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Abstract— In Impulse Radio Ultra Wide Band (IR-UWB)
based systems, we show that the Multi-User Interference (MUI)
assuming fixed spreading codes can be well approximated by
a Generalized-Gaussian Distribution (GGD). Then, we derive
an accurate closed-form expression of the approximation for
the Average Error Probability (AEP) in both Direct-Sequence
(DS) and Time-Hopping (TH) multiple access context. From this
approximation, we are able to characterize and to select theset of
codes minimizing the AEP for both multiple access techniques.
The merit of each multiple access technique is then analyzed:
we especially prove that the probability to find an optimal pair
of codes goes to one when increasing the number of chips per
symbol with TH technique whereas this probability goes to zero
with DS technique. Numerical illustrations confirm our claims.

I. I NTRODUCTION

UWB technology is a viable solution for short range and in-
door wireless applications. Its low power consumption allows
to reduce the interference between UWB and other wireless
systems and its high data rates enables UWB to support
multiple users within the same radio channel. TH and DS
are the two popular multiple access techniques that are pro-
posed for UWB systems combined with different modulation
schemes, such as Pulse Position Modulation (PPM), Pulse
Amplitude Modulation (PAM) and On-Off Keying (OOK)
[1]. Performance analysis of multi-user UWB systems with
different multiple access and modulation schemes has been
already conducted in the literature in the following way. The
first studies assumed a Gaussian approximation for the MUI
and then the derivation of the error probability needs simply
the determination of the MUI variance [2], [3]. Nevertheless,
it was shown later in [4] that the Gaussian approximation
overestimates the performance of a standard Rake receiver
and therefore it is inaccurate to model the MUI. The Gaussian
approximation inaccuracy is also exhibited by simulationsin
[5]. Recently, an exact AEP has been provided in [6] for both
TH and DS UWB systems. Their derivations are based on the
study of the characteristic function of the MUI. The obtained
AEP is accurate but its expression is still complex and does
not provide insight about the influence of design parameters
(such as the multi-user codes). Actually if we would like to
obtain a simple approximated AEP closed-form expression, we
need to carefully approximate the MUI distribution. In [7],
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[8], [9], [10], [11], [12], it was shown that either the GGD
or the Gaussian mixture orα-stable distributions are relevant
choices to describe the MUI distribution. In [7], the AEP
expression based on GGD approximation (for TH technique
and PAM modulation) is provided and involves the second and
fourth order moments of the MUI. Moreover their expression
does not explicitly depend on the multiple access codes since
the authors averaged the MUI moments with respect to the
multiple codes. Notice that, in the context of either GGD
or Gaussian mixtures orα-stables distribution, new powerful
receivers can be carried out by using a soft limiter device
[8], [9], [14]. These new receivers will not be considered in
this paper which focuses on the performance of the standard
Rake receiver. Concerning the choice of the multiple access
codes, one can mention the work of [15] which proposed to
minimize the second order moment of the MUI, in fact the
variance, with respect to the multiple access codes in order
to optimize the performance for TH and DS UWB systems.
Intuitively, minimizing the MUI variance is necessary but not
sufficient since the AEP depends on the high order statistics.
Besides, in this paper, we will prove that a second criterion
related to the fourth order moment has to be considered in
order to really minimize the impact of the multiple access on
the system performance. The first criterion is the MUI variance
described in [15].

The contribution of the paper are threefold:

• Assuming that the MUI is generalized-Gaussian dis-
tributed, we derive an accurate closed form expression
for the AEP in function of the multiple access codes for
both TH and DS multiple access techniques.

• From the obtained AEP approximation, we are able to
exhibit criteria that the multiple access codes have to
minimize in order to optimize the AEP for both access
techniques. Minimizing such criteria leads theoptimal
multiple access to satisfy some constraints that are char-
acterized in this paper. The comparison of the obtained
code constraints to those illustrated in [15] shows that
the variance minimization is insufficient to optimize the
performance for PAM TH UWB systems; whereas it
achieves the best one with PPM TH and PAM DS UWB
systems.

• In [6], the authors use their AEP closed-form expres-
sion to compare both TH and DS access techniques
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assuming random codes and same data rate for both
systems while the captured energy with DS is higher
than that with TH technique. Based on their numerical
results, they shown that PAM DS outperforms PAM TH
UWB systems and that PPM TH UWB systems achieve
the worst performance. In this paper, we compare both
access techniques combined to a PAM modulation while
keeping fixed and judiciously choosing the access codes.
These codes, called optimal codes, are selected in such a
way to minimize the contribution of the multiple access
impairments. However,a theoretical study of the optimal
codes distribution shows that the probability that a pair
of codes be optimal goes to 0 when increasing the number
of chips per symbol with DS technique. Fortunately, this
probability goes to 1 when employing TH technique. So,
finding a pair of optimal codes is not guaranteed for DS
UWB whereas it is for TH UWB systems. Based on
simulation results, we show that TH scheme (using well-
chosen codes, thus optimal pair of codes) outperforms DS
one (using well-chosen codes but not necessary optimal
pair of codes) while assuming same data rate and same
captured energy.

This paper is organized as follows. In Section II, we introduce
the transmitted signal model for PAM TH, PPM TH and PAM
DS IR-UWB systems. The considered channel model and the
rake receiver structure are described as well. In Section III,
assuming the codes to be fixed, we derive the AEP in closed-
form for the three analyzed systems using the generalized
Gaussian approximation whose parameters are evaluated in
terms of the multiple access codes. In Section IV, we present
criteria that the codes have to satisfy in order to improve the
performance. The study of the optimal codes distribution is
done in Section V for both DS and TH techniques. Section
VI is devoted to numerical illustrations: we validate our GGD
based approximation and we also inspect the impact of the
codes choice on the performance; we show that the AEP
significantly decreases when codes are selected as suggested in
Section IV; a comparison of PAM TH and DS UWB systems
is carried out. Conclusions are given in Section VII.

II. SIGNAL MODEL

We consider an IR-UWB system with either TH or DS as
a code division multiple access technique. Both PAM and
PPM modulations can be used for TH technique; whereas
PAM modulation is only considered for DS technique. Let
Nu be the number of active users in the network. Each
user transmits information asynchronously through a multipath
channel. Using the Developed Time Hopping (DTH) code for
TH technique [15], the transmitted signal depends only on the
applied modulation as follows.

For PAM modulation, the transmit signal from usern is
expressed similarly for DS and TH techniques:

sn(t) =

∞∑

i=−∞
dn(i)

Nc−1∑

j=0

cn(j)w(t − iTs − jTc − θn), (1)

where

• Ts is the symbol time where each symbol consists ofNc

chips of durationTc each one,
• w(t) is the normalized impulse of durationTw ≪ Tc,
• dn(i) are the information symbols of usern, assumed to

be independent and identically distributed. The symbols
dn(i) belong to the set{−1, 1},

• {cn(j)}Nc−1
j=0 is the multiple access code associated with

user n, with either cn(j) ∈ {−1, 1} for DS code in
DS scheme orcn(j) ∈ {0, 1} for the DTH code in TH
scheme,

• θn is the time asynchronism that is assumed to be a
uniformly distributed within[0, Ts].

Notice thatNc = NsNh whereNs is the number of frames
andNh is the number of chips per frame in TH scheme. In
DS scheme, the numberNh is equal to 1.

For PPM modulation, the expression of the TH transmit
signal, using DTH code, is:

sn(t) =

∞∑

i=−∞

Nc−1∑

j=0

cn(j)w(t− iTs−jTc−δdn(i)−θn), (2)

whereδ ≪ Tc is the PPM shift and the symbolsdn(i) belong
to {0, 1}.

The receiver input signal is the sum of the attenuated and
delayed transmit signals from the different users. Its expression
is given by

y(t) =

Nu∑

n=1

√

Pn





Np∑

k=1

Ak
nsn(t− τk

n)



+ n(t), (3)

whereAk
n andτk

n are the amplitude and the delay of thekth

path between the usern and the receiver,Np is the number
of paths assumed to be the same for all the users,Pn is
the captured power, andn(t) is an additive zero-mean white
Gaussian noise.

The multipath channel model we employ is that proposed
generally for UWB systems. The amplitudeAk

n is usually
assumed to be dependent on the delayτk

n asAk
n = ak

nf(τk
n ),

where ak
n are independent zero-mean random variables (rv)

and f(·) is a function which indicates the variation of the
amplitude according to the delay. The information about
random captured powers is provided by the set{Pn}n=1,··· ,Nu .
The rv τk

n are assumed to be independent between users but
are usually correlated for a given user. The distribution of
the variablesτk

n and ak
n are provided in the IEEE 802.15.3a

standard [16]. When only one cluster is considered (which
is not restrictive as mentioned in [17]), the delayτk

n follows
a Poisson distribution. The attenuationak

n = pk
n · βk

n, where
pk

n ∈ {±1} are equiprobable andβk
n are log-normal rv. The

function f(·) is defined byf(τk
n) = e−τk

n/2γ , whereγ is the
path power-decay time.

Without loss of generality, the user of interest is assumed
to be the user1. We consider the rake receiver of user1,
commonly used for multipath channel systems, withLr ≤
Np fingers. We also assume that the receiver is synchronized
(i.e., θ1 = 0) and has the perfect knowledge of the channel
multipaths. Thus, the rake receiver output for the first symbol
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is

z =
∑

ℓ∈L
Aℓ

1

∫ Ts

0

y(t+ τ ℓ
1) · v1(t)dt, (4)

wherev1(t) =
∑Nc−1

j=0 c1(j)v(t − jTc) is the template signal
associated with user1. Notice thatv(t) = w(t) for PAM
modulation andv(t) = w(t)−w(t− δ) for PPM modulation,
and L is the selected subset paths with Card(L)=Lr. Using
Eqs. (3)-(4), the rake receiver output ([15]) is

z =
∑

ℓ∈L
Aℓ

1

Nu∑

n=1

√

Pn

Np∑

k=1

Ak
nyk,ℓ,n(θn) + η, (5)

where η =
∑

ℓ∈LA
ℓ
1

∫ Ts

0
n(t + τ ℓ

1)v1(t)dt is the filtered
Gaussian noise. The expression of the termyk,ℓ,n(θn) depends
on the modulation format ([15]) as follows:

yk,ℓ,n(θn) = r̃(ǫk,ℓ
n , qk,ℓ

n , Qk,ℓ
n )

+ r̃(ǫk,ℓ
n − Tc, q

k,ℓ
n + 1, Qk,ℓ

n ), (PAM) (6)

yk,ℓ,n(θn) = r̃1(ǫ
k,ℓ
n , qk,ℓ

n , Qk,ℓ
n )

+ r̃1(ǫ
k,ℓ
n − Tc, q

k,ℓ
n + 1, Qk,ℓ

n ), (PPM) (7)

whereQk,ℓ
n = ⌊∆k,ℓ

n /Ts⌋, qk,ℓ
n = ⌊(∆k,ℓ

n − Qk,ℓ
n Ts)/Tc⌋ and

ǫk,ℓ
n = ∆k,ℓ

n − Qk,ℓ
n Ts − qk,ℓ

n with ∆k,ℓ
n = θn + τk

n − τ ℓ
1 . We

also put

C−
m,n(q) =

q−1
∑

k=0

cm(k)cn(k − q),

C+
m,n(q) =

Nc−1∑

k=q

cm(k)cn(k − q), (8)

r(s)=
∫ +∞
−∞ w(t)w(t−s)dt, r1(s)=

∫ +∞
−∞ (w(t) − w(t− δ))w(t−

s)dt, r̃(ǫ, q,Q)=r(ǫ)
[
dn(−Q)C+

1,n(q)

+dn(−Q− 1)C−
1,n(q)

]
and r̃1(ǫ, q,Q) = C+

1,n(q)r1(ǫ +

δdn(−Q)) + C−
1,n(q)r1(ǫ+ δdn(−Q− 1)).

Notice that the rake receiver output given by Eq. (5) can be
decomposed as [15]:

z = zU + zI + zM + η, (9)

where

• zU is the Useful part of user1 signal, zU =√
P1

∑

ℓ∈L(Aℓ
1)

2yℓ,ℓ,1(0),
• zI is the Inter-symbol interference from user1, zI =√

P1

∑

ℓ∈LA
ℓ
1

∑Np

k 6=ℓ=1A
k
1yk,ℓ,1(0),

• zM is the Multi-user interference, zM =
∑

ℓ∈LA
ℓ
1

∑Nu

n=2

√
Pn

∑Np

k=1 A
k
nyk,ℓ,n(θn).

Unlike zI andzM , the useful partzU and the noiseη do not
depend on the multiple access codes. If the number of users
is large enough, it has been remarked that the termzI can be
neglected compared to the termzM [2], [13]. In the sequel, for
the sake of simplicity, on the one hand, we assume thatzI =
0 and the selected paths are normalized, i.e.

∑

ℓ∈L(Aℓ
n)2 =

1 ∀n, and on the other hand, we consider the set of captured
powers fixed, i.e., the obtained closed-form expression will
depend on the realization of{Pn}n=1,··· ,Nu .

III. AEP APPROXIMATION BASED ONGENERALIZED

GAUSSIAN DISTRIBUTION

The first works dealing with the performance of UWB
systems assumed that the MUI was a Gaussian distributed
random variable [2], [3]. Thus, the evaluation of the error
probability requires simply the computation of the variance of
the rvzM +η. Unfortunately, in [4], [5], [18], [19], the authors
criticize the validity of the Gaussian approximation to model
the MUI for UWB systems. Later, in [20], the authors studied
the MUI Gaussianity condition for TH access technique where
the number of usersNu and the number of chipsNc = NsNh

grow toward the infinity at the same rate,i.e., Nu/Nc goes
toward a positive constant. Thanks to the central limit theorem,
they have proven that the Gaussian approximation is valid
if and only if the ratioNs/Nh converges toward a positive
constant.

Recently, it has been proposed to use the GGD to describe
the MUI distribution in TH IR-UWB system [7] in AWGN
context. We remind that the GGD writes as follows [22]:

p(x) =

√

Γc(3/α)

2σ
√

Γc(1/α)Γc(1 + 1/α)
e
−

˛

˛

˛

˛

√
Γc(3/α)

σ
√

Γc(1/α)
x

˛

˛

˛

˛

α

, (10)

whereσ2 is the variance,α > 0 is the so-called shape param-
eter, andΓc(.) is the (complete) Gamma function. Remark
that whenα = 2, p(x) corresponds to a Gaussian distribution.
To ensure that the GGD remains accurate to model the MUI
when DS technique is employed and when multipath channel
(described in Section II) is assumed, we compare the empirical
MUI distribution to that described by Eq. (10) whereα and
σ2 are obtained empirically. In Figs. 1 and 2, we illustrate
the MUI distribution for a PAM DS UWB system in AWGN
context and for a PAM TH UWB system assuming a multipath
channel and 32 active users respectively.
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Fig. 1. Comparison of the empirical MUI PDF to those based on the GGD
and the Gaussian distribution (GD) for PAM DS-UWB system in AWGN
channel withNc = 5, Tc = 3 ns andNu = 32.

The implemented multipath channel is based on CM2 model
which is described in [16]. In such a case, the PRake (Partial
Rake) is employed where the receiver uses the firstLr paths
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Fig. 2. Comparison of the empirical MUI PDF to those based on the GGD
and the Gaussian distribution (GD) for PAM TH-UWB system in multipath
channel withNc = 32, Ns = 2, Tc = 5 ns, Nu = 32, Lr = 3 and
Np = 20.

among the allNp received paths. The number of fingers and
the paths are fixed toLr = 3 and Np = 20 respectively.
Also, we plot in both figures the GGD and the Gaussian
Distribution (GD). For both cases, it is clear that the MUI is
well modeled by a GGD. However, a significant gap is noticed
while comparing the empirical MUI distribution to that based
on the standard Gaussian approximation. In the sequel, given
the set of captured powers, we derive the AEP when the MUI
is assumed to be GG distributed.

A. AEP approximation based on GGD

First of all, notice that the useful signalzU in Eq.
(9) depends on the modulation format. It is equal to
zU = d1(0)

√
P1Ns for PAM modulation and zU =√

P1Ns (1 − r(δ)) (1 − 2d1(0)) for PPM modulation, where
Ns is the repetition factor. Then, since the GGD is symmetric
and both PAM and PPM modulations are equilikely, the AEP
is given by:

P e = Prob(ν >
√

P1Nsξ) =

∫ +∞

√
P1Nsξ

pν(x)dx, (11)

whereξ = 1 andξ = 1− r(δ) for PAM and PPM modulation
respectively. We denote byν = zM + η the term disturbing
the decision. Letpν(x) be its distribution.

As zM is assumed to be GG distributed and asη is
Gaussian distributed, i.e., GG distributed, we know thatν
is also well approximated by a GGD. Indeed, in [21], one
has been mentioned that the sum of two GG distributed
variables can be approximated by a GG distributed variable
as well. Consequently, the distribution ofν is described by
Eq. (10) whose the shape parameter and variance areα and
σ2 respectively. Note that the expressions ofα andσ2 in terms
of multiple access codes will be calculated in Section III-B. By
replacingpν(x) in Eq. (11) with its expression in Eq. (10) and
by doing tedious but straightforward algebraic manipulations
(especially one change of variableu = xα), we get

P e =
1

2αΓc(1 + 1/α)
Γi

[

1

α
,

(

Ns

√
P1ξ
√

Γc(3/α)

σ
√

Γc(1/α)

)α]

(12)
where Γi[., .] is the so-called incomplete Gamma function
defined byΓi[a, x] =

∫ +∞
x

ta−1 exp(−t)dt.

B. GGD parameters vs the multiple access codes

In the sequel, we denote byσ2
M andαM the variance and

the shape parameter of signalzM respectively. Termsσ2
η and

αη = 2 stand for the variance and the shape parameter of
noiseη respectively. Let us now focus on the derivation ofσ2

andα. As zM andη are zero mean, so

σ2 = σ2
M + σ2

η. (13)

As mentioned [7], the shape parameterα of a GGD rvν is
related to the fourth and second order moment as follows

α = F (−1)

(
D4

σ4

)

, (14)

whereD4=E[ν4] andF (−1)(.) is the reciprocal function of
x 7→F (x)=Γc(5/x)Γc(1/x)/Γ

2
c(3/x). Let D4

M = E[z4
M ] and

notice thatE[η4] = 3σ4
η. Like the second order moment, the

fourth order moment ofν can be expressed in function of
those ofzM andη as

D4 = D4
M + 3σ4

η + 6σ2
Mσ2

η. (15)

In order to determine perfectly the statistics ofν in terms
of the multiple access codes, we only need to deriveσ2

M and
D4

M in terms of the multiple access codes. In [7], the average
of σ2

M andD4
M over all the TH multiple access codes were

evaluated. In our work, we remind that the multiple access
codes are fixed since we would to select them according to
the minimization of the obtained AEP approximation. Notice
that the expectation for deriving the second and fourth order
moments is achieved over the channel amplitudeak

n, the
symboldn, the asynchronismθn and the delayτn according to
this order. Since the MUI depends on the modulation format
and not directly on the access technique as shown in Eq. (9),
we expressσ2

M and D4
M only with respect to the applied

modulation.
1) Closed-form expression ofσ2

M := Ea,d,θ,τ [z2
M ]: in [15]

dedicated to TH technique, we have

PAM:σ2
M =

γ1

Ts

Nu∑

n=2

Pnψn

Nc−1∑

q=0

[
C−2
1,n(q) + C+2

1,n(q)
]
, (16)

PPM:σ2
M =

1

Ts

Nu∑

n=2

Pnψn

Nc−1∑

q=0

2
[
C−2
1,n(q) + C+2

1,n(q)
]

× (γ1(0) − γ1(δ)) + C+
1,n(q)C−

1,n(q)

× [γ1(0) − γ1(2δ)] (17)

where γ1(s) =
∫
r(t)r(t − s)dt, ψn =

∑

ℓ∈L Eτ [Iℓ
1]
∑Np

k=1 Eτ [Ik
n ] with Ik

n = Ea[(Ak
n)2].

Thanks to Eq. (1), one can see that the MUI can be similarly
represented for TH and DS when employing PAM modulation.
Consequently the variance given by Eq. (16) remains valid for
DS technique.

2) Closed-form expression ofD4
M := Ea,d,θ,τ [z4

M ]: the
MUI can be decomposed aszM =

∑Nu

n=2 zM,n where
zM,n =

√
Pn

∑

ℓ∈LA
ℓ
1

∑Np

k=1A
k
nyk,ℓ,n(θn) is the interference

associated with usern. Since the channel amplitudea is
zero-mean, the expectation ofz4

M over a leads toEa[z4
M ] =
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∑Nu

n=2 Ea[z4
M,n]+6

∑Nu
n,m=2
n 6=m

Ea[z2
M,n]Ea[z2

M,m]. By using the

equalityσ2
M =

∑Nu

n=2 Ea,d,θ,τ [z2
M,n], D4

M can be expressed as

D4
M =

Nu∑

n=2

Ea,d,θ,τ [z4
M,n] +

3(Nu − 2)

Nu − 1
σ4

M ,

whereσ2
M is given by Eqs. (16) and (17) for PAM and PPM

modulation respectively.
Now, let us focus on the computation ofEa,d,θ,τ [z4

M,n]
to derive D4

M . We detail only the computation steps of
Ea,d,θ,τ [z4

M,n] for PAM modulation. The PPM case can be
achieved similarly.

In PAM case, as the time-support ofr(·) is much less than
Tc, we haverp(ǫ)rq(ǫ − Tc) = 0, ∀p, q. Consequently, the
expectation ofEa[z4

M,n] over the zero-mean symbold leads
to

Ea,d[z
4
M,n] = P 2

n

Np∑

k=1
ℓ∈L

Jℓ
1J

k
n

[ (
C+4
1,n(qk,ℓ

n ) + C−4
1,n(qk,ℓ

n )
)

× r4(ǫk,ℓ
n ) +

(
C+4
1,n(qk,ℓ

n + 1) + C−4
1,n(qk,ℓ

n + 1)
)

× r4(ǫk,ℓ
n − Tc)

+ 6C+2
1,n(qk,ℓ

n )C−2
1,n(qk,ℓ

n )r4(ǫk,ℓ
n )

+ 6C+2
1,n(qk,ℓ

n + 1)C−2
1,n(qk,ℓ

n + 1)r4(ǫk,ℓ
n − Tc)

]

with Jk
n = Ea[(Ak

n)4].
The expectation ofEa,d[z

4
M,n] over the uniform variable

θn is obtained byEa,d,θ[z
4
M,n] = 1

Ts

∫

Ts
Ea,d[z

4
M,n]dθ. By

writing the integral over[0, Ts] as a sum of integrals over the
subinterval[0, Tc], and by taking into account the periodicity
of the multiple access codes, we find

Ea,d,θ[z
4
M,n] =

γ2

Ts
P 2

n

Np∑

k=1
ℓ∈L

Jℓ
1J

k
n

×
Nc−1∑

q=0

[C+4
1,n(q) + C−4

1,n(q)

+ 6C+2
1,n(q)C−2

1,n(q)]

with γ2 =
∫
r4(t)dt. Finally, using previous equalities and

averagingEa,d,θ[z
4
M,n] over the delaysτk

n − τ ℓ
1 leads to the

following expression for the fourth order moment

PAM format: D4
M =

γ2

Ts

Nu∑

n=2

P 2
nφn

Nc−1∑

q=0

[

C+4
1,n(q)

+ C−4
1,n(q) + 6C+2

1,n(q)C−2
1,n(q)

]

+
3(Nu − 2)

Nu − 1
σ4

M (18)

with φn =
∑

ℓ∈L Eτ [Jℓ
1 ]
∑Np

k=1 Eτ [Jk
n ] andσ2

M given by Eq.
(16).

In PPM modulation case, the expression of the fourth order

moment is given by

PPM format: D4
M =

1

Ts

Nu∑

n=2

P 2
nΨn

N−1∑

q=0

[

(C−4
1,n(q)

+ C+4
1,n(q))γ3 + 2(C−3

1,n(q)C+
1,n(q)

+ C−
1,n(q)C+3

1,n(q)) (γ3 + γ5)

+ 3C−2
1,n(q)C+2

1,n(q) (γ3 + γ4)
]

+
3(Nu − 2)

Nu − 1
σ4 (19)

with γ3 =
∫
r21(t)r

2(t)dt, γ4 =
∫
r21(t)r

2(t − δ)dt, γ5 =
∫
r31(t)r(t − δ)dt, andσ2

M given by Eq. (17).
As a conclusion, the AEP for PAM modulation is thus

obtained by replacingσ2 and α in Eq. (12) with Eqs. (13)
and (14). Thenσ2 can be expressed via Eq. (16) in terms of
multiple access codes, andα is expressed with respect to the
multiple access codes through Eqs. (15), (16) and (18). For
the PPM modulation, Eq. (16) is replaced with Eq. (17), and
Eq. (19) plays the role of Eq. (18).

IV. M ULTIPLE ACCESS CODES MINIMIZING THEAEP

GivenNs and the captured powers, the AEP (see Eq. (12))
depends only onα andσ2. For a givenσ2, one can remark
thatP e decreases whenα increases at high SINR. Therefore,
in order to minimize the performance,i.e., the AEP, we have
to select the codes that minimizeσ2 and then maximizeα.
Using Eq. (14) and the monotonic decreasing property of
F (−1)(.), maximizingα is equivalent to minimizingD4 when
σ2 is fixed. Notice that the high SINR assumption is not
restrictive since we would like to improve the error floor
occuring in the Rake receiver. Due to Eqs. (13)-(19) and the
independence ofσ2

η with respect to the multiple access codes,
minimizingσ2 andD4 with respect to the multiple access boils
down to minimizingσ2

M andD4
M with respect to the multiple

access codes. Unlike the previous sections of this paper where
parameters are provided in function of the applied modulation,
we need hereafter to distinguish the access techniques for
codes selection since the codes belong to{0, 1} and{−1, 1}
in TH and DS case respectively.

A. Optimal codes in Time Hopping case

Before going further, we introduce the following lemma.
Lemma 1: Let us consider a pair of DTH codes(cm, cn)

that satisfies
∑Nc−1

q=0 (C+
m,n(q) + C−

m,n(q))2 = N2
s , then

supq

(
C+

m,n(q) + C−
m,n(q)

)
= 1.

The proof is drawn in Appendix I and uses some results given
in [15].

In this subsection, we aim to identify the pair of codes
that minimizes bothσ2

M and D4
M given by Eqs. (16) and

(18) respectively for PAM modulation, and by Eqs. (17) and
(19) respectively for PPM modulation. In [15], it has been
proven that a pair of DTH codes minimizesσ2

M if and only
if
∑Nc−1

q=0 C+2
1,n(q) + C−2

1,n(q) = N2
s when PAM modulation is

used. Using Lemma 1 and noting thatC−
1,n(q), C+

1,n(q) ≥ 0,
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we can deduce that
Nc−1∑

q=0

(
C+
1,n(q) + C−

1,n(q)
)2

= N2
s (20)

is equivalent to
∑Nc−1

q=0 C+2
1,n(q) + C−2

1,n(q) = N2
s since

C+p1

1,n (q)C−p2

1,n (q) = 0, ∀p1, p2. Thus, the codes satisfy-
ing Eq. (20) minimize σ2

M with PAM modulation. For
PPM modulation case, it has been already proven in [15]
that a pair of DTH codes minimizesσ2

M if and only
if
∑Nc−1

q=0

(
C+
1,n(q) + C−

1,n(q)
)2

= N2
s . Now, let us prove

that the selected codes (i.e. satisfying Eq. (20)) minimize
D4

M . Inspecting Eqs. (18) and (19) show thatD4
M is min-

imum for both PAM and PPM modulations if and only if
∑Nc−1

q=0 C+4
1,n(q) + C−4

1,n(q) and
∑Nc−1

q=0 C+p1

1,n (q)C−p2

1,n (q) are
minimum when(p1, p2) = (2, 2) with PAM and (p1, p2) =
(1, 3), (3, 1), (2, 2) with PPM. Reminding that a pair of codes
verifying Eq. (20) satisfies

∑Nc−1
q=0 C+2

1,n(q) + C−2
1,n(q) = N2

s

andC+p1

1,n (q)C−p2

1,n (q) = 0, ∀p1, p2. Using Lemma 1, positivity
of C+

1,n(q) andC−
1,n(q), we can deduce that

∑Nc−1
q=0 C+4

1,n(q) +

C−4
1,n(q) is minimal as well and is equal toN2

s . This leads to
next Theorem 1 which characterizes the DTH codes minimiz-
ing the AEP for PAM and PPM modulations.

Theorem 1: The AEP of user of interest1 is minimum
for both PAM and PPM modulations, if and only if, the set
of pair of DTH codes{(c1, cn), n = 2, . . . , Nu}, satisfies
∑Nc−1

q=0

(
C+
1,n(q) + C−

1,n(q)
)2

= N2
s .

Notice that, in [15], the authors suggest to select the DTH
codes minimizing the variance. These codes correspond to
those that we propose in Theorem 1 when PPM modulation
is applied. However, when PAM modulation is used, the
codes minimizing the variance only satisfy

∑Nc−1
q=0 C+2

1,n(q) +

C−2
1,n(q) = N2

s which corresponds to a larger set of codes than
the set of codes verifying the condition illustrated in Theorem
1. Consequently in PAM context, the codes minimizing our
AEP is only a subset of the codes minimizing the MUI
variance.

B. Optimal codes in Direct Sequence case

Before exhibiting the Optimal DS codes, we introduce two
preliminary lemmas.

Lemma 2: Let(cm, cn) be two Direct Sequence codes of
lengthNc. We have

∑Nc−1
q=0 C+2

m,n(q) + C−2
m,n(q) ≥ Nc.

Proof of Lemma is given in Appendix II.
Lemma 3: Let(c1, cn) be a pair of DS code satisfying

∑Nc−1
q=0 C+2

1,n(q) + C−2
1,n(q) = Nc.

• Nc even case:|C+
1,n(q)|= |C−

1,n(q)|=0 if q is even; and
|C+

1,n(q)|=|C−
1,n(q)|=1 if q is odd.

• Nc odd case:|C+
1,n(q)|=1, |C−

1,n(q)|=0 if q is odd; and
|C+

1,n(q)|=0, |C−
1,n(q)|=1 if q is even.

Due to the lack of space, proof of Lemma 3 is omitted.
Nevertheless the proof can be done in similar way of those
of Lemma 2.

Let {(c1, cn)} be a set of pair of DS code satisfying Eq.
(21). Thanks to Lemma 2, the varianceσ2

M (given by Eq.
(16)) is then minimal. Let us now focus onD4

M given by

Eq. (18). By means of Lemma 3, one can easily check that
∑Nc−1

q=0 C+4
1,n(q) + C−4

1,n(q) is minimal and is equal toNc. The

second term ofD4
M , given by

∑Nc−1
q=0 C+2

1,n(q)C−2
1,n(q), is equal

to Nc/2 if Nc is even and0 otherwise, and thus identical for
any code minimizing the variance. Therefore, Eq. (21) leads
to the joint minimization ofσ2

M andD4
M . The proof of the

reverse implication can be easily done by using Lemmas 2
and 3. We are now able to state the following Theorem that
provides the characterization of optimal pair of DS codes in
PAM and PPM modulations context.

Theorem 2: The AEP of user of interest1 is minimum,
if and only if, the set of pair of DS codes{(c1, cn), n =
2, . . . , Nu}, satisfies

Nc−1∑

q=0

C+2
1,n(q) + C−2

1,n(q) = Nc. (21)

Unlike TH scheme with PAM modulation, we see that min-
imizing jointly the GGD variance and shape parameter is
equivalent to minimizing the variance only, in DS scheme
context with PAM modulation.

V. A SYMPTOTIC DISTRIBUTION OF OPTIMAL PAIRS

The optimal codes distribution has been empirically exam-
ined in [15] for TH UWB systems. By means of exhaustive
search for reasonable values ofNs and Nc, it has been
observed in [15] that the percentage of optimal pairs grows
with Nh = Nc/Ns for a fixedNs. It has been thus conjectured
in [15] that, the probability that two codes picked at random
form an optimal pair goes to1 whenNh goes to infinity for
a fixedNs. In this section, we aim to prove this conjecture
for TH UWB system and we extend the work to DS UWB
system case. Let us denoteπ the probability that a pair of
codes(c1, cn) is optimal and let us focus on the variation of
π in function of the access code parameters, i.e.Nc andNs

for TH technique andNc = Ns for DS technique.

A. Proportion of optimal pair of codes in Time Hopping case

Reminding that we have proven in section IV-A that an op-
timal pair (c1, cn) satisfiessupq C1,n(q) = 1, with C1,n(q) =
C+
1,n(q) + C−

1,n(q). Thus, we can define the probabilityπ as
follows:

π := Pr{∀q ∈ {0, . . . , Nc − 1} / C1,n(q) ≤ 1}. (22)

Before illustrating the variation ofπ wrt Ns andNc, we
introduce a new way of interpretingC1,n(q) that will be useful
in the following. Let us start with an example in order to
facilitate the understanding where the Time Hopping (TH)
codesc̃m of length Ns are considered instead of the DTH
codescm of lengthNc. The values of the sequencẽcm are
drawn in {0, · · · , Nh − 1} and the relationship between the
two code presentations (TH and DTH codes) is given in [15].
Remind that̃cm(j) provides the position of the occupied chip
within the jth frame. Let us considerNh = 5, Ns = 4, and
the two TH codes̃cm = {2, 4, 0, 1} and c̃n = {1, 1, 4, 3}. The
eventCm,n(q) = 2 occurs when, for a given delayq, two ’1’
of the first developed code are aligned with two ’1’ of the
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other developed code. In our example, this occurs for instance
for q = 4. Notice that the gap of bins between the two ’1’ is
equal to12. In order to formalize the relationship between the
collisions and the positions of the ’1’ in the DTH code, let us
define thedistance:

dm(p, q) := c̃m(q) − c̃m(p) + (q − p)Nh (23)

which represents the number/gap of bins (or distance) between
the ’1’ of framesp andq for the developed codecm. According
to Eq. (8) and the code periodicity, the set of distances to be
considered is given byD := {dm(p, q), 0 ≤ p ≤ Ns − 1, p+
1 ≤ q ≤ p+Ns − 1}, where the arguments of the DTH code
in (23) have to be taken moduloNs. In our example, the two
equal distances that concur to the collision of weight2 are
dm(2, 4) = c̃m(0)− c̃m(2)+ (4−2)Nh = 2−0+2×5 = 12,
anddn(1, 3) = c̃n(3)− c̃n(1)+(4−2)Nh = 3−1+2×5 = 12
as illustrated in Fig. 3.

.

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 01 1 10 0 1 0 0

1 0 01 0 1 0 1

distance  = 12

2 collisions

0 0 1 0 0

c̃m(0) = 2 c̃m(1) = 4 c̃m(2) = 0 c̃m(3) = 1 c̃m(0) = 2

c̃n(0) = 1 c̃n(1) = 1 c̃n(2) = 4 c̃n(3) = 3k = 4

Codecm

Codecn

.

Fig. 3. Example of two pair codes for which two collisions occur (Cm,n = 2)
for delay q = 4

Let us define the eventEi := {it exists at least one value of
q ∈ {0, . . . , Nh − 1} for which Cm,n(q) = i}. Then, we can
state that the eventE2 occurs as soon as the two codes have
at least one distance inD equal, and more generally, the event
Ei occurs as soon as the two codes have at least(i − 1)i/2
distances inD equal. Notice that when the eventE1 occurs,
D may be empty since the notion ofdistanceneeds at least
two collisions. All previous materials will be useful to prove
the following Theorem which actually inspects the probability
that the eventE1 occurs.

Theorem 3: The probabilityπ, that a pair of DTH code
(c1, cn) is optimal, is lower bounded by

π ≥ 1 − Ns(Ns − 1)2

Nh

[

Ns −
4

3
+

1

3

(
1

Nh

)2
]

. (24)

Proof of Theorem 3 is provided in Appendix III. We remark
that Theorem 3 confirms the conjecture illustrated in [15].
Indeed, using Eq. (24), it is clear thatπ converges to 1 when
Nh goes to infinity for a given valueNs. Therefore, when
TH scheme is used with either PAM or PPM modulation, the
probability that two codes picked at random form an optimal
pair goes to 1 whenNh is large for a fixedNs. Moreover, it
suggests that for a givenNs, increasing the number of optimal
pairs can be done by increasingNh.

B. Proportion of optimal pair of codes in Direct Sequence
case

The distance (23) introduced in the previous case to derive
a bound for the probabilityπ is not valid for DS scheme since
the code values belong to{−1,+1}. To find a bound for the
probabilityπ, we search to estimate the maximum number of

optimal pair of codes. To do this, we examine the optimality
conditions for bothC+

1,n(q) and C−
1,n(q) given in Lemma 3

and we represent them by linear systems of equations with
unknown variablescn(k). The matrix of coefficients is then
conditioned by the codec1. Since the optimality conditions
depend on the parity ofNc, we distinguish in the following
both cases:Nc is even andNc is odd.

1) Nc is even: The optimality conditions forC+
1,n(q) (i.e.

|C+
1,n(q)| = 0 if q is even and|C+

1,n(q)| = 1 if q is odd) can
be represented by2Nc/2 linear systems that differ with the
column vector of solutions. These systems are given in Eq.
(25).

C1










cn(0)
cn(1)
...
cn(Nc − 2)
cn(Nc − 1)










=










±1
0
...
±1
0










︸ ︷︷ ︸

v

(25)

with

C1 =










c1(Nc − 1) 0 · · · 0
c1(Nc − 2) c1(Nc − 1) 0 0
...

...
. . .

...
c1(1) c1(2) · · · 0
c1(0) c1(1) · · · c1(Nc − 1)










.

TheNc × 1 vector of system outputv is defined as follows:
v(k) = ±1 if k is even andv(k) = 0 otherwise, for0 ≤ k ≤
Nc −1. TheNc ×Nc matrix of coefficients is the same for all
the linear systems with determinant equals to(c1(N−1))Nc =
1 6= 0. Therefore, each system has at most a unique solution in
theNc variablescn(k) ∈ {−1, 1}, 0 ≤ k ≤ Nc−1, according
to the codec1. Let us denoteS+(c1) the set of these solutions.

S+(c1) = {cn ∈ {−1,+1}Nc/ for 0 ≤ q ≤ Nc − 1

|C+
1,n(q)| = 0 if q is even and

|C+
1,n(q)| = 1 if q is odd}

Then the cardinality of S+(c1) is bounded by
Card(S+(c1)) ≤ 2Nc/2. Now, the representation of
the optimality conditions forC−

1,n(q) (i.e. |C−
1,n(q)| =

0 if q is even and|C−
1,n(q)| = 1 if q is odd) with 2Nc/2

linear systems leads to

C2










cn(1)
cn(2)
...
cn(Nc − 2)
cn(Nc − 1)










=










±1
0
...
0
±1










. (26)

where

C2 =










c1(0) c1(1) c1(2) · · · c1(Nc − 2)
0 c1(0) c1(1) · · · c1(Nc − 3)
...

. . .
. . .

. . .
...

0 · · · 0 c1(0) c1(1)
0 0 · · · 0 c1(0)









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and, where the elements of the vector of solutions
{v(k)}0≤k≤Nc−2 are equal tov(k) = ±1 if k is even and
v(k) = 0 otherwise. The matrix of coefficients for each
linear system is nonsingular (with non null determinant equals
c1(0)), then each system has at most a unique solution in the
Nc variablescn(k) ∈ {−1, 1}, 1 ≤ k ≤ Nc − 1. Let S−(c1)
be the set of these solutions:

S−(c1) = {cn ∈ {−1,+1}Nc/ for 0 ≤ q ≤ Nc − 1

|C−
1,n(q)| = 0 if q is even and

|C−
1,n(q)| = 1 if q is odd}

The cardinality of S−(c1) is then bounded by
Card(S+(c1)) ≤ 2×2Nc/2. Given a codec1, a pair of DS code
(c1, cn) is then optimal if and only ifcn ∈ S+(c1) ∩ S−(c1).
Therefore, the number of optimal pair of codes is at most
2Nc/2 according to the codec1. Consequently, as the number
of pair of codes is equal to2Nc , we haveπ ≤ 2Nc/2/2Nc.
Moreover, one can identify a codec1 that allows to obtain
2Nc/2 optimal pair of codes. Letc1 be a DS code whose
elements are equal to 1,c1(k) = 1, ∀k. By induction, we
can easily prove that a codecn belongs toS+(c1), with
c1(k) = 1 ∀k, should satisfycn(2k + 1) = −cn(2k), ∀k.
Now, let us consider a codecn belonging toS+(c1). Then
we can immediately verify thatcn belongs toS−(c1) also.
Therefore, the number of optimal pair of codes is equal to
Card(S+(c1)) = Nc/2.

2) Nc is odd: By proceeding as for the previous case, we
can represent the optimality conditions forC+

1,n(q) andC−
1,n(q)

with 2(Nc+1)/2 and 2(Nc−1)/2 linear systems of equations
respectively. The matrices of coefficients are the same as given
in Eqs. (25) and (26). The vector of solutionsv resembles
to that described before wherev(k) = ±1 if k is even and
v(k) = 0 otherwise. However, the vectorv that we obtain
while considering the optimality conditions forC−

1,n(q) is
different. It satisfiesv(k) = 0 if k is even andv(k) = ±1
if k is odd. Therefore, the cardinalities ofS+(c1) andS+(c1)

satisfy Card(S+(c1)) = Card(S−(c1)) ≤ 2
Nc+1

2 , where
S+(c1) and S−(c1) are the sets of solutionscn(k) for the
linear systems associated with the optimality conditions for
C+
1,n(q) and C−

1,n(q) respectively. Consequentlyπ is upper-
bounded by2(Nc+1)/2/2Nc .

Given the comments illustrated in the previous items for the
code optimality conditions, we can then state the following
Theorem.

Theorem 4: Let us consider a DS UWB system. The prob-
ability π to find an optimal pair of codes(c1, cn) is bounded
by:

π ≤
{

2−
Nc
2 , if Nc is even

2
1−Nc

2 , if Nc is odd.

WhenNc is even, it is noticed that it exists at least one code
c1 for which the upper bound forπ is achievable.
Unlike TH codes, the proportion of optimal pair of DS codes
goes to zero whenNc tends to infinity. Therefore finding
optimal codes is often impossible with DS technique whereas
it is an easy task with TH technique. This statement is a great
advantage for TH technique compared to DS technique.

VI. N UMERICAL RESULTS AND COMPARISONS

In this section, we compare the empirical Bit Error Rate
(BER) and the numerical evaluation of the proposed closed-
form expression of the AEP. We also highlight the influence
of the codes optimization on the performance (only for PAM
in TH context). The analysis concerning the proportion of
optimal pair of codes is illustrated as well. Finally we compare
TH and DS multiple access techniques and show that the
former outperforms the latter.

Let us start by introducing the simulation parameters. We
consider a normalized Gaussian impulse

w(t) = Aw

√

2

π

cos(2πfct)

λ
e−

t2

2λ2

with Aw is a normalized factor such that
∫ +∞
−∞ w2(t)dt = 1,

fc = 6.85 GHz andλ = 9.107×10−2 ns. The captured powers
from all the users{Pn}n=1,...,Nu are assumed to be equal and
they are set to1. Except otherwise stated, for the sake of
simplicity, the considered channel is AWGN. We remind that
the generalized Gaussian based modeling holds for multipath
channel as shown in Fig 2. For PPM modulation, the delay is
set toδ = 0.0707 ns.

In Figs. 4 and 5, we compare the theoretical AEP ap-
proximation given by Eq. (12) (displayed in solid lines)
to the empirical Bit Error Rate (displayed in dotted lines)
for different values ofNu in PAM TH, PPM TH systems
respectively. The symbol time is equal toTs = 48 ns for
all systems. The number of chipsNc is equal to16 and the
repetition factorNs is equal to4 which means thatNh = 4.

1E-04

1E-03

1E-02

1E-01

0 5 10 15 20 25 30 35 40

A
E

P

SNR (dB)

MUI Gaussian approximation

for Nu=30

Nu=20
Nu=30
Nu=40
Nu=50

Fig. 4. Theoretical AEP (solid lines) and empirical BER (dotted lines) for
PAM TH-UWB system withNc = 16, Ns = 4, Tc = 3 ns and random
codes. AEP with MUI Gaussian approximation forNu = 30 (dashed lines).

All figures show the accuracy of our approximation when
the codes are chosen at random for the differentNu values,
except with PPM modulation where a small gap is noticed with
Nu = 20 and 30. The error probability with the Gaussian
approximation (α = 2 in Eq. (12)) is also plotted in both
figures forNu = 30. The Gaussian approximation clearly
underestimates the error probability for TH UWB and DS
UWB systems as already observed in [5].

Let us now examine the impact of the codes optimization
on the system performance. We choose a PAM TH-UWB
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1E-04

1E-03

1E-02

1E-01

1E+00

0 5 10 15 20 25 30 35 40

A
E

P

SNR (dB)

MUI Gaussian approximation

Nu=20
Nu=30
Nu=40
Nu=50

Fig. 5. Theoretical AEP (solid lines) and empirical BER (dotted lines) for
PPM TH-UWB system withNc = 16, Ns = 4, Tc = 3 ns and random
codes. AEP with MUI Gaussian approximation forNu = 30 (dashed lines).

system since TH technique guarantees the existence of optimal
codes for all the users as proven in Section V and since
we will observe difference between codes optimization done
with proposed criteria and codes optimization relying on
minimization of MUI variance. The number of active users
is equal toNu = 30, the symbol timeTs = 72 ns, the number
of chips isNc = 24 and the repetition factorNs = 4. In
Fig. 6, we inspect the impact of the multiple access codes
on the performance. For the sake of simplicity, an AWGN
channel is considered. We are interesting to three cases:case 1
corresponds to random codes,case 2corresponds to the codes
minimizing the MUI varianceσ2

M as done in [15], andcase 3
corresponds to the codes verifying Eq. (20),i.e., minimizing
jointly σ2

M andD4
M .

1E-05

1E-04

1E-03

1E-02

1E-01

0 5 10 15 20 25 30 35 40

A
E

P

SNR (dB)

case 1
case 2
case 3

Fig. 6. Theoretical AEP (solid lines) and empirical BER (dotted lines) wrt
the codes properties for PAM TH-UWB system withNc = 24, Ns = 4,
Tc = 3 ns andNu = 30.

By comparing these different cases, we notice that the
last case leads to the best performance. The selection of the
codes that minimize only the variance does not guarantee a
minimal error probability. These codes nevertheless improve
the performance with respect to the random codes. In Fig. 7,
similar curves have been plotted in the following multipath

environment: the considered multipath channel is the CM2
model [16] with one cluster. The PRake (Partial Rake) is
employed where the receiver uses the firstLr paths among
the allNp received paths. The number of fingers and the paths
are fixed toLr = 3 andNp = 20 respectively.

0 5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

SNR
A

E
P

 

 
Case 1: theoretical
Case 1: empirical
Case 2: theoretical
Case 2: empirical
Case 3: theoretical
Case 3: empirical

Fig. 7. Performance wrt the codes properties for PAM TH-UWB system in
multipath channel withNc = 24, Ns = 4, Tc = 3 ns andNu = 30.

The improvement achieved thanks to codes optimization is
not significant for multipath channel. Indeed, the interference
remains important even with the use of optimal codes because
of the contribution of each interferer withNp paths.

In Tab. I.a (resp. Tab. I.b), we estimateπ and the number of
found optimal pairsNo for Ns = 3 (resp. forNs = 6) using
106 random trials (resp.5 × 106 random trials). We remark
thatπ goes to1 whenNc increases, but one can also remark
that the convergence is slower forNs = 6. This behavior is

TABLE I

ESTIMATED PROBABILITY π̂ OF π VS Nc FORa) Ns = 3 AND b) Ns = 6

IN TH CONTEXT

a) Ns = 3 (106 trials)
Nc 20 30 40 100 1000
No 67579 77329 82311 92802 99256
π̂ 0.67579 0.77329 0.82311 0.92802 0.99256

b) Ns = 6 (5 × 106 trials)
Nc 200 600 800 1000 2000
No 326417 434097 450140 459936 479223
π̂ 0.652834 0.868194 0.910008 0.919872 0.958446

in accordance with the bound expression (24) which shows
that for a givenNc the bound is an increasing function with
respect toNs. Lastly, even whenπ is far from1, the number of
optimal pair foundNo can be very large and sufficient enough
for practical systems with a few tenth of users.

In Fig. 8, we plot both the theoretical upper bound and
the empirical percentage of optimal codes in function of
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the number of chips per symbolNc for DS multiple access
technique. The figure confirms our theoretical analysis.
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Fig. 8. Estimated probabilitŷπ of π vs Nc in DS context

Notice that forNc even, the bound is reached as mentioned
in Theorem 4 whereas forNc odd, the bound is clearly not
achieved. The percentage of optimal codes is rapidly close
to zero whenNc is odd (Nc ≥ 13) while the number of
optimal codes approaches zero forNc ≥ 20 whenNc is even.
Consequently, unlike TH multiple access technique, assigning
optimal codes for all active users will be often impossible.

Thanks to numerical results, we have shown that the closed-
form expression given by Eq. (12) well approximates the
error probability for both TH UWB and DS UWB systems.
Therefore, this approximation can be used as a metric to select
not only the best codes but also the best access technique
which minimizes the error probability. In order to compare
both multiple access techniques fairly, we choose the same
repetition factorNs as well as the same symbol timeTs

for TH and DS UWB systems. These conditions ensure to
obtain the same captured energy as well as the same rate
for both systems. Notice that the captured energy is equal
to U = N2

sE
2
wϕ with Ew =

∫
w2(t)dt = 1 andϕ depends

on the channel parameters. For simulations, we takeNs = 6,
Ts = 108 ns andNh = 6 with TH technique. To optimize the
performances for both systems, we select the codes in such
a way to maximize the number of optimal pair of codes. By
simulations, we remarked that we are able to assign optimal
codes for all users with TH technique whateverNu ≤ 64.
However, at most20% of active users with DS technique use
optimal codes. This observation is yet illustrated in Section V
where we have proven that the number of optimal DS codes
should decrease when increasingNs. In Fig. 9, we depict the
AEP at SNR=30 dB for PAM TH and PAM DS UWB systems
in function of the number of usersNu. We add another curve
in which we consider that all users with DS technique have
optimal codes. This curve can be only obtained using the AEP
by forcing the criteriaσ2

M and D4
M to take their minimal

values. For the simulatedNu ranges, it is clear that TH scheme
gives better performance than DS access technique. Notice
that the property on the percentage of optimal pair of codes
is crucial to compare properly both multiple access technique.

Indeed, if we assume that all users have optimal codes (which
is not true for DS technique), then DS technique should be
better than TH technique.
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Fig. 9. Comparison of PAM TH-UWB and PAM DS-UWB systems in
AWGN channel forNs = 6, Ts = 108ns and SNR = 30dB. Theoretical
AEP (solid lines) and empirical BER (dotted lines).

VII. C ONCLUSIONS

An accurate error probability approximation for PAM TH,
PPM TH and PAM DS IR-UWB systems has been derived
assuming the MUI distribution is well modeled by GGD
for any set of fixed multiple access codes. Based on this
approximation, we have deduced the criterion that the multiple
access codes have to satisfy in order to minimize the error
probability for the three inspected UWB systems. Given this
criterion, we have then focused on the percentage of the
optimal pair of codes for both TH and DS access technique.
Unlike DS scheme, we have proven that TH scheme guarantees
to obtaining sufficiently optimal pair of codes when increasing
the number of chips per frameNh for a fixed repetition factor
Ns. Numerical results have been depicted to highlight the
significant gains while selecting the appropriate codes in TH
context. The comparison of TH and DS scheme in AWGN
channel using the simulation results shows that the former
offers better performance than the latter.

APPENDIX I
PROOF OFLEMMA 1

Let us denoteχm,n =
∑Nc−1

j=0 C2
m,n(j), whereCm,n(j) =

C+
m,n(j) + C−

m,n(j). By expressingχm,n as in Eq. (27) of
[15], χm,n =

∑Ns

i=1 i
2 ·πi with πi ≥ 0 is the number of times

that Cm,n(j) = i, and by using proposition 3 of [15], we can
deduce thatχm,n = N2

s ⇒ π1 6= 0 and {πi = 0}Ns

i=2 ⇔
supq Cm,n(q) = 1. For the reverse, we usesupq Cm,n(q) =

1 ⇔ π1 6= 0 and{πi = 0}Ns

i=2, and the proposition 1 of [15],
we obtainχm,n = π1 = N2

s . �

APPENDIX II
PROOF OFLEMMA 2

Given Eq. (8), we show thatC−
m,n(q) andC+

m,n(q) consist of
q andNc − q terms respectively. Each term belongs to{±1}.
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WhenNc is odd,q andNc − q does not have the same parity.
Consequently, whenq is even,C−

m,n(q) is lower-bounded by
0 and C+

m,n(q) is lower-bounded by1 which implies that
C+2

m,n(q) + C−2
m,n(q) is lower-bounded by1. When q is odd,

we just have to permute the role ofC−
m,n(q) and C+

m,n(q).
Then we deduce immediately that

∑Nc−1
q=0 C+2

m,n(q) + C−2
m,n(q)

is lower bounded byNc the number of terms in the sum. When
Nc is even, similar proof can be done. �

APPENDIX III
PROOF OFTHEOREM 3

In order to prove Eq. (24), we derive an upper bound for
the contrary event̄π := 1 − π.

π̄ = Pr{∃q ∈ {0, . . . , Nc − 1} / Cm,n(q) ≥ 2, }

= Pr{
Ns⋃

i=2

Cm,n(q) = i, ∀q}. (27)

Thanks to the Union Bound (UB), we upper bound (27) as
follows:

π̄ ≤
Ns∑

i=2

πi, (28)

where
πi := Pr{Ei}. (29)

The realization of eventE2 is equivalent to finding two pairs
(p1, q1) and (p2, q2) for which dm(p1, q1) = dn(p2, q2),
while the realization of eventE3 is equivalent to the in-
tersection of three sub-eventsE3 = {E1

3 ∩ E2
3 ∩ E3

3} with
E1

3 := {∃(p1, q1), (p2, q2)/ dm(p1, q1) = dn(p2, q2)}, E2
3 :=

{∃(p1, r1), (p2, r2)/ dm(p1, r1) = dn(p2, r2)}, and E3
3 :=

{∃(q1, r1), (q2, r2)/ dm(q1, r1) = dn(q2, r2)}. From basic
probability property we have,∀i, Pr{E3} ≤ Pr{Ei

3}. Thus,
noticing thatE2 andEi

3 are equivalent since they represent the
same event, we have proved thatπ2 ≥ π3. By recurrence, we
can easily extend this results toπ2 ≥ πi, for i = 3, . . . , Ns.
Consequently, applying those inequalities to Eq. (28) gives:

π̄ ≤ (Ns − 1)π2. (30)

Using the interpretation of the distance notion intro-
duced in Section V-A, we can re-expressπ2 as π2 =
Pr{⋃p1,q1

p2,q2

dm(p1, q1) = dn(p2, q2)}. Then, using the UB,π2

can be upper bounded byS:

π2 ≤ S :=
∑

p1,q1
p2,q2

Pr{dm(p1, q1) = dn(p2, q2)}. (31)

In order to computeS, we consider the codes as random,
with values c̃m(q) independent and equally distributed in
{0, · · · , Nh−1}, and thus∀i ∈ {0, · · · , Nh−1}, Pr{c̃m(q) =
i} = 1/Nh. Following those hypothesis and using Eq. (23),
we can re-expressS as:

S =
∑

p1,q1
p2,q2

Pr{∆m −∆n = ((q2 − p2)− (q1 − p1))Nh}. (32)

with ∆m := c̃m(q1) − c̃m(p1). Note that in∆m, the de-
pendency top1 and q1 has been removed because of the

independence betweeñcm(q). The same argument applies for
∆n. Noticing that(q2 − p2) − (q1 − p1) takes several times
the same value over the domain of index variation, we can
re-express Eq. (32) as:

S =

2Ns−2∑

ℓ=−2Ns+2

Pr{∆m−∆n = ℓNh}·Ns(Ns−1)(Ns−|ℓ|−1).

(33)
Sincec̃m(q) are drawn in{0, · · · , Nh−1}, (∆m−∆n) varies
in [−2Nh +2, 2Nh−2]. Thus, for|ℓ| ≥ 2, probabilities in the
sum (33) are null, and thanks to the symmetrical distribution
of ∆m − ∆n, Eq. (33) reduces to:

S = Ns(Ns − 1)[α(Ns − 1) + 2β(Ns − 2)], (34)

with α := Pr{∆m−∆n = 0} andβ := Pr{∆m−∆n = Nh}.
Quantityα can be computed as follows:

α = Pr{
Nh−1⋃

q=−Nh+1

(∆m = q) ∩ (∆n = q)}

=

Nh−1∑

q=−Nh+1

Pr{∆m = q}Pr{∆n = q}. (35)

From c̃m(q) probability distribution, straightforward compu-
tation givesPr{∆m = i} = (Nh−|i|)/(Nh)2, which inserted
into (35) gives:

α =
1

N2
h

+ 2

Nh−1∑

q=1

(Nh − q)2

(Nh)4
=

2

3(Nh)
+

1

3(Nh)3
(36)

Quantityβ = Pr{⋃Nh−1
q=1 (∆m = q) ∩ (∆n = q + Nh)} can

be computed as follows:

β =

Nh−1∑

q=1

Pr{∆m = q}Pr{∆n = q +Nh}

=
1

N4
h

Nh−1∑

q=1

(Nh − q)Nh =
1

6Nh
− 1

6N3
h

. (37)

Combining Eqs. (34), (36), and (37) gives:

S = Ns(Ns − 1)

[
Ns

Nh
− 4

3Nh
+

1

3N3
h

]

. (38)

Thus, we deduce from Eqs. (29), (30), (31), and (38) thatπ̄ ≤
Ns(Ns−1)2

Nh

[

Ns − 4
3 + 1

3N2
h

]

, which shows thatlimNc→∞ π̄ =

0 and then proves (24). �
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