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Analysis of max-consensus algorithms

In wireless channels

Franck lutzeler, Philippe Ciblat, and Jérémie Jakubawic

Abstract

In this paper, we address the problem of estimating the malxiralue over a sensor network
using wireless links between them. We introduce two heaaragorithms and analyze their theoretical
performance. More precisely, i) we prove that their conearge time is finite almost surely, ii) we derive
an upper-bound on their mean convergence time, and iii) viabéxa bound on their convergence time

dispersion.

. INTRODUCTION

Wireless Sensor Networks are systems composed of scatigezds with limited power and compu-
tational abilities. These agents may acquire some data amdncnicate through a wireless link to some
other agents. Their goal is to auto-organize in order taitdigively compute a function of the collected
data [1]. For instance, if temperature sensors are deployacdostile environment (e.g. mountains) and
one wants to know the average temperature in the region lyngat any sensor, a simple idea would
be to make the sensors randomly wake up and average the# wéiln another sensor so that they all
share the average value of the initial measurements of ttweorieat the end. Namely, the sensors want
to makeconsensus over the average value of the initial measurements. Thiblpno was extensively
studied in the past few years [2], [3], [4]. However, the ager is not always the most useful value to
share. Indeed, in some applications, the maximal value neagf lyreater interest.

For example, if a sensor network has to transmit informagieniodically (e.g. the average temperature
of the region in the previous scheme) through a costly linkyduld be of interest to distributively elect

the sensor which has the most power resource to operate dhangnication. To do so, one has to
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estimate the maximal amount of energy left in the sensoebatalong with their ID) in a distributed
fashion using the wireless links between some of them. Aerottseful application is the distributed
access control: let us consider that some nodes want to séothation to a common access point. In
that case, an access control algorithm (close to the CSMA/MGBY be the following one: the agents
that want to send information i) draw a number in a common wmnde.g. {1, ..,32}) and then ii)
make consensus over the maximal value distributively (&edlD of the associated agent). The sensor
with the maximal value then effectively sends its packet® @&ccess point. If the communication does
not succeed (typically if two agents drew the same numberhemte tried to send their packet at the
same time), the procedure is repeated with a window of twiee dize until success, mimicking the
well-known exponential backoff algorithm. This protocalpse to the CSMA/CD scheme, needs the
distributed estimation of a maximum value in a wireless clegmontext.

A simple way to estimate the maximum value would be to mimie #igorithm introduced for the
averaging ([3]). So, the agents wake up randomly and exahtrar value with another reachable sensor
randomly chosen; then both keep the maximum between theirefioand received values. Nevertheless,
as the communications between the sensors are wireleseritssmore natural for an awaking sensor
to broadcast its value and then the sensors which have egt#ie information to update their value
accordingly. In this work, we will analyze algorithms i) le@son pairwise communications and ii) based
on broadcast communications. Notice that an averagingitigo based on broadcast communications
has been proposed in [5] but does not perform well due to tmecoaservation of the initial sum. This
issue is not raised for estimating the maximum value sineentximum value is preserved.

Distributively estimating the maximum value over a netwttkough wireless communications is thus
a relevant problem we propose to address hereafter. We gieveonvergence of both above-mentioned
algorithms and analyze their convergence speed.

This paper is organized as follows: models and algorithmsvel$ as link with related works are
reported in Section Il. In Section lll, we derive our mathéice results. In Section IV, numerical

illustrations are given. Concluding remarks are drawn iotiga V.

[I. MODELS AND ALGORITHMS
A. Assumptions on the wireless network

Consider a network ofV sensors modeled as an undirected graps (V, E') whereV is the set of
agents — the vertices of the graph — afids the set of links between agents — the edges of the graph.

We assume that each link is error-free. To indicate that aleoof agentv, w) areneighbors (we also
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use the termadjacent), we use the notatiom ~ w. For any setS, we denote its cardinality bysS]|.
Obviously, we haveéV| = N. The set of neighbors of the agemis denotedV,. Each agent has an
initial scalar measure,(v). The set of all initial measures is thus stacked in a uniqueovexy € RY.
The network is supposed invariant over time aodnected.

The network is assumeasynchronous, meaning that no common clock is available for the agents.
Instead, each agent has its own clock and can initiate a caneation with its neighborhood at clock
ticks. Assuming communication time is small compared totiime between clock ticks, it makes sense
(as usually done for other consensus-like algorithms [3]) fo consider the absence of collisions
between communicating nodes. We also assume that the dgekd are modeled by independent Poisson
processes with intensity, for agentw. It is then equivalent to have a global clock according to B&m
process with intensith = > A, and that each clock tick is then attributed to a given agémen the
probability for an agent to wake up is equalgp = A, /\. We will assume, for the sake of simplicity
that all intensities\,, are the same, henceg,/\ = 1/N. We denote byz,(v) the value at agent after
n global clock ticks, whilex,, denotes the vector of all values afterglobal clock ticks.

The goal for the network is to estimate the valu&xq) = max,cy 2o(v), in a distributed manner,

that is, only using communications between adjacent nodes.

B. Algorithms

We propose two algorithms for achieving the task of estingafi/ (x(). Both algorithms are inspired
by those already developed to obtain the average-consensus

The first algorithm is based on the exchange between thertwadues of two adjacent nodes chosen
randomly in the following way.

RANDOM-PAIRWISE-M AX:

1) After then-th clock tick, a nodey,, wakes up.

2) v, chooses a neighbap,, uniformly in NV, .

3) z,(vy) = xp(wy) = max (a:n_l(vn),a:n_l(wn)), andx,(v) = z,—1(v) otherwise.

This algorithm is suitable for wired networks whereas it lisacly not optimal for wireless networks.
Indeed, it does not rely on the broadcasting abilities ofvifreless channel. In wireless channel, all the
neighbors receive the current value @f. Therefore, we propose a second algorithm taking benefit of
the broadcast nature of the wireless channel.

RANDOM-BROADCAST-MAX:

1) After then-th clock tick, a nodey,, wakes up.
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2) v, broadcasts its current value to all these neighbors.

3) zp(w) = max (zn—1(w),zn—1(vy)) for w € N, andaz, (w) = z,—1(w) otherwise.

Such an algorithm has been already proposed for calculdtagverage (in that case, the max operator
has to be replaced with the average one). Unfortunatelyhén dontext of sum-consensus, such an
algorithm does not keep the sum constant along the time whielents it to converge to the true
value. As for the max-consensus, such an algorithm keepsithémum value and so does not give rise

to an undesirable behavior. Therefore theNRom-BROADCAST-MAX will be our flagship algorithm.

C. Link with existing works

To our best knowledge, in the framework of distributed cotapan, only [6] has focused on the
max computation. Actually, [6] has developed a general éaork to distributively compute a family of
functions (including the maximum value) of the nodes measignts. Compared to our set-up, this work
has been done under continuous-time and synchronous @assklisnptions. It can nevertheless be adapted
to our context (discrete-time and asynchronous clockg)ithwill be less powerful since each node goes
to the maximum value in an incremental way even if one of itigimgor has the maximum value. To be
more precise, let us focus on the following toy example basea very simple graph with two nodes.
The proposed RNDOM PAIRWISE-MAX reaches consensus in one single step, while the algorithm in
[6] needs an infinite number of steps because of its increshewture. Here, [6] pays a price for its
generality. Therefore, our proposed algorithms are muchersaitable for the max computation.

Even if our work has some connections with the so-catletlor spreading issue, it also has some
important differences listed below. Actually a rumor splieg or max-consensus algorithm can be
distinguished from another one according to three mainatharistics: i) who speaks?, ii) with whom
and to do what?, and iii) when? In our framework,

i) each node may speak (even if it is unaware of the maximumeyalAs a consequence, the time

spent by each node communication has to be taken into account

i) each node speaks with all its neighbors foaNbOM-BROADCAST-MAX, and these neighbors

update their value if necessary. As fonROOM-PAIRWISE-MAX, each node speaks with one of
its neighbor randomly chosen and they jointly update thalue accordingly.

iif) at each clock tick, only one node randomly chosen speAksa consequence, the communication

system is collision-free.

Only few papers ([7], [8], [9], [10], [11]) have taken into@munt the broadcasting nature of the medium

in the rumor spreading problematic. But in all these papgliescommunications are synchronous and so
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the main issue deals with the collision between the trarsons. Moreover, only the informed nodes
wake up. As a consequence, their set-up is different frons,ocamd their results do not hold in our
context. In [12], the broadcasting nature of the channelss eonsidered in the so-called #0D-MAX
algorithm. But the context is much simpler than ours sin¢ehe nodes wake simultaneously and the
communication is collision-free. Result obtained for thigorithm is clearly unsuitable for our analysis.

All other papers dealing with rumor spreading ([13], [1415], [16], [17], [18], [19]) focused on
pairwise communication and so does not take benefit of thadwasting nature of the channel. Conse-
guently, their works and results can not be applied for theiloM-BROADCAST-MAX. In contrast, the
proposed RNDOM-PAIRWISE-MAX is closely related to them. Actually, in most of these papergy
the informed nodes wake up and propagate its informationremdomly chosen neighbor which differs
significantly from our algorithm. However one algorithmgetiso-called BsH-PuLL is more closely
related to our algorithm. Indeed, at each clock tick, evafgrimed node propagates its information to
one of its neighbor randomly chosegouéh step) whereas every uninformed node asks one of its neighbor
for the information pull step) [20], [21]. The update step is then clearly equivaierthose of RNDOM-
PaIRWISE-MAX. Nevertheless one fundamental difference exists and ptewus to re-use results on the
PusH-PuLL. Indeed, each node is active at each clock tick in thsHRPULL set-up whereas, in our
set-up, one node randomly chosen is active per clock tickis€guently one node is active evely
clock ticksin average. This implies to use few different tools for analyzing thengergence.

Our problem and the proposed algorithms are thus novel, tleserve our theoretical convergence

analysis hereafter given.
[Il. PERFORMANCEANALYSIS
We define the convergence timeas the first time when all the nodes share the same vatie,
r2inf{n € N: Vo € V, x,(v) = M(x0)}. 1)

Given an undirected grapty = (V, E) with N nodes, one can define it§ x N adjacency matrix
Ag with entries:ag(v,w) = 1 if v ~ w and0 otherwise. It is a symmetric matrix. We also introduce
N, |.

We denoted,,,x the maximum degree. The symmetric matfix = Dg — A is called theLaplacian

the N x N diagonal matrixDg where thei-th diagonal entry is the degree of the nagei.e.,

of the graphG. Its eigenvalues are non-negative and its kernel has dioenswhenever the graph is
connected. We denote by, ..., Ay the eigenvalues of. sorted by increasing order. Tihigameter of
graphG is given byAg = max{/(v,w) : (v,w) € V2} wherel(v,w) = inf{m € N : [Ag]"(v,w) > 0}

corresponds the minimum number of edges needed to conrteci.
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A. Random-Broadcast-Max

Theorem 1 asserts all the sensors will share the maximune \&tter a finite number of clock ticks.
Theorem 1. For RANDOM-BROADCAST-MAX, we have 7 < oo with probability 1.

The proof is reported in Appendix A. The previous result i$ sarprising at all, and we would like
now to have more information about the behaviot-aind, especially, about its mathematical expectation

E[r] versus some characteristics of the operating graph.

Theorem 2. For RANDOM-BROADCAST-MAX, one has

E[r] <3, where 3= NAg+ N(Ag—1)log (iv_i) .
o—

The proof is reported in Appendix B. Note that the upper boahd@heorem 2 is reached whe® is
the complete graph since the time needed for propagatingw#hds the time needed for theax node
to wake up and communicate its value to all other nodes usihgane broadcast communication, hence
N in expectation. Moreover, for the ring graph, we can prow Bir] = (N? — N)/2 while the bound
is equal toN?(1 + log(2))/2. By neglecting the term proportional &, we observe that the mean and
its bound are both scaled iN2.

Let us consider the previous works on max propagation bygusia broadcasting nature of the medium
([71, 8], 9], [10], [11]). Even if the framework is strongldifferent (see Section 1I-C), it is of interest to
compare the performance bounds. When all the informed nedks up simultaneously and thus collide
to each other, the best convergence time behavesAikéog(/N/Ag) [9]. Surprisingly, this is almost
the same shape as ours up to a factor

Having an upper-bound on the expected convergence timerysugeful, but does not provide infor-
mation about the outliers,e., the event for which the convergence time is extremely Idrerefore, in

Theorem 3, we provide concentration-like result.

Theorem 3. For RANDOM-BROADCASTMAX, with probability 1 — ¢,

T< B+ NAg <log <%> —1)

The proof is reported in Appendix C. Let us focus on the "toxample considering the complete
graph. The extra time cost is equal Mlog(1/¢), i.e, Nlog N if e = 1/N. Surprisingly, [15] obtained

similar results although both frameworks are stronglyedéht.
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B. Random-Pairwise-Max

A similar work can be done for the ARADOM-PAIRWISE-MAX. Actually the convergence can be
proven by following the same approach as those given in AgigeA. In contrast, the proofs about

mean convergence time and concentration rely on quiterdiffetools and thus are introduced hereafter.

Theorem 4. For RANDOM-PAIRWISE-MAX, one has

hn—1

E[r] <a, wherea = Ndmax.)\—,
2

with the n-th harmonic number h, =>";_, 1/k.

The proof is reported in Appendix D. In order to illustrate thpper-bound given in Theorem 4, let us
focus on the case wher@ is a complete graph. For such a graphex/A2 is of orderO(1), hence our
bound is of ordelO(N log N). In the standard rumor spreading context, the bound is afrafdlog V)

[22]. Once again, we pay an extra factor of ordérfor not knowing which nodes are informed or not.

Theorem 5. For RANDOM-PAIRWISE-MAX, with probability 1 — ¢,

The proof is reported in Appendix E. Note that for smglithe RHS of Theorem 5 can be replaced
with Trpn (1 +2log(N/e)). By takinge = 1/N (which is usual in the literature), we obtaikpy (1 +
4log(N)). In [23], it is proven thatr for the RUSH-PULL is O(agl log?(N)/log(N)) with probability
(1 — 1/N) where a¢ is the vertex expansion. In Theorems 4 andl®py can be actually replaced
with T’RPM = Ndmath_1a51/2 by applying the definition ofxg in Eq. (3). Therefores for the
RANDOM-PAIRWISE-MAX is (Q(Nalmaxoza1 log?(N)) with probability (1 — 1/N). Up to the factorN

(essentially due to our communication protocol), the teeofler strong similarities.

IV. NUMERICAL ILLUSTRATIONS

The proposed upper-bound for the expected convergenceditdethe convergence time dispersion
have been evaluated on Random Geometric Graphs (RGG) wigched suited for modelling Wireless
Sensor Networks. They consist in uniformly choosiNgpoints (representing the nodes/sensors) in the
unit square and then drawing an edge between two sensoes thas a pre-defined radiusBy choosing
r = /8log(N)/N, connectedness is ensured with high probability [24], [4]

In Figure 1, we plot the (empirical) mean number of commuimices for reaching convergence and the

associated upper-bounds (given by Theorems 2 and 4) forgraposed algorithm versus the number of
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sensorsN. We observed that the RIDOM-BROADCAST-MAX outperforms the RNDOM-PAIRWISE-
MAX. When the network size increases, the upper-bounds becaiteepgssimistic due to the various
used simplifications (in the case ofARDOM-BROADCAST-MAX, we rely on the spanning tree instead
of the whole graph and we broadcast the information layetgyar; in the case of RNDOM-PAIRWISE-
MAX, we use Cheeger’s inequality and the approximatiti,ay). -

As the RaNDOM-BROADCAST-MAX is much more interesting in terms of performance, we hezeaft
only focus on it. In Figure 2, we plot the histograms of thevagence time as well as the upper-bounds

for the convergence with probability— 1/N (given in Theorem 3) wheV = 40.

V. CONCLUSION

We have proposed two algorithms for estimating the maximafuevin wireless sensor networks. The

convergence times of these algorithms have been analyzeelpith.

APPENDIX A

PROOF OFTHEOREM 1

Let us denote by, the set of nodes shariny (x¢) at timen, i.e.,, we haveK,, = {v € V : x,(v) =
M (x0)}. If the algorithm does not have converged at timat still exists at least one node” in K,
such that onauﬁlo) € stn is not in K,,, i.e, va N K¢ = () where the superscrit)¢ denotes the
complementary subset ¥i. As K, is a non-decreasing family of non-empty subsetdof K| is also
a non-decreasing integer sequence. At time 1, if U£L0) wakes up, then the probability of this event is
lower-bounded byl /N and thus byl /Nd,.x. S0 |K,1| will be strictly greater thank’,|. As |K,| is
upper-bounded (by) and is a monotonic sequence, it converges to a certain vallie havec < N,
|K,| has to be constant (but different from) for any n large enough. At each clock tick, the sequence
has a probability less thafl — 1/Nd,.,) to remain constant, and $0 — 1/Nd,,..)* afterk clock ticks.

Therefore,|K,,| can not converge to < N almost surely which concludes the proof.

APPENDIX B

PROOF OFTHEOREM 2

We assume for the sake of simplicity that one single nodep$8y has the maximum at time = 0.

Let us partition the seV according to nodes’ distances frosff):
Li={veV:dw® v)=i}, keN
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One hasV = Uf:%Li andL; N L; = ( for i # j. Define the random timesy = 0, andt; = inf{n >
ti—1:Yv € Lj,zn(v) = M(x0)}. We denote byF,, the o-algebra spanned by the nodes sharing the
maximum values at time. Using the same proof framework as in the standard coupdectot problem
(see, e.g. [25)), it is easy to show tHal; | — ;| F;,] < Nhr,. The termE[t;,; — ¢;|F,] corresponds

to the duration to fill up completely the layér + 1) given that the nodes sharing the maximum value

at timet,, i.e., given at least that the layérwas already filled up. Therefore we have

Ag—1 Ac—l
E[r] < Z Eltiy1 —ti|lF.] < Z Nl -
i=0 =0

By using the inequality:,, < log(n) + 1 and the factLy| = 1, we obtain
Ag—1
E[r] < N (AG+ > 1ogyL,-\> .
=1

Using 7 log z; < (n — 1) log (=17 S ), with z; = |L;| andn = A¢ concludes the proof.

APPENDIX C

PROOF OF THEOREM3

Let AY(t) be the event that the node(belonging to layerL;) is not switched on aftet iterations.
So P[AY(t)] = (%)t When the event;, — ¢, > ¢ occurs, we know that the event,cy,,, AY(t)

also occurs. Therefor@[t;11 —t; > t] < P(Uyer,,, A7 (t)). By using the Union bound and the fact that

i+1
0 <1-—y <exp(—y) for y € [0,1], one can prove the probability that afteiterations, some of the
nodes ofL; have still not talked is as follows

Pllier. A7) < Y e (~ 7). @

vEL;
For anye > 0, by choosingt. = Nlog |L;| + N log(A¢/¢e), we then get

A
P |tis1 —t; > Nlog|L;| + N log <—G>] <=
9 AG

By using once again the Union’s bound, we find the final result.

APPENDIXD

PROOF OFTHEOREM 4

The definition of K, is given at the beginning of Appendix A. In the context oANRDOM-PAIRWISE-
MAX, one hasK,| < |K,+1| < |K,| + 1. Here, our objective is to exhibit a tight evaluation of the

probability that the sequend&,| is strictly increasing at timex.

P(|Kpt1| = |Knl + 1 | K] = Plo, € Ky, wy, € Ky | Ky, v, ~ wy] = Pl{vp, w,} € 0K, | Ky, vy ~ wy)].
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The selection algorithm of an edge is as follows: chogseniformly overV, thenw, uniformly over
N,, and independently of the past or vice-versa. Thereforeamyredgee, we haveP[{v,,w,} = €] >

2/Ndax Which implies that

K,
P{vn, wn} € 0K, | Ky, vp ~ wy] > QJ\?dmaL.

For any subset of V, the following inequality, called Cheeger’s inequalityldis

%Z&-( —%) ©)

wheredS £ {{v,w} € E:v € S,w ¢ S} is the boundary of5. More details are available in [26].
Using Cheeger’s inequality, we obtain

2\
P[{vn, wn} € OKn | Konytm ~ wn] > 5575 (N = [Kn)| Ko (4)

As in Appendix B, assuming, for the sake of simplicity, thaitially one single node has the maximum
value, consider the stopping times:= inf{n € N : |K,| = ¢}, so thatr; = 0 andt = Zf\;l(nﬂ —Ti)

(if more than one node have the maximum value at timene just has to start at> 1). Let L,, be
equal to the random variablé, 1| — | K| given |K,|. L,, is a Bernoulli distribution of parameter,.
From Eq. (4), we have,, > (2\2/N2dmax)- (N — | K,|)|Ky|. As (1i41 — 7;) is the number of iterations
needed to incremenf,,| when |K,| = i, or equivalently, the number of trials ah, for obtaining the
valuel when|K,| = i, the random variablér; ., — 7;) is geometrical distributed with parametgr> =;

with m; = (2X2/N2%dpmax).(N —4)i. As a consequenc|r;, 1 — ;] < 1/m;. We thus have
N2dpoax v~ 1 Ndpax <= 1
]E < p— —
7= =55, ;(N—i)i A2 ;z
which after some simple algebra leads to the result.

APPENDIX E

PROOF OF THEOREMS

Remind the notations used in Appendix D. The random variahle— 7; is geometric-distributed with
parametemp; > m;. As a consequence;,; — 7; is stochastically dominated by a geometric distribution
with parameterr; denoted byY;, which means that the cdf of,; — 7; is smaller than the cdf of; at

any point [27]. By using Chernoff's bound for geometric randvariable, we have, for any > 0,

146 140 52
; — T > < - > < _ ).
Pt —1 > - } _IP’[YZ_ - ] _exp< 2(1+5)>

Lete be any positive value. Selectidg as the smallest positive term such thap (—2/(2(1 +4.))) <
/N leads tod. = log(N/e)(1 + /1 +1/log(N/e)). So, we haveP[r; 11 — 7 > (1 +6.)/m] < e/N.
Then, by using the Union’s bound, we ha®e > (1 + 4.)(>_, 1/m;)] < € which concludes the proof.
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