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Abstract

In the context of cognitive radio or military applicatioris,js a crucial task to distinguish blindly
various OFDM based systems (e.g., Wifi, Wimax, 3GPP/LTE, BNjBrom each others. Existing OFDM
based systems differ from their subcarrier spacing usedABM) modulation. One can thus carry out
recognition algorithms based on the value of the subcaspacing. Standard approaches developed in
the literature rely on the detection of the cyclic prefix whienables to exhibit the value of the used
subcarrier spacing. Nevertheless these approaches fail wither the cyclic prefix duration is small or
the channel impulse response is almost as large as the qyeliix. Therefore we propose four new
algorithms to estimate the parameters of OFDM modulatedasigespecially the subcarrier spacing)
relying on i) the normalized kurtosis, ii) the maximum-likeod principle, iii) the matched filter, and
iv) the second-order cyclostationary property. We showstineng robustness of proposed algorithms to
short cyclic prefix, multipath channel, time offset, andginency offset. Comparisons between proposed

algorithms and the state of art techniques are done by mdasmnputer simulations.
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. INTRODUCTION

The blind characterization of digital communications sys¢ has been widely studied in the past
decade for military applications. These studies have giga: to many contributions dealing with the
identification of the parameters of single carrier signatsloated by linear modulations [1] or by CPM
[2]. Concerning OFDM signals identification, only a few pegpean be found in the literature [3]-[7].
This small amount of papers can be explained by the fact th&dDND based systems have emerged
only for a few years. The introduction of the cognitive radmncept by [8], which relies on developing
flexible terminals able to adapt their transmission pararmseto their spectral environment, needs the
receiver to sense its electro-magnetic environment andeotify the surrounding operating systems. As
OFDM modulations are now used in most of popular standahdsyéceiver should recognize systems
based on OFDM modulations. As most of the popular OFDM basaudards use different subcarrier
spacing (e.d.5.625kHz, 10.94kHz, 312.5kHz, 1.116kHz, 15kHz for Fixed WIiMAX, Mobile WiIMAX,
WiFi, DVBT, 3GPP/LTE respectively), it is sufficient to astate the subcarrier spacing of an OFDM
modulated signal to identify the encountered systems. Maein order to distinguish different modes
of a same standard or military context, it should also be ulsef estimate the cyclic prefix length.
Furthermore, for military applications, a time and fregoyersynchronisation step is crucial since the
final objective is information retrieval. As the main objeetfor cognitive radio applications is only

system identification, the time and frequency synchroitieagtep may be optional.

In this paragraph, we remind the main results available enliterature about the subcarrier spacing
blind estimation. In the case of cyclic prefixed (CP) OFDM.,i.the most conventional OFDM, the
existing papers propose to extract the OFDM parametersulusgmbol part duration which is equal to
the inverse of the subcarrier spacing; cyclic prefix durgtivom the correlation induced by the cyclic
prefix. For instance, [4] first suggested to estimate theuligedrt duration by searching the peak of
the autocorrelation function which may occur at a time lagaédo the useful part duration. Once the
useful part duration is correctly estimated, the estinmatd the whole symbol duratiohis performed
using the smallest non-null cyclic frequency. In [5], sanstineators are proposed for the useful part
and cyclic prefix durations. The authors added the frametleagtimation which is obtained by using

the correlation between the pilot symbols inserted at thgnming of each frame. In [6], a likelihood

INotice the estimated whole symbol duration minus the eséichaiseful part duration leads to the estimated cyclic prefix

duration
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function between the cyclic prefix samples and the useful gamples for which the cyclic prefix is
copied from is derived in the context of Additive White GaiassNoise (AWGN) channel. The deduced
cost function shows a great similitude with that proposef4in Recently, [7] proposed to estimate the
OFDM parameters with a three steps algorithm: they first icemed the OFDM modulation as a linear
modulation of symbols and estimates the symbol rate thamkbe cyclostationarity test of [9]. Then,
the autocorrelation based method introduced in [4] is usezktract the useful part duration. Finally, the
length of the cyclic prefix is estimated by means of cyclastedrity test.

The methods inspected in previous papers are all based diadhéhat the cyclic prefix is identical
to a portion of the useful part at the receiver side if an AWGMmel is considered. Then the induced
correlation enables to estimate the OFDM parameters. Afieimethods suffer from the same drawback:
when the power of the autocorrelation of the received signaleak, the performance of such algorithms
is poor. Unfortunately when the ratio between the cyclidigréuration and the useful part is small (e.g.,
this ratio can be equal tb/32 in WiIMAX and DVB systems) or when the length of the channel iise
response is close to the cycle prefix length, the induceccatrelation is weak and such algorithms fall
down. Notice that simulations in the mentioned papers wéenalone in AWGN context and/or large
cyclic prefix preventing to exhibit this phenomenon.

In [3], the particular context of zero-padded (ZP) OFDM ieatied. The method exploited the fact
that the autocorrelation function is time-periodic withripd equal to the whole symbol duration. Con-
sequently, the whole symbol duration can be estimated fystidiecting the smallest non-null cyclic
frequency. Secondly, as null samples are inserted betweer©OFDM symbols, an entropy criterion is

used to discriminate between the guard time and the useftul pa

In this paper, four new methods are proposed. These fouradstthat provide an estimation of the
OFDM parameters (the useful part length and the cyclic ptefigth) are robust to the context of small
guard time compared to the useful part and of the channellsapesponse as long as the guard time.
Consequently, whereas the autocorrelation based metlisdrfahese contexts, our four methods still
work well. Our four methods are based on the following défer principles: i) kurtosis minimization,

i) maximum likelihood, iii) matched filter, and iv) cycliaéquency estimation.

The paper is organized as follows: In Section II, we brieflyatethe OFDM signal model. In Section
I, three methods that need time and frequency offset symibation step are described; The first one is

based on the kurtosis minimization, the second one on thenmoax likelihood and the third one on the
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matched filter principle. In Section 1V, a novel method whades not need prior synchronisation step is
developed; It is based on the cyclic correlation of the nebisignal. Section V is devoted to numerical
simulations. We especially inspect the robustness of owr &tgorithms to the presence of small cyclic
prefix, multipath channel and synchronisation errors. Canispn with autocorrelation based method is

done. In Section VI, conclusions are drawn.

Il. SIGNAL MODEL

The transmitted continuous-time OFDM signal writes:

K—-1N-1
. n(t—DT.—kTs)

1 9y nt=DTe—kTy)
salt) = = DO apne T N galt—kTL) 1)

k=0 n=0
where the sequencsg, ,, represents the transmit unknown data symbols at subcaraexd OFDM block

k. These data symbols are assumed to be independent andadgrdistributed (i.i.d).N is the number
of subcarriers and /7. is the information symbol rate in absence of guard interVale intercarrier
spacing is then equal tb/NT,. The length of the cyclic prefix is set tO7,. The duration of the whole
OFDM symbol is then equal t@; = (N + D)T.. The shaping filtery,(¢) is assumed to be equal to
if 0 <t< T and0 otherwise. A transmission ak OFDM symbols has been considered. For sake of
simplicity, we omit to introduce the ZP-OFDM scheme. Nelekess the first three proposed algorithms
can be also carried out with minor and straightforward modifons in ZP-OFDM context.

The transmit signal passes through a noisy multi-path tadinannel composed by paths. The
amplitude and the delay of tH&" path are denoted by; andr; respectively. Then the continuous-time

received signal takes the following form

L
Yalt) = (Z Aisa(t — n)) 2Tt 1 b, (t) )
=1

where b,(t) is a circularly-symetric zero-mean white Gaussian noisth wariances? per complex
dimension, and wheréf is the frequency offset due to local oscillator drift or Dégpeffect.

The continuous-time received signgl(¢) is sampled at sampling frequendy7. whereT, is the
sampling period. In order to satisfy the Shannon conditibe, sampling frequency must be larger than
the OFDM signal bandwidth,i.e., greater thafl... Let T, the observation window duration. L&t =
|To/T.| be the number of available samples whépe| stands for the largest integer not greater than

X. Then the discrete-time receive signal is denoted,by) = y,(m7T.) and writes as

L
y(m) = <Z NSa(mT, — Tl)> eZimAfm 4 b(m) (3)
=1
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with b(m) = b,(mT.), andAf = 0 fT, the normalized carrier frequency offset.

Putting Eg. (1) into Eq. (3) leads to the following input/aipnodel

L K-1N-1

. T . Te . DTc
y(m) _ 1 Z Z Z )\ZSQZTF”NJT:CL]C 71672z7mmNTC e2z7r(kJr1)N—TC
N =1 k=0 n=0

X ga(mT, — 7 — k(N + D)T.)e*™ ™ 4 b(m) (4)

In practice the cognitive terminal just has the knowledge gfm) %;Ol M, Ty, T, and wishes to
estimate the values a¥, NT., DT.. For selecting the used standard, the cognitive termingtlyfineeds
the knowledge of the subcarrier spacing given by the invefs¥T.. Notice that in Eq. (4)K, ain, L,
{N, 7}, andAf are unknown as well.

Methods introduced in subsection IlI-A (based on kurtoginisation) and section IV (based on cyclic
correlation) rely on signal model provided by Eq. (4). In tast methods introduced in subsection 111-B
(based on maximum likelihood) and subsection IlI-C (basedatched filter) assume an AWGN channel,
i.e. L =1, \y =1, andm = 0. However impact and robustness of a multipath channel csetheethods

are addressed in Section V devoted to numerical compugation

IIl. OFDM PARAMETERS ESTIMATION WITH SYNCHRONISATION STEP

In this section, we present three novel methods to perfoenettimation of the OFDM parameters.
These methods either need a prealable step of time and fregusynchronisation or insert a syn-
chronisation step into their computations. Albeit high utational load, especially, due to the extra
synchronisation step, our proposed methods are worth #iregeoutperform the existing autocorrelation
based method as shown in Section V. In this section, only EPMD is considered. However extension
to other kind of OFDM (like ZP-OFDM) is straightforward, aisl omitted hereafter due to the lack of
space.

This long section is actually organised as follows. The eatign IlI-A is devoted to the kurtosis
optimisation based method. Subsection IlI-B focuses orMaArimum Likelihood based method. Finally,
the Matched Filter based method is introduced in Subsedtigd. In this Section, notice that, except
otherwise stated, the prior synchronisation is assumecetodoried out. Algorithm adaptation to time
and frequency missynchronisation scheme is done at the £rdah subsection. Moreover empirical

performance in the realistic context of time and frequendégsynchronisation is assessed in Section V.
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A. Kurtosis Minimization based method

1) Algorithm description:The first new algorithm needs an adaptative receiver whigienés on the
three following parameterévf, ]Vfc, andﬁfC whereﬁ, ]Vfc, andﬁfC are trial values forN, NT,,
and DT, respectively. To simplify the presentation, we first assuintleat the receive signal is noiseless,
and ii) that the first received samplg$0) matches the beginning of an OFDM symbol (perfect time
synchronisation) and\ f = 0 (perfect frequency synchronisation).

The adaptive receiver works as follows:

1) Split the receive samples into estimated OFDM symbols:
"p = Ya(pTe + DT, + k(NT, + DT.)). (5)

In the sequel, we puP = |NT,/T.] and K be the estimate of the number of OFDM symbols
within the observation time. Note that ﬁc = NT. andﬁfa = DT, thenr, corresponds to
the p'" element of thekk OFDM block once the cyclic prefix has been removed.

2) Estimate the transmit data symbols by applying the nae@a@lFourier transform as follows:
~ , Pl .
Vne {0, N —1},ap, = —= Z rk,pem””ﬁ ©
VP 5

The first new algorithm is based on the following idea: if tkialtvaluesﬁfC andﬁfa match with
the true values oNT, and DT, respectively, then the decoded symbgp}, at blockk and at subcarrier
n is expected to depend only on one of the transmitted symioolgkampleay ,,). The idea can be
mathematically translated as follows: it exists an unkn@enstantu,, depending only on the channel

frequency response such that

&k,n = HnGk.n (7)

On the contrary, if the OFDM parameters are mis-estimateol,ﬁfC # NT, and/orﬁfa #+ DT,, then
an extra term associated with inter-carrier and/or inyem®ol interference should appear in Eq. (7).

In order to ensure that our estimation algorithm forces ttiapéive receiver to satisfy Eq. (7), we
need a criterion for which the optimisation d/ﬁfc andﬁfa prevents interference at the receiver side.
Therefore, as done in blind channel deconvolution [10],] [M& advocate to use the kurtosis of the

estimated symbols which is defined as:

cum(Gg, p, Ay, n» Ak,n G;m)

(Ellan )’

where the superscrigt)* stands for the complex conjugate.

(8)

K(Qkpn) =
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Our objective is hence to prove that the kurtosis of each diedsymbols defined as a function of
NT, and DT, reaches its global minimum valigand only if N7. = NT. and DT, = DT.. Once this
theoretical result proven, we will be in position to devebpractical estimation algorithm d¥7, and
DT, based on the minimization of the kurtosis.

Before going further, in order to simplify forthcoming deations, we remark that the transmit symbols
ay,, are i.i.d. symbols; their kurtosis (a; ,,) thus do not depend ok nor v, and they will denoted by
k (a). We remind that the kurtosis is negative for standard limeadulations (PAM, PSK, QAM).

Now we introduce main results of this subsection relatethéoproof of the convergence of the kurtosis
optimisation to the true values of the OFDM parameters.

Theorem 1:Consider the decoded symbols at subcatriand OFDM symbok. We have the following
result

Given (k,v), £k (ary) > k(a)

and the equality is achieved if and only if
o Vp € {O,]5 — 1}, the samples;, , from which are extracted, , (see Eq. (5)) belong to the same
transmitted OFDM symbol, and
e NT.= NT..
If the equality holds, we also have, , = u,ax,, With 1, a constant depending on subcarrier
In fact, one can prove the previous inequality for any sutiear and any OFDM symbok, i.e., we
have

V (k,v), k(ag,) > k(a)

and the equality is achieved if and only if

o ]Vfc = NT,., and

« DT. = DT,.

Proof of Theorem 1 is given in Appendix A.

We remark thati;, , corresponds to the symbol transmitted at the carrjgsut not necessarily at the
k™™ OFDM symbol. Moreover the proposed algorithm has a very lewsdivity to N. The algorithm
works well if this parameter is under-estimated. Consetjpéincan be chosen equal 14 since most
of OFDM systems use at leat subcarriers. To estimate accuraté¥y once NT,. and DT, have been
estimated, several standard techniques can be employ&dtisaic gaussianity test on each subcarrier.
Estimation of N is out of the scope of the paper since the valueNofdoes not allow to distinguish

systems from each other.
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The question now is : how estimating the kurtosis of the dedosequence of symbols, ,, ? For
instance, we getum(ag . aj, ,, irn, a5,,) = Ellar,[*] — [E[a} ]|* — 2(E[|ax,,|*])*. Then, when trial
valuesﬁ(: 64), JVTC, andﬁfC are useds(ay,,,) can be usually estimated l&(ay. ,,) defined as follows

—~ ~ —~ ~ 2 —~ ~ 2
M—1~N—1 - M—1~N—1, M—1~N—1 -
» W S ! = [0 SN @a)?| -2 (S0 205 )
Mar) = M—-1<—N-1 2 ©
( k=0 ZI/:O ‘&k,uP)

with M = |M/(NT, + DT.)].
Actually ~(ag,, ) is a function ofﬁfC andﬁfc and will be the cost function of our first new algorithm

associated with Kurtosis Minimization (KM). Now denotiigay . ) by jKM(]Vfc,ﬁfc), we have

[NT,,DT,) = arg _min_ Jxai(NT, DT (10)
NT.,DT.

Theorem 1 ensures that the minimization procedure givergin(ED) leads to the identifiability oN T
and DT, in noiseless context and infinite number of available samptepractice (i.e., when the signal is
noisy and when only a finite number of observations is avhd)alive can only conjecture tha?l\“C and
ﬁi are close taN'T,. and DT, respectively if the noise is not so strong and if the numbeawailable
samples is large enough.

2) Adaptation to time and frequency missynchronisatiéve consider thatnin; 7; = 7, > 0. Due
to this time offset, the blind OFDM receiver should ensurattits first samplerg, depends of the
transmitted signal. For doing that, a preliminar step haset@dded to the receiver. This step consists in
dropping the first samples wheré is a trial value formy;,.

Similarly, if the receive signal undergoes a carrier fraguyeoffset (A f # 0), another extra step has
to be added to the receiver to estimate and compensate itteéEleée samples given by Eg. (5) should

then be modified into
Tep = Ya(pTo + ﬁfc + k(ﬁ i l/)\fc))ef2i7rAf(pTe+DTC+k(NTC+DTC)/Te (11)

Whereﬁvf is a trial value ofAf.

The cost function has to be modified accordingly by adding pa&mameters. Then we have

[@17&?7]@&5\1}] = arg Nr@ o jKl\/I(?vA\-./f’ﬁvB\fC)
#Af,NT.,DT.

with - B - B )

M—1<N-1- M—1<~N—1,

W0 N |t — | S )?|
— e 2
M—1~=N-1 4

( k=0 ZI/:O ‘ak,ulz)

With similar techniques developed in Appendix A, one carnvprthat Thereom 1 still holds and induces

— 2.

Jinm (7, Af, NT,, DT,.) =

also the equalitie$;,in = Tmin andﬁ\f =Af.
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B. Maximum Likelihood based method

This subsection is organized as follows: in SubsubsectibB1l, we describe the receive signal
thanks to matrix framework. In Subsubsection IlI-B2, weds®n the so-calleBeterministicMaximum
Likelihood. The so-calledsaussianMaximum Likelihood is introduced in Subsubsection IlI-B3.

These algorithms require prior synchronisation step orosaadapted similarly to Subsubsection I1I-A2
associated with Kurtosis Minimization algorithm by addiogce again a synchronisation step into the
next proposed cost functions.

In order to get tractable closed-form expressions, an AW@iEhoel model is considered in this
Subsection. Robustness to multipath channel is evaluat&dction V.

1) Matrix framework: We assume AWGN channel and perfect time and frequency sgnigation.

Let
e A = [Gk,o,"' 7ak,N71]T
e a=[aj, - ap "

where the superscrit)! stands for the transpose operator.
We stack all the receive samples in the following vegtor [y(0),--- ,y(M — 1)]T. Using Eq. (4)

under AWGN and perfect synchronization assumptians=(1, A\; = 1, 7 = 0, andA f = 0), we have
y = Fga+ b (12)

where@ = [N, NT,, DT.] denotes the set of OFDM parameters &ylis a matrix expressed as below.

As g,(t) is a rectangular function, Eq. (4) leads to the following stoaint
0 <mT, —k(N+ D)T. < (N + D)T,

which implies that
T

Cl<k<m——t .
="(N¥D)T.

T.
m——-¢
(N + D)T,
Consequently, for a givem, it exists only a unique value df, denoted byk,,. Fg is then composed

by null components except the next ones

1 1 Te ; k DT,
[Fe]m,kmNJrn — \/_ﬁemﬂnm N 62271'71( m+1) NI (13)
form=0,...,M—1andn=0,--- ,N —1. Term[Fegl,, .. n+n COrresponds to the element of the"

row and (k,,N + n)™ column of Fy.
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10

As the transmit data are unknown at the receiver, the likelihood wpfgiven N, DT., NT,, anda
has to be averaged ovar Thetrue Maximume-Likelihood based estimator &f, DT,., and NT, is then
complex to be carry out. To overcome the problem, we propitkergo consider vectas as parameters
of interest too which leads to the so-called Deterministixihum Likelihood or to consider vectaras
Gaussian (even i is not Gaussian vector) which leads to the so-called Gausdaximum-Likelihood
[12].

2) Deterministic Maximume-Likelihood approach (DML)et p(y|6@, a) be the likelihood ofy givené

anda. The deterministic Maximum-Likelihood is defined as fol\\l2]
[N, DT, NT.,a] = argmaxp(y|,a)
6.3

In practice, the signal bandwidth (given ktyT.) can be assumed to be roughly known. This enables
us to choose a reasonnable value fgff, and also to filter the receive signal by an ideal low-pass
filter of unit-magnitude and bandwidttyT.. This induces that the discrete-time noise has the follgwin

autocorrelation function

ry(n) = E[b(m + n)b(m)] = 2;#\20 sinc (%)

with ¢ = T../T. the sampling factor. The discrete-time noise is not whiteorder to simplify the DML
estimator, the discrete-time noise will be however assutodoe white. Obviously, in simulation part,
the noise process color will be neglected.

By assuming the noise vectbruncorrelated and by considerifigN < M, it is well known that the

DML estimator can take the following form [12]

[N,NT,,DT.| = arg _min _ Jpyw(N, NT,, DT,) (14)
N,NT,,DT,

with

7 - -1

)

6 = [N,NT,, DT,] and where(.)! stands for the conjugate-transposition.

3) Gaussian Maximum-Likelihood approach (GMLn this subsubsection, the transmit data veetor
is assumed to be an i.i.d. random vector. Its true power tdefsgiction (pdf) is a product of a sum of
Dirac distribution for which the location is given by the dssonstellation (either PAM or PSK or QAM).
Due to the high complexity of derivations, it is usual to miothe vectora as a circularly-symmetric
Gaussian multivariate process with zero mean and covariah@er real dimension [12]. Then the so-
called Gaussian likelihood, denoted py(y|@), can be expressed in closed-form wheis assumed as

above.
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Consequently the multivariate processs circularly-symmetric Gaussian process with zero meah an
covariance matrixE[yy'l] = 202FFL + 2NyId), and yields the following likelihood

1

(2] =
pe(¥10) (2m)M det (QggFng + 2NOIdM)

« e 3Y(2F +NoIda) "y

Let Id and A be the identity matrix and an other matrix compatible in segpectively. We remind
thatdet(Id + AAM) = det(Id+ A" A) and(Id + AAT)~! =1Id — A(Id + ATA)~1AH, This leads to

1

(7]
pg(Y’ ) det (QUgFgFO + 2N01dKN)

2
y e;—ZyHFe(20§F§F9+2NOIdKN)’1F§Iy

As maximizingp,(y|@) is equivalent to minimizing-log p,(y|0), we get

[N,DI.,NT,] = arg _ min__ Jour(N,NT., DT,)
N,NT.,DT,

with

JouL(N,NT,,DT,) = log(det(20.FLF5 + 2Nold 7))
2

9% . H 21-H
_ 2]{';0y Fé <JQF5 F§ =+ N()Idf(ﬁ>

1
H
FE y.
Notice thatf(, the trial value for the number of OFDM symbols, depends an ttial value® since
K = LTO/(ﬁchrﬁfC)J. Moreover Signal-to-Noise Ratio (provided by/Ny) has to be estimated prior

to computing GML estimators. Similar estimator has beeaaaly introduced by [13] in the context of

symbol period estimation for single carrier modulated algn

C. Matched filter based method

The third new algorithm based on the matched filter (MF) ppilecis proposed. The time and frequency
offsets are handled as for the Maximum likelihood basedrélgos and the Kurtosis Minimization based
algorithm. Once again, we hence assume hereafter perfaet dind frequency synchronisation. This
method is introduced in an AWGN context. Numerical analgsigs robustness to multipath channel is
done in Section V.

By inspecting Eq. (4) under AWGN and perfect synchronizaassumptions, we see that the matched
filter receiver associated with true paramet@rgonsists in multiplying the receiver signgl by Fg
following by a decision threshold. One can guess that apglgin imperfect matched filtel?g associated

with the trial parameterg? leads to a degradation of SNR. Therefore we propose to buddterion
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related to the maximisation of the energy]Dgy with respect tod. As the norm ofFféFgI depends on

0, we finally advocate the use of the following "normalized’stdunction

[N,DT,,NT,] = arg _ max__Jur(N, NT,, DT.)
N.NT.,DT.

with

~ E[|FLy|?)
Jur(N, NT,., DT,) = #
[FaFglr

where||x|| is the Euclidian norm of the vector and||A||r is the Frobenius norm of the matri equal
to 1/ Tr(AHA).

In next Theorem, we prove that, in noiseless case, the maation of cost function/yr(.) yields
the true parameter vectér which justifies our intuition and the proposed cost function

Theorem 2:In noiseless context, we get the following inequality
V N,NT,, andDT,, Jur(N,NT,,DT,) < Jur(N, NT., DT.).

The equality is reached if and only iV, ﬁfc,ﬁfc] = [N, NT., DT,.], and then the cost function has
the following value||FgF§ || r.
Proof of Theorem 2 is given in Appendix B.

The matched filter estimator takes then the following form:

[N,DT.,NT.| = arg _max_ Jyp(N,NT,, DT,)
N,NT.,DT.

where Jyr is simply estimated as:

|y
JMF(N, NTC,DTC) == W
o plll

IV. OFDM PARAMETERS ESTIMATION WITHOUT SYNCHRONISATION STEP

This section is devoted to the presentation and the anabydise fourth new algorithm. The cyclic
prefix in CP-OFDM induces cyclostatonarity that can be usedéntify the OFDM parameters. This
new algorithm relies on this property and is a non-triviateesion of the well-spread autocorrelation
based algorithm described in [3]-[7]. Notice that the athon does not require time and frequency
synchronisation so that we can assume perfect time and dnegusynchronisation without loss of
generality. Moreover, as the multipath channel partialgstdoys the interesting correlation property
induced by the cyclic prefix, the description of the algaritis done under the assumption of AWGN
channel. Nevertheless, robustness of this algorithm tdipadlh context is inspected in Section V. We
observe that the new algorithm outperforms the autocdiveldased method in realistic context (small

cyclic prefix and/or strong multipath channel).
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A. Cyclic correlation (CC) based method

Let Ry(n,m) = Ely(n+m)y*(n)] be the correlation function of the received signal given loy @).
In the context of AWGN [ = 1, \; = 1, 71 = 0), the presence of the cyclic prefix induces a correlation
since R,(n, m) does not vanish for the following three values= 0, | NT,/T.],—|NT./T.|. We can

hence express the correlation function as follows
Ry(n,m) = Ry(n,0)6(m)+ Ry(n,a)d(m — a) + Ry(n, —a)é(m + «) (15)

with a = | NT, /T, |.
In Eq. (15), one can remark that
« The first term of the RHR,(n, 0) is equal tol + o2 and does not provide information about OFDM
parameters.
« The second and third terms can be written as follows (see&}. (

Ry(n, o) = Zg(n +a—ka(l+p))g"(n—ka(l+ 3)) (16)

keZ
with 3 = DT./NT. = D/N and g(n) = g.(nT.). These terms provide useful information

about OFDM parameters such &7, and DT,.. Thus they can be taken into account to build

an identification criterion.

Before going further, we notice thaty (1 + 3)| is the number of samples encompassed in a whole
OFDM symbol, and «f| is the number of samples encompassed in the cyclic prefix.
As n — Ry(n,«) is a pseudo-periodic function (or a periodic functiornifl + ) is an integer), it

can be decomposed into the following Fourier series expansi

Z R/040) ()P =it (17)

whereRg(j’/O‘(Hﬂ)) («) is the cyclic correlation coefficient of the signaat the cyclic frequency/a(1453).

The estimation of the OFDM parametef&l. and DT, can be performed through parameterand
6. Indeed, ifa andﬁ are trial values ofa and 3, the cyclic correlationRgp/a(Hg))(a) vanishes if
& # a. It also vanishes whef # 3 if there is nop’ such asp/a(1 + ) = p/a(1 + ). Consequently,
an estimation only based on the tepm= 0 does not allow to estimatg. Notice that the standard
autocorrelation method introduced in [3]-[7] relies onstlprinciple but it is only based on the cyclic
correlation at the cyclic frequendy

The method we propose is hence a natural extension by ustig cprrelation at several non-null

cyclic frequencies. We thus rely our identification schemetlze maximization of the following cost
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function:

Ny
N AP - (w/30+8) (1 |
(aaﬂ) = CcC (aaﬁ) 2Nb+ 1p:ZN ‘Ry (O[)

where N, is the number of cyclic frequencies taken into account to maten the cost function. We would
like to maximize jointly ona andﬁ the previous function. This 2-D research interval leads tuigh
computational load of the proposed method. In order to miiéighis load, we mention that usually the
true 3 belongs to the following small sdti/4,1/8,1/16,1/32}. Therefore the method of estimating the

subcarrier spacing (directly related &) boils down to the following maximization

Q =argmax<{  max Jg(\gb)(&,ﬁ)
@ |\ Belisiems

We remind that the state of art methods are based on the nsation of the cost functiodé%(a,ﬁ).

In practice, the criterionigé”)(&, E) is not available and has to be estimated. We remind that ttlecy

correlationR?/* ) () is given by

M—1
1 . _ 9z mp_
lim i E OE{y(m—i—a)y*(m)}e Hm s (18)
m=

M—o0

and its empirical estimate, denoted EQ‘”/&(”@)(&), is obtained as follows
] M=l o
— > ylm+ @)y (m)e T (19)
m=0

where M is the number of received samples.

Consequently)~* (@, 3) has to be replaced with 1" (@, 3) as follows

Ny
A Nh -~ 1 A~ a s . 2
J& @ ) = 2N, + 1 > |EpE@)
p=—N,

Finally, by replacing the empirical cyclic correlation wiEq. (19), andx, G with their expression in

terms of OFDM parameter, we obtain

ﬁc:arg@@( _ max jgg')(ﬁ,f)\f:)
NT. ﬁ_\%e{i7%7i7£}
with
) 1 N, 1 M-l , 2
JN ) NT. DTL) = ——— — NT. * — U TG DT R,
Joo (NTC,Dz;)_merl ZN Mmzoy(m+LNTc/T€J)y (m)e > TN T/ BT Ty
p=—Nyp =

It is clear that,/V,, the number of cyclic frequencies taken into account toquarfthe estimation has
a direct impact on the algorithm performance. Thereforehesequel, we provide some insights about

the choice of this parameter.
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B. Influence of design parameta,

In this subsection, we discuss the impact of the before menéd factor by relying on some theoretical
derivations.

To evaluate the influence d¥;,, we focus on

« mean and variance of the estimated cost function at the wirg @av, 3) (see Subsubsection IV-B1).
« mean and variance of the estimated cost function at the qibits (&,B) with a # «a (see

Subsubsection 1V-B2).

Hereafter, we assume thaf is large enough in order to satisfy an asymptotic regime.

1) Influence ofN, on the estimated cost function at the true poiltue to [14], it is known that
VM (Rg(f’/“(”m)(a) - Rg(f’/o‘(”m)(a)) converges, in distribution, to a normal distribution witbra
mean and a certain finite variance wheén tends to infinity. Thanks to [15], we can deduce that
VM (jggb)(a,ﬁ) - Jé%“(a,ﬂ)) is also asymptotically normal with zero-mean and a finitedarare,
denoted by?. In order to inspect the impact df, on the performance, we have to analyse the variation

(Ny)

of Jo’ (a, B) andof versusN, as done in next Proposition.

Proposition 1: We assume that +  is an integer. We have

5 2
1 2 Ny sin (Wﬁ)

all+5)

Ny) 1
J((]C (CY”B) = 2Nb+1

p=—N, | sin (ﬂﬁ)

and,
(14 o2)*
2Ny +1

o} =0(1)+0 (
Proof of Proposition 1 is drawn in Appendix C. The case where § is not an integer is not dealt in
this paper. Nevertheless, if the condition is not met, thpedelance of]g(vf)(a,ﬂ) in term of N, will
not be significantly changed.

One can remark that, whem > 1/3, the value ofsin (73p/(1 + 3)) /sin (7p/a(1 + 3)) is small
compared to the value taken aroupd- 0, and the cyclic correlation at lag > 1/ does not provide
significant information. Therefore we can reasonnably m&sthatN, < 1/3. Then one can see that
Jg(\g”)(a,ﬁ) is a decreasing function dY,. The greater]ggh)(a,ﬁ) is, the better the performance should
be. On the contrary, the variance increases whgmndecreases. Consequently, based on the mean, we
advocate to choos#, as small as possible; based on the variance, we advocat®tseN;, as large

as possible. A trade-off seems to be done to choose relgvietivalue ofV,,.
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2) Influence ofV, on the estimated cost function at the other poimsice again, we would like to
analyse the influence a¥, on the mean and variance 5@%”)(&,5) whena # «a. The result is given
in next Proposition.

Proposition 2: The mean otfgéb)(a,ﬁ) has the following asymptotic property:

lim ME{JQ (@ B)} = (1+0%)° +0(1)

M—o0
The variation ofJéCb)( ,ﬁ) around its mean can be analysed using the following varidetieed as:
20~ 2\ _ 1 2R (Nb s (Nw) =2
03(@,B) = lim ME|JE@.5) -E{JE@ B}

which has the following finite value
4
o3(@5) =0 (%) +o(1)
as long asy # a.
Proof of Proposition 2 is given in Appendix D.
This propostion says, on the one hand, that, as longj-as o2, the asymptotic mean ofg(\g”)(&,ﬁ)
does not depend oiV,, and, on the other hand, that the variation iéf(\;b)(a,ﬁ) around its mean
decreasing whewv, increases, for low SNR.

We thus confirm that a trade-off has to be done to choose malgvilne value oflV;.

V. SIMULATIONS

In this section we propose to evaluate the proposed tecbsigy means of numerical simulations.

We have generated an IEEE 802.16.e signal with the followeiings: the number of carriers =
128, the useful time duratiolNT, = 102us, and the oversampling ratié. /7. = 2. We consider that
20 OFDM symbols are available at the receiver. The transmitadigasses through a multi-path fading
channel where each path delay is uniformally distributetivben [0, 7,,,,x] and each path magnitude is
uniformaly distributed betweefi0~2, 1]. Except otherwise stated,,., is chosen to be equal t%DTc

and the ratioD/N = 1/32. A Gaussian noise has also been added and its variance igdief$n
2

2 _ 10— SNR/10

Z )\lsa mT — Tl)

=1
whereM is the number of samples. Except otherwise stated, the nuaflogclic frequencies taken into

mO

account for the cyclic correlation based methodVig= 10. We have remarked that the GML always

outperforms the DML. Therefore, in the sequel, we only plot &ML estimator performance.
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As we treat an estimation problem, the performance measayelb® the Mean Square Error oViT,.
Nevertheless, our practical problem related to radio dognis to identify the right system (WiMAX,
WiFi, DAB, DVB-T or 3GPP/LTE, etc) by comparing th¥ T, to its theoretical value for each considered
system. As seen in introduction, the smallest gap betweerirtter-carrier spacing values is little larger
than 1%. Therefore, for our practical system identification isswe, only need an estimation af/ N7,
up to 1%. Consequently rather than considering MSE as performareasune, the performance has
been evaluated as the number of correct detection, i.e.uhwer of realizations for which thﬁTC is
equal toNT, up to 1%. Note that a joint estimation aN7,. and DT, has been performed to estimate
the OFDM parameters of interest but the plotted curves ooty on the correct detection rate of the
intercarrier spacing parameter. Actually we have obsethiatidetections oVT, or DT, always yield
similar performance.

Firstly, we consider a perfect time and frequency synchlmaion context. In Figure 1, we plot
the performance of the proposed algorithms and of the statetaonethod (denoted correlation-based
technigue) versus SNR. One can show that all the proposbkditpes outperform the standard correlation
based method.

In Figure 2, we display the correct detection rate of the psgl algorithms and of the correlation
based method versu®/N. In order to inspect properly only the the impact of the rdietween the
cyclic prefix and the useful part durations on the perfornearsimulations are done here with AWGN
channel. As stated in the introduction, the state of artriegke falls down when the length of the cyclic
prefix is small compared to the length of the useful part of@M signal which may occur for DVB-T
and WiMax signals D /N belongs tof{1/32,1/16,1/8,1/4}). The cyclic correlation based approach still
performs well except folD/N = 0 (no correlation within the received signal). We show alsat ttihe
other proposed approaches (GML, matched filter and kurtogigmization) achieve good performance
whatever the ratid>/N and we can conclude that these approaches are independéet @icountered
cyclic prefix length. Consequently, all the proposed altyons are perfectly adapted to recognize OFDM
systems in the Cognitive Radio context and seem to be phatiglattractive.

In Figure 3, we plot the performance of the proposed teclasqnd of the correlation based method
versus the channel impulse response length. While the atdrubrrelation based technique is the most
affected by the frequency selective channel, the use of atladic frequencies which leads to the proposed
cyclic correlation based method enables to improve thectleteefficiency significantly. Thus the novel
second order based technique is more robust. The other ggdpechniques are robust to frequency-

slective channel, even the GML and the matched filter tectesaalbeit initially derived under AWGN
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channel assumption.

We now consider that time and/or frequency offset occur. thermethods proposed in Section I,
an additional loop has been added to perform a joint estimadf the offset and the parameters of
interest. The results are shown in Figure 4 for the frequagitset missynchronization and in Figure 5
for the time-offset missynchronization. As expected, theosid order based approaches are not disturbed
by frequency and time missynchronization. In constrat, ttethods developed in Section Il (kurtosis
minimization, GML and Matched filter) offer slightly degredl performance although offsets estimation
step have be carried out.

In Figure 6, the performance of the cyclic correlation basexthod is studied versus the number of
cyclic frequenciesV, for different cyclic prefix (CP) lengths. As the performarafehis method depends
on the length of the cyclic prefix, we have chosen the SNR fohéasted CP accordingly. We show that
for each CP length, a tradeoff has to be done for selectingahg of NV, ensuring the best performance.

By comparing the different curves, one can deduce that tsevadue forNV, is aroundN/D.

VI. CONCLUSION

Four new methods for blind identification of the modulatiargmeters of OFDM based systems have
been proposed in this paper. These four algorithms thab@xpfferent principles have been sorted in two
categories. The first one contains the algorithms with time faequency synchronisation steps. The three
proposed algorithms are based on various techniques: ipgisrminimization, ii) maximum likelihood,
iii) matched filter. The second kind of algorithms are the ¢im& do not need a synchronisation step.
In this category goes the state of art methods, and the #igorive have proposed based on cyclic
frequencies estimation.

Most theoretical development have been done assuming adiaigf channel, but general contexts have
been numerical simulated to estimate the robustness ofripogped algorithms. As it has been shown
in the section devoted to simulations, there is no algorithat outperforms the others in every contexts.
Nevertheless, in every simulated contexts, all the pragpasgorithms have much better performance than

the state of art methods.
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APPENDIX A

PROOF OFTHEOREM 1

Without loss of generality, we only focus on the first estiethOFDM block. According to Egs. (2)

and (5), the first estimated OFDM block is composed by

L
rop =Y Nsa(pT.+ DI, —m), Vpe{0,P -1}
=1

Using Egs. (6) and (1), the decoded symbi)s writes then,Yv € {0, N’}

1 &
o,y = 3 ay), (20)
=1

VPN

with
N-1 P-1 - :
(1 (1 —2impT, (e — 2
) = X Xall, e
k€eZ n=0 p=0
X )\lga(pTe + DVTC — T — kTs) (21)
and
dl(i)n — ak7ne—2iﬂN7—;,c(DTC—DTC—’TL—IC’TS)' (22)

We will first show that, for each path we get
K@) >k @,g{g) .V (23)

and the equality holds for one particufar= ky(() if and only if the conditions of Theorem 1 are satisfied,
i.e, if the decoded symboié?v is proportional to oneigg(l)vy. Due to Eq. (22), it is equivalent to be
proportional tod,(fo)(lw and to the transmit symbal; ;) .-

As the summation ovep is finite in Eq. (21) and as the functiog,(t) has a finite support, the

summation ovek in Eq. (21) is also finite. Lef); be the following set
Y ={k | Ipe{0,P—1}st. gu(pT. + DT, — 7 — kTy) = 1}

Let us consider thatard(£2;) > 1. Under such an assumption, it is clear that the decoded dymbo
délv)v depends at least frorh transmit symbols of each transmit OFDM symbol which indeiis;. So
&((){2) is a linear combination of several symbols which impliest tine inequality of Eq. (23) is a strict
inequality. Consequently, in order to obtain equality in. E283), we neeccard({2;) = 1. Let us now

consider thatard(£2;) = 1. Let ky(l) be the unique element 6f;. Under this assumption, we have that
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ro,p fOr any p € {O,ﬁ — 1} belongs to the samkgh transmit OFDM symbol. Thelﬁély)v simplifies as

follows

whered,, still depends om.

Once again, aéél)v IS a linear combination oi,(fo)(l)

of the linear combination vanish except one. These weigtgszaro if and only if it existsy such that

,» EQ. (23) holds. Equality occurs when the weights

sin(ﬂ' f,?fc (”_v Z%Z)) ?é 0 if n=mng

sin(7-Le (n—viLe

NTe NTe
s PTe NT¢
sin(m—= (n—v=

NT. NTe
s Te NT¢
sin( n—uv=—

( NTC< NTC))

As P = Lﬁfc/TeJ, we have thatf’Te/NTc is close toJVTC/NTC if NV is large enough. One can see

= (0 otherwise

that the last property is satisfied if and onlyﬁi = NT,. andng = v, i.e., if délv)v is proportional to
&go)(l),y and so toay, ) .-

Thanks to (20), it is then straight forward to conclude to kietosis ofag , is minimal if and only if
VI, ko(l) = ko. Note that this condition can be achieved as longjas DT.. ao, is then proportional
to ag, v-

This concludes the first part of Theorem 1 (associated wighfitist inequality provided in Theorem
1).

The second part of Theorem 1 (associated with the secondafiggprovided in Theorem 1) is proven
as follows: for each decoded symh@|,, the first part of Theorem 1 says that the kurtosis reaches its
global minimum value if and only iNT. = NT, andry, , for p € {0, P— 1} belong to the same transmit
OFDM symbol. The kurtosis of the estimated sequence of signmeaches hence its global minima if
both conditions are satisfied for all values/ofndn.

Equality N7, = NT, is thus trivial given the first of Theorem 1. EqualifyZ, = DT, is deduced
from the second condition provided in the first part of the dreen. Indeed, itDT, #+ DT,, one can
always find ak, such that the set of points,, , for p € {O,ﬁ — 1} belongs to two OFDM symbols.
Then,x (ag, ,,) >  (a) and equality between the two kurtosis leadsX®, = DT, which concludes the

proof. B
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APPENDIX B

PROOF OFTHEOREM 2

In noiseless flat-fading channel with perfect synchromsatwe havey = Fga with i.i.d. data vector

a. Then this leads to . .
~ Tr(FIFeF{Fp)

Jur(0) =

Let A = F; andB = Fy. Due to the new notation, we have

[AAH]p [AAH]

First of all, we would like to prove that the following ineditg is satisfied
[AA] R

and that the equality holds if and only A" is proportional toBBY, i.e,, if and only if Fg)FgI is
proportional toFgF}.
Let A;; and B;; be the element of thé" row and;*" column of A andB respectively.

KN KN 2

IA"BIE = > >

i=1 j=1

M

> (A, By

=1

(24)

M

M KN KN
= >3 (Do 4an4n ) (D BB, (25)
i=1 j=1

I=10=1 \i=
For sake of simplicity, we introduce the following notatiorlet V.= AA" and W = BB be the

matrices for which the elements are expressed as

KN

KN
* *
Vir = E Alz’Al'i Wiy = E BljBl'j
i=1 Jj=1

foralli=1,...M and!’ =1,.... M

By replacing these expresions into Eq. (25), we get

M M
IATBI[; = Z Z VinW (26)
I=11=1

A first application of the Cauchy-Schwartz inequality to then of index!’ in Eq. (26) leads to

M M 3 /M 3
AIB|Z < Vil? Wi |? 27
| I+ < E E Vi E Wi (27)
I'=1 I'=1

=1

Equality holds if and only if it exits constan{g; };—; ...,s such thatV;; = ¢,W;,.

We consider the following notations
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1
o U = (2;\,4:1 ’W’l 2) 2
1

° U}l = <Zl]§4:1 |VV”/|2> 2.
A second application of the Cauchy-Schwartz inequalityhi® sum of index gives

H 2 M 2 ’ M 2 ’
IAFB|E < (> |u > Jwl (28)

=1 =1
Notice that>}”, [v|> = Tr(VIV) = |AHA|Z and 3, jwy* = Tr(WHW) = |BHB||% which
proofs the sought inequality. Equality holds in Eq. (28) iiidaonly if it exists a constant’ such that

y=cdw forall=1,---,M.
Finally equality holds jointly in Egs. (27) and (28) if and lgnf it exists a constant: such that

Vip = Wy, =Wy forall ,I' =1,--- M, i.e, V= AA" is proportional tow = BB*.

Now we would like to prove thah A" is proportional toBBY, i.e., FféFgI is proportional toF gF}

only leads tof = 6.
Using Eqg. (13), one can prove that each eIemenF‘g)F%I fori=1,..,M andl’ =1,..., M can be

expressed as follows:

. NTe (1)) . N N1
1 sin <7r N ( )) 6z7r(l—l )T N7
N sin <7r NZTeL (l—l’))

if |{—1|T.<NT.+ DT, andl #1

’ 1 ifr=r
if [I—U|T, > NT.+ DT,

0
Each block inF;ongI (except the last one) h¢$ﬁ+ﬁ)/TeJ rows andN columns. Consequently,
if FféFg is proportional toFgFY, each block of both matrices must have the same dimensidnss, T

we getNT. + DT, = NT,.+ DT. andN = N.
By considering and!’ such agl — I'| T, < NT.+ DT, andl + I’ and any intege;, proportionaltiy

between both matrices leads to
(=T = (1 - V)57 + 2k + ¢

sin(ﬂ z]\Vqu:z (lfl’)L) _ ‘ ‘sin<7rﬁ;"z (lfl’))
sin(ﬂj\%c (lfl’)) -l sin(ﬂNT—;c(lfl’))

where |c| and ¢ are the magnitude and the phase of the constahte Z. Last equalities imply that

c=1, ]VTC =NT,, andﬁfC = DT.. This concludes the prool

DRAFT
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APPENDIXC

PROOF OFPROPOSITION1

We recall thata + 5 is assumed to be an integer. Using Eqgs. (16) and (18), thecclyequency

coefficientR?/**9) () can be expressed as:
1 a(l+5)—1
(P/a(1+6) (o)) = — — —2in s
R{ (a) 201 5) 7; e M anis)

It is then straightforward to deduce the expected resulthenalsymptotic mean.

To compute the estimator variance, we introduce the vector
R, = [R(y_Nb/a(1+ﬂ))(a)’ . ’RZ(JO)(a)’ . 7R?(JNh/a(1+ﬁ))(a)]T
andR, its estimate. The cost functiaﬁ‘gg”)(a,ﬁ) is then given by:

(N, 1
&) (@, B) =

Thanks to the law of large numbe]f{,y is asymptotically normal, and g&R,||? is strictly positive, we

deduce that/ M (jg(\g”) - Jéﬁ“) converges in distribution t&\(0, 4Y) (see [15] for more details) is

1 2 r T
o= (grey) RIRI|
2Nb +1 FZ *

whereR; is the conjugate oR,, and:

given by
Ry
R,

1) T = limp/—oo ME {(Ry -R,)(R, - Ry)H}
2) L= lmy—o ME{(R, ~ R,)(R, ~ R,)"}

The coefficients of" are given by:

*

Tt = lim ME {R?(;Nﬁk/a(wﬁ))(a) <R?(;Nb+l/a(1+ﬁ))(a)) }_MRg(;Nﬁk/a(Hﬁ))(a) <R?57Nb+1/a(1+ﬁ))(a)>
We get after some calculations:
E { RNtk o (040) () < Ré—Nﬁl/a(Hﬁ))(Q)) } —  RUNH/040) () ( R;—Nb+Z/a<1+ﬂ>>(a))

1 .
T+ > Ry(ut a,0) Ry (u,v)e im0

u,v
Hence:

e = h]\r}l Vi Z Ry(u+ a, U)RZ (u, 'U)e—2i7r/oc(1+ﬂ)(k(u+v)—lu)

u,v
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Ry (u,v) vanishes whem # 0 andv # +a: If v =0, R;(u,0) does not depend on. Hence:

. 1 * —2im /(1 k—Du 2\ 2

lim — ;Ry(u +a, 0) R (u, 0)e 2 /oA k=D — (1 4 62) 5(k — 1)
Whenv is equal tota, the expression is more complex. We will write it as:

. . —2ir a(148)(h—lu—k(+a 2
I%M;Ry(u—l—a,ia)}%y(u,ia)e [a(4B)((k=Du—k(*e)) — 9(12)

(1+02)4+0(1) 0(1) 0(1)
The matrixI" has then the following form’ = O(1) O(1)
0(1) O1) (1402)*+0(1)

Similarly, the coefficientd’. are given by:
[Peli = lim ME { RU-Notk/a(148) () Ré%+l/a<1+ﬁ)>(a)}_ M RNtk /a(48)) (o) RE-NoH/0(140)) (o)
After some calculations, we also get:

1 _9i

Uy ,u2

[I'c]x, does not vanishes only when = uy which gives:
i 1 * —2im /o u
[Tela = lim =" Ry (u, +0) Ry (u, a)e” /20000 = 0(1)

The matrixI'. has then the following fornt’. = [O(1)]
r T,

re -

C

The matrix { ] simplifies hence to:

(1+02)2+0(1) 0®1) 0(1)
[r rc}

= 0(1) 0(1)
r: r« )
0(1) 0(1) (1+¢%)"+0(1)
which leads to the expected result.
APPENDIXD

PROOF OFPROPOSITIONZ2

ME{JSM (@, B)} writes as

N, _
ME’R?(JP/a(lJrﬁ))(&)’?_
p=—N

1
2N, +1
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In terms of the received signalm), ME|R§p/a(HE))(&)|2 equals:

 2imk(my —mg)

% Z E{y(mi + a@)y"(m1)y*(m2 + @)y(ma)}e  20+3 (29)

mo

Writing the fourth order moment in terms of the fourth ordemwlant,E{y(m; + &)y*(m1)y*(msa +
a)y(mz)} expands to:
cum(y(my + @),y (m1),y" (m2 + @), y(m2)) (30)

+ Efy(mi + @)y" (m1)YE{y" (m2 + @)y(ma2)}

+ Efy(mi + @)y(me) YE{y" (m1 + a)y” (m1)}

+ E{y(mi + @)y (m2 + a)}E{y" (m1)y(m2)}
As y(m + a) andy(m) are independent whea > 0 anda # «, the first term vanishes. The second
term vanishes sinca # «. The third term vanishes sinegm) is circular. The fourth order moment
rewrites hence, in terms of the autocorrelation functionhef received signal:

E{y(m1 + a@)y" (m1)y*(ma + @)y(mz)}

= Ry(mg +a,my — mg)RZ

(mQa mi — m2)

We deduce from this result that Eq. (29) does not vanish dnhyi= ms, m; = ma+a 0rm; = mo—a.

If m; = my, we obtain the sum simplifies td + 2)2. For the other cases, we get the tefnil).

A ~ |2
To compute this variance we first WriE‘MJgg’)(&, ﬁ)‘ in terms of the cyclic coefficients. We then
apply the decomposition (30) to the cyclic coefficients téasl of applying it to the signal). We get:
2(Ny) j~ 5 2(Ny) j~ 5 2
M2E|JE@,5) - B { I @.5)}
M2

_ A (ks /E(145)) () pka /) (2 | |2
N (2Nb+1)2,§,ﬁ‘E{Ry]€ @R @)

M2 N ~ -~ N - ~ * 2
- (k1/a(1+08)) (~ (k2/a(148)) (~
(2N, + 1)? k; ‘E{Ry @ (&} @) H
The result only requires to compute both expectations uaisgnilar technique as for the asymptotical

mean. The first onE{Ré’“/a(”ﬁ))(&)R;kz/a(”ﬁ))(a)} vanishes except ift = 5. The second one can

be computed as the expectation that has been computed fasyineptotic meani
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Fig. 1. Correct detection rate vs. SNR (N = 1/32)
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