CRB far from trivial. In order to avoid
the computational complexity associated with the true CRB
several alternative Cramer-Rao-like bounds have also been
proposed in the literature (see, e.g., [2], [9], [10], [14],[26],
[31]). We present an overview of these bounds with their
respective interests and their associated derivations in closed-
form for various cases (coded/non-coded digital modulation,
circular/non-circular multiplicative noise). It is well-known
that the CRB (and in particular the CRB for frequency offset
estimation) is not accurate at low SNR and/or when the num-
ber of observation samples becomes too small [33]. The large
gap between the CRB and the MSEE of practical frequency
offset estimators is the result of the estimators sporadically
making large errors referred to as outliers. To analyze this
phenomenon, we also discuss the Barankin bound (BB) [27]–
[29] and the Ziv-Zakai bound (ZZB) [20] for frequency offset
estimation which are more complicated bounds to compute but
which are considerably tighter than the CRB at low SNR.

II. PROBLEM FORMULATION

Throughout the paper, the following signal model is con-
sidered:

r(n) = a(n)e2πj(ϕ0+ϕ1n) + w(n), (1)

for n = k0, ..., k0 + N − 1, where
• a(n) is a priori unknown and is referred to as either

"multiplicative noise" or "non-constant amplitude".
• ϕ0 andϕ1 are the normalized phase shift (atn=0) and the

normalized frequency offset of the received signal. These
parameters are also a priori unknown to the receiver and
need to be estimated. The absolute value ofk0 determines
the difference (in number of symbol intervals) between
the start of the received signal and the time instant at
which the phase shiftϕ0 is estimated.

• w(n) is circularly-symmetric complex-valued AWGN
with zero-mean and varianceσ2

w.
By stacking all the available observations into a row vector,
we have

r = aS ([ϕ0, ϕ1]) + w, (2)

where
• w is a Gaussian noise vector with zero mean,

E
[
wTw

]
= 0N , and E

[
wHw

]
= σ2

wIN , where 0k

represents ak × k null matrix and Ik represents a
k × k identity matrix. The superscripts(.)T and (.)H

stand for the transposition and the conjugate-transposition
operators respectively.

• S ([ϕ0, ϕ1]) is a diagonal matrix with then-th diagonal
element given by

S (n, n; [ϕ0, ϕ1]) = e2πj(ϕ0+ϕ1n),

such thatS ([ϕ0, ϕ1])S
H ([ϕ0, ϕ1]) = IN .

The signal model (1)-(2) is encountered in several applica-
tion fields. A first example is that of digital bandpass commu-
nication over an AWGN channel using linear modulation. In
that case,a(n) represents thenth data symbol passing through
the digital bandpass communication channel. The data symbols
result from an information bit sequence which is first channel
encoded (for better bit error protection) and then mapped (for
higher bandwidth utilization) to a block of complex numbers
belonging to a discrete setΩ, referred to as the symbol
constellation. In the digital communications case, we willalso
consider thatσ2

w = N0/Es, with N0 and Es assumed to be
known. Here,N0 denotes the noise power spectral density
andEs is the symbol energy. The ratioEs/N0 is an important
measure for the signal quality at the receiver and is commonly
referred to as thesignal-to-noise ratio(SNR).

As already evoked, other application fields where the signal
model (1) can be encountered are that of DOA estimation and
Doppler radar. In DOA estimation,a(n) represents the spatial
distribution of the source. In Doppler radar,a(n) represents
the Doppler spread of the reference signal. In both cases, itis
standard to model the non-constant amplitude as a Gaussian
process [1], [3], [34]. Even in digital communications, the
processa(n) can be sometimes viewed a Gaussian one: indeed,
in a flat fading channel,a(n) can be the product between
a transmitted symbol and a non-constant complex amplitude
related to the channel quality. In a Non-Line-of-Sight (NLOS)
channel, due to the various scatterers, it is usual to consider
that non-constant amplitude as a Gaussian process and so its
magnitude as a Rayleigh process. Therefore it is also referred
to as the so-called Rayleigh channel, e.g., [35].

For the sake of completeness, we note that (1) is only
approximate and in particular valid only when|ϕ1| << 1 [15].

From the observation samples{r(n)} (1), we now want
to recover the value of a deterministic parameter vectoru

with componentsu0, u1, ... This vector contains (but is not
restricted to) the unknown phase shiftϕ0 and frequency offset
ϕ1. A common approach to evaluate the quality of an unbiased
estimator foru consists in comparing its resulting MSEE with
a CRB or some other tight fundamental lower bound on the
achievable MSEE.

III. D ERIVING THE CRB

The CRB results from the inequalityRu − J−1 ≥ 0

[32]. Here,Ru is the error correlation matrix related to the
estimation of a deterministic parameter vectoru, the notation
A ≥ 0 indicates thatA is a positive semi-definite matrix,
andJ−1 denotes the inverse of the Fisher Information Matrix
(FIM) J. The elements ofJ are given by

Juk,ul
= E [ℓk (u; r) ℓl (u; r)] , (3)

whereJuk,ul
corresponds to the joint Fisher information for

the parameters(uk, ul), where E[.] denotes averaging with
respect top (r|u), and where

ℓk (u; r) =
∂ ln p (r |u )

∂uk
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is a short-hand notation for the derivative ofln p (r |u ) with
respect to thek-th parameteruk of u. It easily follows from
Ru − J−1 ≥ 0 that

E

[
(uk − ûk)

2
]
≥ CRB(uk) , (4)

where CRB(uk) is the k-th diagonal element of the inverse
of the FIM J. The right-hand side of the above expression is
referred to as the CRB.

A. Non-constant complex amplitude = digital data symbol

In this section we derive the exact CRB, or equivalently
the exact FIM, for the deterministic parameter vectoru =
[u0, u1] = [ϕ0, ϕ1] from N samples of a received linearly
modulated digital communication signal in AWGN. We recall
that we consider the signal model given by (1)-(2). As usually
done in digital communications, we model the symbol vector
a as a discrete random vector with the following uniform a
priori distribution:

Pr [a = ã] =

{
2−Nb , ã ∈ S0

0 , ã ∈ S\S0
. (5)

Here,S denotes the set of all possible vectors ofN symbols
taking values in the symbol constellation setΩ, andS0 ⊂ S
denotes the subset of these vectors that result from encoding
and mapping an information bit sequence. The distribution
(5) reflects that a one-to-one correspondence exists between
the set of all possible sequences ofNb information bits and
the data symbol vectors inS0, while the receiver has no prior
knowledge about the transmitted information bit sequence.
It is further standard to assume thatE [a] = 0 and that
E
[
aHa

]
= IN . This assumption holds true for transmissions

without channel encoding and is approximately valid for most
practical coded modulation schemes [36].

A brute force numerical evaluation of the FIM related to
the estimation ofu involves replacing in (3) the statistical
averageE [.] by an arithmetical average over a large number
of realizations ofr, that are computer-generated according to
the conditional distributionp (r|u). The numerical evaluation
of the FIM further requires the computation of the derivatives
ℓk (u; r), k = 0, 1 that correspond to the realizations ofr

givenu. These derivatives can be put into the following form
[37]:

ℓk (u; r) =
∑

ã

∂ ln p (r |a = ã,u )

∂uk
Pr [a = ã |r,u ] , (6)

As p (r |a,u ) is Gaussian, the logarithmln p (r |a,u ) is
readily available in closed-form:

ln p (r |a,u ) ∝ −Es

N0
|r− aS (u)|2 .

Differentiating with respect touk yields

∂ ln p (r |a,u )

∂uk

= −2Es

N0
ℜ
{

(r− aS (u))H
(
a

∂S (u)

∂uk

)}
.

The joint symbol a posteriori probabilities (APP)Pr [a |r,u ]
in (6) can be computed fromp (r |a,u ) andPr [a], according
to

Pr [a |r,u ] =
Pr [a] p (r |a,u )∑

ã p (r |a = ã,u ) Pr [a = ã]
. (7)

Although this procedure yields the exact derivativesℓk (u; r),
k = 0, 1, the summations in (6) and (7) gives rise to a
computational complexity that is exponential in the burst size
N .

It is shown in [16], [37] that the computational complexity
associated with the evaluation of the CRB can be drastically
reduced by taking into account the specific (linearly modu-
lated) structure of the useful signal in (1).

BecauseS (u)SH (u) = IN does not depend onu, we
obtain

∂ ln p (r |a,u )

∂uk
=

2Es

N0
ℜ
{

r

(
∂S (u)

∂uk

)H

aH

}
.

Substituting the above expression into (6), then yields

ℓk (u; r) =
2Es

N0
ℜ
{

r

(
∂S (u)

∂uk

)H

µH (r,u)

}
, (8)

where µ (r,u) is a short-hand notation for the a posteriori
average of the symbol vectora, with N components

µ (n; r,u) = Ea [a(n) |r,u ] (9)

=
∑

ω∈Ω

ωPr [a(n) = ω |r,u ] , (10)

whereΩ denotes the set of constellation points and the aver-
agingEa [. |r,u ] is with respect toPr [a |r,u ]. We emphasize
that no approximation is involved in obtaining (10); the right
hand side simply expresses the a posteriori average of then-
th data symbola(n) in terms of themarginal APP of a(n),
rather than thejoint APP of all components ofa.

Computing the marginal APPs from the joint APP still
requires a complexity that increases exponentially withN .
However, in most practical scenarios, the required marginal
symbol APPs can be directly computed in an efficient way,
by applying the sum-product algorithm to a factor graph
(FG) representing a suitable factorization of the joint symbol
APP [38]. The application of the sum-product algorithm on
a graph that corresponds to a tree (i.e., cycle-free FG) is
straightforward and yields the exact marginals. When the
graph contains cycles, the sum-product algorithm becomes
an iterative procedure that, after convergence, yields only an
approximation of the marginals. However, when the cycles
in the graph are large, the resulting marginals turn out to
be quite accurate. When using this FG-based approximation
technique to compute the required marginal symbol APPs,
computing the derivativesℓk (u; r), k = 0, 1 according to
(8), for a given realization ofr given u, yields a complexity
that is linear (and not exponential) in the number of data
symbolsN . The above expression and evaluation procedure
is the main result for the CRB derivations. It allows a fast
evaluation of the CRB and holds for any channel code and
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any symbol constellation.

For specific hypotheses about the channel code and the sym-
bol constellation, the complexity associated with evaluating
the FIM, or equivalently the CRBs, can be further reduced
(see, e.g., [12], [13], [15], [19]). We mention a result from
[15] for arbitrarily mapped uncoded linear modulation. In that
case, all transmitted data symbols are statistically independent
and equiprobable, such that the a priori distribution ofa (5)
reduces to:

Pr [a = ã] = 2−Nb , ∀ã ∈ S. (11)

Taking into account (11) it is easily verified from (9)-(10) and
(7) that the components of the a posteriori average of the data
symbol vectora reduce to:

µ (n; r(n),u) (12)

=

∑
ω∈Ω ωe

“
Es
N0

(2ℜ{r(n)e−2πj(ϕ0+ϕ1n)ω∗}−|ω|2)
”

∑
ω∈Ω e

“
Es
N0

(2ℜ{r(n)e−2πj(ϕ0+ϕ1n)ω∗}−|ω|2)
” ,

which only depend onr through r(n). Taking this into
account it was shown in [15] that, withN odd-valued and
k0 = − 1

2 (N−1) (i.e.,ϕ0 is the phase shift at the burst center),
the CRBs can be written into the following form:

(CRB (ϕ0))
−1

= 8π2 Es

N0
NRΩ

(
Es

N0

)
, (13)

(CRB (ϕ1))
−1 = (CRB (ϕ0))

−1 ·
(
N2 − 1

)

12
, (14)

where

RΩ

(
Es

N0

)

=
2Es

N0
E

[
ℑ{µ∗ (n; r (n) ,u) r(n)S∗ (n, n;u)}2

]
.(15)

It is further shown in [15] thatJϕ0,ϕ1 = Jϕ1,ϕ0 = 0.
This means that the estimation of the phase shiftϕ0 at
the center of the observation interval is independent of the
frequencyϕ1 estimation problem. We observe thatCRB(ϕ0)
is inversely proportional to the number of available signal
samplesN , whereasCRB(ϕ0) is inversely proportional to
N(N2 − 1) ≈ N3, where the approximation holds for large
N . We further observe thatCRB(ϕ0) and CRB(ϕ1) are

proportional to the same factorRΩ

(
Es

N0

)
that depends on

the symbol constellation and on the SNR, but not on the
number of available signal samples. The numerical evaluation
of the CRBs from (13)-(14) involves replacing in (15) the
statistical averageE [.] by an arithmetical average over a large
number of realizations ofr (n)S∗ (n, n;u). This procedure
is significantly less complex than the evaluation of the FIM
entries according to (3) and (8)-(10) using the FG-approach
because the a posteriori symbol average (12) is available in
closed-form and the average that needs to be computed in
(15) is with respect to a complex-valuedscalar rather than a
complex-valued vector of sizeN .

In spite of all the efforts made in the literature with respect
to computing the FIM for linear modulation, an explicit

analytical closed-form expression for the CRBs still not exists.
The main contribution of the research conducted in [12], [13],
[15]–[19] lies in the derivation of new procedures that allow a
more efficient (hence faster) numerical evaluation of the CRBs.
Unfortunately, the expressions that lead to (and/or come asby-
products of) these evaluation procedures usually don’t bring
much insight into the behaviour of the FIM (e.g., as a function
of the parameters that describe the coded modulation scheme).

We will see in the simulation section of the paper that

• For a given symbol constellation set, CRBs for coded
and uncoded transmission are equal at sufficiently high
SNR. At lower SNR, however, the CRB for coded trans-
mission is significantly lower than the CRB for uncoded
transmission.

• For a given channel code, the CRBs increase when the
minimum Euclidean distance between the constellation
points decreases.

To avoid the computational complexity associated with the
evaluation of the true CRBs, asymptotic CRBs (ACRBs) have
been considered in [14] and [11], for the case of uncoded
linear modulation. This has resulted in closed-form analytical
expressions of the CRB that only hold for sufficiently low
or high SNR. The high-SNR ACRBs are shown to coincide
with the Modified CRB (MCRB). This is another lower bound
on the MSEE of any unbiased estimator which is simpler
to evaluate but looser than the exact (true) CRB. We will
come back on the MCRB later in this paper. For the low-
SNR ACRBs the following expressions are presented in [14],
assumingN odd-valued andk0 = − 1

2 (N − 1):

(ACRB(ϕ0))
−1
|low SNR = 8π2

(
Es

N0

)L

N
L2|fL|2

L!
,

(ACRB (ϕ1))
−1
|low SNR = (ACRB (ϕ0))

−1
|low SNR ·

(
N2 − 1

)

12
,

(16)
whereL is related to the symmetry angle2π

L of the constel-

lation andfL = E

[
(a (k))

L
]
. We observe that at sufficiently

low SNR the CRBs are determined by the symmetry angle of
the constellation and evolve inversely proportional to theL-th
power of the SNR.

B. Non-constant complex amplitude = a Gaussian process

We recall that we consider the signal model given by (1).
We just assume, in the rest of this section thatk0 = 0.
However, in this section, we add extra assumptions on the non-
constant amplitudea(n). As usually done in Doppler radar,
DOA estimation or digital communication over a Rayleigh
flat fading channel, the non-constant amplitudea(n) is as-
sumed to be a zero-mean Gaussian stationary process with
correlationca(τ) = E[a(n + τ)a∗(n)] and pseudo-correlation
pa(τ) = E[a(n+ τ)a(n)]. The spectrum and pseudo spectrum
are denoted respectively as follows

Ca(e2iπf ) =
∑

τ∈Z

ca(τ)e−2iπfτ
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and
Pa(e2iπf ) =

∑

τ∈Z

pa(τ)e−2iπfτ .

By construction, one can remark thatPa(e2iπf ) =
Pa(e−2iπf ). Moreover, the entire statistics{ca(τ), pa(τ)}τ∈Z

of a(n) only depend on a finite numberK of real-valued un-
known parameters denoted by{αk}k=1,...,K . The non-constant
amplitude processa(n) can be real-valued or complex-valued.
In the case of a complex-valued process,a(n) can further be
circular (which means the process distribution is insensitive
to any rotation and thus means thatE[a(n)a(n + τ)] = 0
for all τ ) or non-circular (there exists at least oneτ0 such
that E[a(n)a(n + τ0)] 6= 0). One can notice that a real-valued
process is, by definition, non-circular. Based on the CRB, we
will see hereafter that the estimation quality can be split into
two classes in regard with the circularity/non-circularity prop-
erty of the process. In contrast, the estimation performance
is independent of the nature of the process values (real or
complex). To further information non-circularity property, the
reader may refer to [15], [39].

In the sequel, we will first derive the FIM when the number
of available samplesN is finite (i.e., non-asymptotic case).
As once again, the obtained expression for the FIM does not
provide additional insights, it is of great interest to further
simplify the FIM expression by also considering the case for
N going to infinity (i.e., asymptotic case). The resulting CRBs
are referred to as Gaussian CRBs (GCRB).

1) Non-asymptotic case:We next derive the exact Gaussian
CRB, or equivalently the exact Gaussian FIMJ, for the deter-
ministic parameter vectoru = [ϕ0, ϕ1, σ

2
w, α1, . . . , αK ] when

N samples ofr(n) are available. In order to use well-known
results on the FIM [40], we work with real-valued processes.
We consider̆r = [ℜ[r],ℑ[r]] which is a multi-variate Gaussian
variable with zero-mean and covariance matrixC̆r.

The FIM for a multi-variate Gaussian observation vectorr̆

has a special form. As one can check thatC̆r is symmetric,
formula (5.2.1) in [40] holds and this leads to

Juk,ul
=

1

2
Tr

(
∂C̆r

∂uk
C̆−1

r

∂C̆r

∂ul
C̆−1

r

)
,

whereTr(.) is the trace operator.
After straightforward algebraic manipulations, we can show

that

Juk,ul
=

1

2
Tr

(
∂C̃r

∂uk
C̃−1

r

∂C̃r

∂ul
C̃−1

r

)
,

whereC̃r is the covariance matrix of the random vectorr̃ =
[r, r∗] and takes the following form

C̃r =

[
Cr Pr

P∗
r C∗

r

]
,

with Cr = E[rHr] andPr = E[rTr].
One can remark that

C̃r = S̃
(
C̃a + σ2

wI2N

)
S̃H,

whereS̃ = [S([ϕ0, ϕ1]),0N ;0N ,S∗([ϕ0, ϕ1])], and wherẽCa

is defined in a similar way as̃Cr. As C̃a does not depend on

the phase parameters, we obtain the following expressions for
the FIM

Jαk,αl
= 1

2Tr
(

∂ eCa

∂αk
(C̃a + σ2

wI2N )−1

× ∂ eCa

∂αl
(C̃a + σ2

wI2N )−1
)

Jσ2
w ,σ2

w
= 1

2Tr
(
(C̃a + σ2

wI2N )−2
)

Jαk,σ2
w

= 1
2Tr

(
∂ eCa

∂ak
(C̃a + σ2

wI2N )−2
)

Jϕk,ϕl
= 2π2Tr(Dk(C̃a + σ2

wI2N )Dl(C̃a + σ2
wI2N )−1

+ Dl(C̃a + σ2
wI2N )Dk(C̃a + σ2

wI2N )−1

− 2DkDl)

Jαk,ϕk
= iπTr

(
∂ eRa

∂αk
[(C̃a + σ2

wI2N )−1Dk

− Dk(C̃a + σ2
wI2N )−1]

)

Jσ2
w ,ϕk

= 0

whereDk = [dk,0N ;0N ,−dk], for k = 0, 1 with d0 = IN

and d1 = diag([0, · · · , N − 1]). The above expressions are
given in [31] and partially in [3] whena(n) is circular
and complex-valued. Whena(n) is circular and complex-
valued, the termJϕ0,ϕ0 = 0 which means that the constant
phase is not identifiable when the pseudo-correlation is zero.
Consequently only a non-null pseudo-correlation enables us to
estimate the constant phase. Apart from this comment about
the constant phase, it is difficult to provide more insights with
these expressions and to distinguish the difference between the
circular case and the non-circular case. Therefore we move
now on to the asymptotic case, i.e., forN sufficiently large.

2) Asymptotic case:When N becomes large, we have to
treat the circular case and the non-circular case separately. Let
us begin with the circular case.

a) Circular case: When the signalr(n) is circular, one
can remark thatr(n) is stationary due to our signal model
given in (1). This enables us to simplify the asymptotic
expressions for the FIM by applying Whittle’s formula [41].

In [3], the asymptotic expressions for the CRB are given for
Ca(τ) real-valued and positive. The latter assumption has been
justified by many other authors [1], [23]–[25]. For instance,
if a(n) is associated with the Doppler spread phenomenon,
Ca(τ) often follows the Jakes model [42], [43] and thus
Ca(τ) = σ2

aJ0(∆τ) whereσ2
a is the variance ofa(n), ∆ is the

Doppler spread andJ0(.) is the Bessel function of first kind.
In such a case, one can prove that the estimates of[ϕ0, ϕ1]
are decoupled from the other parameters[σ2

w, α1, · · · , αK ]. As
remarked in the previous subsection, the phaseϕ0 can not be
estimated in the circular case. As a consequence, we can focus
onJϕ1,ϕ1 only. After tedious algebraic manipulations, one can
find that

lim
N→∞

1

N
Jϕ1,ϕ1 = δ

with

δ =

∫ 1

0

(
C′

a(e2iπf )

Ca(e2iπf ) + σ2
w

)2

df

and whereC′
a(e2iπf ) is the derivative function ofCa(e2iπf )

with respect tof . As the CRB is the inverse of the FIM, we
have

GCRB(ϕ1) ≈
1

δN
(circular case).
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We remark that the frequency can be estimated as soon as
δ 6= 0, i.e., as soon as the processa(n) does not have a flat
spectrum. Thus, we need to have a coloured Gaussian non-
constant amplitude process and not a white Gaussian non-
constant amplitude process to be able to estimate the frequency
if the process is circular. Moreover the CRB is proportionalto
1/N and so the minimum achievable MSEE decreases quite
slowly with respect to the number of available samples.

b) Non-circular case:Unlike [3], here we can not apply
Whittle’s formula [41] becauser(n) is not stationary with
respect to its pseudo-correlation. In the sequel, the introduced
results are in fact obtained via theorems dealing with the
inversion of (large) Toeplitz matrices ( [44], [45]).

After simple but tedious calculations, the FIM is found to
be in [31]

limN→∞
1
N Jαk,αl

= 1
2θk,l

limN→∞
1
N Jσ2

w,σ2
w

= 1
2γ

limN→∞
1
N Jαk,σ2

w
= 1

2βk

limN→∞
1
N Jϕ0,ϕ0 = 16π2ξ

limN→∞
1

N3 Jϕ1,ϕ1 = 16π2

3 ξ

limN→∞
1

N2 Jϕ0,ϕ1 = 8π2ξ

limN→∞
1
N Jαk,ϕ0 = 4πµk

limN→∞
1

N2 Jαk,ϕ1 = 2πµk

,

where

θk,l =
∫ 1

0
1

X (e2iπf )2
∂X (e2iπf )

∂αk

∂X (e2iπf )
∂αl

df

+
∫ 1

0
1

X (e2iπf )

(
Q(Pa)

k,l (e2iπf ) −Q(Ca+σ2
w)

k,l (e2iπf )
)

df

γ =
∫ 1

0
1

X (e2iπf )2

(
(Ca(e2iπf ) + σ2

w)2

+ (Ca(e2iπf ) + σ2
w)2 + 2Pa(e2iπf )Pa(e2iπf )

)
df

βk =
∫ 1

0
1

X (e2iπf )
∂X (e2iπf )

∂αk
df

µk = ℑm[
∫ 1

0

Pa(e2iπf )

X (e2iπf )
∂Pa(e2iπf )

∂αk
df ]

ξ =
∫ 1

0

Pa(e2iπf )Pa(e2iπf )

X (e2iπf ) df

,

with

ν(e2iπf ) = ν(e−2iπf )

Q(ν)
k,l (e

2iπf ) = ∂ν(e2iπf )
∂αk

∂ν(e2iπf )
∂αl

+ ∂ν(e2iπf )
∂αk

∂ν(e2iπf )
∂αl

X (e2iπf ) = (Ca(e2iπf ) + σ2
w)(Ca(e2iπf ) + σ2

w)
− Pa(e2iπf )Pa(e2iπf ).

.

Next we study different scenarios. Firstly, we consider the
case where the receiver knows[σ2

w, α1, · · · , αK ], i.e., the
statistics of multiplicative and additive noises. In this case,
the GCRBs result from the inverse of the2 × 2 FIM

J[ϕ0,ϕ1] =

[
Jϕ0,ϕ0 Jϕ0,ϕ1

Jϕ0,ϕ1 Jϕ1,ϕ1

]
.

This yields:

GCRB(ϕ0)|noise statistics known=
1

4π2ξN

and
GCRB(ϕ1)|noise statistics known=

3

4π2ξN3
.

Secondly, in the case when[σ2
w, α1, · · · , αK ] are unknown

at the receiver, we obtain (see [31])

GCRB(ϕ0)|noise statistics unknown= GCRB(ϕ0)|noise statistics known+
m

16π2ξ2N

and

GCRB(ϕ1)|noise statistics unknown= GCRB(ϕ1)|noise statistics known.

Here,m is a bounded scalar taking the following form

m = µT
(
θ/2 − µµT/ξ − ββT/(2γ)

)−1

µ,

whereθ = (θk,l)1≤k,l≤K , β = (βk)1≤k≤K , µ = (µk)1≤k≤K .
Using the previous expressions for the asymptotic CRB, we

make the following comments :

• The convergence rates for the phase and frequency esti-
mations are1/N and1/N3 respectively regardless of the
color of the multiplicative noise. Recall that for circular
complex-valued processes, the phase is not identifiable
and the frequency is identifiable only if the multiplicative
noise is coloured, with a convergence rate of1/N . Notice
that a real-valued process can be viewed as a specific
case of a non-circular complex-valued process where
the imaginary part is zero. Consequently, in terms of
performance, the main cut-off is not complex/real but
circular/non-circular.

• We recall that the CRB associated with the "pure" fre-
quency estimation issue (i.e., only disturbed by a constant
amplitude) is proportional to1/N3 [46]. Consequently,
thanks to the non-circularity property of the non-constant
amplitude, the non-constant amplitude does not lead to a
significant loss in performance.

• Surprisingly, the same frequency estimation performance
is obtained whether the statistics ofa(n) are known or
not.

• The frequency estimation performance depends only on
ξ, which refers to an information rate provided by the
non-circularity. Indeed, the performance improves when
ξ increases.

• In the noiseless case, we observe a floor effect (i.e.,
CRB(ϕ1) 6= 0 when σ2

w = 0). This effect vanishes
if Ca(e2iπf )Ca(e−2iπf ) = Pa(e2iπf )Pa(e−2iπf ). This
condition is fulfilled for example when the multiplicative
noise is real-valued.

As a conclusion, we remind that the Gaussian CRB is of
interest in many applications: Doppler radar, DOA estimation,
digital communication over Rayleigh flat fading channels.
If the non-constant amplitude is non-Gaussian, the Gaussian
CRB is not a lower bound for the estimation problem anymore.
Nevertheless it is still of interest since the Gaussian CRB is
a lower bound for any second-order-based estimator (well-
adapted to, e.g., digital BPSK modulation) [47]. Consequently,
it indicates what is the best expected performance if we carry
out an estimator based only on mean and correlation.

Actually in the non-Gaussian case, the non-circularity may
also play a significant role. For example, ifa(n) is assumed
to belong to a QAM modulation,a(n) is circular at second
order (i.e.,E[a(n)a(n)] = 0) but is non-circular at fourth order
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(E[a(n)a(n)a(n)a(n)] 6= 0). Thanks to this fourth-order non-
circularity, we are able to build an estimator for which the
MSEE is proportional to1/N3 and not1/N [47], [48]. This
is not in contradiction with the previous results since a QAM
modulation is not Gaussian and so the high order statistics of
a(n) strongly help to improve the estimation performance.

IV. D ERIVING THE MODIFIED CRB

To overcome the complexity concern of deriving the true
CRB1 in the non-Gaussian case, it is possible to define other
lower CRB-like bounds that are easier to compute but less
tight than the true one. The most well-spread is the so-called
ModifiedCRB (MCRB) [9], [10]. Once again, we will restrict
our analysis to the estimation ofu = [ϕ0, ϕ1]. Then the
elements of theModifiedFIM (MFIM) are defined as follows

Jϕk,ϕl
= Ea

[
∂ ln p(r|u,a)

∂ϕk

∂ ln p(r|u,a)

∂ϕl

]
.

After standard algebraic manipulations, we obtain that

Jϕk,ϕl
=

8π2

σ2
w

Ea[adkdla
H].

For largeN , the resulting MCRBs are given in [9], [10]. We
have that

MCRB(ϕ0) ≈

(
(k0 + N − 1)

3 − (k0)
3
)

σ2
w

2π2ca(0)N4

and

MCRB(ϕ1) ≈
3σ2

w

2π2ca(0)N3
.

We note that in the case of linear modulation it was assumed
that ca(0) = 1 such that the above MCRBs, forN large and
odd-valued andk0 = (N − 1)/2, reduce to the CRBs from
(13)-(14) upon the factorRΩ(σ−2

w ) from (15). We have the
following comments:

• The derivation of the MCRBs is very easy and enables
us to obtain simple closed-form expressions.

• These expressions seem to be "too" simple and do not
provide a lot of information since the CRB does not
depend on the nature ofa(n) (circular/non-circular in
Gaussian case, channel code and symbol constellation in
non-Gaussian case) while we have seen before that this is
crucial information (see profound discussion in Gaussian
case and ACRB expressions in non-Gaussian case).

• Nevertheless, the MCRB can be sometimes of great
interest. Indeed, ifa(n) belongs to a finite set of symbol
constellation pointsΩ, the true CRB (for which no
explicit expressions are available) is well approximated
by the MCRB at high SNR [11].

• An unexpected consequence of the previous remark is
the following. Let us consider the MCRB for estimating
the frequency offset in the case of digital communication
using a BPSK symbol constellation set, i.e.,a(n) takes

1If the process is Gaussian, the Gaussian CRB is the true one and there are
no more concerns due to the results introduced in the previous subsection.

values in the set{−1, 1} which implies thatL = 2 and
fL = ca(0) = 1. We have

MCRB(ϕ1)BPSK ≈ 3σ2
w

2π2N3
.

Due to previous item, there is equivalence between
MCRB and ACRB, at high SNR for BPSK, therefore
we know that

ACRB(ϕ1)|high SNR,BPSK=
3σ2

w

2π2N3

and thanks to (16), we get

ACRB(ϕ1)|low SNR, BPSK=
3σ4

w

4π2N3
.

Obviously, at low SNR, the true CRB for BPSK starts
seriously deviating from the MCRB.
If we inspect the Gaussian CRB for uncorrelated and real-
valued Gaussiana(n), we obtain

GCRB(ϕ1) =
3
[
2σ2

w + σ4
w

]

4π2N3
.

Surprisingly, the GCRB predicts well the performance of
a BPSK based non-constant amplitude for both low AND
high SNR whereas a BPSK constellation is not Gaussian
at all! Consequently, the GCRB is a powerful tool for
analyzing the frequency MSEE in BPSK context whereas
the MCRB is not (except at high SNR).

V. DERIVING THE BB

Let us reconsider the signal model given in (1), with
k0 = 0 and a(n) a zero-mean Gaussian stationary process
with correlationca(τ) and pseudo-correlationpa(τ). For the
sake of simplicity, we further assume that the noise statistics,
i.e.,{ca(τ), pa(τ)}τ∈Z andσ2

w, are known at the receiver. This
assumption is made in [49] and partially made in [28] for
deriving Barankin bounds (BB) because the computational and
analytical complexities are too high otherwise. It can alsobe
noted that the CRB for frequency estimation is insensitive to
the knowledge of the noise statistics as soon as the number
of samples is large enough (see [31] and GCRB discussion
above). We thus can expect that the error induced by neglecting
the estimation step with respect to the noise statistics will be
sufficiently small so that our further conclusions still hold in
case of unknown noise statistics.

To well understand the interest of other bounds than the
CRB, let us consider the following example. The signal model
is the one from (1) witha(n) a real-valued Gaussian process.
To estimate the frequency, asa(n) is non-circular (since real-
valued), one can use the so-called square-power estimator [47]
defined as follows:

ϕ̂1 = argmax
ϕ

∣∣∣∣∣
1

N

N−1∑

n=0

r(n)2e−2jπ(2ϕ)n

∣∣∣∣∣

2

︸ ︷︷ ︸
F (ϕ)

.

In Fig. 1, we plot the MSEE of this estimator and the Modified
and Gaussian CRB versus the SNR whenN = 100.
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Figure 1. MCRB, GCRB, MSEE for square-power estimator vs. SNR

We observe that at high SNR, the estimator is powerful
and even efficient (MSEE equals CRB). In contrast, at low
SNR, there is a large mismatch between MSEE and CRB.
The question is: is the considered estimator not relevant at
low SNR, or, is the CRB not tight enough at low SNR? We
will show that the CRB is not tight enough. To demonstrate
that, we introduce other lower bounds on the MSEE which are
much tighter at low SNR than the CRB.

Now, we can attempt to understand why the CRB is not
tight enough at low SNR. In Fig. 2, we plot the cost function
F (.) of the square-power estimator for SNR=-5dB (on top)
and SNR=5dB (on bottom).

The sought frequency isϕ1 = 0.1. We remark that, at
high SNR, the peak around the true value of the frequency is
well detected, whereas, at low SNR, there is a mis-detection
of the peak which significantly degrades the performance.
Consequently the performance degradation is due to a higher
peak far away from the true frequency. These "bad" re-
alizations are called "outliers". By inspecting in detail the
FIM from (3), we remark that it depends on the behaviour
of the likelihood function around the true frequency since
the involved derivative functions are calculated at the true
frequency. Therefore the CRB is unable to take into account
the mis-detection of the peak and automatically assumes a
correct detection of the peak even if it is wrong. Thus at low
SNR (when the mis-detection of the peak occurs), the CRB is
truly too optimistic.

We are now interested in another bound that inspects the
likelihood function around the true frequency but not only
there. Therefore we introduce the following set of the so-
called "test-points"{φ(k) = [φ0(k), φ1(k)]T}1≤k≤n at which
the likelihood function will be evaluated. We are now able to
define the Barankin bound of orderp as follows :

BBp(ϕ0, ϕ1) = sup
E

Sp(E)

where
Sp(E) = E(B(E) − 1p1

T
p )−1ET

with E = [φ(1) − uT, . . . , φ(p) − uT], and1p = ones(p, 1).
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Figure 2. Cost functionF (ϕ) vs ϕ for SNR = −5dB (top) andSNR =
5dB (bottom)

The termsup stands for the smallest upper bound on the set
E . FurthermoreB(E) = (Bk,l)1≤k,l≤p is the followingp × p
matrix

Bk,l = E[L(r,u, φ(k))L(r,u, φ(l))],

with

L(r,u, φ(k)) =
p(r|φ(k))

p(r|u)
.

The MSEE of any unbiased estimator is greater than the
Barankin bound of any orderp ( [40]). From an asymptotic
point of view (asp → ∞), the Barankin bound is even the
tightest lower bound that one can find ( [27], [28]). As for the
choice of the test-points, it is usual to consider the following
structure forE ( [28], [29]):

E =

[
φ0 − ϕ0 0

0 φ1 − ϕ1

]
= diag(ε0, ε1). (17)

Our main concern hereafter is to derive in closed-form expres-
sion the matrixB for such test-points.

Let us now remind some notations. The covariance matrix
C̃r(φ) of the multivariate process̃r can be written as follows

C̃r(φ) = S̃(φ)
(
C̃a + σ2

wI2N

)
S̃H(φ) (18)
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where

S̃(φ) =

[
S(φ) 0N

0N S(φ)

]
.

After straightforward algebraic manipulations, we finallyob-
tain that

Bk,l =

{
1√

det(Qk,l)
if Qk,l > 0

+∞ otherwise
,

with

Qk,l =
(
C̃r(φ(k))−1 + C̃r(φ(l))−1

)
C̃r(u) − I2N .

These expressions have been introduced in [49] and [28] in a
slightly different form (due to the circularity assumptionon
the non-constant amplitude) and in [31] for the general case.

We now just focus on our main parameter of interest: the
frequencyϕ1. For the standard test-points described in (17),
the Barankin bound forϕ1 takes the following form [28]:

BB(ϕ1) = sup
ε0,ε1

ε2
1

(B1,1 − 1) − (B0,1−1)2

(B0,0−1)

.

The term(B0,1−1)2/(B0,0−1) represents the loss in perfor-
mance due to joint phase and frequency parameter estimation.

We remark that the Barankin bound is not strictly speaking
obtained in closed-form since the maximum operator still
occurs. Nevertheless the existing expressions enable us to
compute very fastly the Barankin bound.

As we will see in the simulation part, the Barankin bound
enables us to predict partially the outliers effect, i.e, the mis-
match between the CRB and the real estimator performance.
Consequently the poor estimation performance of the standard
square-power estimator (well adapted to BPSK or a real-
valued Gaussian process) is shown to be connected to the
poor tightness of the CRB. Thus decreasing the gap between
the CRB and the estimator performance for a given number
of samples at very low SNR is impossible. The CRB is too
optimistic in such a context and has to be replaced with the
BB.

VI. D ERIVING THE ZZB

To analyze the mismatch between the CRB and the real esti-
mator performance, we have considered the so-called Barankin
bound in the previous section. Even though this Barankin
bound is much tighter than the CRB and predicts roughly
the outliers effect, there is still a mismatch between bound
and estimator performance. In this section, we will therefore
introduce a third, much more powerful bound, the so-called
Ziv-Zakai bound (ZZB).

We note that the ZZB needs a new paradigm on the
sought parameters: the so-called Bayesian approach. Unlike
previously done, we have to consider the sought parameters
as a realization of a random variable. This random variable
is further described by a distribution, which characterizes the
a priori information available on the sought parameters. For
instance, for frequency offset estimation, we only know that
the frequency is normalized and thus it may take values in the
interval [−1/2, 1/2] uniformly.

In [20], [50], it was proved that the following inequality
holds for any vectorz = [z0, z1]

zEuz
T ≥

∫ ∞

0

∆

(
max
(ε0,ε1)

z0ε0+z1ε1=∆

f(ε0, ε1)

)
d∆ (19)

whereEu denotes the error correlation matrix related to the
estimation of a random variableu = [ϕ0, ϕ1] and

f(ε0, ε1) =

∫
min(p(u), p(u + ε))Pe(u,u + ε)du, (20)

with ε = [ε0, ε1].
The functionp(u) is thea priori density function of the bi-

variate parameteru, andPe(u,u + ε) is the error probability
when the optimal detector (namely, the ML detector) is used
to decide between the following two hypotheses
{

H0 : y(n) = a(n)e2iπ(ϕ0+ϕ1n) + w(n)

H1 : y(n) = a(n)e2iπ((ϕ0+ε0)+(ϕ1+ε1)n) + w(n)

where hypothesesH0 andH1 are equally likely.
The right hand side of (19) is called the Ziv-Zakai Bound.

By inspecting (19), one can remark that the likelihood ofu

is scanned over the entire search interval ofu, as is also the
case for the Barankin bound [31]. Once again, this contrasts
with the CRB where the likelihood function is only evaluated
around the true point. Therefore we expect that the ZZB can
predict the outliers effect at low SNR.

Let us focus now on the ZZB forϕ1, which is obtained by
settingz = [0, 1]. Therefore

ZZB(ϕ1) =

∫ ∞

0

ε1

(
max

ε0

f(ε0, ε1)

)
dε1.

Actually the MSEE of any (even biaised) estimator for the
frequency is greater than the ZZB(ϕ1) [20].

The key task now is to express the functionf(.) in
closed-form. After some simple derivations, one can see that
Pe(u,u+ε) is independent ofu, so that it can be denoted by
Pe(ε0, ε1). As a consequence, we have [50]

f(ε0, ε1) = g(ε0, ε1)Pe(ε0, ε1)

where
g(ε0, ε1) =

∫
min(p(u), p(u + ε))du.

Since we have noa priori information onu, we assume that
ϕ0 and ϕ1 are uniformly distributed over[0, 1/2], i.e., thea
priori distribution of the parameters of interestp(u) is flat. We
consider rather the interval[0, 1/2] than [−1/2, 1/2] because
the phase and the frequency can only be estimated modulo
1/2 when multiplicative noise occurs [50]. Consequently

g(ε0, ε1) = (1/2 − ε0)(1/2 − ε1).

This leads to

ZZB(ϕ1) =

∫ 1/2

0

(1/2−ε1)ε1 max
ε0

((1/2 − ε0)Pe(ε0, ε1)) dε1.

The rest of the section deals with the evaluation of
Pe(ε0, ε1). After tedious algebraic derivations that can be
found in [53], we have

Pe(ε0, ε1) = Prob

(
2N−1∑

n=m

λ(+)
n v2

n <

m−1∑

n=0

λ(−)
n v2

n

)
, (21)
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where

• {vn} is a real-valued i.i.d. Gaussian random process with
zero-mean and unit-variance.

• −λ
(−)
n for n = 0, · · · , m − 1 (with λ

(−)
n > 0) are them

negative eigenvalues, andλ(+)
n ≥ 0 for n = m, · · · , 2N−

1 are the positive or null eigenvalues of the2N × 2N
matrix T(ε) defined as follows

T(ε) =
(
C̆r(ε)−1 − C̆r(0)−1

)
C̆r(0),

whereC̆r(ε) = E[r̆Tr̆] with r̆ = [ℜ[r],ℑ[r]] and r the
received signal disturbed by phaseε0 and frequencyε1.

We now wish to derive a closed-form expression for the
following term

Pe(ε0, ε1) = Prob (p+ < p−) (22)

where p± =
∑

n λ
(±)
n v2

n is a weighted sum of squared
independent Gaussian variables. Notice that, by construction,
p+ andp− are independent.

If λ
(+)
n = λ(+) (resp.λ(−)

n = λ(−)) for all correspondingn,
then p+ (resp.p−) obeys aχ2 distribution with (2N − m)
(resp. m) degrees of freedom. However, if the weighting
coefficients are different, thep±’s are not χ2 distributed
anymore. Further, expressing the distribution ofp± in closed-
form is not tractable. Nevertheless, it can be well approximated
by means of the Gamma distribution [51]. We recall that the
Gamma distribution, denotedG(ℵ, ℘), is defined as follows

Pℵ,℘(x) =
xℵ−1

Γ(ℵ)℘ℵ e−x/℘

whereΓ(.) is the so-called Gamma function.
Hence, the distribution ofp± is next approximated by the

Gamma distribution whose first and second moments are equal
to those ofp±. We thus obtain

p+ ∼ G(ℵ+, ℘+) and p− ∼ G(ℵ−, ℘−)

with

ℵ+ =
1

2

(
∑2N−1

n=m λ
(+)
n )2

∑2N−1
n=m λ

(+)
n

2 and℘+ = 2

∑2N−1
n=m λ

(+)
n

2

∑2N−1
n=m λ

(+)
n

,

and

ℵ− =
1

2

(
∑m−1

n=0 λ
(−)
n )2

∑m−1
n=0 λ

(−)
n

2 and℘− = 2

∑m−1
n=0 λ

(−)
n

2

∑m−1
n=0 λ

(−)
n

.

As p± is now assumed Gamma distributed, (22) can be
simplified. Indeed, by using the fact that the square root of a
Gamma distributed random variable is Nakagami distributed,
and by using equation (46) in [52], we have that

Pe(ε0, ε1) =

(
℘+

℘−

)ℵ+ Γ(ℵ+ + ℵ−)

ℵ+Γ(ℵ+)

× 2F1

(
ℵ+ + ℵ−,ℵ+,ℵ+ + 1;−℘+

℘−

)

where2F1(.) is the so-called hyper-geometric function.
The above expression forPe(ε0, ε1) represents the main

available result on the ZZB derivations [53]. Although this

1,E-10

1,E-09

1,E-08

C
R
B

modified

N=999

1,E-12

1,E-11

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

C
R
B

Es/N0 [dB]

modified

2PAM

infty PAM

4QAM

16QAM

64QAM

infty QAM

turbo coded 2PAM

turbo coded 4QAM
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model (1) as a function of the SNREs/N0 for random, linear,MPAM and
MQAM, coded and uncoded, modulation

expression is not interpretable, its numerical computation will
provide interesting results as seen below. Notice also thatthe
obtained expressions for the ZZB are not a bound anymore
stricly speaking since we are not able to prove that the ap-
proximate expressions are less than the exact (but unavailable)
bound. But, by checking the approximation numerically, we
have observed that the approximation is very tight.

VII. S IMULATION RESULTS

A. Non-constant complex amplitude = digital data symbol

Fig. 3 presents some numerical results for the true CRB
regarding the estimation of the frequency offset from the
observation ofN = 999 linearly modulated signal samples
that were obtained by means of computer simulations. The
following signalling constellationsΩ are considered:

• M -ary Pulse Amplitude Modulation(M -PAM) for which

Ω =

√
3

(M2 − 1)
IM .

• M -ary Quadrature Amplitude Modulation(M -QAM) for
which

Ω =

{
ω : ℜ{ω} ,ℑ{ω} ∈

√
3

2(M − 1)
I√M

}
,

whereℜ{.} andℑ{.} denote the real and the imaginary
part of a complex number.
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In the above,

Im = {±1, ±3, ..., ± (m − 1)} . (23)

We further consider uncoded and turbo-coded linear modula-
tion. The turbo-coded transmission scheme encompasses the
parallel concatenation of two identical binary 16-state rate-
1/2 recursive systematic convolutional encoders with generator
polynomials(21)8 and (37)8 in octal notation, via a pseudo
random interleaver with block lengthNb information bits, and
an appropriate puncturing pattern so that the block at the
turbo encoder output comprisesNc coded bits. This binary
turbo code is followed by conventional Gray-mapped 2PAM
or 4QAM modulation, giving rise to a block ofN random
data symbols, withN = Nc = 3Nb for the case 2PAM and
N = Nc/2 = Nb for the case of 4QAM.

Our simulation results confirm that the high-SNR limit
of the CRBs equals the MCRB. Comparing the CRBs for
coded and uncoded transmission we observe that for a given
constellation type they are equal at sufficiently high SNRs.
At lower SNRs, however, there is a gap between the CRBs
for coded and uncoded transmission. WhenEs/N0 decreases,
a point (Es/N0)thr is reached where the CRBs start to
diverge from their high-SNR limit. For coded transmission,
(Es/N0)thr corresponds to a coded BER of about10−3. For
uncoded transmission,(Es/N0)thr corresponds to an uncoded
BER of about10−3, and consequently exceeds(Es/N0)thr

for coded transmission by an amount equal to the coding gain.

For uncoded transmission the following observations can
further be made:

• For both constellation types (PAM, QAM), we observe
that for a given value ofEs/N0 the CRB increases
with M , which indicates that for the larger constellations
carrier recovery is inherently harder to accomplish. This
effect is clearly evident forMQAM, in which case
the curves corresponding to largeM exhibit an almost
horizontal portion, but almost unnoticeable forMPAM.
Fig. 3 also shows the limiting curve forM approach-
ing infinity; this situation corresponds to data symbols
that are continuous random variables, that are uniformly
distributed in the interval[−

√
3,
√

3] for PAM and in a
square with side

√
6 for QAM. In the case of infinite-

size constellations the CRBs do not necessarily converge
to the corresponding MCRBs for large SNR; according to
[11]. This is due to the non-diagonal nature of the FIM,
related to the joint likelihood functionp (r |a,u ) of a

andu, with u = [ϕ0, ϕ1].
• For finite M , the CRB does converge to the MCRB

when Es/N0 is sufficiently large. The value ofEs/N0,
at which CRB is close to MCRB, increases by about 6
dB whenM doubles (PAM) or quadruples (QAM). This
indicates that for uncoded pilot-symbol-free transmission,
the convergence of the CRB to the MCRB is mainly
determined by the value ofEs

N0
(dM )2, with dM denoting

the minimum Euclidean distance between the constella-
tion points. Furthermore, at the normal operating SNR of
uncoded digital communication systems, the CRBs turn

out to be very well approximated by the corresponding
MCRBs.

B. Non-constant complex amplitude = Gaussian

The multiplicative noisea(n) is hereafter assumed to be
a white non-circular Gaussian process with zero-mean, unit-
variance, and pseudo-varianceca = E[a(n)2]. For sake of
simplicity, we also assume that the real part ofa(n) is
independent of its imaginary part. This implies thatca is real-
valued. If ca = 0, thena(n) is circular; if ca = 1, thena(n)
is real-valued. Thus,ca quantifies the non-circularity rate of
a(n). We also setSNR(in dB) = 10 log10(1/σ2

w).
In each figure, we display four curves. Dashed lines cor-

respond to the empirical MSEE for the well-known Square-
Power (SP) estimate [1], [31], [34]. Solid lines with star-shape
markers represent the ZZB. Solid lines with triangular-shaped
markers represent the BB. Solid lines with circular-shaped
markers represent the CRB. [31], [53]

In Fig. 4, we plot all the curves versus theSNR with
N = 64, ca = 1. We observe that the well-known outliers
effect occurs at low and medium SNR [33]. We also observe
that the ZZB is significantly tighter than the BB. The SNR
threshold corresponding to the SP-based estimate is much
larger than that one observed with the BB while the threshold
value predicted by the ZZB is quite close to that obtained
empirically with the SP estimate. As a consequence, the ZZB
seems to be more powerful than the BB.
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Figure 4. MSEE versus SNR

In Fig. 5, we plot the curves versusN with SNR= 10dB,
ca = 0.9. Even though the ZZB offers a more realistic value
for the N threshold than the BB, the mismatch between the
ZZB and the SP MSEE performance is still quite large.

In Fig. 6, the curves are displayed versusca with N = 64,
SNR = 10dB. One can notice that the morea(n) is non-
circular (i.e.,ca increases), the better the estimation perfor-
mance. Furthermore, the outliers effect rapidly degrades the
performance ifa(n) is not non-circular enough. The figure
confirms that accurate frequency estimation is really difficult
to achieve when the white signal is not non-circular enough.
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VIII. C ONCLUSIONS

In this tutorial, we have focussed on the derivation and the
analysis of fundamental lower bounds on the achievable MSEE
for estimating the frequency and the phase of a received signal,
when the complex amplitude of the signal is non-constant and
unknown. In particular, the following application fields have
been considered: digital communications, direction of arrival
estimation, Doppler radar, etc... An overview of lower bounds
(CRB, MCRB, BB and ZZB) with their respective interests and
their associated derivations in closed-form for various cases
has been presented.
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