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Analysis of max-consensus algorithms

in wireless channels
Franck Iutzeler, Philippe Ciblat, and Jérémie Jakubowicz

Abstract

In this paper, we address the problem of estimating the maximal value over a sensor network

using wireless links between them. We introduce two heuristic algorithms and analyze their theoretical

performance. More precisely, i) we prove that their convergence time is finite almost surely, ii) we derive

an upper-bound on their mean convergence time, and iii) we exhibit a bound on their convergence time

dispersion.

I. INTRODUCTION

Wireless Sensor Networks are systems composed of scatteredagents with limited power and compu-

tational abilities. These agents may acquire some data and communicate through a wireless link to some

other agents. Their goal is to auto-organize in order to distributively compute a function of the collected

data [1]. For instance, if temperature sensors are deployedin a hostile environment (e.g. mountains) and

one wants to know the average temperature in the region by looking at any sensor, a simple idea would

be to make the sensors randomly wake up and average their value with another sensor so that they all

share the average value of the initial measurements of the network at the end. Namely, the sensors want

to makeconsensus over the average value of the initial measurements. This problem was extensively

studied in the past few years [2], [3], [4]. However, the average is not always the most useful value to

share. Indeed, in some applications, the maximal value may be of greater interest.

For example, if a sensor network has to transmit informationperiodically (e.g. the average temperature

of the region in the previous scheme) through a costly link, it would be of interest to distributively elect

the sensor which has the most power resource to operate that communication. To do so, one has to
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estimate the maximal amount of energy left in the sensor battery (along with their ID) in a distributed

fashion using the wireless links between some of them. Another useful application is the distributed

access control: let us consider that some nodes want to send information to a common access point. In

that case, an access control algorithm (close to the CSMA/CD) may be the following one: the agents

that want to send information i) draw a number in a common window (e.g. {1, .., 32}) and then ii)

make consensus over the maximal value distributively (and the ID of the associated agent). The sensor

with the maximal value then effectively sends its packet to the access point. If the communication does

not succeed (typically if two agents drew the same number andhence tried to send their packet at the

same time), the procedure is repeated with a window of twice the size until success, mimicking the

well-known exponential backoff algorithm. This protocol,close to the CSMA/CD scheme, needs the

distributed estimation of a maximum value in a wireless channel context.

A simple way to estimate the maximum value would be to mimic the algorithm introduced for the

averaging ([3]). So, the agents wake up randomly and exchange their value with another reachable sensor

randomly chosen; then both keep the maximum between their former and received values. Nevertheless,

as the communications between the sensors are wireless, it seems more natural for an awaking sensor

to broadcast its value and then the sensors which have received the information to update their value

accordingly. In this work, we will analyze algorithms i) based on pairwise communications and ii) based

on broadcast communications. Notice that an averaging algorithm based on broadcast communications

has been proposed in [5] but does not perform well due to the non-conservation of the initial sum. This

issue is not raised for estimating the maximum value since the maximum value is preserved.

Distributively estimating the maximum value over a networkthrough wireless communications is thus

a relevant problem we propose to address hereafter. We provethe convergence of both above-mentioned

algorithms and analyze their convergence speed.

This paper is organized as follows: models and algorithms aswell as link with related works are

reported in Section II. In Section III, we derive our mathematical results. In Section IV, numerical

illustrations are given. Concluding remarks are drawn in Section V.

II. M ODELS AND ALGORITHMS

A. Assumptions on the wireless network

Consider a network ofN sensors modeled as an undirected graphG = (V,E) whereV is the set of

agents – the vertices of the graph – andE is the set of links between agents – the edges of the graph.

We assume that each link is error-free. To indicate that a couple of agents(v,w) areneighbors (we also
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use the termadjacent), we use the notationv ∼ w. For any setS, we denote its cardinality by|S|.

Obviously, we have|V | = N . The set of neighbors of the agentv is denotedNv. Each agentv has an

initial scalar measurex0(v). The set of all initial measures is thus stacked in a unique vector x0 ∈ R
N .

The network is supposed invariant over time andconnected.

The network is assumedasynchronous, meaning that no common clock is available for the agents.

Instead, each agent has its own clock and can initiate a communication with its neighborhood at clock

ticks. Assuming communication time is small compared to thetime between clock ticks, it makes sense

(as usually done for other consensus-like algorithms [3], [5]) to consider the absence of collisions

between communicating nodes. We also assume that the agent clocks are modeled by independent Poisson

processes with intensityλv for agentv. It is then equivalent to have a global clock according to a Poisson

process with intensityλ =
∑

v λv, and that each clock tick is then attributed to a given agent.Then the

probability for an agent to wake up is equal topv = λv/λ. We will assume, for the sake of simplicity

that all intensitiesλv are the same, henceλv/λ = 1/N . We denote byxn(v) the value at agentv after

n global clock ticks, whilexn denotes the vector of all values aftern global clock ticks.

The goal for the network is to estimate the valueM(x0) , maxv∈V x0(v) , in a distributed manner,

that is, only using communications between adjacent nodes.

B. Algorithms

We propose two algorithms for achieving the task of estimating M(x0). Both algorithms are inspired

by those already developed to obtain the average-consensus.

The first algorithm is based on the exchange between the current values of two adjacent nodes chosen

randomly in the following way.

RANDOM-PAIRWISE-MAX:

1) After then-th clock tick, a nodevn wakes up.

2) vn chooses a neighborwn uniformly in Nvn
.

3) xn(vn) = xn(wn) = max
(

xn−1(vn), xn−1(wn)
)

, andxn(v) = xn−1(v) otherwise.

This algorithm is suitable for wired networks whereas it is clearly not optimal for wireless networks.

Indeed, it does not rely on the broadcasting abilities of thewireless channel. In wireless channel, all the

neighbors receive the current value ofvn. Therefore, we propose a second algorithm taking benefit of

the broadcast nature of the wireless channel.

RANDOM-BROADCAST-MAX:

1) After then-th clock tick, a nodevn wakes up.
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2) vn broadcasts its current value to all these neighbors.

3) xn(w) = max
(

xn−1(w), xn−1(vn)
)

for w ∈ Nvn
, andxn(w) = xn−1(w) otherwise.

Such an algorithm has been already proposed for calculatingthe average (in that case, the max operator

has to be replaced with the average one). Unfortunately, in the context of sum-consensus, such an

algorithm does not keep the sum constant along the time whichprevents it to converge to the true

value. As for the max-consensus, such an algorithm keeps themaximum value and so does not give rise

to an undesirable behavior. Therefore the RANDOM-BROADCAST-MAX will be our flagship algorithm.

C. Link with existing works

To our best knowledge, in the framework of distributed computation, only [6] has focused on the

max computation. Actually, [6] has developed a general framework to distributively compute a family of

functions (including the maximum value) of the nodes measurements. Compared to our set-up, this work

has been done under continuous-time and synchronous clocksassumptions. It can nevertheless be adapted

to our context (discrete-time and asynchronous clocks), but it will be less powerful since each node goes

to the maximum value in an incremental way even if one of its neighbor has the maximum value. To be

more precise, let us focus on the following toy example basedon a very simple graph with two nodes.

The proposed RANDOM PAIRWISE-MAX reaches consensus in one single step, while the algorithm in

[6] needs an infinite number of steps because of its incremental nature. Here, [6] pays a price for its

generality. Therefore, our proposed algorithms are much more suitable for the max computation.

Even if our work has some connections with the so-calledrumor spreading issue, it also has some

important differences listed below. Actually a rumor spreading or max-consensus algorithm can be

distinguished from another one according to three main characteristics: i) who speaks?, ii) with whom

and to do what?, and iii) when? In our framework,

i) each node may speak (even if it is unaware of the maximum value). As a consequence, the time

spent by each node communication has to be taken into account.

ii) each node speaks with all its neighbors for RANDOM-BROADCAST-MAX , and these neighbors

update their value if necessary. As for RANDOM-PAIRWISE-MAX , each node speaks with one of

its neighbor randomly chosen and they jointly update their value accordingly.

iii) at each clock tick, only one node randomly chosen speaks. As a consequence, the communication

system is collision-free.

Only few papers ([7], [8], [9], [10], [11]) have taken into account the broadcasting nature of the medium

in the rumor spreading problematic. But in all these papers,the communications are synchronous and so

DRAFT



F. IUTZELER, ET AL. 5

the main issue deals with the collision between the transmissions. Moreover, only the informed nodes

wake up. As a consequence, their set-up is different from ours, and their results do not hold in our

context. In [12], the broadcasting nature of the channel is also considered in the so-called FLOOD-MAX

algorithm. But the context is much simpler than ours since all the nodes wake simultaneously and the

communication is collision-free. Result obtained for thisalgorithm is clearly unsuitable for our analysis.

All other papers dealing with rumor spreading ([13], [14], [15], [16], [17], [18], [19]) focused on

pairwise communication and so does not take benefit of the broadcasting nature of the channel. Conse-

quently, their works and results can not be applied for the RANDOM-BROADCAST-MAX . In contrast, the

proposed RANDOM-PAIRWISE-MAX is closely related to them. Actually, in most of these papers, only

the informed nodes wake up and propagate its information to arandomly chosen neighbor which differs

significantly from our algorithm. However one algorithm, the so-called PUSH-PULL is more closely

related to our algorithm. Indeed, at each clock tick, every informed node propagates its information to

one of its neighbor randomly chosen (push step) whereas every uninformed node asks one of its neighbor

for the information (pull step) [20], [21]. The update step is then clearly equivalentto those of RANDOM-

PAIRWISE-MAX . Nevertheless one fundamental difference exists and prevents us to re-use results on the

PUSH-PULL . Indeed, each node is active at each clock tick in the PUSH-PULL set-up whereas, in our

set-up, one node randomly chosen is active per clock tick. Consequently one node is active everyN

clock ticks in average. This implies to use few different tools for analyzing the convergence.

Our problem and the proposed algorithms are thus novel, thendeserve our theoretical convergence

analysis hereafter given.

III. PERFORMANCEANALYSIS

We define the convergence timeτ as the first time when all the nodes share the same value,i.e.,

τ , inf{n ∈ N : ∀v ∈ V, xn(v) = M(x0)}. (1)

Given an undirected graphG = (V,E) with N nodes, one can define itsN × N adjacency matrix

AG with entries:aG(v,w) = 1 if v ∼ w and0 otherwise. It is a symmetric matrix. We also introduce

the N × N diagonal matrixDG where thei-th diagonal entry is the degree of the nodevi, i.e., |Nvi
|.

We denotedmax the maximum degree. The symmetric matrixLG = DG − AG is called theLaplacian

of the graphG. Its eigenvalues are non-negative and its kernel has dimension 1 whenever the graph is

connected. We denote byλ1, . . . , λN the eigenvalues ofLG sorted by increasing order. Thediameter of

graphG is given by∆G = max{ℓ(v,w) : (v,w) ∈ V 2} whereℓ(v,w) = inf{m ∈ N : [AG]m(v,w) > 0}

corresponds the minimum number of edges needed to connectv to w.
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A. Random-Broadcast-Max

Theorem 1 asserts all the sensors will share the maximum value after a finite number of clock ticks.

Theorem 1. For RANDOM-BROADCAST-MAX , we have τ < ∞ with probability 1.

The proof is reported in Appendix A. The previous result is not surprising at all, and we would like

now to have more information about the behavior ofτ and, especially, about its mathematical expectation

E[τ ] versus some characteristics of the operating graph.

Theorem 2. For RANDOM-BROADCAST-MAX , one has

E[τ ] ≤ β, where β = N∆G + N(∆G − 1) log

(

N − 2

∆G − 1

)

.

The proof is reported in Appendix B. Note that the upper boundof Theorem 2 is reached whenG is

the complete graph since the time needed for propagating themax is the time needed for themax node

to wake up and communicate its value to all other nodes using only one broadcast communication, hence

N in expectation. Moreover, for the ring graph, we can prove that E[τ ] = (N2 −N)/2 while the bound

is equal toN2(1 + log(2))/2. By neglecting the term proportional toN , we observe that the mean and

its bound are both scaled inN2.

Let us consider the previous works on max propagation by using the broadcasting nature of the medium

([7], [8], [9], [10], [11]). Even if the framework is strongly different (see Section II-C), it is of interest to

compare the performance bounds. When all the informed nodeswake up simultaneously and thus collide

to each other, the best convergence time behaves like∆G log(N/∆G) [9]. Surprisingly, this is almost

the same shape as ours up to a factorN .

Having an upper-bound on the expected convergence time is very useful, but does not provide infor-

mation about the outliers,i.e., the event for which the convergence time is extremely long.Therefore, in

Theorem 3, we provide concentration-like result.

Theorem 3. For RANDOM-BROADCAST-MAX , with probability 1 − ε,

τ ≤ β + N∆G

(

log

(

∆G

ε

)

− 1

)

The proof is reported in Appendix C. Let us focus on the ”toy” example considering the complete

graph. The extra time cost is equal toN log(1/ε), i.e., N log N if ε = 1/N . Surprisingly, [15] obtained

similar results although both frameworks are strongly different.
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B. Random-Pairwise-Max

A similar work can be done for the RANDOM-PAIRWISE-MAX . Actually the convergence can be

proven by following the same approach as those given in Appendix A. In contrast, the proofs about

mean convergence time and concentration rely on quite different tools and thus are introduced hereafter.

Theorem 4. For RANDOM-PAIRWISE-MAX , one has

E[τ ] ≤ α, where α = Ndmax.
hN−1

λ2
,

with the n-th harmonic number hn =
∑n

k=1 1/k.

The proof is reported in Appendix D. In order to illustrate the upper-bound given in Theorem 4, let us

focus on the case whereG is a complete graph. For such a graph,dmax/λ2 is of orderO(1), hence our

bound is of orderO(N log N). In the standard rumor spreading context, the bound is of order O(log N)

[22]. Once again, we pay an extra factor of orderN for not knowing which nodes are informed or not.

Theorem 5. For RANDOM-PAIRWISE-MAX , with probability 1 − ε,

τ ≤ α

(

1 + log

(

N

ε

)

.

(

1 +

√

1 +
1

log
(

N
ε

)

))

.

The proof is reported in Appendix E. Note that for smallε, the RHS of Theorem 5 can be replaced

with TRPM(1+ 2 log(N/ε)). By takingε = 1/N (which is usual in the literature), we obtainTRPM(1+

4 log(N)). In [23], it is proven thatτ for the PUSH-PULL is O(α−1
G log2(N)

√

log(N)) with probability

(1 − 1/N) whereαG is the vertex expansion. In Theorems 4 and 5,TRPM can be actually replaced

with T
′
RPM = NdmaxhN−1α

−1
G /2 by applying the definition ofαG in Eq. (3). Therefore,τ for the

RANDOM-PAIRWISE-MAX is O(Ndmaxα
−1
G log2(N)) with probability (1 − 1/N). Up to the factorN

(essentially due to our communication protocol), the trends offer strong similarities.

IV. N UMERICAL ILLUSTRATIONS

The proposed upper-bound for the expected convergence timeand the convergence time dispersion

have been evaluated on Random Geometric Graphs (RGG) which are well suited for modelling Wireless

Sensor Networks. They consist in uniformly choosingN points (representing the nodes/sensors) in the

unit square and then drawing an edge between two sensors closer than a pre-defined radiusr. By choosing

r =
√

8 log(N)/N , connectedness is ensured with high probability [24], [4]

In Figure 1, we plot the (empirical) mean number of communications for reaching convergence and the

associated upper-bounds (given by Theorems 2 and 4) for eachproposed algorithm versus the number of
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sensorsN . We observed that the RANDOM-BROADCAST-MAX outperforms the RANDOM-PAIRWISE-

MAX . When the network size increases, the upper-bounds become quite pessimistic due to the various

used simplifications (in the case of RANDOM-BROADCAST-MAX , we rely on the spanning tree instead

of the whole graph and we broadcast the information layer perlayer; in the case of RANDOM-PAIRWISE-

MAX , we use Cheeger’s inequality and the approximation1/dmax). .

As the RANDOM-BROADCAST-MAX is much more interesting in terms of performance, we hereafter

only focus on it. In Figure 2, we plot the histograms of the convergence time as well as the upper-bounds

for the convergence with probability1 − 1/N (given in Theorem 3) whenN = 40.

V. CONCLUSION

We have proposed two algorithms for estimating the maximum value in wireless sensor networks. The

convergence times of these algorithms have been analyzed indepth.

APPENDIX A

PROOF OFTHEOREM 1

Let us denote byKn the set of nodes sharingM(x0) at timen, i.e., we haveKn = {v ∈ V : xn(v) =

M(x0)}. If the algorithm does not have converged at timen, it still exists at least one nodev(0)
n in Kn

such that onew(0)
n ∈ N

v
(0)
n

is not in Kn, i.e., N
v
(0)
n

∩ Kc
n = ∅ where the superscript(.)c denotes the

complementary subset inV . As Kn is a non-decreasing family of non-empty subsets ofV , |Kn| is also

a non-decreasing integer sequence. At timen + 1, if v
(0)
n wakes up, then the probability of this event is

lower-bounded by1/N and thus by1/Ndmax. So |Kn+1| will be strictly greater than|Kn|. As |Kn| is

upper-bounded (byN ) and is a monotonic sequence, it converges to a certain valuec. To havec < N ,

|Kn| has to be constant (but different fromN ) for anyn large enough. At each clock tick, the sequence

has a probability less than(1−1/Ndmax) to remain constant, and so(1−1/Ndmax)
k afterk clock ticks.

Therefore,|Kn| can not converge toc < N almost surely which concludes the proof.

APPENDIX B

PROOF OFTHEOREM 2

We assume for the sake of simplicity that one single node, sayv(0), has the maximum at timen = 0.

Let us partition the setV according to nodes’ distances fromv(0):

Li = {v ∈ V : d(v(0), v) = i}, k ∈ N
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One hasV = ∪∆G

i=0Li andLi ∩ Lj = ∅ for i 6= j. Define the random times:t0 = 0, and ti = inf{n ≥

ti−1 : ∀v ∈ Li, xn(v) = M(x0)}. We denote byFn the σ-algebra spanned by the nodes sharing the

maximum values at timen. Using the same proof framework as in the standard coupon collector problem

(see, e.g. [25]), it is easy to show thatE[ti+1 − ti|Fti
] ≤ Nh|Li|. The termE[ti+1 − ti|Fti

] corresponds

to the duration to fill up completely the layer(i + 1) given that the nodes sharing the maximum value

at time ti, i.e., given at least that the layeri was already filled up. Therefore we have

E[τ ] ≤
∆G−1
∑

i=0

E[ti+1 − ti|Fti
] ≤

∆G−1
∑

i=0

Nh|Li| .

By using the inequalityhn ≤ log(n) + 1 and the fact|L0| = 1, we obtain

E[τ ] ≤ N

(

∆G +

∆G−1
∑

i=1

log |Li|

)

.

Using
∑n−1

i=1 log xi ≤ (n − 1) log( 1
n−1

∑n−1
i=1 xi), with xi = |Li| andn = ∆G concludes the proof.

APPENDIX C

PROOF OF THEOREM3

Let Av
i (t) be the event that the nodev (belonging to layerLi) is not switched on aftert iterations.

So P[Av
i (t)] =

(

N−1
N

)t
. When the eventtk+1 − tk ≥ t occurs, we know that the event∪v∈Li+1

Av
i (t)

also occurs. ThereforeP[ti+1 − ti ≥ t] ≤ P(∪v∈Li+1
Av

i (t)). By using the Union bound and the fact that

0 ≤ 1 − y ≤ exp(−y) for y ∈ [0, 1], one can prove the probability that aftert iterations, some of the

nodes ofLi have still not talked is as follows

P[∪v∈Li+1
Av

i (t)] ≤
∑

v∈Li

exp

(

−
t

N

)

. (2)

For anyε > 0, by choosingtε = N log |Li| + N log(∆G/ε), we then get

P

[

ti+1 − ti ≥ N log |Li| + N log

(

∆G

ε

)]

≤
ε

∆G

.

By using once again the Union’s bound, we find the final result.

APPENDIX D

PROOF OFTHEOREM 4

The definition ofKn is given at the beginning of Appendix A. In the context of RANDOM-PAIRWISE-

MAX , one has|Kn| ≤ |Kn+1| ≤ |Kn| + 1. Here, our objective is to exhibit a tight evaluation of the

probability that the sequence|Kn| is strictly increasing at timen.

P[|Kn+1| = |Kn| + 1 | Kn] = P[vn ∈ Kn, wn /∈ Kn|Kn, vn ∼ wn] = P[{vn, wn} ∈ ∂Kn|Kn, vn ∼ wn].
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The selection algorithm of an edge is as follows: choosevn uniformly overV , thenwn uniformly over

Nvn
and independently of the past or vice-versa. Therefore, forany edgee, we haveP[{vn, wn} = e] ≥

2/Ndmax which implies that

P[{vn, wn} ∈ ∂Kn | Kn, vn ∼ wn] ≥ 2
|∂Kn|

Ndmax
.

For any subsetS of V , the following inequality, called Cheeger’s inequality, holds

|∂S|

|S|
≥ λ2.

(

1 −
|S|

N

)

(3)

where∂S ,
{

{v,w} ∈ E : v ∈ S,w /∈ S
}

is the boundary ofS. More details are available in [26].

Using Cheeger’s inequality, we obtain

P[{vn, wn} ∈ ∂Kn | Kn, vn ∼ wn] ≥
2λ2

N2dmax
(N − |Kn|)|Kn| (4)

As in Appendix B, assuming, for the sake of simplicity, that initially one single node has the maximum

value, consider the stopping times:τi = inf{n ∈ N : |Kn| = i}, so thatτ1 = 0 andτ =
∑N−1

i=1 (τi+1−τi)

(if more than one node have the maximum value at time1, one just has to start ati > 1). Let Ln be

equal to the random variable|Kn+1| − |Kn| given |Kn|. Ln is a Bernoulli distribution of parameterpn.

From Eq. (4), we havepn ≥ (2λ2/N
2dmax).(N − |Kn|)|Kn|. As (τi+1 − τi) is the number of iterations

needed to increment|Kn| when |Kn| = i, or equivalently, the number of trials onLn for obtaining the

value1 when|Kn| = i, the random variable(τi+1− τi) is geometrical distributed with parameterpi ≥ πi

with πi = (2λ2/N
2dmax).(N − i)i. As a consequence,E[τi+1 − τi] ≤ 1/πi. We thus have

E[τ ] ≤
N2dmax

2λ2

N−1
∑

i=1

1

(N − i)i
=

Ndmax

λ2

N−1
∑

i=1

1

i
,

which after some simple algebra leads to the result.

APPENDIX E

PROOF OF THEOREM5

Remind the notations used in Appendix D. The random variableτi+1−τi is geometric-distributed with

parameterpi ≥ πi. As a consequence,τi+1 − τi is stochastically dominated by a geometric distribution

with parameterπi denoted byYi, which means that the cdf ofτi+1 − τi is smaller than the cdf ofYi at

any point [27]. By using Chernoff’s bound for geometric random variable, we have, for anyδ > 0,

P

[

τi+1 − τi ≥
1 + δ

πi

]

≤ P

[

Yi ≥
1 + δ

πi

]

≤ exp

(

−
δ2

2(1 + δ)

)

.

Let ε be any positive value. Selectingδε as the smallest positive term such thatexp
(

−δ2
ε/(2(1 + δε))

)

≤

ε/N leads toδε = log(N/ε)(1 +
√

1 + 1/ log(N/ε)). So, we haveP[τi+1 − τi ≥ (1 + δε)/πi] ≤ ε/N .

Then, by using the Union’s bound, we haveP[τ ≥ (1 + δε)(
∑

i 1/πi)] ≤ ε which concludes the proof.
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Fig. 1. (Empirical) mean number of communications for reaching convergence and the associated upper-bounds versusN .
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Fig. 2. Histogram of the convergence time and upper-bounds associated with probability(1 − 1/N) for the RANDOM-

BROADCAST-MAX whenN = 40.
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