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Training Design for Repetitive-Slot-based
CFO estimation in OFDM

Mounir Ghogho, Philippe Ciblat, Ananthram Swami, and Pascal Bianchi

Abstract—Carrier frequency offset (CFO) estimation is a key challenge
in wireless systems employing OFDM modulation. Often, CFO estimation
is carried out using a preamble made of a number, sayJ , of repetitive-
slots (RS). We here focus on the issue of optimal RS preamble design
using the Cramér-Rao bound (CRB) averaged over the channel, which
is assumed to be Rayleigh. We show that the optimal value ofJ is
a trade-off between the multipath diversity gain and the number of
unknowns to be estimated. In the case of correlated channel taps, we
also show that uniform power loading of the active subcarriers is not
optimal (in contrast with the uncorrelated case) and betterpower loading
schemes are proposed. The proposed power loading schemes consist of
allocating more power to activated carriers with higher signal-to-noise
ratios. Simulation-based performance results of the maximum likelihood
estimator support the CRB-based theoretical results.

I. I NTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has become
the standard of choice for wireless LAN’s such as IEEE 802.11a, and
is being considered for several IEEE 802.11 and 802.16 standards.
The popularity of OFDM arises from the balanced transceivercom-
plexity, and the time-frequency granularity that it offers. However,
synchronization continues to be a critical challenge. Here, we focus
on carrier frequency offset (CFO) synchronization, assuming perfect
frame and timing synchronization.

CFO estimation techniques may be classified as time-domain
(pre-FFT) or frequency-domain (post-FFT) techniques. Thelatter
are usually used to estimate the integer part of the CFO after
the fractional part has been identified and corrected. Time-domain
methods are typically used to estimate the fractional part of the CFO,
although some of these techniques can also estimate the integer part
of the CFO. Time-domain methods can be classified into those that
exploit the time-diversity provided by the cyclic prefix (see [1] and
references therein), those that ignore the cyclic prefix andrely on
pilots or null sub-carriers (NSC) [2]-[5], and blind approaches that
exploit the non-Gaussianity of the information-bearing symbols [6]-
[8]. Techniques based on single-carrier clock recovery algorithms are
described in [9].

Data-aided CFO estimation in current OFDM systems employs a
preamble made of a number, sayJ , of repetitive slots (RS) [2]. This
preamble is obtained using one OFDM symbol after deactivating all
subcarriers except those whose frequencies are integer multiples ofJ .
It has been shown that the RS-based CFO maximum likelihood (ML)
estimator is identical to the NSC-based ML estimator in the absence
of virtual subcarriers1 [5]. Here, we address the issue of optimal

Mounir Ghogho is with School of Electronics and Electrical Engineering,
Leeds University, Leeds, United Kingdom (m.ghogho@leeds.ac.uk).
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1Virtual subcarriers are the subcarriers at the edges of the allocated

frequency band that are deactivated in order to avoid interference with adjacent
systems

preamble design using the Cramér-Rao bound (CRB) as a metric.
This involves optimizingJ and the power loading. We show that
the optimal value ofJ is a trade-off between the multipath diversity
gain (in a sense to be defined later in the paper) and the numberof
unknowns to be estimated. In the case of uncorrelated channel taps,
uniform power loading is optimal. In the case of correlated channel
taps, we show that uniform power loading of the active subcarriers
is no longer optimal and better power loading schemes are proposed.

Notations: Superscripts∗ andT will denote conjugate transposition
and transposition.R [·], I [·], and Tr {·} denote the real part, the
imaginary part, and the trace operators, respectively.E[·] stands for
the statistical expectation.

II. SIGNAL MODEL AND PRELIMINARIES

The frequency-selective channel is modelled as an FIR filter
with impulse responseh = [h0, ..., hL−1]

T , and frequency-domain
responseHk :=

PL−1
l=0 hle

−j2πkl/N . In order to analyze the perfor-
mance of CFO estimation, we will assume the following:
(A1) The channel impulse response vectorh is a zero-mean circularly
symmetric Gaussian vector with covariance matrixRh = E[hhH ].

We assume a standard cyclic prefix (CP) based OFDM system
with CP lengthLcp ≥ L− 1. Let ν (a real number) denote the CFO
normalized to the subcarrier spacing, i.e., the actual frequency offset
is ν∆f Hz, where∆f is the subcarrier spacing. In the presence of
CFO and noise, the symbol-rate sampled receive signal can, after
removing the CP, be written as

y(n) =
1√
K

ej2πνn/N
X
k∈K

skHkej2πnk/N + w(n) (1)

with n = 0, · · · , N − 1, where N denotes the total number of
subcarriers,K is the subset of active subcarriers withK denoting its
cardinality,sk is the pilot symbol transmitted over thekth subcarrier,
and w(.) is AWGN. We assume that the power of the transmitted
OFDM pilot symbol is fixed and set to one without loss of generality.
This implies

P
k∈K

|sk|2 = K.
In line with practical OFDM systems, we design the preamble used

for CFO estimation as a single OFDM block made ofJ identical
sub-blocks of lengthM = N/J each, withM an integer. Such a
pilot OFDM symbol is obtained by deactivating all subcarriers whose
frequencies are not multiple ofJ , i.e, K = {mJ, m = 0, · · · , M −
1} − V SC, where V SC is the set of virtual subcarriers (VSC).
The size ofK satisfiesK ≤ M ; equality holds in the absence of
VSC. The case where the preamble is made up of a sequence of
identical OFDM blocks can be treated similarly since, for example,
two identical OFDM symbols can be thought of as two half symbols
of a 2N -point OFDM block. In this case, a guard interval is not
needed between the identical blocks.

The RS structure of the preamble allows for a simple estimation
of the CFO thus avoiding the computational complexity of thejoint
CFO-channel estimation. Further, forK < L, the channel cannot be
identified while CFO may still be identified; indeed in this case there
would be more unknowns than equations.
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Using the RS structure, the received signal can be rewrittenas
(with n = m + ℓM andm = 0, ..., M − 1; ℓ = 0, ..., J − 1)

y(m + ℓM) = a(m) ej2πνℓ/J + w(m + ℓM) , (2)

where

a(m) = ej2πνm/N

 
1√
K

X
k∈K

skHkej2πmk/N

!
.

If we ignore the dependance ofa(m) uponν, estimatingν from Eq.
(2) is equivalent to harmonic retrieval in additive noise ina multivari-
ate setup. Indeed, by definingy(ℓ) = [y(ℓM), · · · , y(M−1+ℓM)]T

as the “multivariate” receive signal,a = [a(0), ..., a(M − 1)]T as
the unknown amplitude vector, andw(ℓ) = [w(ℓM), · · · , w(M −
1 + ℓM)]T as the “multivariate” additive noise, we obtain

y(ℓ) = aej2πνℓ/J + w(ℓ), for ℓ = 0, · · · , J − 1 (3)

In [5], the vector a was modelled as an unknown(M × 1)
deterministic parameter vector and the following RS-basedML (RS-
ML) estimator was derived:

ν̂RS = arg max
ν

J−1X
ℓ=1

R

h
r(ℓM)e−j2πℓν/J

i
(4)

wherer(τ ) is the autocorrelation sequence

r(τ ) =

N−τ−1X
n=0

y∗(n)y(n + τ ).

It is worth pointing out at this stage that the implementation of the
RS-ML estimator increases withJ since it requires the estimation of
J correlation coefficients. This observation may have a role to play
in the RS-preamble design discussed in Section IV.

III. PERFORMANCEANALYSIS

Here, we analytically assess the performance of the RS-ML esti-
mator using the CRB, which characterize the asymptotic performance
of the ML estimator astimator. We derive the conditional CRB
(conditioned on the channel) and the average (over the channel) CRB.
In deriving these bounds, we assume, as in the RS-ML method, that
a in Eq. (2) is an arbitrary vector. The unknown parameter vector is
then [aT

R, aT
I , ν]T whereaR = R [a] andaI = I [a].

A. Conditional CRB

Here, the unknown parameter vector is considered to be determin-
istic. Sincew(n) is circularly symmetric white Gaussian process,
the conditional CRB (CCRB) on CFO estimation is found to be (the
proof is straightforward and is omitted here due to page limitation.)

CCRBRS(ν) =
1

γh

3

2π2N(1 − 1/J2)
(5)

where γh is the conditional (on the channel) signal-to-noise ratio
(SNR)

γh :=
1
K

P
k∈K

|Hk|2|sk|2
σ2

(6)

The CCRB is useful to predict the performance of CFO estimation
for a particular channel. Notice that Eq. (5) is an extensionof Eq.
(18) in [2] which was valid only for AWGN channel.

It is instructive to rewrite the CCRB as follows

CCRBRS(ν) = ξhf(J)CRBEQ−AWGN(ν) (7)

where

ξh = E[γh]/γh (8)

f(J) =
1 − 1/N2

1 − 1/J2
(9)

and
CRBEQ−AWGN(ν) =

3

2π2N(1 − 1/N2)γ

is the CRB on the estimation of the frequency,ν, of a single
exponential,{exp(j2πνn/N), n = 0, · · · , N − 1}, in AWGN
channel with equivalent SNR given by

γ := E[γh] =
1
K

P
k∈K

σ2
H(k)|sk|2

σ2
(10)

whereσ2
H(k) = E[|Hk|2]. It is worth pointing out that the average

SNR, γ, depends on the power distribution when the channel taps
are correlated since theσ2

H(k)’s are different from each other in this
case.

The parameterξh captures the variations (or randomness) of the
channel; its distribution is a function ofRh, J and the power dis-
tribution among the active subcarriers. The functionf(J) measures
the above-mentioned amplitude uncertainty. The latter monotonically
decreases withJ . If J = N , f(N) = 1, which is the minimum
uncertainty; in this case the amplitude of the noise-free received
signal is constant. Note thatf(1) = ∞; indeed in this case the
complex amplitude of the noise-free received signal has no repetitive
structure, thusCCRBRS(ν) = ∞, i.e., the CFO is non-identifiable
if the preamble has no repetitive structure. However, if NSC-based
estimation is used, then, the CFO could be identifiable even if there
is no repetitive structure provided that some of the subcarriers are
deactivated [5]. The CCRB associated with the NSC approach can
be found in [4].

B. Average CRB

The average CRB (ACRB) is given by

ACRBRS(ν) := E[CCRBRS(ν)] = ξf(J)CRBEQ−AWGN(ν)
(11)

whereξ := E[ξ] and the expectation is with respect to the channel.
Monte-Carlo simulations can be used to accurately evaluatethe
ACRB. Deriving closed-form expressions forξ and thus the ACRB
does not seem tractable except for the interesting special cases listed
below. Nevertheless, we introduce in the next subsection simple
closed-from expressions approximating the ACRB in the general case.

1) ξ = ∞ cases: under assumption (A1), this occurs ifi)
J = N (i.e. K = 1) regardless ofL and Rh, ii) L = 1
(i.e. flat fading) regardless ofJ , or iii) rank(Rh) = 1 (i.e. fully
correlated paths) regardless ofJ . Indeed in all the above caseγh is
exponentially distributed, which implies thatE[1/γh] = ∞ and thus
ACRBRS(ν) = ∞. Hence, for Rayleigh fading channels, in order
for CFO estimation to be consistent, multipath diversity must not
only be available (i.e.L > 1 and rank(Rh) > 1) but also captured
through the choice ofJ , which dictates the number of modulated
subcarriers.

2) Rh = σ2
hIL and K = M : In the absence of virtual

subcarriers, i.e.K = M , uniform power loading (i.e.|sk|2 =
1, k ∈ K) is optimum. In this case,γh can be written as
γh = σ−2

Pmin(K−1,L−1)
i=0 |P⌊(L−1)/K⌋

j=0 hi+jK |2 where hℓ = 0

if ℓ ≥ L. If K ≥ L, [2σ2/σ2
h]γh is a chi-square variable with

2(L − 1) + 2 degrees of freedom. IfK < L and L/K an integer,
[2σ2/(σ2

h(L/K))]γh is a chi-square variable with2(K − 1) + 2
degrees of freedom. The mean for an inverse-chi-square random
variable withn (n > 2) degrees of freedom is equal to1/(n − 2),
Consequentlyξ is found to be

ξ =
L

min(K − 1, L − 1) max(1, L/K)
(12)

where K ≥ L or K < L but with L/K an integer. The above
expression is interesting because it explicitly shows the impact of
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multipath diversity on CFO estimation throughmin(K − 1, L − 1)
which can be interpreted as the multipath diversity order captured by
activating the subcarriers inK. The result on multipath diversity can
be better illustrated by the cumulative distribution function (CDF) of
the CCRB which is obtained as2

Pr{CCRB(ν) < ǫ} = e−1/(2x)
DX

i=0

1

i!(2x)i
(13)

whereD = min(K − 1, L − 1) and

x =
ǫ max(1, L/K)

2Lf(J)CRBEQ−AWGN(ν)
(14)

Eq. (13) shows the exponential dependence of the CDF of the CCRB
with respect to the multipath diversity order.

It is worth pointing out that whenL ≫ 1 andK ≥ L, the ACRB
gets close to the (RS-based) CRB obtained in the case of AWGN
channels3.

In the general case where none of the above scenarios occurs,we
propose the following approximation for the ACRB.

C. ACRB approximations

We have thatγh is a weighted sum of central chi-square distri-
bution of two degrees of freedom. If the number of componentsin
the sum is large (i.e,K large orJ small compared toN ), then it
is well known ([11], [12] and references therein) that its distribution
can be well approximated by a central Gamma distributionpG(t)
with standard parameters(b1, b2) given by

pG(t) =
bb2
1

Γ(b2)
tb2−1e−b1t

1t≥0

and such that the mean (resp. variance) of a Gamma distribution
b2/b1 (resp.b2/b2

1) satisfy

b2/b1 = E[γh], b2/b2
1 = E[(γh − γ)2].

After straightforward but tedious algebraic manipulations, we obtain
that

b1 = Kσ2 Tr(RHP)

Tr(RHPRHP)
(15)

b2 = b1
1

Kσ2
Tr(RHP). (16)

whereRH = [ρH(m, n)]m,n∈K with ρH(m, n) := E[H∗
mHn] and

P is a diagonal matrix composed by{|sk|2, k ∈ K}.
Whenγh is assumed to be Gamma distributed, the expectation of

1/γh is given byb1/(b2 − 1). We thus can deduce the next lemma.
Lemma 1: If K is large, we have

E

�
1

γh

�
≈ Kσ2 Tr(RHP)

(Tr(RHP))2 − Tr((RHP)2)
. (17)

In Eq. (17), only the term Tr((RHP)2) depends on the off-
diagonal terms of matrixRH . In our simulation study, we have
observed that neglecting the off-diagonal components ofRH modifies
only very slightly the value of the ACRB. Further, in the casewhere
K = N/J = L and the channel taps have equal powers but may
be correlated, we have shown analytically that the expression in the

2The cumulative distribution function of an inverse Chi-square prob-
ability density function with n degrees of freedom is given by
Γ(n/2, 1/(2x))/Γ(n/2).

3In the case of AWGN channel, the performance of the RS-based CFO
estimate is optimum whenJ = N . ChoosingJ < N simplifies the ML
algorithm at the expense of reduced performance, which is quantified byf(J).
Indeed, the RS-based CRB forν in the case of AWGN channels can be
expressed asACRBRS,AWGN(ν) = f(J)CRBEQ−AWGN(ν).

Lemma does not depend on the off-diagonal elements ofRH ; the
derivations, not shown here because of page limitation, arebased on
the diagonalization of the Toeplitz matrixRh using DFT matrices.
Therefore the following corollary can be deduced

Corollary 1: If K is large,E[1/γh] may be well approximated by

E

�
1

γh

�
≈ Kσ2

P
k∈K

σ2
H(k)pk�P

k∈K
σ2

H(k)pk

�2 −Pk∈K
σ4

H(k)p2
k

(18)

with pk = |sk|2 for k ∈ K.

IV. REPETITIVE-SLOT PILOT DESIGN

This section gives guidelines on how to chooseJ and the power
distribution among the active subcarriers.

A. Power loading design

Here, the number of activated subcarriers and their positions are
fixed, i.e., K (thereforeJ) is fixed. In the literature, the symbols
{sk, k ∈ K} are always set to have the same magnitude whatever
the channel statistics. In the case of correlated scattering, theoretical
analysis (presented below) and simulations results (presented in next
section) show that the uniform power loading is not optimal.In [13],
power loading for CFO estimation was proposed but the channel
realization was assumed to be known at the receiver and at the
transmitter, so the power loading was channel-dependent. Here, the
power loading is channel statistic dependent.

First, note that the sequence{pk := |sk|2, k ∈ K} that minimizes
the CCRB of ν under the constraint of constant transmit power,P

k∈K
pk = K, is channel dependent. In the rather unrealistic case

where the channel is known at the transmitter and where CCRB
optimzation makes sense, the optimal design for{pk, k ∈ K} would
be to assign the entire transmit power to the subcarrier at which |Hk|
is maximum. In this case, only one subcarrier is active, and we would
have a constant signal envelope and maximum signal-to-noise ratio
at the receiver. For this scenario to be practical, the channel has to
be (quasi) time-invariant and known at the transmitter while the CFO
may vary with time. Next, we focus on the more practical case where
the channel is unknown at the transmitter.

Since the channel is unknown at the transmitter, an alternative
measure of performance is required to solve our design problem. In
[10], the worst-case channel CRB was used to derive the optimal
statistics of the training sequence in the context of single-carrier
systems. For our problem, the worst-case channel CRB is not useful
since it is equal to infinity whenK ≤ L. This is obtained when
all L zeros of the channel coincide with the activated subcarriers.
This is a direct consequence of the loss of multipath diversity in
cyclic-prefixed systems.

Therefore, we assume a statistical model for the channel andnow
concentrate on the ACRB. Unfortunately, no general closed-form
expression is available for the ACRB. Although the ACRB can be
estimated empirically, its numerical minimization with respect to the
K-dimensional parameter set{pk, k ∈ K} is prohibitive since for
each parameter vector candidate, a large number of Monte-Carlo
simulations are required to accurately estimate the ACRB.

Recall that in the case of uncorrelated channel taps, uniform
power is optimal in the absence of VSCs and simulations have
shown that it is nearly optimal when VSCs are present. We can
now use the approximation provided in subsection III-C to exhibit
relevant power loading in the case of correlated channel taps. One
can prove quite easily (by evaluating the Hessian matrix andits
positivity) that optimizing the ACRB approximated by Eq. (18) given
in Corollary 1 with respect to power loading boils down to a convex
optimization problem. In the next Theorem, we obtain the power
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loading {pk, k ∈ K} subject to
P

k∈K
pk = K that minimizes Eq.

(18). Consequently the obtained power loading will be relevant as
soon asK is large enough. Theorem 1 is proved in the Appendix.

Theorem 1: Let Nn be the set of then largerσ2
H(k) and let

αn =
1

n

X
k∈Nn

1/σ2
H(k)

βn =
1

n

X
k∈Nn

1/σ4
H(k)

µn =
nαn +

p
βn − n(βn − α2

n)

n − 1
.

The optimal power loading minimizing Eq. (18) is

pk =
K

σ2
H(k)

(µn − 1/σ2
H (k))+

n(µnαn − βn)
(19)

and n must satisfycard(k | 1/σ2
H (k) < µn) = n where card

denotes the cardinality operator.
This power allocation gives greater importance to the frequencies
associated with high channel variance, i.e., that are good in average.
If a carrier is not good enough, it is not used. Such a power
allocation achieves a compromise between the average SNR and
multipath diversity gain. Keep in mind that this allocationmakes
sense when the Gamma distribution approximation holds, namely,
whenJ is small enough. Finally, if the channel statistics are unknown,
then distributing the transmit power uniformly across the subcarriers
k ∈ K, seems adequate.

B. Design of J

Using the RS-based method, identifiability of the CFO in the
acquisition range[−J/2, J/2] is guaranteed ifγh 6= 0. This implies
that identifiability is lost ifJ = 1 and Hk = 0, ∀k ∈ K. Setting
J = 1 (i.e. all subcarriers are modulated) offers maximum multipath
diversity gain but this also maximizes the amplitude uncertainty
and thus makes the CFO unidentifiable because there would be
more unknown parameters to estimate than equations4. A necessary
and sufficient condition for identifiabilityregardless of the channel
realization is, providedh is not the null vector, given by

J ≥ 2 and K ≥ L

The second part of the above condition guarantees that even when
all (L−1) channel zeros coincide with activated subcarriers,γh 6= 0
would hold. For example, ifL = N/4 − 1 and in the absence of
VSC, strict identifiability of the CFO is guaranteed only forJ =
2 and J = 4. However, since the channel impulse responseh is
a continuous-valued random vector, the probability of identifiability
loss whenK ≤ L − 1 is zero. Therefore, we only focus on the
estimation performance when deriving the optimal value ofJ .

Because the channel is random, withJ = N (i.e., K = 1)
the multipath diversity is of order one. Thus, a deep fade at the
single active subcarrier would cause a very low SNR, thus making
CFO estimation very difficult. Simultaneous deep fades at several
subcarriers are less likely than a fade at one subcarrier. Setting
J = 1 (i.e. all subcarriers are modulated) offers maximum multipath
diversity gain but this also maximizes the amplitude uncertainty and
thus makes the CFO unidentifiable as mentioned above. Therefore,
there must be a trade-off between these two phenomena. Some remark
aboutJ design associated with the BLUE estimator is available in
[14].

4Since the transmitted symbols are known and theHn ’s are parameterized
by L coefficients only, the CFO can still be identifiable even whenall
subcarriers are modulated (J = 1). However, this will require joint channel
and CFO estimation which complicates the CFO estimation algorithm.

The CCRB leads to a channel-dependent optimal value ofJ , and is
therefore not useful because the channel is unknown at the transmitter.
Hence we resort to the ACRB. We first study the case whereRh is
proportional to the identity matrix, before studying the more general
cases of uncorrelated channel taps (but with different variances), and
correlated channel taps. First, it is worth pointing out that if the
channel taps are uncorrelated, uniform power loading is optimal in
the absence of VSc, and is nearly optimal in their presence. In what
follows, we ignore the effects of VSCs.

1) Rh = σ2
hIL: As mentioned above, uniform power loading is

optimal in this case. Eq. (12) can be rewritten as

ξ =
min(L, K)

min(L, K) − 1

whereL/K is assumed an integer whenK < L. This implies that if
we capture full multipath diversity, i.e,K ≥ L (i.e. J ≤ N/L), then
ξ = L/(L − 1), which is independent ofJ . As CRBEQ−AWGN(ν)
is independent ofJ in this subsubsection and asf(J) decreases with
J , the value forJ that minimizes the ACRB in Eq. (11) necessarily
satisfiesJ ≥ N/L. Further, in this case, the ACRB monotonically
decreases withL, which confirms that multipath diversity improves
the accuracy of CFO estimation. IfK ≤ L but L/K is an integer,
ξ = N/(N − J), which increases withJ , whereasf(J) decreases
with J . The value ofJ that minimizes the ACRB in Eq. (11) can be
obtained by findingJ that minimizesf(J)/(N − J). To get a close
form expression for this value, we replaceJ by a continuous-valued
variable, sayµ. The value ofµ that minimizesf(µ)/(N − µ) is
obtained by solving a third order equation and is found to be

3

s
N +

r
N2 +

1

27
+

3

s
N −

r
N2 +

1

27
≈ 3

√
2N (20)

Hence, by combining theK ≥ L and K ≤ L cases, we take the
optimal value ofJ to be the integer from the set of possible values
of J that is the closest to5

µo = max

�
N

L
,

3
√

2N

�
(21)

2) Rh = diag
�
σ2

h(0), · · · , σ2
h(L − 1)

�
: Again uniform power

distribution is optimal in this case. However, we do not havean
exact closed-form expression for the ACRB in this case. We use the
approximation in Lemma 1 which leads, after some derivations, to

ξ ≈

2641 −
Tr
�PQ−1

i=0 R
(i)
h

�2

(Tr(Rh))2

375−1

(22)

where Q = 1 if K = N/J ≥ L and Q =

L/(N/J) (integer) if N/J ≤ L, and R
(i)
h =

diag
�
σ2

h(iN/J + m), m = 0, · · · , N/J − 1
�
, i = 0, · · · , Q − 1.

Note thatξ depends onJ . The value ofJ that minimizes the ACRB
can then be easily obtained using the above expression and that
for f(J). However, unlike in the previous case, we do not have a
closed-form solution as in eq. (21). It is also worth pointing out that
the optimal value forJ in this case reduces to that in eq. (21) if the
uncorrelated channel taps have equal powers.

3) Correlated channel taps: In this case, we can only design an-
alytically J using numerical evaluation of the approximate ACRB in
Lemma 1, with power loading given in Theorem 1. Obtaining a closed
form expression similar to that in eq. (21) does not seem tractable.
Numerical evaluations and simulations show that the solution in eq.
(21) is also appropriate for the general case of correlated and/or
unequal power channel taps.

5SinceN is a power of two in practical OFDM systems,J is required to
be a power of two in order to obtainJ equal length slots.



5

V. SIMULATION RESULTS

We consider an OFDM pilot symbol with a total ofN = 64
subcarriers and no virtual subcarriers. We assume the channel to
be static over the OFDM pilot symbol. The channel coefficients are
assumed Rayleigh with exponential power delay profile, withdecay
parameterα, i.e., σ2

hℓ
:= E[|hℓ|2] = ce−αℓ, and covariance matrix

given by [Rh]i,j = σhi
σhj

ρ|i−j| whereρ ∈ [0, 1) is the correlation
factor. The scaling factorc is chosen such thatTr {Rh} = 1.
The empirical mean square errors (MSE) of the CFO estimates are
estimated using 10,000 Monte-Carlo runs. The SNR is defined as
1/σ2 and is, unless stated otherwise, set to 10dB.

First, we consider the case of uncorrelated and equally powered
channel taps, i.e.ρ = 0 andα = 1. Figure 1 displays the exact ACRB
(evaluated using Monte-Carlo simulations) versusL for different
values ofJ . The results validate our theoretical finding of the optimal
value forJ in eq. (21). Indeed, as predicted, optimal performance is
obtained withJ = N/L except whenL = 32 for which the optimal
value isJ = 4 since it is the closest possible value ofJ to 3

√
128.

In what follows, we setL = 16 and α = 2. Figure 2 shows the
ACRB and MSE of the RS-ML estimate versusJ for ρ = 0.5 when
the uniform and proposed power loading schemes are employed. Note
that the empirical MSE of RS-ML is in agreement with the ACRB.
Consequently, our approach of optimizing the training design using
the ACRB is well justified. One can also observe that, although based
on approximations, the proposed power loading schemes provide
improvement in estimation performance. The theoretical results on
the design ofJ , presented above, predict that the optimal value for
J is four, which is in agreement with the result in Figure 2.

Figure 3 illustrates the ACRB and the MSE of RS-ML estimate
for the uniform and proposed power loading schemes versusρ with
J = 4. We first observe that the MSE associated with uniform power
loading increases withρ because the multipath coding gain of the
channel decreases withρ. Recall that whenρ = 1, the taps are fully
correlated and the ACRB and the average MSE thus become infinite.
Figure 3 also shows that the proposed power loading significantly
outperforms the uniform power loading when the channel tapsare
highly correlated. Moreover when channel statistics are known and
judiciously used at the transmitter, the correlation becomes a benefit
as long asRh remains full-rank.

In Figure 4, we plot the ACRB and the MSE of the RS-ML
estimator versus the SNR for the white power distribution and the
power loading distribution given in Theorem 1 forJ = 4 and
ρ = 0.5. For the same estimation performance, the proposed power
distribution provides a 5dB gain in terms of SNR over the white
training. Notice also the threshold for the outlier effect is lower when
using the proposed training.

VI. CONCLUSIONS

We have analyzed the performance of CFO estimators based
on a single repetitive-slot pilot symbol in the context of OFDM
system. By assuming a Rayleigh channel, we have provided closed-
form expressions illustrating the impact of multipath diversity on
estimation performance. Using the Cramèr-Rao bounds, we have
provided insights into how the preamble should be designed.In the
case of correlated Rayleigh fading channels with known statistics at
the transmitter, a new power loading scheme was proposed andshown
through simulations to outperform the conventional uniform power
loading scheme.

APPENDIX

Proof of Theorem 1
Minimizing Eq. (18) is equivalent to minimizing its opposite

inverse. Therefore we focus on the following optimization problem
(which is still convex)

min
pk∈K

P
k σ4

H(k)p2
kP

k σ2
H(k)pk

−
X

k

σ2
H(k)pk

subject to
P

k pk = K and−pk ≤ 0 for all k ∈ K.
The Lagrangian function can be then written as

L =

P
k σ4

H(k)p2
kP

k σ2
H(k)pk

−
X

k

σ2
H(k)pk + c

X
k

pk −
X

ckpk.

Applying the KKT conditions (which correspond to set partial
derivative ofL with respect to eachpk to zero), after straightforward
but tedious algebraic manipulations, leads to

pk =
K

σ2
H(k)Nµ(µαµ − βµ)

(µ − 1/σ2
H (k))+ (23)

2µ =

P
k∈Nµ

(µ − 1/σ2
H (k))2P

k∈Nµ
(µ − 1/σ2

H(k))
+
X

k∈Nµ

(µ − 1/σ2
H(k))

whereNµ = {k | 1/σ2
H(k) < µ}.

Last equation can be re-written as follows

(|Nµ| − 1)µ2 − 2|Nµ|αµµ + (|Nµ|α2
µ + βµ) = 0

Solving this second-order equation leads to

µ =
αµ|Nµ| ±

p
δµ

|Nµ| − 1
.

where
δµ = |Nµ|α2

µ − βµ|Nµ| + βµ.

Due to its convexity property, the KKT conditions admit a solu-
tion and soδµ ≥ 0 is necessarly satisfied. One can prove that
µ = (αµ|Nµ| −

p
δµ)/(|Nµ| − 1) leads to negativepk which is

absurd. Consequently, we get

µ =
αµ|Nµ| +

p
βµ − |Nµ|(βµ − α2

µ)

|Nµ| − 1
(24)

One can finally remark that the setNµ is entirely characterized by
its cardinal|Nµ|. By denotingn = |Nµ|, Eqs. (23) and (24) can be
re-written as in Theorem 1.
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Fig. 1. ACRB vsL in the uncorrelated channel case
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Fig. 2. ACRB and MSE of RS-ML vsJ for different training schemes
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Fig. 3. ACRB and MSE of RS-ML vsρ for different training schemes
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Fig. 4. ACRB and MSE of RS-ML versus SNR for different training schemes


