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Optimal Time-Hopping Codes
for Multi-User Interference Mitigation

in Ultra-Wide Bandwidth Impulse Radio
Christophe J. Le Martret, Anne-Laure Deleuze, and Philippe Ciblat

Abstract— In this work we tackle the problem of mitigating
the multi-user interference by optimizing the time-hopping codes,
in an asynchronous impulse radio multiple access scheme. We
derive the expression of the multi-user interference variance
at the output of a rake receiver assuming that the codes are
deterministic, for both pulse position modulation and pulse
amplitude modulation formats, when propagating through mul-
tipath channels. The result shows that the code contribution
is independent of the other parameters. We derive from this
expression a practical criterion that enables us to find a set
of optimal codes that ensures minimal multi-user interference
variance at the receiver output. We check through simulations,
that the set of optimal codes found using the criterion, leads to
bit error rate improvement.

Index Terms— Impulse radio, multiple access, ultra-wideband
systems, time-hopping codes, multi-user interference, multipath
fading channels.

I. INTRODUCTION

ULTRA Wideband (UWB) communication systems have
known a growing interest for the last decade since the

first publications on Impulse Radio (IR) [1], [2]. Recently,
the Federal Communications Commission (FCC) authorized
the use of UWB communication systems in the frequency
band from 3.1 GHz to 10.6 GHz [3], but does not specify
any modulation format. This event has been followed up
by formation of the IEEE Task Group 3a (TG3a) in order
to define a new Wireless Personal Area Network (WPAN)
standard (IEEE 802.15.3a) based on an UWB physical layer
[4]. In this paper, we focus on asynchronous Time-Hopping
Codes (THC) Impulse Radio Multiple Access (IRMA), de-
modulated by a rake receiver as described, for instance, in [2].
In synchronous (or quasi-synchronous) links, the multi-user
interference (MUI) may be canceled by the use of orthogonal
codes (see e.g., [5] for application to UWB communication
systems). Conversely, in asynchronous transmissions, the MUI
cannot be nulled and gives rise to Bit Error Rate (BER) floor
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which limits the system performance. Different works have
tackled the characterization of the MUI in order to predict
the performance of the system. Many of them have modeled
the MUI as a random Gaussian process either in free-space
propagation (see e.g. [2]), or in multipath channels [6]. Due
to their assumptions, the resulting MUI does not depend
on the code realization and thus no code optimization is
possible. Based upon more general assumptions, and assuming
the codes as deterministic, we show that the MUI variance
involves the THC values. Thus, this gives a way to mitigate
the effect of the MUI by selecting the codes carefully. The
criterion we propose here is to select the codes that minimize
the variance of the MUI. This is achieved by deriving its
exact expression as a function of the code values, and shows
explicitly the code contribution to the variance. This derivation
is possible thanks to the Developed Time-Hopping Codes
(DTHC), originally introduced in [5]. This result is established
for a very generic channel that encompasses most of the
conventional models for UWB. It is valid for Pulse Position
Modulation (PPM) format as well as for Pulse Amplitude
Modulation (PAM) and is independent of the number of fingers
of the rake receiver. Although the Gaussian approximation is
not valid for performance evaluation [9], one can imagine
that minimizing the variance of the MUI should lead to
performance improvement. We verify through simulations, that
the optimal code leads to increasing the performance in terms
of BER.

The document is organized as follows. In Section II we
introduce the notations, give the transmitted signal model
both for PPM and PAM formats, the channel model and the
rake receiver structure. In Section III, we derive the variance
expression of the MUI for the PPM and the PAM formats. The
results show the explicit relationship between the user codes
and the variance. In Section IV, we establish some properties
of the DTHC and deduce the criterion enabling the choice
of codes which minimize the MUI variance. In Section V we
illustrate our results by simulations, showing that the signal to
noise ratio (SNR) criterion translates into BER performance
improvement, which validates our code optimization process.
We conclude in Section VI.

II. SIGNAL MODEL

A. Transmitted Signals

The UWB signals we are considering in this paper are TH-
IRMA with PPM and PAM formats. The modulations will
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be considered binary for the sake of presentation clarity, but
results can be easily extended to higher-order modulations.
PPM Format: The PPM signal transmitted by user n is given
by:

sn(t) =
+∞∑
i=−∞

w(t− iTf − c̃n(i)Tc−δdn(�i/Nf�)−θn), (1)

where Nf is the number of frames of duration Tf := NcTc
with Nc the number of chips of duration Tc, w(t) is the
impulse of duration Tw � Tc, δ � Tc is the PPM shift,
�x� denotes the integer-floor of x, and dn(i) ∈ {0, 1}
are the transmitted symbols assumed to be independent and
identically distributed. Thus, a symbol is repeated Nf times
with one pulse in each frame. The THC sequence

{
c̃n(i)

}
values are drawn in [0, Nc − 1]1 and are assumed to be
periodic of period Pc̃ := Nf . The variable θn accounts for the
asynchronism between the different users and will be modeled
as uniformly distributed over a code period [0, NfTf ). With
this assumption, expression (1) can be re-expressed as:

sn(t) =
+∞∑
i=−∞

bn(t− iNfTf − δdn(i) − θn), (2)

bn(t) =
Nf−1∑
j=0

w(t− jTf − c̃n(j)Tc). (3)

Moreover, it is instrumental to re-express (3) using the so-
called developed time-hopping codes [5]. The basic idea of the
DTHC is to take out the code contribution from the argument
of the pulse, and to put it as a factor. The transmitted signal
can be thus expressed as a kind of On-Off Keying modulation
at symbol rate Tc by modulating the pulse with a one when
iTf − c̃n(i)Tc = 0 and with zero otherwise. Thus, (3) can be
re-written in an equivalent way by:

bn(t) =
NcNf−1∑
j=0

cn(j)w(t − jTc), (4)

where the DTHC sequence cn := {cn(j)}NcNf−1
j=0 is deduced

from sequence {c̃n(i)}Nf−1
i=0 by:

cn(j) =
{

1 if j = c̃n(i) + iNc, 0 ≤ i ≤ Nf − 1,
0 otherwise. (5)

As a consequence, DTHC are periodic with period Pc :=
NcPc̃. Finally, combining (2) and (4), leads to the following
expression:

sn(t)=
+∞∑
i=−∞

NcNf−1∑
j=0

cn(j)w(t− iNfTf − jTc − δdn(i) − θn).

(6)
PAM Format: The expression of a THC-IR signal with the
PAM format, using the DTHC, is given by:

sn(t)=
+∞∑
i=−∞

dn(i)
NcNf−1∑
j=0

cn(j)w(t−iNfTf−jTc−θn), (7)

where the symbols dn(i) belong to the set {−1,+1}.

1This model encompasses as well the case where Tf < NcTc, in order to
account for guard time, by restricting the maximum range of the code values.
For more details, see [5].

B. Channel Model

In order to present results as general as possible, we
will consider a specular channel that encompasses most of
the models proposed so far. The channel impulse response
between user n and the receiver is given by hn(t) =∑Np

k=1 A
k
nδ(t − τkn), where Np is the number of paths, Akn

and τkn are respectively the amplitude and the delay of the k-
th path. We assume that the delays verify ∀n, k, τkn < τk+1

n .
For simplicity, we will assume that the number of paths is the
same for all the users, but generalization to a different number
of paths per user is straightforward. In many multipath channel
models, the amplitudes Akn depend on the corresponding
delays τkn . We propose to model this dependency by setting
Akn = akn · f(τkn) where akn is a random variables (rv) that
accounts for the statistics of the amplitude (independent of τkn )
and f(·) is a function that accounts for the decaying of the
amplitude with respect to the delay. The rv akn are assumed to
be independent and zero mean with variance σ2

a := Ea[(akn)2]
and thus verify Ea(ak1n1

ak2n2
) = Ea(ak1n1

)Ea(ak2n2
) = 0, except

for the case k1 = k2 and n1 = n2. In the following we put
Ikn := Ea[(Akn)2] = σ2

a · f2(τkn ). The rv τkn are assumed to
be independent between users but are usually correlated for a
given user. Most of the channel models proposed for the UWB
can be cast into this general model, and more particularly,
the recent modified Saleh-Valenzuela model, which has been
selected in the TG3a for the IEEE 802.15.3a standard [11].
In this model, the arrival time of the �-th cluster T� and the
arrival time of the k-th ray measured from the beginning of
the �-th cluster τ�k, follow Poisson processes with parameter
Λ and λ respectively. The amplitude akn = pkn ·βkn, where pkn is
equi-probable ±1 and βkn is a log-normal rv. The function f(·)
can be identified as: f(τkn ) = e−τ

k
n/2Γγ , where {τkn} is the set

of sorted values drawn from the set {γT� + Γτ�k}. Likewise,
for the original Saleh-Valenzuela model [7], the amplitudes
ank are real-valued zero mean Gaussian rv while f(·) remains
the same.

The communication system considered in this paper con-
sists of Nu active users transmitting asynchronously. After
propagating, the signal from user n is given by rn(t) =∑Np

k=1 A
k
nsn(t − τkn), and the composite signal seen at a

receiver can be expressed as:

r(t) :=
Nu∑
n=1

rn(t) + n(t) (8)

where n(t) is the Additive White Gaussian Noise (AWGN)
with zero mean and variance N0/2.

C. Rake Receiver

In this study we consider Maximum Ratio Combining
(MRC) rake receivers with Lr ≤ Np fingers, (A�1, τ

�
1), � ∈ L ,

with Card(L ) = Lr. Depending on the subset L , we
classically achieve the classical PRAKE, SRAKE and Full-
Rake receivers (see e.g., [12]). In the sequel, we assume that
the receiver is synchronized on user 1, and that θ1 = 0 without
loss of generality. The rake output can be written as:

z =
∑
�∈L

A�1

∫ NfTf

0

r(t+ τ �1)v1(t)dt, (9)
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where v1(t) is the receiver template for user 1, which using
the DTHC definition, can be expressed as:

v1(t) :=
NcNf−1∑
j=0

c1(j)v(t − jTc), (10)

with v(t) := w(t) − w(t − δ) in the binary PPM case and
v(t) := w(t) in the PAM case.

Using (8)-(10), the rake output expression becomes:

z =
∑
�∈L

A�1

Nu∑
n=1

Np∑
k=1

Akn yk,�,n(θn) + η, (11)

where η :=
∑

�∈L A�1
∫ NfTf

0
n(t + τ �1)v1(t)dt is the filtered

noise, and in the PPM case:

yk,�,n(θn) :=
∫ NfTf

0

+∞∑
i=−∞

NcNf−1∑
j=0

cn(j) (12)

w(t − iNfTf − jTc − δdn(i) − θn − Δτk,�,n) · v1(t)dt,

and in the PAM case:

yk,�,n(θn) :=
∫ NfTf

0

+∞∑
i=−∞

dn(i)
NcNf−1∑
j=0

cn(j) (13)

w(t − iNfTf − jTc − θn − Δτk,�,n) · v1(t)dt,

with Δτk,�,n := τkn − τ �1 . Expression (11) can be separated
into four terms

z := z1 + z2 + z3 + η, (14)

with

z1 =
∑
�∈L

(A�1)
2y�,�,1(0), z2 =

∑
�∈L

A�1

Np∑
k �=�=1

Ak1yk,�,1(0),

and

z3 =
∑
�∈L

A�1

Nu∑
n=2

Np∑
k=1

Aknyk,�,n(θn), (15)

which can be interpreted as follow:

• z1 is the energy collected from the user of interest,
• z2 is the Inter-Symbol / Inter-Frame Interference

(ISI / IFI) for the user of interest,
• z3 is the multi-user interference.

The energy z1 and the filtered noise η do not depend on the
code selection whereas z2 and z3 do. In practical systems
the ISI / IFI can be chosen arbitrarily small regardless of the
codes by inserting a guard time, larger than the maximum
delay spread of the channel, placed at the end of each
frame (see e.g., [8]). In contrast, the MUI is inherent in the
THC-IR transmission scheme and can be mitigated only by
designing the codes properly. Therefore, as mentioned in the
introduction, the rest of the paper will be dedicated to the
research of optimal codes that minimize the MUI variance.

III. VARIANCE EXPRESSION OF THE MUI

A. Variance of z3 in the PPM Case

Since the random variables involved in z3 are assumed
independent, we can compute the expectation independently
one after another. For convenience purpose, we present the
computation taking the expectation in the following order: akn,
dn, θn and τkn . It is easy to verify that z3 is centered since
the amplitudes are centered. Thus, based on expression (37)
of yk,�,n(θn) derived in the Appendix, the expectation of z2

3

over the amplitude, is given by:

Ea(z2
3) =

∑
n,k,�

IknI
�
1

[
C −2

1,n (qk,�n )ρ−Q
k,�
n −1,−Qk,�

n −1

εk,�
n ,εk,�

n

+ C −2
1,n (qk,�n + 1)ρ−Q

k,�
n −1,−Qk,�

n −1

εk,�
n −Tc,ε

k,�
n −Tc

+ C +2
1,n(qk,�n )ρ−Q

k,�
n ,−Qk,�

n

εk,�
n ,εk,�

n
(16)

+ C +2
1,n(qk,�n + 1)ρ−Q

k,�
n ,−Qk,�

n

εk,�
n −Tc,ε

k,�
n −Tc

+ 2C−
1,n(q

k,�
n )C +

1,n(q
k,�
n )ρ−Q

k,�
n −1,−Qk,�

n

εk,�
n ,εk,�

n

+ 2C−
1,n(q

k,�
n + 1)C +

1,n(q
k,�
n + 1) ρ−Q

k,�
n −1,−Qk,�

n

εk,�
n −Tc,ε

k,�
n −Tc

]
,

where ρp1,p2i1,i2
:= rvw(i1 + δdn(p1))rvw(i2 + δdn(p2)) and

the bounds for variables n, k, � are omitted for simplicity, but
follow the one indicated in (15). Because the time support of
rvw(·) is much less than Tc, ρ

p1,p2

εk,�
n ,εk,�

n −Tc
= 0, ∀p1, p2. The

expressions of C−
1,n(j) and C +

1,n(j) are provided in (34) and
(36) respectively.

The expectation of (16) over the symbols brings the fol-
lowing terms to be calculated: Ed(ρ

i,i
j,j), Ed(ρ

i−1,i−1
j,j ), and

Ed(ρ
i,i−1
j,j ).

Basic computation gives:

Ed(ρ
i,i
j,j) = Ed(ρ

i−1,i−1
j,j ) =

1
2
r2vw(j) +

1
2
r2vw(j + δ),

Ed(ρ
i,i−1
j,j ) =

1
4
[
rvw(j) + rvw(j + δ)

]2
.

Thus, we finally obtain:

Ea,d(z2
3)=

1
2

∑
n,k,�

IknI
�
1

[[
C +2

1,n(qk,�n ) + C −2
1,n (qk,�n )

]

× [r2vw(εk,�n ) + r2vw(εk,�n + δ)
]

+
[
C +2

1,n(qk,�n + 1) + C−2
1,n(qk,�n + 1)

]
× [r2vw(εk,�n − Tc) + r2vw(εk,�n − Tc + δ)

]
+C +

1,n(qk,�n )C −
1,n(qk,�n )

[
rvw(εk,�n ) + rvw(εk,�n + δ)

]2
+C +

1,n(qk,�n + 1)C−
1,n(q

k,�
n + 1)

× [rvw(εk,�n − Tc) + rvw(εk,�n + δ − Tc)
]2]
.

In the sequel, we average Ea,d(z2
3) over θn assum-

ing Δτk,�,n fixed. Since θn is uniformly distributed over
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[0, NfTf ), we get

Ea,d,θ(z2
3) =

1
2NfTf

∑
n,k,�

IknI
�
1

∫ NfTf

0

[
[
C +2

1,n(qk,�n ) + C−2
1,n(qk,�n )

]
×[r2vw(εk,�n ) + r2vw(εk,�n + δ)

]
+
[
C +2

1,n(qk,�n + 1) + C −2
1,n (qk,�n + 1)

]
×[r2vw(εk,�n − Tc) + r2vw(εk,�n − Tc + δ)

]
+C +

1,n(q
k,�
n )C−

1,n(q
k,�
n )
[
rvw(εk,�n ) + rvw(εk,�n + δ)

]2
+C +

1,n(q
k,�
n + 1)C−

1,n(q
k,�
n + 1)

×[rvw(εk,�n − Tc) + rvw(εk,�n + δ − Tc)
]2]

dθn.

Notice that qk,�n and εk,�n depend on θn via (31). To simplify
the previous equation, we split the integral of the right hand
side of the previous equation into NcNf integrals over the
interval [0, Tc). After tedious computation, we find:

Ea,d,θ(z2
3)=

1
2NfTf

∑
n,k,�

IknI
�
1

NcNf−1∑
q=0

∫ Tc

0

[

[
C +2

1,n(q) + C−2
1,n (q)

]
× [r2vw(ε) + r2vw(ε+ δ)

]
+
[
C +2

1,n(q + 1) + C −2
1,n (q + 1)

]
× [r2vw(ε− Tc) + r2vw(ε− Tc + δ)

]
+C +

1,n(q)C
−
1,n(q)

[
rvw(ε) + rvw(ε+ δ)

]2
+C +

1,n(q + 1)C−
1,n(q + 1)

× [rvw(ε− Tc) + rvw(ε+ δ − Tc)
]2]

dε. (17)

We can easily show, by the periodicity of the codes, that:
NcNf−1∑
q=0

[
C +2

1,n(q+1)+C−2
1,n(q+1)

]
=
NcNf−1∑
q=0

[
C +2

1,n(q)+C −2
1,n (q)

]
,

and
NcNf−1∑
q=0

C +
1,n(q + 1)C−

1,n(q + 1)=
NcNf−1∑
q=0

C +
1,n(q)C

−
1,n(q).

Thus (17) reduces to:

Ea,d,θ(z2
3)=

1
2NfTf

∑
n,k,�

NcNf−1∑
q=0

IknI
�
1

∫ Tc

0

[
[
C +2

1,n(q) + C−2
1,n (q)

][
r2vw(ε) + r2vw(ε+ δ)

+ r2vw(ε− Tc) + r2vw(ε− Tc + δ)
]

+C +
1,n(q)C−

1,n(q)
[[
rvw(ε)rvw(ε+ δ)

]2
+
[
rvw(ε− Tc) + rvw(ε+ δ − Tc)

]2]
dε. (18)

Finally, we deduce that the expectation over θn provides

Ea,d,θ(z2
3)=

1
NfTf

∑
�∈L

I�1

Np∑
k=1

Nu∑
n=2

Ikn

NcNf−1∑
q=0

[
[
C +2

1,n(q) + C−2
1,n (q)

] · γvw(0)

+C +
1,n(q)C

−
1,n(q) · [γvw(0) + γvw(δ)

]]
, (19)

with γvw(s) :=
∫ +∞
−∞ rvw(x− s)rvw(x)dx.

Now we need to average (19) over the delays Δτk,�,n. After
straightforward manipulations, we obtain that the term σ2

3 :=
Ea,d,θ,τ(z2

3) writes as follows

σ2
3 =

ψ γvw(0)
NfTf

[
κ1 + γ̄ · ξ1

]
, (20)

where

γ̄ :=
γvw(0) + γvw(δ)

γvw(0)
, ψ :=

∑
�∈L

Eτ
[
I�1
] Np∑
k=1

Eτ
[
Ikn
]
,

and

κm :=
Nu∑
n=1
n�=m

κm,n, κm,n :=
NcNf−1∑
j=0

C +2
m,n(j) + C−2

m,n(j),

ξm :=
Nu∑
n=1
n�=m

ξm,n, ξm,n :=
NcNf−1∑
j=0

C +
m,n(j)C

−
m,n(j).

Expression (20) clearly shows the contribution of the im-
pulse shape through function γvw(·), the codes through κ1 and
ξ1 and the channel through ψ. The interesting property of this
expression is that the codes contribution appears in factor of
the other terms and thus can be optimized independently from
the channel and the pulse shape. Based upon this property,
we derive in Section IV a criterion that allows to find optimal
codes for minimizing the MUI.

B. Variance of z3 in the PAM Case

In the PAM case, the expression (13) can be re-expressed
the same way as done in the Appendix for the PPM case, and
takes the form:

yk,�,n(θn) = dn(−Qk,�n − 1)
[
C−

1,n(q
k,�
n )rww(εk,�n )

+ C−
1,n(q

k,�
n + 1)rww(εk,�n − Tc)

]
+ dn(−Qk,�n )

[
C +

1,n(q
k,�
n )rww(εk,�n )

+ C +
1,n(q

k,�
n + 1)rww(εk,�n − Tc)

]
,

with rww(s) :=
∫ +∞
−∞ w(u)w(u − s)du.

Following the same derivation as for the PPM case, we find
that the variance of z3 is given by:

Ea,d,θn(z2
3) =

γww(0)
NfTf

∑
�∈L

I�1

Np∑
k=1

Nu∑
n=2

Ikn

×
NcNf−1∑
q=0

[
C−2

1,n(q) + C +2
1,n(q)

]
, (21)

with γww(s) :=
∫ +∞
−∞ rww(u)rww(u − s)du. Using the same

definitions introduced for the PPM case, (21) can be rewritten
as:

σ2
3 =

ψ γww(0)
NfTf

κ1. (22)
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IV. A CRITERION FOR CHECKING TIME-HOPPING CODE

OPTIMALITY

A. Notations and Preliminary Results

Let us define the following quantities:

Cm,n(j) := C +
m,n(j) + C −

m,n(j), (23)

Sm,n :=
NcNf−1∑
j=0

Cm,n(j), (24)

χm,n :=
NcNf−1∑
j=0

C 2
m,n(j). (25)

According to (34) and (36) in the Appendix, Cm,n(j) can be
interpreted as the cyclic cross-correlation between DTHC of
user m and user n for a given delay j. It can be also seen as
the number of collisions that occur between the impulses of
signal vn(t) and sm(t − τ) over the interval [0, NfTf) with
jTc ≤ τ < (j + 1)Tc. In the rest of the paper we will refer
Cm,n(j) to as “collisions”. Since Cm,n(j) can be seen as a
cyclic cross-correlation, it can be also classically expressed
using a vector notation: Cm,n(j) = cTmZjcn, where ci :=
[ci(0), · · · , ci(NcNf−1)]T is the (NcNf×1) vector composed
of ci code values, and Zj is the cyclic permutation matrix
obtained by k-left cyclic permutations of the columns of the
(NcNf ×NcNf) identity matrix I. This matrix has a Toeplitz
structure with the first column equals to ej and the first line
equals to eNcNf−j , where ei is the vector with a ’1’ on the
i-th entry and zero elsewhere. Using this vectorial notation,
we can now then state the following property:

Proposition 1 Sm,n = N2
f , ∀m,n.

Proof: Using the vector notation we have Sm,n =
cTm
∑NcNf−1

j=0 Zjcn. Using the identity
∑NcNf−1
j=0 Zj = 11T

where 1 is the vector composed with ’1’ on all entries, we
have Sm,n = cTm11T cn. Since vectors ci has Nf non-null
entries equal to ’1’, we have cTm1 = cTn1 = Nf and thus
Sm,n = N2

f .
It is convenient to note that Sm,n can be re-expressed as
Sm,n =

∑Nf

i=1 i · πi where πi ≥ 0 is number of times that
Cm,n(j) = i occurs in the summation (24). Thus, we deduce
from Proposition 1 that the πi’s should verify:

Nf∑
i=1

i · πi = N2
f . (26)

Using the same argument, we can re-express (25) as:

χm,n =
Nf∑
i=1

i2 · πi. (27)

B. Useful Properties

In this Section we give some properties that will be useful
in section IV-C for deriving the criterion of optimality. Unless
specified, we will consider in the following that m 	= n.

Proposition 2 χm,n is bounded by N2
f ≤ χm,n ≤ N3

f , ∀m,n.

Proof: For the lower bound, from (26) we have π1 =
N2
f −∑Nf

i=2 i · πi, which replaced into (27) gives: χm,n =
N2
f +

∑Nf

i=2(i
2− i) ·πi. Because (i2− i) > 0 for 2 ≤ i ≤ Nf ,

we deduce that the lowest value is obtained when {πi = 0}Nf

i=2

and is then equal to N2
f with π1 = N2

f . Regarding the upper
bound, we can easily check that χm,n = N3

f is obtained when
πNf

= Nf and πi = 0 otherwise. We show now that this is the
maximum value achievable. Let us assume that we have now
πNf

= Nf−k where 0 < k ≤ Nf and let us demonstrate that
in that case χm,n < N3

f . From (26) we have (Nf−1)πNf−1 =
N2
f − (Nf − k)Nf −

∑Nf−2
i=1 i · πi. Replacing this expression

into (27) gives after a few computation: χm,n = N3
f −Nfk+∑Nf−2

i=1 i(i−Nf+1)·πi. Because
∑Nf−2

i=1 i(i−Nf+1)·πi < 0,
we deduce that χm,n < N3

f , which concludes the proof.
We have established in Proposition 2, that the minimum

value of χm,n is equal to N2
f . Now, we are going to demon-

strate that when χm,n achieves its minimum value, it is
equivalent to minimizing jointly ξm and κm.

Proposition 3 χm,n = N2
f ⇒ C +

m,n(j)C
−
m,n(j) = 0 ∀j.

Proof: We know from proof of Proposition 2 that codes
verifying χm,n = N2

f correspond to the case {πi = 0}Nf

i=2

and π1 = N2
f , from which we can deduce that the number

of collisions can only be equal to 0 or 1, i.e., Cm,n(j) ∈
{0, 1}. This implies, because of definition (23), that when
Cm,n(j) = 1 then C−

m,n(j) and C +
m,n(j) can never be equal

(one is equal to 0 whereas the other is equal to 1) and thus
C +
m,n(j)C

−
m,n(j) = 0.

Proposition 4 κm,n ≥ N2
f .

Proof: From Proposition 1 we have
∑NcNf−1
j=0 C +

m,n(j)+
C −
m,n(j) = N2

f . Then, since the partial collisions C +
m,n(j) and

C −
m,n(j) are positive or null integers, and thanks to the identity

a2 ≥ a for a ∈ N, we have
∑NcNf−1

j=0 C +2
m,n(j) + C−2

m,n(j) ≥
N2
f .

Proposition 5 The minimum value for ξm,n is 0.

Proof: Since the partial collisions C +
m,n(j) and C −

m,n(j)
are positive or null integers, thus ξm,n ≥ 0. The minimum
value is achieved, for instance, when χm,n = N2

f according
to Proposition 3.

Lemma 1 χm,n = N2
f ⇔ ξm,n is minimum (ξm,n = 0) and

κm,n is minimum (κm,n = N2
f ).

Proof: For the implication, Proposition 3 shows that
ξm,n =

∑NcNf−1
j=0 C +

m,n(j)C −
m,n(j) = 0 and thus, from

Proposition 5, that it reaches its minimum value. We can re-
write (25) as χm,n = κm,n + 2ξm,n. Thus, when ξm,n = 0,
we find that κm,n = N2

f , which according to Proposition 4,
reaches its minimum value. For the reverse, by construction,
using Proposition 4 and Proposition 5, when κm,n = N2

f and
ξm,n = 0 thus χm,n = κm,n + 2ξm,n = N2

f .
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TABLE I

PERCENTAGE AND NUMBER OF OPTIMAL PAIR (Nop) OF CODES VS. Nc

Nf = 3
Nc 3 4 10 15 18
% 5.13 8.33 43.22 57.72 64.32
Nop 3.5 × 102 2.0 × 103 4.9 × 105 5.7 × 106 1.7 × 107

Nf = 4
Nc 4 5 10 15 18
% 0.69 1.20 8.55 20.55 27.35
Nop 3.3 × 104 1.9 × 105 4.9 × 107 1.3 × 109 5.5 × 109

C. Criterion for Optimal Time-Hopping Codes

The optimal codes we are looking for are those which
minimize the MUI variance given by (20) for the PPM or
(22) for the PAM. Based upon Propositions and Lemma from
the previous section, we can then state the following theorem:

Theorem 1 Let us consider an asynchronous Time-Hopping
Code Impulse Radio transmission scheme, where Nu users are
transmitting through general multipath channels (as described
in Section II-B). Let us consider a maximal ratio combining
rake receiver, demodulating data of one of the Nu users, let
say user 1. Then, the multi-user interference variance at the
output of the rake receiver is minimum, if and only if, the
set of pair of codes {(c1, cn), n = 2, · · · , Nu}, verifies the
conditions:

for the PPM
NcNf−1∑
q=0

C 2
1,n(q) = N2

f , (28)

for the PAM
NcNf−1∑
q=0

[C−2
1,n(q) + C +2

1,n(q)] = N2
f , (29)

where {C1,n(j)}NcNf−1
j=0 is the cyclic cross-correlation be-

tween the developed time-hopping code of user 1 and user n.
A pair of codes verifying (28) or (29) is called an “optimal
pair”.

Proof: For the PPM, from (20), we wish to identify
a criterion that we may enable us to select pairs which
minimizes κm + γ̄ · ξm, or equivalently, since γ̄ ≥ 0, which
jointly minimizes κm and ξm. Due to the fact that κm,n ≥ 0
and ξm,n ≥ 0, minimizing κm and ξm jointly is equivalent
to minimizing for all n, κm,n and ξm,n jointly. Thus, due to
the equivalence of Lemma 1, we deduce that one criterion
possible is the minimization of χm,n, which is equivalent to
minimizing

∑NcNf−1
j=0 C 2

m,n(j). For the PAM, from (22) we
need to minimize the set {κ1,n} for n = 2, · · · , Nu. Since
those values are positive by definition and independent, we
immmediatly deduce (29).

One can remark that when γ̄ = 0 in the PPM case, the
criterion to be minimized (deduced from (20)) reduces to the
PAM one. Thus, we can deduce that the set of optimal pairs
for the PAM includes those of the PPM.

Notice that we have assumed equal power at the transmitter
for all the users, but it is straightforward to see that the
result of Theorem 1 extends to the case where all the users
have different powers (it could be easily seen by including
the different transmitted power in the channel model). When

guard time is used, one can note that the optimal pairs may
be different from those found without guard time.

Theorem 1 enables us to check if a pair is optimal or
not, but it does not provide any method for constructing the
optimal codes. However, for a given user n0, it is possible,
via exhaustive search, to find the set of all the optimal pairs
(cn0 , cm). All the users (or nodes) belonging to this set,
constitutes a network where the users can transmit at the same
time while user n0 is able to demodulate any subset, while
experiencing the least MUI possible.

D. On the Selection of Optimal Code Parameters

The THC depend on two parameters: Nf and Nc. Thus, the
question one may ask is how to choose those parameters, and
how are they related to pair of codes optimality? In this section
we open the discussion without giving any formal proof, but
we give some hints based upon exhaustive search. We assume
here that Nf is fixed and see what is the influence of Nc
upon the code optimality. We fix Nf because it plays the
role of processing gain, and is usually used in order to adjust
the link budget of the transmission. Thus, Nc remains the
parameter that we can adjust for a given Nf . For a given
couple (Nc, Nf ), the number of code is equal to N := N

Nf
c

which increases with Nc and the number of available pairs is
equal to N(N − 1)/2. When N increases, one may imagine
that the number of optimal pairs increases as well. This can
be verified on a few couples (Nc, Nf ) and is illustrated in
Table I, which shows the percentage of optimal pairs versus
Nc, and the number of optimal pairs (Nop) obtained by
exhaustive search. We can notice that the number of optimal
pairs increases when Nc increases. Another result that we can
deduce from Table I is that, when Nf increases, Nc should
be increased too to obtain the same percentage of optimal
pairs. Because the simulation complexity is exponential (see
Table I), we cannot compute this percentage for large value
of Nc, but we conjecture that the percentage of optimal pairs
goes toward 100 % when Nc goes to infinity for a given Nf .
Consequently, if we want to accommodate a given number of
users, Nc should be chosen large enough to ensure that there
are enough optimal codes to distribute.
Remark 1: From Proposition 3, we deduce that the maximum
cross-correlation value Cm,n(j) over all the delays j, is equal
to 1, which is the non-null smallest value achievable. Thus,
we deduce that the optimal pairs verifying Theorem 1 for the
PPM also minimize: supj Cm,n(j).
Remark 2: Since the TH-IR multiple access scheme can be
seen as the dual in time of the Frequency-Hopping (FH)
one, some authors have proposed to use codes, introduced
for FH multiple access, (such as for instance different order
congruence e.g., [13], or permutation sequences [14]) to TH-
IR (see e.g., in [15], and [16]). Using our notations, we can
identify that the design of such codes is equivalent to have
N = Nc = Nf , where N is usually the number of subcarrier.
Inasmuch as this constraint is required, we deduce that this
design is not suitable since it leads to the worst case (in terms
of number of optimal pairs) as shown in Table I.
Remark 3: The computation of the MUI variance has been
tackled by other authors. The earlier work can be found in [2]
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for free-space propagation and has been extended to multipath
channels in [6]. The difference between those works and our is
that they rely upon different hypothesis. The main difference
is the random assumption for the asynchronism, which they
assume to be equally likely distributed (eld) over [0, Tf),
whereas we assume that it is eld over [0, NfTf ). We think
our assumption is more appropriate since the code period is
spread over [0, NfTf ) which implies that the signal is cyclo-
periodic with period NfTf . Thus, if we want to account for
any asynchronism, i.e., θn ∈ [0,+∞), it is equivalent to
consider its restriction to [0, NfTf). The other difference is
that they assume NcTc < Tf/2−2Tw (e.g., see Eq. (57) in [8])
which corresponds to a guard time of more than 50 % of the
frame duration. As a consequence, this allows to approximate
the MUI variance expression by neglecting some terms, which
in the end does not depend upon the codes. This explains that,
even if they assume the THC as discrete random variables,
uniformly distributed, they never compute the expectation over
the codes in their derivations. The codes could have been
chosen as deterministic, the results would have been the same.
Although they consider the case Nf ≥ 1, their approach
corresponds to our as if Nf = 1. In that case, the collisions
are at most equal to 1, and thus all the pairs are optimal.

V. PERFORMANCE ANALYSIS

In this section, we study the influence of the optimality
of pair of codes on the Average Error Probability (AEP) at
the rake receiver. We check by simulations that the optimal
pairs (pair of codes minimizing the MUI variance) enable us
to decrease the AEP significantly. After explaining how the
AEP is computed, we give the simulation parameters and then
define the different tested configurations.

A. Average Error Probability Computation

For a given set of random parameters (channel ampli-
tudes, channel delays, symbols, asynchronism, and noise),
the error probability at the rake output (11), is given by
Pe(a, τ, d, θ, n) = Pr{z < 0|a, τ, d, θ, n}, assuming that
d1(0), the transmitted symbol of the user of interest, is fixed
(d1(0) = 0 for the PPM, and d1(0) = 1 for the PAM).
The AEP is then obtained by averaging Pe(a, τ, d, θ, n) using
empirical mean over all the random variables. Rather than
doing that, we can reduce the simulation complexity by taking
advantage of the fact that the noise is Gaussian. In that case,
the AEP is given by P̄e = Ea,τ,d∗,θ∗ [Pr{z < 0|a, τ, d, θ}]
with d∗ = d \ {d1(0)} and θ∗ = θ \ {θ1}. Since the noise is
Gaussian with zero mean and using (14), we have:

P̄e = Ea,τ,d∗,θ∗

[
1
2
erfc

(
z1 + z2 + z3√

2 ση

)]
, (30)

where σ2
η is the variance of the filtered Gaussian noise.

Thus, there is no need for simulating the noise. Notice that
this approach have been used in [10] in the same context but
in the free-space propagation setting. It is interesting to point
out that in our case, the noise variance σ2

η is not a constant
and depends upon the channel realization.

By considering that optimizing the MUI variance with
respect to the THC is a relevant task, we have implicitly

assumed that the MUI is Gaussian (as in [8] for instance).
Unfortunately as observed in [9], the MUI is not Gaussian and
the AEP given by (30) is actually much larger that the error
probability computed under the Gaussian MUI assumption.
According to intensive simulations, we will see hereafter that
the codes optimization based on the minimization of the MUI
variance remains valid in practice, i.e., the AEP for optimized
codes (chosen implicitly under Gaussian assumption) is much
smaller than those of non-optimized ones.

B. Simulation Parameters and Scenario Description

We give here the different simulation parameters that will
be used for computing the performance. Remembering that we
want to assess the effect of optimality of pairs on performance,
it is worth noting that, since the channel, rake, and pulse
parameters appear in factor of the MUI variance, their choice
is not critical. Therefore, whatever the set of parameters we
choose, we show the same trends regarding the optimality. We
have considered the CM2 channel model from the TG3a [11],
with one cluster for simplicity. The number of finger is fixed
to Lr = 3, and the number of paths Np, is chosen such that
the average energy of the amplitude drops below 1/100 of its
maximum value (set to 1), i.e., exp{γ−1τ

Np

1 } ≤ 100, which
according to γ = 6.7 ns in CM2, gives τNp

1 ≤ 30.85 ns.
We have considered a modulated Gaussian pulse such that its
power spectral density fits the outdoor FCC mask [3], in the
[3.1 GHz − 10.6 GHz] band. This is achieved by translating
the Gaussian baseband spectrum to the central frequency of
the mask i.e., f0 = 6.85 GHz. Then, the width of the pulse
is adjusted to fit the mask, i.e., to have the required 20 dB
attenuation at both side of the mask. For practical purpose,
the pulse is truncated to duration Tw = 1 ns, and thus, can be
written as:

w(t) =

√
2
π

cos(2πf0(t− Tw/2))e−(t−Tw/2)
2/2σ2 × 1[0,Tw],

with σ2 = 911 × 10−4 ns. For the PPM, the delay is set to
δ = 0.0707 ns. The frame duration is fixed to Tf = 60 ns and
the chip duration is given by Tc = Tf/(Nc+Ng), with Ng the
number of chips dedicated to the guard interval. Consequently,
the symbol rate is equal to (NfTf )−1 regardless of the guard
time duration.

The number of users is fixed at Nu = 7, and the user of
interest is user 1. To check the benefit of our code optimization
procedure, we inspect the AEP for three different scenarios,
namely A, B, and C. For each scenario, we fix the THC of
user 1 (c1) and select three different sets of six codes {ci, i =
2, · · · , 7}. Those sets will be referred to as 0/6, 3/6, and
6/6, which correspond to zero, three, and six optimal pairs
with respect to user 1.
Scenario A: shows the maximum gain in performance that can
be achieved using optimal pairs. For that, we fix c1 such that
the non-optimal pairs yield the maximal MUI variance. This
corresponds, according to Proposition 2, to codes verifying
χ1,n = N3

f = 27, which are given by c̃1 = {0, 0, 0}, and
c̃n = {n − 1, n − 1, n − 1} for n = 2, · · · , Nc − 1. The
modulation format is PPM.
Scenario B: shows that, even when the code of user 1 is
chosen at random (not the worst case as in scenario A), we can
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Fig. 1. Average error probability vs. Ēb/N0 for scenario A, with PPM
format, SRAKE receiver with Lr = 3 fingers, Nu = 7, Nf = 3, and
Nc = 18. With guard time, Ng = 4, and without, Ng = 0.
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Fig. 2. Average error probability vs. Ēb/N0 for scenario B, with PPM
format, SRAKE receiver with Lr = 3 fingers, Nu = 7, Nf = 3, and
Nc = 18. With guard time, Ng = 4, and without, Ng = 0.

still find optimal pairs that lead to performance improvement.
Noting that in scenario A we have χ1,1 = χ1,n, we decide
to choose the non-optimal codes likewise. Code of user 1 has
been picked up equal to c̃1 = {0, 0, 2} which correspond to
χ1,1 = 15. The modulation format is PPM.
Scenario C: same scenario as scenario B, with PAM format.

For all scenarios, we have also selected optimal pairs and
computed performance when a guard time is used, with Ng =
4.

C. Performance Analysis

The simulations have been carried out by averaging the
error probability (30) using 106 random trials. The results
shown in Fig. 1 to Fig. 3 represent the AEP versus the
average received bit energy to noise ratio, Ēb/N0, with Ēb =
Ea,τ,d,θ{

∫ NfTf

0
r21(t)dt}. For the TG3a channel model (with

one cluster), we find Ēb = Nfrww(0) ·∑Np

k=1 Eτ (I
k
1 ) with

Eτ (Ik1 ) = λk(λ + 1/γ)−k. For scenario A, results in Fig. 1
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Fig. 3. Average error probability vs. Ēb/N0 for scenario C, with PAM
format, SRAKE receiver with Lr = 3 fingers, Nu = 7, Nf = 3, and
Nc = 18. With guard time, Ng = 4, and without, Ng = 0.

show that the performance increases as the number of optimal
pairs increases as expected. For high Ēb/N0, the gain in
performance between the best and the worst case is around
22. For scenario B, we see in Fig. 2 that the behavior is the
same as for scenario A, but the gain in performance is smaller
(around 7.5). This gain was predictable since the set 0/6 does
not represent the worst case as in scenario A. For scenario C,
Fig. 3 shows that the PAM behaves like the PPM with respect
to the different set. The gain in performance is a little bit
smaller (around 6.5). This can be explained by the fact that
the MUI variance in the non-optimal case is greater for the
PPM case than for the PAM one (see (20) and (22)).

For the three scenarios, we can see that with guard time,
the performance behavior is similar to the case without guard
time, i.e., when the number of optimal pairs increases, the
performance increases. One can note that the performance
improvement with guard time is not significant. This can be
explained by the fact that the maximum delay of the channel
is actually less than the frame duration, and thus, there is no
ISI. This was done on purpose in order to isolate the effect
of MUI optimization from the effect of the ISI. Nevertheless,
the fact that the performance is slightly different illustrates the
limit of the Gaussian approximation, i.e., although the MUI
variance is equal in both cases, the AEP are different.

VI. CONCLUSION

A criterion that allows to check code optimality that min-
imizes the MUI variance at the output of a rake receiver has
been proposed. The result has been derived by computing
the exact variance expression of the MUI considering that
the codes are deterministic. For very general assumptions on
the channel and the rake receiver, the expression of the MUI
variance, shows that the code contribution appears in factor
and is independent of the other parameters of the transmission
scheme. We have deduced from this expression a practical cri-
terion that allows to select a set of optimal codes that ensures
minimal MUI variance at the output of the rake receiver. This
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criterion involves partial cyclic cross-correlation of the DTHC.
Simulations have shown that minimizing the MUI variance
(based on a SNR criterion) leads to a significant decrease of
the error probability. Thus, the proposed criterion appears as
a useful tool for designing THC in IR-THC transmissions.
Further work will be needed in order to find algorithms for
constructing optimal pair of codes without exhaustive search.

APPENDIX

COMPUTATION OF TERMS yk,�,n(θn) VERSUS DTHC IN

THE PPM CASE

We present in this Appendix the computation of terms
yk,�,n(θn) defined by (12) in the PPM case which correspond
to the cross-correlation of the k-th path of the incoming signal
from user n with the template signal synchronized on the �-th
path of user 1. Assuming θn fixed, we put:

θn + Δτk,�,n := Qk,�n NfTf + qk,�n Tc + εk,�n , (31)

with Qk,�n = �(θn+Δτk,�,n)/NfTf�, qk,�n = �(θn+Δτk,�,n−
Qk,�n NfTf)/Tc�, and εk,�n ∈ [0, Tc). Although not written for
the sake of notation clarity, it is worth noting that Qk,�n , qk,�n
and εk,�n depend on θn and Δτk,�,n.

Thanks to the DTHC we can isolate the non-null terms
of (12), and using the following notation rvw(x) :=∫ +∞
−∞ v(t)w(t − x)dt we can write:

yk,�,n(θn) =
+∞∑
i=−∞

NcNf−1∑
j,j1=0

cn(j)c1(j1) (32)

×rvw((Qk,�n + i)NfTf + (qk,�n + j − j1)Tc + εk,�n + δdn(i)).

Let Trvw denotes the support of function rvw(·) is less than
Tc, the non-null terms in (32) are obtained when |εk,�n +(qk,�n +
j − j1)Tc + (Qk,�n + i)NfTf + δdn(i)| < Trvw . As we have
−NcNf +1 ≤ qk,�n + j− j1 ≤ 2NcNf −2, the non-null terms
in (32) are obtained for −2 < Qk,�n + i < 1 thus Qk,�n + i is
equal to 0 or −1.

We put now yk,�,n(θn) := y−k,�,n(θn) + y+
k,�,n(θn) where

y−k,�,n(θn) corresponds to i = −Qk,�n − 1, and y+
k,�,n(θn)

corresponds to i = −Qk,�n .
When i = −Qk,�n − 1, we have j − j1 + qk,�n −NcNf = 0

or −1, thus we can write:

y−k,�,n(θn)=C −
1,n(qk,�n )rvw(εk,�n + δdn(−Qk,�n − 1)) (33)

+C −
1,n(qk,�n + 1)rvw(εk,�n − Tc + δdn(−Qk,�n − 1)),

where:

C−
1,n(q) :=

q−1∑
m=0

c1(m)cn(m− q). (34)

When i = −Qk,�n , we have j − j1 + qk,�n = 0 or −1, thus
we can write:

y+
k,�,n(θn)=C +

1,n(q
k,�
n )rvw(εk,�n + δdn(−Qk,�n )) (35)

+C +
1,n(q

k,�
n + 1)rvw(εk,�n − Tc + δdn(−Qk,�n )),

where:

C +
1,n(q) :=

NcNf−1∑
m=q

c1(m)cn(m− q). (36)

We can remark that the two terms of (33) and (35) are never
non-null at the same time, because the support of rvw(·) is less
than Tc. Finally we end up with the following expression:

yk,�,n(θn)=C −
1,n(qk,�n )rvw(εk,�n + δdn(−Qk,�n − 1))

+C −
1,n(qk,�n + 1)rvw(εk,�n − Tc + δdn(−Qk,�n − 1))

+C +
1,n(qk,�n )rvw(εk,�n + δdn(−Qk,�n )) (37)

+C +
1,n(qk,�n + 1)rvw(εk,�n − Tc + δdn(−Qk,�n )).
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