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Abstract—In Impulse Radio Ultra Wide Band (IR-UWB) [8], [9], [10], [11], [12], it was shown that either the GGD
based _SySt]ng, we Sh(?_w thatdthe MuItIE)USGI’ |”nterferen_ce ('\/(ljl)’b or the Gaussian mixture ar-stable distributions are relevant
assuming fixed spreading codes can be well approximated by .joi fi he MUI distribution. In 7], the AEP
a Generalized-Gaussian Distribution (GGD). Then, we derig ¢ oces_to gescdbe tGeGDU dist .buttp : f [T]H tteh .
an accurate closed-form expression of the approximation fo expression base .on_ gpproxmg ion (for echnique
the Average Error Probability (AEP) in both Direct-Sequence and PAM modulation) is provided and involves the second and
(DS) and Time-Hopping (TH) multiple access context. From tis  fourth order moments of the MUI. Moreover their expression
approximation, we are able to characterize and to select thset of does not explicitly depend on the multiple access code®sinc
codes minimizing the AEP for both multiple access technique he guthors averaged the MUI moments with respect to the
The merit of each multiple access technique is then analyzed ltiol d Notice that. in th text of either GGD
we especially prove that the probability to find an optimal par muluple (_:o es: otice that, In ? C_0n gx ot either
of codes goes to one when increasing the number of chips peror Gaussian mixtures ax-stables distribution, new powerful
symbol with TH technique whereas this probability goes to zem  receivers can be carried out by using a soft limiter device
with DS technique. Numerical illustrations confirm our claims. [8], [9], [14]. These new receivers will not be considered in
this paper which focuses on the performance of the standard
Rake receiver. Concerning the choice of the multiple access

_ . ) . codes, one can mention the work of [15] which proposed to
UWB technology is a viable solution for short range and inginimize the second order moment of the MUI, in fact the

door wireless applications. lts low power consumption@io ,5riance with respect to the multiple access codes in order
to reduce the interference between UWB and other W'relet%soptimize the performance for TH and DS UWB systems.
systems and its high data rates enables UWB 10 SUPPQfitively, minimizing the MUI variance is necessary budtn
multiple users within the same radio channel. TH and Dggicient since the AEP depends on the high order statistics

are the two popular multiple access techniques that are PExqiqes; in this paper, we will prove that a second criterion
posed for UWB systems combined with different modulation,|ateq to the fourth order moment has to be considered in

schemes, such as Pulse Position Modulation (PPM), Puls@ier to really minimize the impact of the multiple access on

Amplitude Modulation (PAM) and. On-Off Keying (OOK), the system performance. The first criterion is the MUI vaz@an
[1]. Performance analysis of multi-user UWB systems WitQagcribed in [15].

different multiple access and modulation schemes has been o
already conducted in the literature in the following wayeTh The contribution of the paper are threefold:
first studies assumed a Gaussian approximation for the MUI
and then the derivation of the error probability needs sympl
the determination of the MUI variance [2], [3]. Neverthales

it was shown later in [4] that the Gaussian approximation
overestimates the performance of a standard Rake receivey
and therefore it is inaccurate to model the MUI. The Gaussian
approximation inaccuracy is also exhibited by simulations

[5]. Recently, an exact AEP has been provided in [6] for both
TH and DS UWB systems. Their derivations are based on the
study of the characteristic function of the MUI. The obtaine
AEP is accurate but its expression is still complex and does

not provide insight about the influence of design parameters ,q \ariance minimization is insufficient to optimize the
(such as the multi-user codes). Actually if we would like to performance for PAM TH UWB systems; whereas it

obtain a simple approximated AEP closed-form expressi@n,w  ,.hieves the best one with PPM TH and PAM DS UWB
need to carefully approximate the MUI distribution. In [7], systems.

This work was supported by ANR grant for project called RIStis ° Ir_‘ [6], the authors use their AEP closed-form eXp_reS'
material has been partially presented at PIMRC'2008. sion to compare both TH and DS access techniques

|. INTRODUCTION

o Assuming that the MUI is generalized-Gaussian dis-
tributed, we derive an accurate closed form expression
for the AEP in function of the multiple access codes for
both TH and DS multiple access technigues

From the obtained AEP approximation, we are able to
exhibit criteria that the multiple access codes have to
minimize in order to optimize the AEP for both access
techniques. Minimizing such criteria leads thetimal
multiple access to satisfy some constraints that are char-
acterized in this paperThe comparison of the obtained
code constraints to those illustrated in [15] shows that



assuming random codes and same data rate for both
systems while the captured energy with DS is higher
than that with TH technique. Based on their numerical o
results, they shown that PAM DS outperforms PAM TH
UWB systems and that PPM TH UWB systems achieve
the worst performance. In this paper, we compare both
access techniques combined to a PAM modulation while e
keeping fixed and judiciously choosing the access codes.
These codes, called optimal codes, are selected in such a
way to minimize the contribution of the multiple access

T, is the symbol time where each symbol consistgVof
chips of durationf, each one,

w(t) is the normalized impulse of duratidh, < T,

d,, (i) are the information symbols of user assumed to
be independent and identically distributed. The symbols
d, (i) belong to the sef—1,1},

{cn(j)}j.v:cgl is the multiple access code associated with
user n, with either ¢, (j) € {—1,1} for DS code in
DS scheme or,(j) € {0,1} for the DTH code in TH
scheme,

impairments. Howeveg theoretical study of the optimal « 6, is the time asynchronism that is assumed to be a
codes distribution shows that the probability that a pair  uniformly distributed within[0, 7.

of coc_ies be optimal goes to0 when.increasing the numtﬁétice thatN, = N,N;, where N, is the number of frames
of chips per symbol with DS technique. Fortunately, thignq 7, is the number of chips per frame in TH scheme. In
probability goes to 1 when employing TH technig8e, pg scheme, the numbéy,, is equal to 1.

finding a pair of optimal codes is not guaranteed for DS gor ppMm modulation, the expression of the TH transmit
UWB whereas it is for TH UWB systems. Based Oignal, using DTH code, is:

simulation results, we show that TH scheme (using well-
chosen codes, thus optimal pair of codes) outperforms DS
one (using well-chosen codes but not necessary optimah(t) = > > ca(f)w(t—iTy—jT.—ddy (i) —6y), (2)
pair of codes) while assuming same data rate and same i=—o0 j=0

captured energy. whered < T, is the PPM shift and the symboi, (i) belong
This paper is organized as follows. In Section II, we intreelu to {0, 1}.

the transmitted signal model for PAM TH, PPM TH and PAM  The receiver input signal is the sum of the attenuated and
DS IR-UWB systems. The considered channel model and tgglayed transmit signals from the different users. Its esgion
rake receiver structure are described as well. In Sectibn lis given by

assuming the codes to be fixed, we derive the AEP in closed-
form for the three analyzed systems using the generalized
Gaussian approximation whose parameters are evaluated in
terms of the multiple access codes. In Section IV, we present
criteria that the codes have to satisfy in order to improwe th )
performance. The study of the optifr)’aal codes distrﬁ)ution thereAij and7, are the amplitude a_nd the.delay of thet
done in Section V for both DS and TH techniques. Secticﬁf"th between the user and the receiverlV,, is the ”Um*?er

VI is devoted to numerical illustrations: we validate our BG of paths assumed to be the same _f(_)r all the USE’);S,IS_
based approximation and we also inspect the impact of tﬁl? captured_power, and() is an additive zero-mean white
codes choice on the performance; we show that the Aéaussmn n_0|se. )

significantly decreases when codes are selected as sugjgeste | '€ Multipath channel model we employ is that proposed
Section IV; a comparison of PAM TH and DS UWB system§énerally for UWB systems. The amplitudé;, is usually

k _ .k k
is carried out. Conclusions are given in Section VII. assumed to be dependent on the delayas A = aj; f(7y),
where a* are independent zero-mean random variables (rv)

and f(-) is a function which indicates the variation of the
amplitude according to the delay. The information about
We consider an IR-UWB system with either TH or DS a§ndom captured powers is provided by the{gét},—i ... n,.
a code division multiple access technique. Both PAM anthe rv ) are assumed to be independent between users but
PPM modulations can be used for TH technique; where@ke usually correlated for a given user. The distribution of
PAM modulation is only considered for DS technique. Lehe variablesr) andaj, are provided in the IEEE 802.15.3a
N, be the number of active users in the network. Eacfandard [16]. When only one cluster is considered (which
user transmits information asynchronously through a ppaiti  iS not restrictive as mentioned in [17]), the delgy follows
channel. Using the Developed Time Hopping (DTH) code fé Poisson distribution. The attenuatiafy = pj; - 3);, where
TH technique [15], the transmitted signal depends only en th), € {1} are equiprobable and}; are log-normal rv. The
applied modulation as follows. function f(-) is defined byf(7}) = e~™/27, wherey is the
For PAM modulation, the transmit signal from useris Path power-decay time.
expressed similarly for DS and TH techniques: Without loss of generality, the user of interest is assumed
to be the userl. We consider the rake receiver of uskr

oo N.—1

Ny, Np
y(t) =Y VP [ D Aksat—7F) | +n(t),  (3)
n=1 k=1

Il. SIGNAL MODEL

= & commonly used for multipath channel systems, with <
sn(t) = Z dn (i) Z en(fw(t =il = jTe = On), (1) N, fingers. We also assume that the receiver is synchronized
B =0 (i.e., 6, = 0) and has the perfect knowledge of the channel
where multipaths. Thus, the rake receiver output for the first sgimb



is 1. AEP APPROXIMATION BASED ON GENERALIZED
L ZAZ/ Yt 475 o (t)dt, @) | GAUSSIfAN DIS.TRIBUTION
rer The first works dealing with the performance of UWB

systems assumed that the MUI was a Gaussian distributed

wherev; (t) = ij:“(jlcl(j)v(t — jT.) is the template signal random variable [2], [3]. Thus, the evaluation of the error

associated with uset. Notice thatv(t) = w(t) for PAM probability requires simply the computation of the variamd

modulation and(t) = w(t) — w(t — §) for PPM modulation, the rvz,,+n. Unfortunately, in [4], [5], [18], [19], the authors

and L is the selected subset paths with Cadle{L,. Using criticize the validity of the Gaussian approximation to rabd

Eqgs. (3)-(4), the rake receiver output ([15]) is the MUI for UWB systems. Later, in [20], the authors studied
the MUI Gaussianity condition for TH access technique where

) the number of userd/,, and the number of chip¥. = N N},
2= ZA Z vV ZAny”" )+, ) grow toward the infinity at the same rateg., N, /N, goes

tee nel toward a positive constant. Thanks to the central limit tbeg
where = Zza Al fo n(t + Hvi(t)dt is the filtered they have proven that the Gaussian approximation is valid
Gaussian noise. The expressmn of the tgrm,, (6,,) depends if and only if the ratio Ny /N;, converges toward a positive
on the modulation format ([15]) as follows: constant.
Recently, it has been proposed to use the GGD to describe
Yo (On) = F(ebt gt QR") the MUI distribution in TH IR-UWB system [7] in AWGN
+ 7:( Tuqk 44, Qf/), (PAM) (6) context. We remind that the GGD writes as follows [22]:
= F ke VTG
Y, t,n(6n) e’ ant, Q') B T.(3/c) EB g

T g+ 1,080, (PP (@) PO T S a1+ 1/a)

whereQ** = |ARL/T,|, ¢t = [(AR! — QFLT,)/T.| and whereo? is the varianceq > 0 is the so-called shape param-
= ARL_QFAT, — ¢Bf with AR =0, + 7% — 7{. We eter, andT'.(.) is the (complete) Gamma function. Remark
also put that whena = 2, p(z) corresponds to a Gaussian distribution.
To ensure that the GGD remains accurate to model the MUI
when DS technique is employed and when multipath channel

<

+

-1

Q

Crn(d) = em(k)en(k —q), (described in Section I1) is assumed, we compare the erapiric
f\f: MUI distribution to that described by Eq. (10) wheseand
Ct (q) = N em(k)en(k — q) ®) o2 are obtained empirically. In Figs. 1 and 2, we illustrate

the MUI distribution for a PAM DS UWB system in AWGN

b= context and for a PAM TH UWB system assuming a multipath
Skfﬂo w(t—s)dt, 1 ( SFfﬁo (t) — w(t —8)) w(t— channel and 32 active users respectively.
s)dt, 7(e,q, Q)@r( ) [dn(-Q)CH(0) -
+dn(—Q —1)C1 ()] and 7i(e,q.Q) = € (g)ri(e + ~ - - Treontoal 63
6dn(7Q)) + Cin(q)rl (6 + 5dn(7Q — 1)) 0.07 Empirical

Notice that the rake receiver output given by Eq. (5) can be
decomposed as [15]:

z=zy+tzr+zm+m, ()]

where & o
e zy Is the Useful part of userl signal, zp =

\/1712264(14 ) Ye,e, 1(0)

e z7 is the Inter-sxlmbol interference from useér z; =

VP per AL Yoy ATk, (0),
e z)p IS the Multi-user interference, zs =
Srer AL S0 VP Sty Akt (0n)-
Unlike z; and z,;, the useful party and the noise) do not
depend on the multiple access codes. If the number of users
is large enough, it has been remarked that the terman be Fig. 1. Comparison of the empirical MUI PDF to those basedhen@GD
neglected Compared to the teeny [2] [13] In the sequel for and the Gaussian distribution (GD) for PAM DS-UWB system WG@&N
the sake of simplicity, on the one hand, we assume that ~Channel WithNe =5, Tc = 3 ns andN,, = 32.
0 and the selected paths are normalized, ¥&, . (A4%)? =
1 Vn, and on the other hand, we consider the set of capturedrhe implemented multipath channel is based on CM2 model
powers fixed, i.e., the obtained closed-form expressioh wihich is described in [16]. In such a case, the PRake (Partial
depend on the realization §fP,, },—1.... n,- Rake) is employed where the receiver uses the fitspaths




B. GGD parameters vs the multiple access codes

In the sequel, we denote hy:, anda,, the variance and
the shape parameter of signal; respectively. Termssr?7 and
a, = 2 stand for the variance and the shape parameter of
noisen respectively. Let us now focus on the derivatiorodf
anda. As z); andn are zero mean, so

o =02 + 0727. (13)

% = s — : g As mentioned [7], the shape parameteof a GGD rvv is

related to the fourth and second order moment as follows
Fig. 2. Comparison of the empirical MUI PDF to those basedhenGGD D
and the Gaussian distribution (GD) for PAM TH-UWB system iultipath a=FED ( )
channel withN, = 32, Ny = 2, T. = 5 ns, N, = 32, L, = 3 and ’
N, = 20.

(14)

where D*=E[*] and F(-1)(.) is the reciprocal function of
r—F(x)=T.(5/)[.(1/z)/T%(3/z). Let D}, = E[z3,] and
among the allN,, received paths. The number of fingers anpOtlce thatE[n’] = 30, Like the second order moment, the
the paths are fixed td., — 3 and N, — 20 respectively. ourth order moment ofs can be expressed in function of
Also, we plot in both figures the GGD and the Gaussighose ofzy andn as
Distribution (GD). For both cases, it is clear that the MUI is D*=Di, + 303 + 601%1037. (15)
well modeled by a GGD. However, a significant gap is noticed
while comparing the empirical MUI distribution to that bese [n order to determine perfectly the statistics:ofn terms
on the standard Gaussian approximation. In the sequeln giv the multiple access codes, we only need to desijeand
the set of captured powers, we derive the AEP when the M, in terms of the multiple access codes. In [7], the average

is assumed to be GG distributed. of o2, and D3, over all the TH multiple access codes were
evaluated. In our work, we remind that the multiple access
A. AEP approximation based on GGD codes are fixed since we would to select them according to

First of all tice that th ful sianad. in E the minimization of the obtained AEP approximation. Notice
9 |rds 0 da ' notlﬁe ad I ?. us? u S'I[gnlt v In qll tthat the expectation for deriving the second and fourth rorde
(9) _epedn (s)\(/)%Nefmopxlalon dorlmta. 'j €aual MBoments is achieved over the channel amplitude the
%& a 1(r)(5)) 1(1 s 2?; ) forrg?bl\l/f ?nlggulggor?[]where symbold,,, the asynchronisré, and the delay,, according to
159 A2 = T2 A0 . N hi . Since the MUI h lation fi
N is the repetition factor. Then, since the GGD is symmetntcIS order. Since the MUI depends on the modulation format

. . nd not directly on the access technique as shown in Eq. (9),
and both PAM and PPM modulations are equilikely, the AE e expresss?, and D!, only with respect to the applied

's given by: modulation.
+oo i 21
= B 1) Closed-form expression ofi; := E, q,0,-[23,): in [15]
Pe = Prob(v > \/PLN§) = /\/ﬁleg po(@)dr, (1) yedicated to TH technique, we have

where{ =1 and¢ = 1 —r(0) for PAM and PPM modulation

respectiyt_ely. We denote bty =zm +1 the term disturbing AM: o2, — L % P

the decision. Lep, (z) be its distribution. UM n
As z); is assumed to be GG distributed and asis n=2

Ne—

> (e (g) + ¢ 2(q)] . (16)

n,
q=0

Gaussian distributed, i.e., GG distributed, we know that 9 . & _g 42

is also well approximated by a GGD. Indeed, in [21], one PP M:onm = T, D Patbn Y 2[Cih(g) +C i g)]
has been mentioned that the sum of two GG distributed n=2 =0 N -

variables can be approximated by a GG distributed variable X (11(0) =7(8)) + €1 (a)Cr 0 (0)

as well. Consequently, the distribution ofis described by X [11(0) —y1(20)] (17)
Eqg. (10) whose the shape parameter and variancevaed B B
o2 respectively. Note that the expressionsdnds? in terms where 1(s) = Jr@)r — odh, gy =

0 N~V k1 wi k_ k
of multiple access codes will be calculated in Section || BB v Br [ 2002, Br (1] with I = Eq [(A7)?]. o
replacingp, () in Eq. (11) with its expression in Eq. (10) and Thanks to Eg. (1), one can see that the_MUI can be S|m|I_arIy
by doing tedious but straightforward algebraic manipofasi represented for TH and DS when employing PAM modulation.

(especially one change of variable= 2°), we get Consequgntly the variance given by Eqg. (16) remains valid fo
o DS technique.
5 _ 1 rlL NV PiE/T (3] ) 2) Closed-form expression dP}, := E,q0..[2},]: the
“ 2al(1+1/a) " |a’ o/Te(1/a) MUl can be decomposed asy = Y., zn., where
12)  zan = VP Y e Al zfj;l AFyi 0.0(0,) is the interference
where T';[.,.] is the so-called incomplete Gamma functiomssociated with usen. Since the channel amplitude is

defined byl';[a, 2] = [t~ exp(—t)dt. zero-mean, the expectation of, overa leads toE,[z},] =



SN Buledy 46 N, o Eulz, ,JEal23, ). By using the

moment is given by

equalitys?, = ZNQQ Eo.a.0.-123; ,], D1, €an be expressed as N, N-1
" T o f . d 1 2 —4
PPM format: D3, = T ZPn‘I’n Z [(CM(Q)
D4 _ ol E 4 3(NU B 2) 4 4’”:2 =0 3
M= ZZ ad0.7 20 n) + TN, 1 oM + CH@)s +2(C 2 (9)CT (a)

+ CLa(@)Ci (@) (33 +s)
whereo?, is given by Egs. (16) and (17) for PAM and PPM ) 19 }
modulation respectively. + 3C1,(9)C1,(q) (93 +7a)

Now, let us focus on the computation @&, q.0.-[2};,,] n 3(Ny — 2)04 (19)
to derive Di,. We detail only the computation steps of N, -1

Ea.4.0.-[2};,,] for PAM modulation. The PPM case can be

achieved similarly.

In PAM case, as the time-support of-) is much less than
T., we haver?(e)ri(e — T.) = 0, Vp,q. Consequently, the
expectation off, [z}, ,] over the zero-mean symbdl leads
to

NP
Eoalehra] = i) [ (Claan®) +Cinlan®)
k=1

el
r(en®) + (Cinlah + 1)+ Cin(gh’ + 1))
r (eﬁ’e —-T)
6C1 2 (an " )Crn(ay )r (en”)

6C (@ + DCA (an + D (e’ = To))

1,n

+ + X X

with JF = E,[(Ak)4].
The expectation off, 4[z3,,,] over the uniform variable
0,, is obtained byand_rg[Zjlw’n] = TifT and[zj‘w’n]de. By

with v5 = [ri(t)r?(t)dt, va = [ri{t)r?(t — 6)dt, 75 =
J ri(t)r(t — 0)dt, ando?, given by Eq. (17).

As a conclusion, the AEP for PAM modulation is thus
obtained by replacing? and o in Eq. (12) with Egs. (13)
and (14). Therv? can be expressed via Eq. (16) in terms of
multiple access codes, andis expressed with respect to the
multiple access codes through Egs. (15), (16) and (18). For
the PPM modulation, Eq. (16) is replaced with Eqg. (17), and
Eq. (19) plays the role of Eqg. (18).

IV. MULTIPLE ACCESS CODES MINIMIZING THEAEP

Given N, and the captured powers, the AEP (see Eq. (12))
depends only oy and 2. For a givens?, one can remark
that P. decreases whem increases at high SINR. Therefore,
in order to minimize the performancee., the AEP, we have
to select the codes that minimiz€ and then maximize.
Using Eq. (14) and the monotonic decreasing property of
F1(.), maximizinga is equivalent to minimizingd* when

writing the integral ovef0, 75| as a sum of integrals over the 2 s fixed. Notice that the high SINR assumption is not
subintervall0, 7c], and by taking into account the periodicityegirictive since we would like to improve the error floor

of the multiple access codes, we find

N,

Eoa6lzhrn] = %Pﬁ > Ik
tez
N.—1
x Y [Ch@ +Ciia)
q=0

+ 6C2(q)Cr o (a)]

occuring in the Rake receiver. Due to Eqgs. (13)-(19) and the
independence Qf?7 with respect to the multiple access codes,
minimizingo? and D* with respect to the multiple access boils
down to minimizings3, and D3, with respect to the multiple
access codes. Unlike the previous sections of this paperewhe
parameters are provided in function of the applied modurati

we need hereafter to distinguish the access techniques for
codes selection since the codes belongGol} and{—1,1}

in TH and DS case respectively.

with 7o = [r*(t)dt. Finally, using previous equalities and

averagingE, 4 0[z}; ,] over the delays} — 7{ leads to the
following expression for the fourth order moment

Ny, N.—1
. Y2
PAM format: D}, = FX:Pﬁqbn > {Cffi(q)
S n=2 q=0
+ Cinla) + 61 2(a)C 2 (a)]
3(Ny—2) 4
_— 1
+ N, — 1 om (18)

with ¢, = 3, E-[J{] o2, E,[JF] and o2, given by Eq.
(16).

A. Optimal codes in Time Hopping case

Before going further, we introduce the following lemma.

Lemma 1: Let us consider a pair of DTH codgs,, ¢,,)
that satisfiesZéV;al(Cﬁl_’n(q) + Cron(@)? = NZ, then
sup, (Ch () +Crp (@) = 1.

The proof is drawn in Appendix | and uses some results given
in [15].

In this subsection, we aim to identify the pair of codes
that minimizes botho3, and D3, given by Egs. (16) and
(18) respectively for PAM modulation, and by Egs. (17) and
(19) respectively for PPM modulation. In [15], it has been
proven that a pair of DTH codes minimize$, if and only

if zf;glcﬁ(q) +C;i(q) = N2 when PAM modulation is

In PPM modulation case, the expression of the fourth ordesed. Using Lemma 1 and noting th@&,, (¢), Cffn(q) >0,



we can deduce that Eq. (18). By means of Lemma 3, one can easily check that

Ne—1 , Zf]v;o_l Cin(q) +Cin(q) is minimal and is equal toV,. The
> (Ch(e) +Cru()” = N2 (20) second term oD}, given byY " €7 (¢)C; 1 (q), is equal
q=0 to N./2 if N, is even and) otherwise, and thus identical for

, ) No—1 _ ) any code minimizing the variance. Therefore, Eq. (21) leads
'S+ equwa_lent 035 Cinla) + Cinle) = N? SINCE to the joint minimization ofo2, and D%,. The proof of the
Cin' (@)Crp°(a) = 0,Yp1,p2. Thus, the codes satisfy-reverse implication can be easily done by using Lemmas 2
ing Eq. (20) minimize o7, with PAM modulation. For and 3. We are now able to state the following Theorem that
PPM modulation case, it has been already proven in [1g}ovides the characterization of optimal pair of DS codes in
that a pair of DTH codeg minimizes3, if and only paAM and PPM modulations context.
if Zf]v:co_l (@) +Ci,(q)” = N2. Now, let us prove  Theorem 2: The AEP of user of interektis minimum,
that the selected codes (i.e. satisfying Eq. (20)) minimizeand only if, the set of pair of DS codggcy,c,), n =
Dj,. Inspecting Egs. (18) and (19) show thag, is min- 2 ... N,}, satisfies
imum for both PAM and PPM modulations if and only if N1

Ne=1 n44 -4 Ne—1 a4p1 —p2 c
> gm0 Cinl@) + Cin(g) and 32 0 Cy 1 (q)Cr 7 (q) are Z Ci2(q) +Ci2(q) = N.. (21)
minimum when(py,p2) = (2,2) with PAM and (p1, ps) = pur Ln Ln N
(1,3),(3,1),(2,2) with PPM. Reminding that a pair of codesunlike TH scheme with PAM modulation, we see that min-
verifying Eq. (20) satisfieszgﬁglc;ﬁ(q) + CZZ(Q) = N2 imizing jointly the GGD variance and shape parameter is
andCffZ1 (¢)C1.2(q) = 0,V¥p1, po. Using Lemma 1, positivity equivalent to minimizing the variance only, in DS scheme
of Cf.,.(¢) andCy,, (q), we can deduce thdf ;" €4 (q) + context with PAM modulation.
Ci 2(q) is minimal as well and is equal /2. This leads to
next Theorem 1 which characterizes the DTH codes minimiz- V- ASYMPTOTIC DISTRIBUTION OF OPTIMAL PAIRS
ing the AEP for PAM and PPM modulations. The optimal codes distribution has been empirically exam-

Theorem 1: The AEP of user of interestis minimum ined in [15] for TH UWB systems. By means of exhaustive
for both PAM and PPM modulations, if and only if, the sesearch for reasonable values of; and N, it has been
of pair of DTH codes{(ci,¢,), n = 2,...,N,}, satisfies observed in [15] that the percentage of optimal pairs grows
Yoo (G () + Ciale)” = N2. with N, = N, /N, for a fixed N,. It has been thus conjectured
Notice that, in [15], the authors suggest to select the DTIR [15] that, the probability that two codes picked at random
codes minimizing the variance. These codes correspondf@sm an optimal pair goes té when N, goes to infinity for
those that we propose in Theorem 1 when PPM modulatiénfixed Ns. In this section, we aim to prove this conjecture
is applied. However, when PAM modulation is used, thr TH UWB system and we extend the work to DS UWB
codes minimizing the variance only satisﬂf;glcﬁ(q) + system case. Let us denotethe probability that a pair of
C;2(q) = N2 which corresponds to a larger set of codes th&ipdes(c1, ¢p,) is optimal and let us focus on the variation of
the set of codes verifying the condition illustrated in Treea 7 in function of the access code parameters, Ne.and N,
1. Consequently in PAM context, the codes minimizing odfPr TH technique andV. = N, for DS technique.
AEP is only a subset of the codes minimizing the MUI
variance. A. Proportion of optimal pair of codes in Time Hopping case

B. Optimal codes in Direct Sequence case Reminding that we have proven in section IV-A that an op-
Before exhibiting the Optimal DS codes, we introduce tthTaI pair (C_l’ cn) satisfiessup, Cl’”(q.) = 1, with Cl’".(.q) N
o 17.(@) + C{,.(q). Thus, we can define the probability as
preliminary lemmas. ol’l7(l)w5' i
Lemma 2: Let(c,,,c,) be two Direct Sequence codes oF ’
length N... We havey-)";" €2, (q) +C;.2,(g) > Ne. mi=Pr{Vge{0,...,No~1} / Clalg) <1} (22)

Proof of Lemma is given in Appendix Il. . . -
Lemma 3: Let(cy,c,) be a pair of DS code satisfying. Before illustrating the variation ofr wrt Ny and N., we

introduce a new way of interpretir@ ,,(¢) that will be useful

Ne—1 »42 -2
2q=0 C;r’"(q) +Cinla) = Ne. in the following. Let us start with an example in order to
« N even caseiC,(q)|=|Cy,(¢)| =0 if ¢ is even; and facilitate the understanding where the Time Hopping (TH)
ICT . (@)|=IC1,, (q)|=1 if ¢ is odd. codesé,, of length N, are considered instead of the DTH
« N, odd case:|C, (¢)|=1, |Ci,,(¢)|=0if ¢ is odd; and codesc,, of length N.. The values of the sequencg, are
ICT (@)|=0, [CT,,(¢)|=1 if ¢ is even. drawn in{0,---, N, — 1} and the relationship between the

Due to the lack of space, proof of Lemma 3 is omittedwo code presentations (TH and DTH codes) is given in [15].
Nevertheless the proof can be done in similar way of thog&emind that,,(j) provides the position of the occupied chip
of Lemma 2. within the j** frame. Let us consideN; = 5, N, = 4, and
Let {(c1,cn)} be a set of pair of DS code satisfying Eqthe two TH codes,,, = {2,4,0,1} andé, = {1,1,4,3}. The
(21). Thanks to Lemma 2, the varianed, (given by Eq. eventC,, . (q) = 2 occurs when, for a given delay two '1’
(16)) is then minimal. Let us now focus oR}, given by of the first developed code are aligned with two '1’ of the



other developed code. In our example, this occurs for icgtaroptimal pair of codes. To do this, we examine the optimality
for ¢ = 4. Notice that the gap of bins between the two '1’ izonditions for bothC", (¢) and C;,,(¢) given in Lemma 3
equal to12. In order to formalize the relationship between thend we represent them by linear systems of equations with
collisions and the positions of the "1’ in the DTH code, let usinknown variables:, (k). The matrix of coefficients is then
define thedistance conditioned by the code;. Since the optimality conditions
~ - depend on the parity olV,., we distinguish in the followin

A (P, q) = Cm(q) = Em(p) + (¢ = P)Nn (23) bofh casesN, ispeve}r/1 andV. is odd. ’ ’
which represents the number/gap of bins (or distance) legtwe 1) N, is even: The optimality conditions fonfn(q) (i.e.
the "1’ of framesp andq for the developed code,. According |C", (¢)] = 0 if ¢ is even andCy', (q)| = 1 if ¢ is odd) can
to Eq. (8) and the code periodicity, the set of distances to be represented bg™</2 linear systems that differ with the

considered is given b := {d,,(p,q),0 <p < N, —1,p+ column vector of solutions. These systems are given in Eq.
1 <q <p+ N, — 1}, where the arguments of the DTH codg25).

in (23) have to be taken modul§,. In our example, the two cn(0) +1
equal distances that concur to the collision of weighare cn(1) 0
A (2,4) = En(0) —Em(2)+ (4 —2)Np, =2-0+2x5 =12, ol _ . (25)
andd,,(1,3) = é,(3) —én(1)+(4—2)Nj, =3—1+42x5 =12 I -
as illustrated in Fig. 3. cn(Ne = 2) +1
cn(Ne —1) 0
o |i,,,(u):2 En(l) =4 En(2)=0 En(3) =1 En(0) =2 v
“ Lololslololotolol ) slol ol ol ol aisl o of dolgfalolol with
Coders - ;”(\‘]Jl:\lo\ o] &I i"(‘}:‘lo‘ o] °I ;’(\'2]0:\10\ o llhl().‘n:‘; (&‘ 1‘)"' €1 (Nc - 1) 0 o 0
— QColhsmns/ C1 (NC - 2) C1 (N(, - 1) 0 0
Fig. 3. Example of two pair codes for which two collisions oc@,,,, = 2) C = : : IR
for delayq = 4 (1) c1(2) - 0
01(0) 01(1) Cl(NC— 1)

Let us dejf{?e thle ive'ﬁihf:h{c't eX|stsiat'Iea_|s::10ne value OfThe N, x 1 vector of system output is defined as follows:
q € {0;..., Ny — 1} for which Cy, »(¢) = i}. Then, we can v(k) = £1if k is even andv(k) = 0 otherwise, for) < k <
state that the everfi; occurs as soon as the two codes hav: ~ 1. TheN. x N. matrix of coefficients is the same for all

at least one distance i equal, and more generally, the evenlth‘;a linear systems with determinant equalédg N —1))Ne =

? oceurs _?ﬂS) soon IaT\lth'e twﬁ COdﬁs hz?]ve at l@astl)i/2 | o Therefore, each system has at most a unique solution in
istances irD equal. Notice that when the evek ocoUrs, o \' variablese, (k) € {~1.1},0 < k < N, — 1, according

D may _b(_a empty since the notion dfst_anceneeds at least ; 1o code:; . Let us denoteS™* (¢ ) the set of these solutions.
two collisions. All previous materials will be useful to m®
the following Theorem which actually inspects the prohkgpil ST(e1) = {en€{-1, +1}NC/ for0<g<N.—-1
that the event®; occurs.

c =0 if ¢ is even and
Theorem 3: The probabilityr, that a pair of DTH code Crn(@)] 7

(¢1,¢,) is optimal, is lower bounded by €1 (9)] = 1if ¢ is odd:
Ny(N, —1)2 4 1/ 1)\? Then the cardinality of St(c;) is bounded by
Tzl Ne—3+3 (N_h) (24)  Card(S*(c;)) < 2MN</2. Now, the representation of
Proof of Theorem 3 is provided in Appendix Iil. We remar{€ optimality conditions forCy,(¢) (i€ |Cr,(q)] =
that Theorem 3 confirms the conjecture illustrated in [15??. if ¢ is even andCy ,(¢)] = 1if gis odd) with 2%</>
Indeed, using Eq. (24), it is clear thatconverges to 1 when [In€ar systems leads to
N}, goes to infinity for a given valueV,. Therefore, when cn(1) +1
TH scheme is used with either PAM or PPM modulation, the en(2) 0
probability that two codes picked at random form an optimal ] )
pair goes to 1 wheV,, is large for a fixedV,. Moreover, it Co | - | : (26)
suggests that for a giveN,, increasing the number of optimal cn(Ne —2) 0
pairs can be done by increasing,. cn(Ne —1) +1
where
B. Proportion of optimal pair of codes in Direct Sequence
case a(0) a@) a2) - a(Ve—2)
0 C1 (0) 61(1) e Cl(NC — 3)

The distance (23) introduced in the previous case to derive
a bound for the probability is not valid for DS scheme since Co=|: . . . :
the code values belong to-1,+1}. To find a bound for the 0 e 0 c1(0) (1)
probability 7, we search to estimate the maximum number of 0 0 e 0 c1(0)



and, where the elements of the vector of solutions V1. NUMERICAL RESULTS AND COMPARISONS

{v(k)}o<k<n.-2 are equal tov(k) = £1if k is even and | this section, we compare the empirical Bit Error Rate

v(k) = 0 otherwise. The matrix of coefficients for eachggR) and the numerical evaluation of the proposed closed-

linear system is nonsingular (with non null determinanta#giu form expression of the AEP. We also highlight the influence

c1(0)), then each system has at most a unique solution in thethe codes optimization on the performance (only for PAM

N, variablesc, (k) € {—1,1}, 1 <k < N.—1.LetS7(c1) in TH context). The analysis concerning the proportion of

be the set of these solutions: optimal pair of codes is illustrated as well. Finally we carnp
S7(c1) = {ene{-1,+1}V/for0<q<N,—1 TH and DS multiple access techniques and show that the

former outperforms the latter.

Cn(@)] = 0if ¢ is even and Let us start by introducing the simulation parameters. We

IC .(q)] = 1if g is odd} consider a normalized Gaussian impulse
The cardinality of S~(¢;) is then bounded by wlt) = A \/?COS(Qcht)e_%
Card(S*(c;)) < 2x2N</2, Given a code;, a pair of DS code “Vor A

(c1, c) is then optimal if and only ik, € 57 (c1) N S™(c1)-  with 4, is a normalized factor such thdt™ > w?(t)dt = 1,
Therefore, the number of optimal pair of codes is at most 6.85 GHz and\ — 9.107x 10-2 ns Th_eO%aptured powers
2Ne/2 according to the code;. Consequently, as the numben?c L N '

. ) ' rom all the userd P, },— are assumed to be equal and
of pair of codes is equal tae, we haver < 2Ne/2/2Ne, ndn=t,..N, q

M dentif that all o obtai they are set tol. Except otherwise stated, for the sake of
J\?rezover’_ one can dentity a codg that allows to obtain simplicity, the considered channel is AWGN. We remind that
2Ne/2 optimal pair of codes. Let; be a DS code whose

| h L to & (k) — 1.Vk. By induct the generalized Gaussian based modeling holds for muitipat
elements are equal to 1(k) = 1,vk. By induction, W€ channel as shown in Fig 2. For PPM modulation, the delay is
can easily prove that a code, belongs toS*(c;), with

. t tod = 0.0707 ns.
c1(k) = 1 Vk, should satisfyc,, (2k + 1) = —c,(2k), VE. sel 0 ns

N | i belonai ot Th In Figs. 4 and 5, we compare the theoretical AEP ap-
oW, et_us consider a (.:Ode” elonging to 7(61)' en proximation given by Eq. (12) (displayed in solid lines)
we can immediately verify that, belongs toS~(c;) also.

. : ; to the empirical Bit Error Rate (displayed in dotted lines)
Therefore, the number of optimal pair of codes is equal 8¢ different values ofN. in PAM TH. PPM TH systems
Card(S™(c1)) = N./2. v '

. . . respectively. The symbol time is equal I3 = 48 ns for
2) Ne is odd: By procegdlng als.for the previous case, wg systems. The number of chig€. is equal tol6 and the
can represent the optimality conditions ﬁin(q) andCy ,(q) repetition factorNy is equal to4 which means thatv;, = 4.
with 2(Net1)/2 gnd 2(Ne—1)/2 |inear systems of equations °
respectively. The matrices of coefficients are the samevan gi 1€01 o r——
in Egs. (25) and (26). The vector of solutionsresembles Nimag
to that described before wheték) = +1 if k is even and e

v(k) = 0 otherwise. However, the vectar that we obtain ::%

while considering the optimality conditions faf, ,,(q) is 1502
different. It satisfiesv(k) = 0 if k is even andv(k) = +1
if k& is odd. Therefore, the cardinalities 6 (c¢;) and.S™(c;) g

Ne+1

///i/
]

satisfy Card(S*(c;)) = Card(S~(c1)) < 2727, where
S*(c1) and S~(c1) are the sets of solutions, (k) for the 108 et - ‘
linear systems associated with the optimality conditioos f MUI Gaussian approximaton® ~x._,

for Nu=30

Cffn(q) and C; ,(q) respectively. Consequently is upper-
bounded by2(Ne+1)/2 joNe,
Given the comments illustrated in the previous items for the .,
code optimality conditions, we can then state the following ° T e
Theorem. Fig. 4. Theoretical AEP (solid lines) and empirical BER (ddtlines) for
Theorem 4: Let us consider a DS UWB system. The prgtpM TH-UWB system withN. = 16, Ns = 4, Tc = 3 ns and random
ability 7 to find an optimal pair of code:, c,,) is bounded codes. AEP with MUI Gaussian approximation @, = 30 (dashed lines).

by:

2=%, if N.is even All figures show the accuracy of our approximation when
T o i if N, is odd. the codes are chosen at random for the diffedptvalues,

’ ¢ except with PPM modulation where a small gap is noticed with
WhenN, is even, it is noticed that it exists at least one codd’, = 20 and 30. The error probability with the Gaussian
¢ for which the upper bound for is achievable. approximation ¢ = 2 in Eq. (12)) is also plotted in both
Unlike TH codes, the proportion of optimal pair of DS codefgures for N, = 30. The Gaussian approximation clearly
goes to zero whenV, tends to infinity. Therefore finding underestimates the error probability for TH UWB and DS
optimal codes is often impossible with DS technique whereB®WB systems as already observed in [5].

it is an easy task with TH technique. This statement is a great_et us now examine the impact of the codes optimization
advantage for TH technique compared to DS technique. on the system performance. We choose a PAM TH-UWB



o0 environment: the considered multipath channel is the CM2
e — model [16] with one cluster. The PRake (Partial Rake) is
Nu=30 —&— employed where the receiver uses the fikst paths among
the all V,, received paths. The number of fingers and the paths
are fixed toL, = 3 and N, = 20 respectively.
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Fig. 5. Theoretical AEP (solid lines) and empirical BER (ddtlines) for
PPM TH-UWB system withN. = 16, Ny = 4, T. = 3 ns and random
codes. AEP with MUI Gaussian approximation 3, = 30 (dashed lines).

AEP

10 °F

system since TH technique guarantees the existence ofalptil
codes for all the users as proven in Section V and sin
we will observe difference between codes optimization doi
with proposed criteria and codes optimization relying o 0 5 10 15 20 25 30 35 40
minimization of MUI variance. The number of active user
is equal toN,, = 30, the symbol timél’; = 72 ns, the number
of chips is N, = 24 and the repetition factolV, = 4. In Fig. 7. Performance wrt the codes properties for PAM TH-UWBtem in

Fig. 6, we inspect the impact of the multiple access cod®4!ipath channel withVe = 24, N = 4, Te. = 3 ns andN, = 30.

on the performance. For the sake of simplicity, an AWGN

channel is considered. We are interesting to three caaes:1  The jmprovement achieved thanks to codes optimization is
corresponds to random codesise 2corresponds to the codesnot significant for multipath channel. Indeed, the intesfere
minimizing the MUI variancer}, as done in [15], andase 3 remains important even with the use of optimal codes because
corresponds to the codes verifying Eq. (203, minimizing  of the contribution of each interferer with,, paths.

jointly o3, and Dy, In Tab. I.a (resp. Tab. I.b), we estimateand the number of
found optimal pairsV, for Ny = 3 (resp. for N, = 6) using
o cd1 v 105 random trials (resp5 x 10° random trials). We remark
case3 —e— that goes tol when N, increases, but one can also remark
\ that the convergence is slower fof, = 6. This behavior is
1E-02

\\ TABLE |
ESTIMATED PROBABILITY 7# OF 7 VS N. FORa) Ns = 3 AND b) Ns =6
IN TH CONTEXT

AEP

1E-03

a) Ns = 3 (10° trials)

1E-04 Ne¢ 20 30 40 100 1000
No 67579 77329 82311 92802 99256
T 0.67579 0.77329 0.82311 0.92802 0.99256
1E-05 b) Ns = 6 (5 x 10 trials)
0 5 0 15 2 = 30 ® 40 Ne 200 600 800 1000 2000

SNR (dB)
Fig. 6. Theoretical AEP (solid lines) and empirical BER (ddtlines) wrt
the codes properties for PAM TH-UWB system wif¥i. = 24, Ny = 4,
Te. = 3 ns andN,, = 30.

No 326417 434097 450140 459936 479223
T 0.652834 | 0.868194 | 0.910008 | 0.919872 | 0.958446

in accordance with the bound expression (24) which shows
By comparing these different cases, we notice that thieat for a givenN, the bound is an increasing function with
last case leads to the best performance. The selection of tegpect taV,. Lastly, even whem is far from1, the number of
codes that minimize only the variance does not guarante@ftimal pair foundV, can be very large and sufficient enough
minimal error probability. These codes nevertheless iwgrofor practical systems with a few tenth of users.
the performance with respect to the random codes. In Fig. 7In Fig. 8, we plot both the theoretical upper bound and
similar curves have been plotted in the following multipatthe empirical percentage of optimal codes in function of
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the number of chips per symbdV. for DS multiple access Indeed, if we assume that all users have optimal codes (which
technique. The figure confirms our theoretical analysis.  is not true for DS technique), then DS technique should be
better than TH technique.

0.14 T T
Thereotical upper bound —<—
Empirical ---+---
1E-02
TH, Theoretical —*—
S TH, Empirical %
b DS, Theoretical —&—
14 DS, Empirical &
T DS, Theoretical ---&---
s 1E-03 "
£ —
= /
o
5 ~
E Users with the maximum number of optimal codes
: N
] X
g < I
5
g /
£ .04
z 00 /
=
L | R / All users have optimal codes
0.02 i e 1E-05
+ VS A
0 s R
6 8 10 12 14 16 18 20
Nc 1E-06
40 45 50 55 60 64

Nu

Fig. 9. Comparison of PAM TH-UWB and PAM DS-UWB systems in
AWGN channel forNs = 6, Ts = 108ns and SNR, = 30dB. Theoretical
&FP (solid lines) and empirical BER (dotted lines).

Fig. 8. Estimated probabilityr of = vs N, in DS context

Notice that forN,. even, the bound is reached as mention
in Theorem 4 whereas faV,. odd, the bound is clearly not
achieved. The percentage of optimal codes is rapidly close
to zero whenN, is odd (N. > 13) while the number of VII. CONCLUSIONS
optimal codes approaches zero fgg > 20 when N, is even.  An accurate error probability approximation for PAM TH,
Consequently, unlike TH multiple access technique, as®ign ppy TH and PAM DS IR-UWB systems has been derived
optimal codes for all active users will be often impossible. 3ssuming the MUI distribution is well modeled by GGD
Thanks to numerical results, we have shown that the closqgr any set of fixed multiple access codes. Based on this
form expression given by Eq. (12) well approximates thgoproximation, we have deduced the criterion that the pialti
error probability for both TH UWB and DS UWB systemsaccess codes have to satisfy in order to minimize the error
Therefore, this approximation can be used as a metric tetselgropability for the three inspected UWB systems. Given this
not only the best codes but also the best access technighgsrion, we have then focused on the percentage of the
which minimizes the error probability. In order to compargptimal pair of codes for both TH and DS access technique.
both multiple access techniques fairly, we choose the sapgjike DS scheme, we have proven that TH scheme guarantees
repetition factor N as well as the same symbol timi& +tg obtaining sufficiently optimal pair of codes when inciiegs
for TH and DS UWB systems. These conditions ensure {Re number of chips per fram), for a fixed repetition factor
obtain the same captured energy as well as the same rgte Numerical results have been depicted to highlight the
for both systems. Notice that the captured energy is equgnificant gains while selecting the appropriate codeskn T
to U = NZEjp with B, = [w?(t)dt = 1 andp depends context. The comparison of TH and DS scheme in AWGN

on the channel parameters. For simulations, we tske= 6, channel using the simulation results shows that the former

performances for both systems, we select the codes in such

a way to maximize the number of optimal pair of codes. By APPENDIX |
simulations, we remarked that we are able to assign optimal PROOFE OFLEMMA 1
codes for all users with TH technique whatevg, < 64. Let us denotey _ ijcflcg (j), whereCy, n(j) =
However, at mos0% of active users with DS technique use, ) + C- ()“”é oxeressing.. J "as in Em’”(2‘77) of
optimal codes. This observation is yet illustrated in Secv ™" J m-r”]g ',2 y p gX“?"” a. :
where we have proven that the number of optimal DS codBSl Xm.n = Z‘izsl ¢ mi with m; > 0 is the number of times
should decrease when increasiNg. In Fig. 9, we depict the thatCy, n(j) = 7, and b32/ using proposition 3 of [15]]<,W€ can
AEP at SNR=30 dB for PAM TH and PAM DS UWB systemdleduce thatv,,, = N = m # 0 and {m = 0}, &

in function of the number of users,. We add another curve SuPq Cm.n(q) = 1. For thg reverse, we usewp, Crn,n(q) =

in which we consider that all users with DS technique have® 71 7 0 and {m; = 0}1'2:3 and the proposition 1 of [15],

optimal codes. This curve can be only obtained using the AE¥® obtainx,, , = m = Ng. u
by forcing the criteriac?, and D}, to take their minimal

values. For the simulatedl,, ranges, it is clear that TH scheme APPENDIXII

gives better performance than DS access technique. Notice PROOF OFLEMMA 2

that the property on the percentage of optimal pair of codesGiven Eq. (8), we show that,, ,,(¢) andeTg,n(q) consist of
is crucial to compare properly both multiple access tealiq ¢ and N. — ¢ terms respectively. Each term belongs{tol}.
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When N, is odd,q and N, — ¢ does not have the same parityindependence between,(¢). The same argument applies for
Consequently, when is even,C,, , (q) is lower-bounded by A,,. Noticing that(qz — p2) — (g1 — p1) takes several times

0 and Cf, ,,(q) is lower- bounded byl which implies that the same value over the domain of index variation, we can
CTJ,Q? (q )+ C.2.(q) is lower-bounded byl. When ¢ is odd, re-express Eq. (32) as:

we just have to permute the role 6{; (¢) and C, ., (q). 2N, —2

Then we deduce immediately th@ ‘1c+2 () +C%(a) s = Z Pr{A,—A, = (N }-Ny(Ny—1)(No—|€|—1).
is lower bounded byv, the number of terms inthe sum. When  ,_ % .,

N, is even, similar proof can be done. | (33)
Sinceé,, (¢) are drawn in{0, - -- , N, — 1}, (A, — A,,) varies
APPENDIX I in [-2N, +2,2N;, —2]. Thus, for|¢| > 2, probabilities in the
PROOF OFTHEOREM 3 sum (33) are null, and thanks to the symmetrical distrilutio
. of A,, — A, Eq. (33) reduces to:
In order to prove Eq. (24), we derive an upper bound for
the contrary event := 1 — 7. S = Ny(Ns — 1)[a(Ng — 1) + 23(N, — 2)], (34)
T = Pr{3¢e{0,...,Ne =1} / Cnn(q) = 2,} with a := Pr{A,,— A, =0} andj := Pr{A,,— A, = N, }.
N Quantity« can be computed as follows:
= Pr{U Cm.n(q) = 1,Yq}. (27) N1
: a = Pr{ |J Qn=0n.=q)}
Thanks to the Union Bound (UB), we upper bound (27) as g=—Nn+1
follows: Ny—1
N,
F<ym, (28) = > Pr{A,=q}Pr{A,=¢q}. (35)
i—2 =—Np+1
where From ¢,,(q) probability distribution, straightforward compu-
T = Pr{E;}. (29) tation givesPr{A,, =i} = (N, — li|)/(Np)?, which inserted

o _ _ o ~into (35) gives:
The realization of evenk, is equivalent to finding two pairs N 1
h—

(p1,q1) and (p2,q2) for which dp,(p1,q1) = dn(p2,q2), 49 Z 2 N 1 (36)
while the realization of even#s is equivalent to the in- N2 3(Nh) 3(Ny)3
tersection of three sub-event&s = {Ei N E3Z N E3} with o=t
Ey = {3(p1, 1), (P2, 42)/ dn(p1,q1) = dn(p2,92)}, E5 =  Quantity 8 = Pr{U"" 1( =¢)N (A, = ¢+ Ny)} can
{3(p1,71), (p2,72)/ dm(p1,71) = dn(p2,72)}, and E§ == pe computed as follows:
{H(Q1ar1) (qQaTQ)/ d (Q17T1) - d (qQaTQ)} From basic Np—1
probability property we haveyi, Pr{Es;} < Pr{E%}. Thus, B B B
noticing thatE, and E are equivalent since they represent the B = Z Pr{&m = ¢} Pr{&n = ¢+ Ni.}
same event, we have proved that> 73. By recurrence, we q_lN .
can easily extend this results 1@ > ;, fori = 3,..., N;. _ 1 hz (Ny — q)Np = 1 (37)
Consequently, applying those inequalities to Eq. (28) gjive - N} f TN = 6N,  6N?
q=
T < (Ns = 1)ma. (30) ' combining Egs. (34), (36), and (37) gives:

Using the interpretation of the distance notion intro- N, 4 1
duced in Section V-A, we can re-express as my = §=Ns(Ns —1) {m " 3N, + 3N? | (38)
Pr{Up1,Q1 (pl,ql) =d, (pg,(]z)}. Then, using the UB7

can be’ upper bounded 8 Thus, we deduce from Eqs (29), (30), (31), and (38) that

M N, -3+ which shows thalimy, _... 7 =

3N2 ’
m < S =Y Pr{dn(p1,q1) = dn(p2, 22)}- (1) o and then proves (24). u
s
In order to computeS, we consider the codes as random, REFERENCES
with Va|UeS ¢m(q) independent and equally distributed i1 m.L. Welborn, “System considerations for ultra-widelthwireless net-
{0,- —1},and thusvi € {0,--- , N, —1}, Pr{én(q) = works,” in Proc. IEEE Radio and Wireless Conpp. 5-8, Aug. 2001.
] M.Z. Win and R.A. Scholtz, “Ultra-wide bandwidth timespping spread
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