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Abstract

In the context of cognitive radio or military applications,it is a crucial task to distinguish blindly

various OFDM based systems (e.g., Wifi, Wimax, 3GPP/LTE, DVB-T) from each others. Existing OFDM

based systems differ from their subcarrier spacing used in OFDM modulation. One can thus carry out

recognition algorithms based on the value of the subcarrierspacing. Standard approaches developed in

the literature rely on the detection of the cyclic prefix which enables to exhibit the value of the used

subcarrier spacing. Nevertheless these approaches fail when either the cyclic prefix duration is small or

the channel impulse response is almost as large as the cyclicprefix. Therefore we propose four new

algorithms to estimate the parameters of OFDM modulated signal (especially the subcarrier spacing)

relying on i) the normalized kurtosis, ii) the maximum-likelihood principle, iii) the matched filter, and

iv) the second-order cyclostationary property. We show thestrong robustness of proposed algorithms to

short cyclic prefix, multipath channel, time offset, and frequency offset. Comparisons between proposed

algorithms and the state of art techniques are done by means of computer simulations.
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I. INTRODUCTION

The blind characterization of digital communications systems has been widely studied in the past

decade for military applications. These studies have givenrise to many contributions dealing with the

identification of the parameters of single carrier signals modulated by linear modulations [1] or by CPM

[2]. Concerning OFDM signals identification, only a few papers can be found in the literature [3]–[7].

This small amount of papers can be explained by the fact that OFDM based systems have emerged

only for a few years. The introduction of the cognitive radioconcept by [8], which relies on developing

flexible terminals able to adapt their transmission parameters to their spectral environment, needs the

receiver to sense its electro-magnetic environment and to identify the surrounding operating systems. As

OFDM modulations are now used in most of popular standards, the receiver should recognize systems

based on OFDM modulations. As most of the popular OFDM based standards use different subcarrier

spacing (e.g.15.625kHz, 10.94kHz, 312.5kHz, 1.116kHz, 15kHz for Fixed WiMAX, Mobile WiMAX,

WiFi, DVBT, 3GPP/LTE respectively), it is sufficient to estimate the subcarrier spacing of an OFDM

modulated signal to identify the encountered systems. Moreover in order to distinguish different modes

of a same standard or military context, it should also be useful to estimate the cyclic prefix length.

Furthermore, for military applications, a time and frequency synchronisation step is crucial since the

final objective is information retrieval. As the main objective for cognitive radio applications is only

system identification, the time and frequency synchronisation step may be optional.

In this paragraph, we remind the main results available in the literature about the subcarrier spacing

blind estimation. In the case of cyclic prefixed (CP) OFDM, i.e., the most conventional OFDM, the

existing papers propose to extract the OFDM parameters (useful symbol part duration which is equal to

the inverse of the subcarrier spacing; cyclic prefix duration) from the correlation induced by the cyclic

prefix. For instance, [4] first suggested to estimate the useful part duration by searching the peak of

the autocorrelation function which may occur at a time lag equal to the useful part duration. Once the

useful part duration is correctly estimated, the estimation of the whole symbol duration1 is performed

using the smallest non-null cyclic frequency. In [5], same estimators are proposed for the useful part

and cyclic prefix durations. The authors added the frame length estimation which is obtained by using

the correlation between the pilot symbols inserted at the beginning of each frame. In [6], a likelihood

1Notice the estimated whole symbol duration minus the estimated useful part duration leads to the estimated cyclic prefix

duration
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function between the cyclic prefix samples and the useful part samples for which the cyclic prefix is

copied from is derived in the context of Additive White Gaussian Noise (AWGN) channel. The deduced

cost function shows a great similitude with that proposed in[4]. Recently, [7] proposed to estimate the

OFDM parameters with a three steps algorithm: they first considered the OFDM modulation as a linear

modulation of symbols and estimates the symbol rate thanks to the cyclostationarity test of [9]. Then,

the autocorrelation based method introduced in [4] is used to extract the useful part duration. Finally, the

length of the cyclic prefix is estimated by means of cyclostationarity test.

The methods inspected in previous papers are all based on thefact that the cyclic prefix is identical

to a portion of the useful part at the receiver side if an AWGN channel is considered. Then the induced

correlation enables to estimate the OFDM parameters. All these methods suffer from the same drawback:

when the power of the autocorrelation of the received signalis weak, the performance of such algorithms

is poor. Unfortunately when the ratio between the cyclic prefix duration and the useful part is small (e.g.,

this ratio can be equal to1/32 in WiMAX and DVB systems) or when the length of the channel impulse

response is close to the cycle prefix length, the induced autocorrelation is weak and such algorithms fall

down. Notice that simulations in the mentioned papers were often done in AWGN context and/or large

cyclic prefix preventing to exhibit this phenomenon.

In [3], the particular context of zero-padded (ZP) OFDM is treated. The method exploited the fact

that the autocorrelation function is time-periodic with period equal to the whole symbol duration. Con-

sequently, the whole symbol duration can be estimated first by detecting the smallest non-null cyclic

frequency. Secondly, as null samples are inserted between two OFDM symbols, an entropy criterion is

used to discriminate between the guard time and the useful part.

In this paper, four new methods are proposed. These four methods that provide an estimation of the

OFDM parameters (the useful part length and the cyclic prefixlength) are robust to the context of small

guard time compared to the useful part and of the channel impulse response as long as the guard time.

Consequently, whereas the autocorrelation based method fails in these contexts, our four methods still

work well. Our four methods are based on the following different principles: i) kurtosis minimization,

ii) maximum likelihood, iii) matched filter, and iv) cyclic frequency estimation.

The paper is organized as follows: In Section II, we briefly recall the OFDM signal model. In Section

III, three methods that need time and frequency offset synchronisation step are described; The first one is

based on the kurtosis minimization, the second one on the maximum likelihood and the third one on the
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matched filter principle. In Section IV, a novel method whichdoes not need prior synchronisation step is

developed; It is based on the cyclic correlation of the received signal. Section V is devoted to numerical

simulations. We especially inspect the robustness of our four algorithms to the presence of small cyclic

prefix, multipath channel and synchronisation errors. Comparison with autocorrelation based method is

done. In Section VI, conclusions are drawn.

II. SIGNAL MODEL

The transmitted continuous-time OFDM signal writes:

sa(t) =
1√
N

K−1∑

k=0

N−1∑

n=0

ak,ne−2iπ n(t−DTc−kTs)

NTc ga(t − kTs) (1)

where the sequenceak,n represents the transmit unknown data symbols at subcarriern and OFDM block

k. These data symbols are assumed to be independent and identically distributed (i.i.d).N is the number

of subcarriers and1/Tc is the information symbol rate in absence of guard interval.The intercarrier

spacing is then equal to1/NTc. The length of the cyclic prefix is set toDTc. The duration of the whole

OFDM symbol is then equal toTs = (N + D)Tc. The shaping filterga(t) is assumed to be equal to1

if 0 ≤ t < Ts and0 otherwise. A transmission ofK OFDM symbols has been considered. For sake of

simplicity, we omit to introduce the ZP-OFDM scheme. Nevertheless the first three proposed algorithms

can be also carried out with minor and straightforward modifications in ZP-OFDM context.

The transmit signal passes through a noisy multi-path fading channel composed byL paths. The

amplitude and the delay of thelth path are denoted byλl andτl respectively. Then the continuous-time

received signal takes the following form

ya(t) =

(
L∑

l=1

λlsa(t − τl)

)
e2iπδft + ba(t) (2)

where ba(t) is a circularly-symetric zero-mean white Gaussian noise with varianceσ2 per complex

dimension, and whereδf is the frequency offset due to local oscillator drift or Doppler effect.

The continuous-time received signalya(t) is sampled at sampling frequency1/Te whereTe is the

sampling period. In order to satisfy the Shannon condition,the sampling frequency must be larger than

the OFDM signal bandwidth,i.e., greater than1/Tc. Let T0 the observation window duration. LetM =

⌊T0/Te⌋ be the number of available samples where⌊X⌋ stands for the largest integer not greater than

X. Then the discrete-time receive signal is denoted byy(m) = ya(mTe) and writes as

y(m) =

(
L∑

l=1

λlsa(mTe − τl)

)
e2iπ∆fm + b(m) (3)

August 1, 2008 DRAFT



5

with b(m) = ba(mTe), and∆f = δfTe the normalized carrier frequency offset.

Putting Eq. (1) into Eq. (3) leads to the following input/ouput model

y(m) =
1√
N

L∑

l=1

K−1∑

k=0

N−1∑

n=0

λle
2iπn

τl
NTc ak,ne−2iπnm Te

NTc e2iπ(k+1) DTc
NTc

× ga(mTe − τl − k(N + D)Tc)e
2iπ∆fm + b(m) (4)

In practice the cognitive terminal just has the knowledge of{y(m)}M−1
m=0 , M , T0, Te and wishes to

estimate the values ofN , NTc, DTc. For selecting the used standard, the cognitive terminal firstly needs

the knowledge of the subcarrier spacing given by the inverseof NTc. Notice that in Eq. (4),K, ak,n, L,

{λl, τl}L
l=1, and∆f are unknown as well.

Methods introduced in subsection III-A (based on kurtosis optimisation) and section IV (based on cyclic

correlation) rely on signal model provided by Eq. (4). In contrast methods introduced in subsection III-B

(based on maximum likelihood) and subsection III-C (based on matched filter) assume an AWGN channel,

i.e. L = 1, λ1 = 1, andτ1 = 0. However impact and robustness of a multipath channel on these methods

are addressed in Section V devoted to numerical computations.

III. OFDM PARAMETERS ESTIMATION WITH SYNCHRONISATION STEP

In this section, we present three novel methods to perform the estimation of the OFDM parameters.

These methods either need a prealable step of time and frequency synchronisation or insert a syn-

chronisation step into their computations. Albeit high computational load, especially, due to the extra

synchronisation step, our proposed methods are worth sincethey outperform the existing autocorrelation

based method as shown in Section V. In this section, only CP-OFDM is considered. However extension

to other kind of OFDM (like ZP-OFDM) is straightforward, andis omitted hereafter due to the lack of

space.

This long section is actually organised as follows. The subsection III-A is devoted to the kurtosis

optimisation based method. Subsection III-B focuses on theMaximum Likelihood based method. Finally,

the Matched Filter based method is introduced in SubsectionIII-C. In this Section, notice that, except

otherwise stated, the prior synchronisation is assumed to be carried out. Algorithm adaptation to time

and frequency missynchronisation scheme is done at the end of each subsection. Moreover empirical

performance in the realistic context of time and frequency missynchronisation is assessed in Section V.
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A. Kurtosis Minimization based method

1) Algorithm description:The first new algorithm needs an adaptative receiver which depends on the

three following parameters̃N , ÑTc, and D̃Tc where Ñ , ÑTc, and D̃Tc are trial values forN , NTc,

andDTc respectively. To simplify the presentation, we first assumei) that the receive signal is noiseless,

and ii) that the first received samplesy(0) matches the beginning of an OFDM symbol (perfect time

synchronisation) and∆f = 0 (perfect frequency synchronisation).

The adaptive receiver works as follows:

1) Split the receive samples into estimated OFDM symbols:

rk,p = ya(pTe + D̃Tc + k(ÑTc + D̃Tc)). (5)

In the sequel, we put̃P = ⌊ÑTc/Te⌋ and K̃ be the estimate of the number of OFDM symbols

within the observation time. Note that if̃NTc = NTc and D̃Tc = DTc, thenrk,p corresponds to

the pth element of thekk OFDM block once the cyclic prefix has been removed.

2) Estimate the transmit data symbols by applying the normalized Fourier transform as follows:

∀n ∈ {0, · · · , Ñ − 1}, âk,n =
1√
P̃

eP−1∑

p=0

rk,pe
2iπp nTe

gNTc (6)

The first new algorithm is based on the following idea: if the trial valuesÑTc and D̃Tc match with

the true values ofNTc andDTc respectively, then the decoded symbolâk,n at blockk and at subcarrier

n is expected to depend only on one of the transmitted symbol (for exampleak,n). The idea can be

mathematically translated as follows: it exists an unknownconstantµn depending only on the channel

frequency response such that

âk,n = µnak,n (7)

On the contrary, if the OFDM parameters are mis-estimated, i.e., ÑTc 6= NTc and/orD̃Tc 6= DTc, then

an extra term associated with inter-carrier and/or inter-symbol interference should appear in Eq. (7).

In order to ensure that our estimation algorithm forces the adaptive receiver to satisfy Eq. (7), we

need a criterion for which the optimisation oñNTc and D̃Tc prevents interference at the receiver side.

Therefore, as done in blind channel deconvolution [10], [11] we advocate to use the kurtosis of the

estimated symbols which is defined as:

κ(âk,n) =
cum(âk,n, â∗k,n, âk,n, â∗k,n)

(
E[|âk,n|2]

)2 (8)

where the superscript(.)∗ stands for the complex conjugate.
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Our objective is hence to prove that the kurtosis of each decoded symbols defined as a function of

ÑTc andD̃Tc reaches its global minimum valueif and only if ÑTc = NTc andD̃Tc = DTc. Once this

theoretical result proven, we will be in position to developa practical estimation algorithm ofNTc and

DTc based on the minimization of the kurtosis.

Before going further, in order to simplify forthcoming derivations, we remark that the transmit symbols

ak,n are i.i.d. symbols; their kurtosisκ (ak,v) thus do not depend onk nor v, and they will denoted by

κ (a). We remind that the kurtosis is negative for standard linearmodulations (PAM, PSK, QAM).

Now we introduce main results of this subsection related to the proof of the convergence of the kurtosis

optimisation to the true values of the OFDM parameters.

Theorem 1:Consider the decoded symbols at subcarrierν and OFDM symbolk. We have the following

result

Given (k, ν), κ (âk,ν) ≥ κ (a)

and the equality is achieved if and only if

• ∀p ∈ {0, P̃ − 1}, the samplesrk,p from which are extracted̂ak,ν (see Eq. (5)) belong to the same

transmitted OFDM symbol, and

• ÑTc = NTc.

If the equality holds, we also havêak,ν = µvak′,ν with µv a constant depending on subcarrierν.

In fact, one can prove the previous inequality for any subcarrier ν and any OFDM symbolk, i.e., we

have

∀ (k, ν), κ(âk,ν) ≥ κ(a)

and the equality is achieved if and only if

• ÑTc = NTc, and

• D̃Tc = DTc.

Proof of Theorem 1 is given in Appendix A.

We remark that̂ak,ν corresponds to the symbol transmitted at the carrierν, but not necessarily at the

kth OFDM symbol. Moreover the proposed algorithm has a very low sensitivity to Ñ . The algorithm

works well if this parameter is under-estimated. Consequently it can be chosen equal to64 since most

of OFDM systems use at least64 subcarriers. To estimate accuratelyN , onceNTc andDTc have been

estimated, several standard techniques can be employed such that gaussianity test on each subcarrier.

Estimation ofN is out of the scope of the paper since the value ofN does not allow to distinguish

systems from each other.
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The question now is : how estimating the kurtosis of the decoded sequence of symbolŝak,n ? For

instance, we getcum(âk,n, â∗k,n, âk,n, â∗k,n) = E[|âk,ν|4] − |E[â2
k,ν ]|2 − 2(E[|âk,ν |2])2. Then, when trial

valuesÑ(= 64), ÑTc, andD̃Tc are used,κ(âk,ν) can be usually estimated bŷκ(âk,ν) defined as follows

κ̂(âk,ν) =

∑fM−1
k=0

∑ eN−1
ν=0 |âk,ν|4 −

∣∣∣
∑fM−1

k=0

∑ eN−1
ν=0 (âk,ν)

2
∣∣∣
2
− 2

(∑fM−1
k=0

∑ eN−1
ν=0 |âk,ν |2

)2

(∑fM−1
k=0

∑ eN−1
ν=0 |âk,ν|2

)2 (9)

with M̃ = ⌊M/(ÑTc + D̃Tc)⌋.
Actually κ̂(âk,ν) is a function ofÑTc andD̃Tc and will be the cost function of our first new algorithm

associated with Kurtosis Minimization (KM). Now denotinĝκ(âk,ν) by ĴKM(ÑTc, D̃Tc), we have

[N̂Tc, D̂Tc] = arg min
gNTc, gDTc

ĴKM(ÑTc, D̃Tc) (10)

Theorem 1 ensures that the minimization procedure given in Eq. (10) leads to the identifiability ofNTc

andDTc in noiseless context and infinite number of available samples. In practice (i.e., when the signal is

noisy and when only a finite number of observations is available), we can only conjecture that̂NTc and

D̂Tc are close toNTc andDTc respectively if the noise is not so strong and if the number ofavailable

samples is large enough.

2) Adaptation to time and frequency missynchronisation:We consider thatminl τl = τmin > 0. Due

to this time offset, the blind OFDM receiver should ensure that its first sampler0,0 depends of the

transmitted signal. For doing that, a preliminar step has tobe added to the receiver. This step consists in

dropping the first̃τ samples wherẽτ is a trial value forτmin.

Similarly, if the receive signal undergoes a carrier frequency offset (∆f 6= 0), another extra step has

to be added to the receiver to estimate and compensate it. Thereceive samples given by Eq. (5) should

then be modified into

rk,p = ya(pTe + D̃Tc + k(ÑTc + D̃Tc))e
−2iπ f∆f(pTe+ gDTc+k( gNTc+ gDTc)/Te (11)

where∆̃f is a trial value of∆f .

The cost function has to be modified accordingly by adding twoparameters. Then we have

[τ̂min, ∆̂f , N̂Tc, D̂Tc] = arg min
eτ , f∆f, gNTc, gDTc

ĴKM(τ̃ , ∆̃f , ÑTc, D̃Tc)

with

ĴKM(τ̃ , ∆̃f , ÑTc, D̃Tc) =

∑fM−1
k=0

∑ eN−1
ν=0 |âk,ν|4 −

∣∣∣
∑fM−1

k=0

∑ eN−1
ν=0 (âk,ν)

2
∣∣∣
2

(∑fM−1
k=0

∑ eN−1
ν=0 |âk,ν |2

)2 − 2.

With similar techniques developed in Appendix A, one can prove that Thereom 1 still holds and induces

also the equalitieŝτmin = τmin and∆̂f = ∆f .
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B. Maximum Likelihood based method

This subsection is organized as follows: in Subsubsection III-B1, we describe the receive signal

thanks to matrix framework. In Subsubsection III-B2, we focus on the so-calledDeterministicMaximum

Likelihood. The so-calledGaussianMaximum Likelihood is introduced in Subsubsection III-B3.

These algorithms require prior synchronisation step or canbe adapted similarly to Subsubsection III-A2

associated with Kurtosis Minimization algorithm by addingonce again a synchronisation step into the

next proposed cost functions.

In order to get tractable closed-form expressions, an AWGN channel model is considered in this

Subsection. Robustness to multipath channel is evaluated in Section V.

1) Matrix framework: We assume AWGN channel and perfect time and frequency synchronisation.

Let

• ak = [ak,0, · · · , ak,N−1]
T

• a = [aT
0 , · · · ,aT

K−1]
T

• b = [b(0), · · · , b(M − 1)]T

where the superscrit(.)T stands for the transpose operator.

We stack all the receive samples in the following vectory = [y(0), · · · , y(M − 1)]T. Using Eq. (4)

under AWGN and perfect synchronization assumptions (L = 1, λ1 = 1, τ1 = 0, and∆f = 0), we have

y = Fθa + b (12)

whereθ = [N,NTc,DTc] denotes the set of OFDM parameters andFθ is a matrix expressed as below.

As ga(t) is a rectangular function, Eq. (4) leads to the following constraint

0 ≤ mTe − k(N + D)Tc < (N + D)Tc

which implies that

m
Te

(N + D)Tc
− 1 < k ≤ m

Te

(N + D)Tc
.

Consequently, for a givenm, it exists only a unique value ofk, denoted bykm. Fθ is then composed

by null components except the next ones

[Fθ]m,kmN+n =
1√
N

e2iπnm Te
NTc e2iπn(km+1) DTc

NTc (13)

for m = 0, . . . ,M − 1 andn = 0, · · · , N − 1. Term [Fθ]m,kmN+n corresponds to the element of themth

row and(kmN + n)th column ofFθ.
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As the transmit dataa are unknown at the receiver, the likelihood ofy given N , DTc, NTc, anda

has to be averaged overa. The true Maximum-Likelihood based estimator ofN , DTc, andNTc is then

complex to be carry out. To overcome the problem, we propose either to consider vectora as parameters

of interest too which leads to the so-called Deterministic Maximum Likelihood or to consider vectora as

Gaussian (even ifa is not Gaussian vector) which leads to the so-called Gaussian Maximum-Likelihood

[12].

2) Deterministic Maximum-Likelihood approach (DML):Let p(y|θ,a) be the likelihood ofy givenθ

anda. The deterministic Maximum-Likelihood is defined as follows [12]

[N̂ , D̂Tc, N̂Tc, â] = arg max
eθ,ea

p(y|θ̃, ã)

In practice, the signal bandwidth (given by1/Tc) can be assumed to be roughly known. This enables

us to choose a reasonnable value for1/Te and also to filter the receive signal by an ideal low-pass

filter of unit-magnitude and bandwidth1/Tc. This induces that the discrete-time noise has the following

autocorrelation function

rb(n) = E[b(m + n)b(m)] =
2N0

Tc
sinc

(
πn

q

)

with q = Tc/Te the sampling factor. The discrete-time noise is not white. In order to simplify the DML

estimator, the discrete-time noise will be however assumedto be white. Obviously, in simulation part,

the noise process color will be neglected.

By assuming the noise vectorb uncorrelated and by consideringKN ≤ M , it is well known that the

DML estimator can take the following form [12]

[N̂ , N̂Tc, D̂Tc] = arg min
eN, gNTc, gDTc

ĴDML(Ñ , ÑTc, D̃Tc) (14)

with

ĴDML(Ñ , ÑTc, D̃Tc) =

∥∥∥∥
(
IdM −Feθ

(
FH

eθ Feθ

)−1
FH

eθ

)
y

∥∥∥∥ ,

θ̃ = [Ñ , ÑTc, D̃Tc] and where(.)H stands for the conjugate-transposition.

3) Gaussian Maximum-Likelihood approach (GML):In this subsubsection, the transmit data vectora

is assumed to be an i.i.d. random vector. Its true power density function (pdf) is a product of a sum of

Dirac distribution for which the location is given by the used constellation (either PAM or PSK or QAM).

Due to the high complexity of derivations, it is usual to model the vectora as a circularly-symmetric

Gaussian multivariate process with zero mean and covariance σ2
a per real dimension [12]. Then the so-

called Gaussian likelihood, denoted bypg(y|θ), can be expressed in closed-form whena is assumed as

above.
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Consequently the multivariate processy is circularly-symmetric Gaussian process with zero mean and

covariance matrixE[yyH] = 2σ2
aFθF

H
θ

+ 2N0IdM and yields the following likelihood

pg(y|θ) =
1

(2π)M det
(
2σ2

aFθF
H
θ

+ 2N0IdM

)

× e−
1

2
yH(σ2

aF
H
θ
+N0IdM )−1

y

Let Id andA be the identity matrix and an other matrix compatible in sizerespectively. We remind

thatdet(Id+AAH) = det(Id+AHA) and(Id+AAH)−1 = Id−A(Id+AHA)−1AH. This leads to

pg(y|θ) ∝ 1

det
(
2σ2

aF
H
θ
Fθ + 2N0IdKN

)

× e
σ2

a
N0

yHFθ(2σ2
aF

H
θ
Fθ+2N0IdKN )−1

FH
θ
y

As maximizingpg(y|θ) is equivalent to minimizing− log pg(y|θ), we get

[N̂ , D̂Tc, N̂Tc] = arg min
eN, gNTc, gDTc

ĴGML(Ñ , ÑTc, D̃Tc)

with

ĴGML(Ñ , ÑTc, D̃Tc) = log(det(2σ2
aF

H
eθ Feθ + 2N0Id eK eN ))

− σ2
a

2N0
yHFeθ

(
σ2

aF
H
eθ Feθ + N0Id eK eN

)−1
FH

eθ y.

Notice thatK̃, the trial value for the number of OFDM symbols, depends on the trial value θ̃ since

K̃ = ⌊T0/(D̃Tc +ÑTc)⌋. Moreover Signal-to-Noise Ratio (provided byσ2
a/N0) has to be estimated prior

to computing GML estimators. Similar estimator has been already introduced by [13] in the context of

symbol period estimation for single carrier modulated signal.

C. Matched filter based method

The third new algorithm based on the matched filter (MF) principle is proposed. The time and frequency

offsets are handled as for the Maximum likelihood based algorithms and the Kurtosis Minimization based

algorithm. Once again, we hence assume hereafter perfect time and frequency synchronisation. This

method is introduced in an AWGN context. Numerical analysisof its robustness to multipath channel is

done in Section V.

By inspecting Eq. (4) under AWGN and perfect synchronization assumptions, we see that the matched

filter receiver associated with true parametersθ consists in multiplying the receiver signaly by FH
θ

following by a decision threshold. One can guess that applying an imperfect matched filterFH
eθ associated

with the trial parameters̃θ leads to a degradation of SNR. Therefore we propose to build acriterion
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related to the maximisation of the energy ofFH
eθ y with respect tõθ. As the norm ofFeθF

H
eθ depends on

θ̃, we finally advocate the use of the following ”normalized” cost function

[N̂ , D̂Tc, N̂Tc] = arg max
eN, gNTc, gDTc

JMF(Ñ , ÑTc, D̃Tc)

with

JMF(Ñ , ÑTc, D̃Tc) =
E[‖FH

eθ y‖2]

‖FeθF
H
eθ ‖F

where‖x‖ is the Euclidian norm of the vectorx and‖A‖F is the Frobenius norm of the matrixA equal

to
√

Tr(AHA).

In next Theorem, we prove that, in noiseless case, the maximization of cost functionJMF(.) yields

the true parameter vectorθ which justifies our intuition and the proposed cost function.

Theorem 2:In noiseless context, we get the following inequality

∀ Ñ , ÑTc, andD̃Tc, JMF(Ñ , ÑTc, D̃Tc) ≤ JMF(N,NTc,DTc).

The equality is reached if and only if[Ñ , ÑTc, D̃Tc] = [N,NTc,DTc], and then the cost function has

the following value‖FθF
H
θ
‖F .

Proof of Theorem 2 is given in Appendix B.

The matched filter estimator takes then the following form:

[N̂ , D̂Tc, N̂Tc] = arg max
eN, gNTc, gDTc

ĴMF(Ñ , ÑTc, D̃Tc)

whereĴMF is simply estimated as:

ĴMF(Ñ , ÑTc, D̃Tc) =
‖FH

eθ y‖2

‖FeθF
H
eθ ‖F

.

IV. OFDM PARAMETERS ESTIMATION WITHOUT SYNCHRONISATION STEP

This section is devoted to the presentation and the analysisof the fourth new algorithm. The cyclic

prefix in CP-OFDM induces cyclostatonarity that can be used to identify the OFDM parameters. This

new algorithm relies on this property and is a non-trivial extension of the well-spread autocorrelation

based algorithm described in [3]–[7]. Notice that the algorithm does not require time and frequency

synchronisation so that we can assume perfect time and frequency synchronisation without loss of

generality. Moreover, as the multipath channel partially destroys the interesting correlation property

induced by the cyclic prefix, the description of the algorithm is done under the assumption of AWGN

channel. Nevertheless, robustness of this algorithm to multipath context is inspected in Section V. We

observe that the new algorithm outperforms the autocorrelation based method in realistic context (small

cyclic prefix and/or strong multipath channel).
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A. Cyclic correlation (CC) based method

Let Ry(n,m) = E[y(n + m)y∗(n)] be the correlation function of the received signal given by Eq. (4).

In the context of AWGN (L = 1, λ1 = 1, τ1 = 0), the presence of the cyclic prefix induces a correlation

sinceRy(n,m) does not vanish for the following three valuesm = 0, ⌊NTc/Te⌋,−⌊NTc/Te⌋. We can

hence express the correlation function as follows

Ry(n,m) = Ry(n, 0)δ(m) + Ry(n, α)δ(m − α) + Ry(n,−α)δ(m + α) (15)

with α = ⌊NTc/Te⌋.
In Eq. (15), one can remark that

• The first term of the RHSRy(n, 0) is equal to1+σ2 and does not provide information about OFDM

parameters.

• The second and third terms can be written as follows (see Eq. (4))

Ry(n, α) =
∑

k∈Z

g(n + α − kα(1 + β))g∗(n − kα(1 + β)) (16)

with β = DTc/NTc = D/N and g(n) = ga(nTe). These terms provide useful information

about OFDM parameters such asNTc and DTc. Thus they can be taken into account to build

an identification criterion.

Before going further, we notice that⌊α(1 + β)⌋ is the number of samples encompassed in a whole

OFDM symbol, and⌊αβ⌋ is the number of samples encompassed in the cyclic prefix.

As n 7→ Ry(n, α) is a pseudo-periodic function (or a periodic function ifα(1 + β) is an integer), it

can be decomposed into the following Fourier series expansion:

Ry(n, α) =
∑

p

R(p/α(1+β))
y (α)e

2iπ np

α(1+β) (17)

whereR
(p/α(1+β))
y (α) is the cyclic correlation coefficient of the signaly at the cyclic frequencyp/α(1+β).

The estimation of the OFDM parametersNTc andDTc can be performed through parametersα and

β. Indeed, if α̃ and β̃ are trial values ofα and β, the cyclic correlationR(p/eα(1+eβ))
y (α̃) vanishes if

α̃ 6= α. It also vanishes wheñβ 6= β if there is nop′ such asp/α̃(1 + β̃) = p′/α(1 + β). Consequently,

an estimation only based on the termp = 0 does not allow to estimateβ. Notice that the standard

autocorrelation method introduced in [3]–[7] relies on this principle but it is only based on the cyclic

correlation at the cyclic frequency0.

The method we propose is hence a natural extension by using cyclic correlation at several non-null

cyclic frequencies. We thus rely our identification scheme on the maximization of the following cost

August 1, 2008 DRAFT



14

function:

(α̃, β̃) 7→ J
(Nb)
CC (α̃, β̃) =

1

2Nb + 1

Nb∑

p=−Nb

∣∣∣R(p/eα(1+eβ))
y (α̃)

∣∣∣
2

whereNb is the number of cyclic frequencies taken into account to compute the cost function. We would

like to maximize jointly onα̃ and β̃ the previous function. This 2-D research interval leads to ahigh

computational load of the proposed method. In order to mitigate this load, we mention that usually the

trueβ belongs to the following small set{1/4, 1/8, 1/16, 1/32}. Therefore the method of estimating the

subcarrier spacing (directly related toα) boils down to the following maximization

α̂ = arg max
eα

{
max

eβ∈{ 1

4
, 1
8
, 1

16
, 1

32
}
J

(Nb)
CC (α̃, β̃)

}

We remind that the state of art methods are based on the maximisation of the cost functionJ (0)
CC(α̃, β̃).

In practice, the criterionJ (Nb)
CC (α̃, β̃) is not available and has to be estimated. We remind that the cyclic

correlationR
(p/eα(1+eβ))
y (α̃) is given by

lim
M→∞

1

M

M−1∑

m=0

E{y(m + α̃)y∗(m)}e−2iπ mp

eα(1+eβ) (18)

and its empirical estimate, denoted bŷR
(p/eα(1+eβ))
y (α̃), is obtained as follows

1

M

M−1∑

m=0

y(m + α̃)y∗(m)e
−2iπ mp

eα(1+eβ) (19)

whereM is the number of received samples.

Consequently,J (Nb)
CC (α̃, β̃) has to be replaced witĥJ (Nb)

CC (α̃, β̃) as follows

Ĵ
(Nb)
CC (α̃, β̃) =

1

2Nb + 1

Nb∑

p=−Nb

∣∣∣R̂(p/eα(1+eβ))
y (α̃)

∣∣∣
2
.

Finally, by replacing the empirical cyclic correlation with Eq. (19), andα, β with their expression in

terms of OFDM parameter, we obtain

N̂Tc = arg max
gNTc



 max

gDTc
gNTc

∈{ 1

4
, 1
8
, 1

16
, 1

32
}

Ĵ
(Nb)
CC (ÑTc, D̃Tc)





with

Ĵ
(Nb)
CC (ÑTc, D̃Tc) =

1

2Nb + 1

Nb∑

p=−Nb

∣∣∣∣∣
1

M

M−1∑

m=0

y(m + ⌊ÑTc/Te⌋)y∗(m)e
−2iπ mp

⌊ gNTc/Te⌋(1+ gDTc/ gNTc)

∣∣∣∣∣

2

.

It is clear that,Nb, the number of cyclic frequencies taken into account to perform the estimation has

a direct impact on the algorithm performance. Therefore, inthe sequel, we provide some insights about

the choice of this parameter.
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B. Influence of design parameterNb

In this subsection, we discuss the impact of the before mentionned factor by relying on some theoretical

derivations.

To evaluate the influence ofNb, we focus on

• mean and variance of the estimated cost function at the true point (α, β) (see Subsubsection IV-B1).

• mean and variance of the estimated cost function at the otherpoints (α̃, β̃) with α̃ 6= α (see

Subsubsection IV-B2).

Hereafter, we assume thatM is large enough in order to satisfy an asymptotic regime.

1) Influence ofNb on the estimated cost function at the true point:Due to [14], it is known that
√

M
(
R̂

(p/α(1+β))
y (α) − R̂

(p/α(1+β))
y (α)

)
converges, in distribution, to a normal distribution with zero

mean and a certain finite variance whenM tends to infinity. Thanks to [15], we can deduce that
√

M
(
Ĵ

(Nb)
CC (α, β) − J

(Nb)
CC (α, β)

)
is also asymptotically normal with zero-mean and a finite variance,

denoted byσ2
1 . In order to inspect the impact ofNb on the performance, we have to analyse the variation

of J
(Nb)
CC (α, β) andσ2

1 versusNb as done in next Proposition.

Proposition 1: We assume thatα + β is an integer. We have

J
(Nb)
CC (α, β) =

1

2Nb + 1

∣∣∣∣
1

α(1 + β)

∣∣∣∣
2 Nb∑

p=−Nb

∣∣∣∣∣∣

sin
(
π βp

1+β

)

sin
(
π p

α(1+β)

)

∣∣∣∣∣∣

2

,

and,

σ2
1 = O (1) + O

(
(1 + σ2)4

2Nb + 1

)

Proof of Proposition 1 is drawn in Appendix C. The case whereα + β is not an integer is not dealt in

this paper. Nevertheless, if the condition is not met, the dependance ofJ (Nb)
CC (α, β) in term of Nb will

not be significantly changed.

One can remark that, whenp > 1/β, the value ofsin (πβp/(1 + β)) / sin (πp/α(1 + β)) is small

compared to the value taken aroundp = 0, and the cyclic correlation at lagp > 1/β does not provide

significant information. Therefore we can reasonnably assume thatNb < 1/β. Then one can see that

J
(Nb)
CC (α, β) is a decreasing function ofNb. The greaterJ (Nb)

CC (α, β) is, the better the performance should

be. On the contrary, the variance increases whenNb decreases. Consequently, based on the mean, we

advocate to chooseNb as small as possible; based on the variance, we advocate to chooseNb as large

as possible. A trade-off seems to be done to choose relevantly the value ofNb.
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2) Influence ofNb on the estimated cost function at the other points:once again, we would like to

analyse the influence ofNb on the mean and variance of̂J
(Nb)
CC (α̃, β̃) when α̃ 6= α. The result is given

in next Proposition.

Proposition 2: The mean ofĴ (Nb)
CC (α̃, β̃) has the following asymptotic property:

lim
M→∞

ME{Ĵ (Nb)
CC (α̃, β̃)} =

(
1 + σ2

)2
+ O (1)

The variation ofĴ (Nb)
CC (α̃, β̃) around its mean can be analysed using the following variancedefined as:

σ2
2(α̃, β̃) = lim

M→∞
M2

E

∣∣∣Ĵ (Nb)
CC (α̃, β̃) − E

{
Ĵ

(Nb)
CC (α̃, β̃)

}∣∣∣
2

which has the following finite value

σ2
2(α̃, β̃) = O

((
1 + σ2

)4

2Nb + 1

)
+ O (1)

as long as̃α 6= α.

Proof of Proposition 2 is given in Appendix D.

This propostion says, on the one hand, that, as long as1 << σ2, the asymptotic mean of̂J (Nb)
CC (α̃, β̃)

does not depend onNb, and, on the other hand, that the variation ofĴ
(Nb)
CC (α̃, β̃) around its mean

decreasing whenNb increases, for low SNR.

We thus confirm that a trade-off has to be done to choose relevantly the value ofNb.

V. SIMULATIONS

In this section we propose to evaluate the proposed techniques by means of numerical simulations.

We have generated an IEEE 802.16.e signal with the followingsettings: the number of carriersN =

128, the useful time durationNTc = 102µs, and the oversampling ratioTc/Te = 2. We consider that

20 OFDM symbols are available at the receiver. The transmit signal passes through a multi-path fading

channel where each path delay is uniformally distributed between[0, τmax] and each path magnitude is

uniformaly distributed between[10−2, 1]. Except otherwise stated,τmax is chosen to be equal to34DTc

and the ratioD/N = 1/32. A Gaussian noise has also been added and its variance is defined as:

σ2 =
Tc

Te

1

M

M−1∑

m=0

∣∣∣∣∣
L∑

l=1

λlsa(mTe − τl)

∣∣∣∣∣

2

10−SNR/10

whereM is the number of samples. Except otherwise stated, the number of cyclic frequencies taken into

account for the cyclic correlation based method isNb = 10. We have remarked that the GML always

outperforms the DML. Therefore, in the sequel, we only plot thr GML estimator performance.
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As we treat an estimation problem, the performance measure may be the Mean Square Error onNTc.

Nevertheless, our practical problem related to radio cognitive is to identify the right system (WiMAX,

WiFi, DAB, DVB-T or 3GPP/LTE, etc) by comparing thêNTc to its theoretical value for each considered

system. As seen in introduction, the smallest gap between two inter-carrier spacing values is little larger

than1%. Therefore, for our practical system identification issue,we only need an estimation of1/NTc

up to 1%. Consequently rather than considering MSE as performance measure, the performance has

been evaluated as the number of correct detection, i.e. the number of realizations for which thêNTc is

equal toNTc up to 1%. Note that a joint estimation ofNTc andDTc has been performed to estimate

the OFDM parameters of interest but the plotted curves only focus on the correct detection rate of the

intercarrier spacing parameter. Actually we have observedthat detections onNTc or DTc always yield

similar performance.

Firstly, we consider a perfect time and frequency synchronization context. In Figure 1, we plot

the performance of the proposed algorithms and of the state of art method (denoted correlation-based

technique) versus SNR. One can show that all the proposed techniques outperform the standard correlation

based method.

In Figure 2, we display the correct detection rate of the proposed algorithms and of the correlation

based method versusD/N . In order to inspect properly only the the impact of the ratiobetween the

cyclic prefix and the useful part durations on the performance, simulations are done here with AWGN

channel. As stated in the introduction, the state of art technique falls down when the length of the cyclic

prefix is small compared to the length of the useful part of theOFDM signal which may occur for DVB-T

and WiMax signals (D/N belongs to{1/32, 1/16, 1/8, 1/4}). The cyclic correlation based approach still

performs well except forD/N = 0 (no correlation within the received signal). We show also that the

other proposed approaches (GML, matched filter and kurtosisminimization) achieve good performance

whatever the ratioD/N and we can conclude that these approaches are independent ofthe encountered

cyclic prefix length. Consequently, all the proposed algorithms are perfectly adapted to recognize OFDM

systems in the Cognitive Radio context and seem to be particularly attractive.

In Figure 3, we plot the performance of the proposed techniques and of the correlation based method

versus the channel impulse response length. While the standard correlation based technique is the most

affected by the frequency selective channel, the use of other cyclic frequencies which leads to the proposed

cyclic correlation based method enables to improve the detection efficiency significantly. Thus the novel

second order based technique is more robust. The other proposed techniques are robust to frequency-

slective channel, even the GML and the matched filter techniques albeit initially derived under AWGN
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channel assumption.

We now consider that time and/or frequency offset occur. Forthe methods proposed in Section III,

an additional loop has been added to perform a joint estimation of the offset and the parameters of

interest. The results are shown in Figure 4 for the frequencyoffset missynchronization and in Figure 5

for the time-offset missynchronization. As expected, the second order based approaches are not disturbed

by frequency and time missynchronization. In constrat, themethods developed in Section III (kurtosis

minimization, GML and Matched filter) offer slightly degraded performance although offsets estimation

step have be carried out.

In Figure 6, the performance of the cyclic correlation basedmethod is studied versus the number of

cyclic frequenciesNb for different cyclic prefix (CP) lengths. As the performanceof this method depends

on the length of the cyclic prefix, we have chosen the SNR for each tested CP accordingly. We show that

for each CP length, a tradeoff has to be done for selecting thevalue ofNb ensuring the best performance.

By comparing the different curves, one can deduce that the best value forNb is aroundN/D.

VI. CONCLUSION

Four new methods for blind identification of the modulation parameters of OFDM based systems have

been proposed in this paper. These four algorithms that exploit different principles have been sorted in two

categories. The first one contains the algorithms with time and frequency synchronisation steps. The three

proposed algorithms are based on various techniques: i) kurtosis minimization, ii) maximum likelihood,

iii) matched filter. The second kind of algorithms are the onethat do not need a synchronisation step.

In this category goes the state of art methods, and the algorithm we have proposed based on cyclic

frequencies estimation.

Most theoretical development have been done assuming a flat fading channel, but general contexts have

been numerical simulated to estimate the robustness of the proposed algorithms. As it has been shown

in the section devoted to simulations, there is no algorithmthat outperforms the others in every contexts.

Nevertheless, in every simulated contexts, all the proposed algorithms have much better performance than

the state of art methods.
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APPENDIX A

PROOF OFTHEOREM 1

Without loss of generality, we only focus on the first estimated OFDM block. According to Eqs. (2)

and (5), the first estimated OFDM block is composed by

r0,p =
L∑

l=1

λlsa(pTe + D̃Tc − τl), ∀p ∈ {0, P̃ − 1}

Using Eqs. (6) and (1), the decoded symbolsâ0,v writes then,∀v ∈ {0,N ′}

â0,v =
1√
P̃N

L∑

l=1

â
(l)
0,v (20)

with

â
(l)
0,v =

∑

k∈Z

N−1∑

n=0

ã
(l)
k,n

P̂−1∑

p=0

e
−2iπpTe(

n

NTc
− v

gNTc
)

× λlga(pTe + D̃Tc − τl − kTs) (21)

and

ã
(l)
k,n = ak,ne−2iπ n

NTc
( gDTc−DTc−τl−kTs). (22)

We will first show that, for each pathl, we get

κ(â
(l)
0,v) ≥ κ

(
ã

(l)
k,v

)
, ∀k (23)

and the equality holds for one particulark = k0(l) if and only if the conditions of Theorem 1 are satisfied,

i.e., if the decoded symbol̂a(l)
0,v is proportional to onẽa(l)

k0(l),ν
. Due to Eq. (22), it is equivalent to be

proportional toã
(l)
k0(l),ν

and to the transmit symbolak0(l),v.

As the summation overp is finite in Eq. (21) and as the functionga(t) has a finite support, the

summation overk in Eq. (21) is also finite. LetΩl be the following set

Ωl = {k | ∃p ∈ {0, P̃ − 1} s.t. ga(pTe + D̃Tc − τl − kTs) = 1}

Let us consider thatcard(Ωl) > 1. Under such an assumption, it is clear that the decoded symbol

â
(l)
0,v depends at least from1 transmit symbols of each transmit OFDM symbol which index isin Ωl. So

â
(l)
0,v is a linear combination of several symbols which implies that the inequality of Eq. (23) is a strict

inequality. Consequently, in order to obtain equality in Eq. (23), we needcard(Ωl) = 1. Let us now

consider thatcard(Ωl) = 1. Let k0(l) be the unique element ofΩl. Under this assumption, we have that
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r0,p for any p ∈ {0, P̃ − 1} belongs to the samekth
0 transmit OFDM symbol. Then̂a(l)

0,v simplifies as

follows

â
(l)
0,v = λl

N−1∑

n=0

ã
(l)
k0(l),n

eiθn

sin
(
π

ePTe

NTc

(
n − vNTc

gNTc

))

sin
(
π Te

NTc

(
n − vNTc

gNTc

))

whereθn still depends onn.

Once again, aŝa(l)
0,v is a linear combination of̃a(l)

k0(l),n
, Eq. (23) holds. Equality occurs when the weights

of the linear combination vanish except one. These weights are zero if and only if it existsn0 such that




sin
“

π
ePTe

NTc

“
n−v NTc

gNTc

””

sin
“

π Te
NTc

“
n−v NTc

gNTc

”” 6= 0 if n = n0

sin
“

π
ePTe

NTc

“
n−v NTc

gNTc

””

sin
“

π Te
NTc

“
n−v NTc

gNTc

”” = 0 otherwise

As P̃ = ⌊ÑTc/Te⌋, we have that̃PTe/NTc is close toÑTc/NTc if N is large enough. One can see

that the last property is satisfied if and only if̃NTc = NTc andn0 = v, i.e., if â
(l)
0,v is proportional to

ã
(l)
k0(l),ν

and so toak0(l),v.

Thanks to (20), it is then straight forward to conclude to thekurtosis ofâ0,v is minimal if and only if

∀l, k0(l) = k0. Note that this condition can be achieved as long asτl < DTc. â0,v is then proportional

to ak0,v.

This concludes the first part of Theorem 1 (associated with the first inequality provided in Theorem

1).

The second part of Theorem 1 (associated with the second inequality provided in Theorem 1) is proven

as follows: for each decoded symbolâk,ν, the first part of Theorem 1 says that the kurtosis reaches its

global minimum value if and only if̃NTc = NTc andrk,p for p ∈ {0, P̃ −1} belong to the same transmit

OFDM symbol. The kurtosis of the estimated sequence of symbols reaches hence its global minima if

both conditions are satisfied for all values ofk andn.

Equality ÑTc = NTc is thus trivial given the first of Theorem 1. EqualitỹDTc = DTc is deduced

from the second condition provided in the first part of the Theorem. Indeed, ifD̃Tc 6= DTc, one can

always find ak∗ such that the set of pointsrk∗,p for p ∈ {0, P̃ − 1} belongs to two OFDM symbols.

Then,κ (âk∗,ν) > κ (a) and equality between the two kurtosis leads tõDTc = DTc which concludes the

proof. �
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APPENDIX B

PROOF OFTHEOREM 2

In noiseless flat-fading channel with perfect synchronisation, we havey = Fθa with i.i.d. data vector

a. Then this leads to

JMF(θ̃) =
Tr(FH

eθ FθF
H
θ
Feθ)

‖FeθF
H
eθ ‖F

Let A = Feθ andB = Fθ. Due to the new notation, we have

JMF(θ̃) =
Tr(AHB(BHA))

‖AAH‖F
=

‖AHB‖2
F

‖AAH‖F
.

First of all, we would like to prove that the following inequality is satisfied

‖AHB‖2
F

‖AAH‖F
≤ ‖BBH‖F

and that the equality holds if and only ifAAH is proportional toBBH, i.e., if and only if FeθF
H
eθ is

proportional toFθF
H
θ
.

Let Aij andBij be the element of theith row andjth column ofA andB respectively.

‖AHB‖2
F =

eK eN∑

i=1

KN∑

j=1

∣∣∣∣∣
M∑

l=1

(AH)ilBlj

∣∣∣∣∣

2

(24)

=
M∑

l=1

M∑

l′=1




eK eN∑

i=1

A∗
liAl′i






KN∑

j=1

BljB
∗
l′j


 (25)

For sake of simplicity, we introduce the following notations: let V = AAH and W = BBH be the

matrices for which the elements are expressed as

Vll′ =

eK eN∑

i=1

AliA
∗
l′i Wll′ =

KN∑

j=1

BljB
∗
l′j

for all l = 1, ...,M and l′ = 1, ...,M

By replacing these expresions into Eq. (25), we get

‖AHB‖2
F =

M∑

l=1

M∑

l′=1

Vl′lWll′ (26)

A first application of the Cauchy-Schwartz inequality to thesum of indexl′ in Eq. (26) leads to

‖AHB‖2
F ≤

M∑

l=1



(

M∑

l′=1

|Vl′l|2
) 1

2
(

M∑

l′=1

|Wll′ |2
) 1

2


 (27)

Equality holds if and only if it exits constants{cl}l=1,···M such thatVl′l = clW
∗
ll′ .

We consider the following notations
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• vl =
(∑M

l′=1 |Vl′l|2
) 1

2

• wl =
(∑M

l′=1 |Wll′ |2
) 1

2

.

A second application of the Cauchy-Schwartz inequality to the sum of indexl gives

‖AHB‖2
F ≤

(
M∑

l=1

|vl|2
) 1

2
(

M∑

l=1

|wl|2
) 1

2

(28)

Notice that
∑M

l=1 |vl|2 = Tr(VHV) = ‖AHA‖2
F and

∑M
l=1 |wl|2 = Tr(WHW) = ‖BHB‖2

F which

proofs the sought inequality. Equality holds in Eq. (28) if and only if it exists a constantc′ such that

vl = c′wl for all l = 1, · · · ,M .

Finally equality holds jointly in Eqs. (27) and (28) if and only if it exists a constantc such that

Vll′ = cW ∗
ll′ = cWl′l for all l, l′ = 1, · · · ,M , i.e., V = AAH is proportional toW = BBH.

Now we would like to prove thatAAH is proportional toBBH, i.e., FeθF
H
eθ is proportional toFθF

H
θ

only leads toθ̃ = θ.

Using Eq. (13), one can prove that each element ofFeθF
H
eθ for l = 1, ...,M and l′ = 1, ...,M can be

expressed as follows:

[
FeθF

H
eθ

]
l,l′

=





1
eN

sin
“
π

eNTe
gNTc

(l−l′)
”

sin
“
π Te

gNTc
(l−l′)

”e
iπ(l−l′)Te

eN−1
gNTc

if |l − l′|Te ≤ ÑT c + D̃T c and l 6= l′

1 if l = l′

0 if |l − l′|Te > ÑT c + D̃T c

Each block inFeθF
H
eθ (except the last one) has⌊(ÑTc +D̃Tc)/Te⌋ rows andÑ columns. Consequently,

if FeθF
H
eθ is proportional toFθF

H
θ

, each block of both matrices must have the same dimensions. Thus,

we getÑT c + D̃T c = NT c + DT c andÑ = N .

By consideringl and l′ such as|l − l′|Te ≤ ÑT c + D̃T c andl 6= l′ and any integerk, proportionaltiy

between both matrices leads to




(l − l′)Te
N−1
gNT c

= (l − l′)Te
N−1
NT c

+ 2k + φ

sin
“

π NTe
gNTc

(l−l′)
”

sin
“

π Te
gNTc

(l−l′)
” = |c|

sin
“

π NTe
NTc

(l−l′)
”

sin
“

π Te
NTc

(l−l′)
”

where |c| and φ are the magnitude and the phase of the constantc. k ∈ Z. Last equalities imply that

c = 1, ÑT c = NT c, andD̃T c = DT c. This concludes the proof.�
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APPENDIX C

PROOF OFPROPOSITION1

We recall thatα + β is assumed to be an integer. Using Eqs. (16) and (18), the cyclic frequency

coefficientR(p/α(1+β))
y (α) can be expressed as:

R(p/α(1+β))
y (α) =

1

α(1 + β)

α(1+β)−1∑

n=α

e
−2iπ np

α(1+β)

It is then straightforward to deduce the expected result on the asymptotic mean.

To compute the estimator variance, we introduce the vector

Ry = [R(−Nb/α(1+β))
y (α), · · · , R(0)

y (α), · · · , R(Nb/α(1+β))
y (α)]T

andR̂y its estimate. The cost function̂J (Nb)
CC (α, β) is then given by:

Ĵ
(Nb)
CC (α, β) =

1

2Nb + 1
R̂H

y R̂y

Thanks to the law of large number,̂Ry is asymptotically normal, and as‖Ry‖2 is strictly positive, we

deduce that
√

M
(
Ĵ

(Nb)
CC − J

(Nb)
CC

)
converges in distribution toN(0, 4Σ) (see [15] for more details).Σ is

given by

Σ =

(
1

2Nb + 1

)2 [
RH

y RT
y

]

 Γ Γc

Γ∗
c Γ∗




 Ry

R∗
y




whereR∗
y is the conjugate ofRy, and:

1) Γ = limM→∞ ME

{
(R̂y − Ry)(R̂y − Ry)

H
}

2) Γc = limM→∞ ME

{
(R̂y − Ry)(R̂y − Ry)

T
}

The coefficients ofΓ are given by:

[Γ]k,l = lim
M

ME

{
R̂(−Nb+k/α(1+β))

y (α)
(
R̂(−Nb+l/α(1+β))

y (α)
)∗}

−MR(−Nb+k/α(1+β))
y (α)

(
R(−Nb+l/α(1+β))

y (α)
)∗

We get after some calculations:

E

{
R̂(−Nb+k/α(1+β))

y (α)
(
R̂(−Nb+l/α(1+β))

y (α)
)∗}

= R(−Nb+k/α(1+β))
y (α)

(
R(−Nb+l/α(1+β))

y (α)
)∗

+
1

M2

∑

u,v

Ry(u + α, v)R∗
y(u, v)e−2iπ/α(1+β)(k−l)u

Hence:

[Γ]k,l = lim
M

1

M

∑

u,v

Ry(u + α, v)R∗
y(u, v)e−2iπ/α(1+β)(k(u+v)−lu)
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Ry(u, v) vanishes whenv 6= 0 andv 6= ±α: If v = 0, R∗
y(u, 0) does not depend onu. Hence:

lim
M

1

M

∑

u

Ry(u + α, 0)R∗
y(u, 0)e−2iπ/α(1+β)(k−l)u =

(
1 + σ2

)2
δ(k − l)

Whenv is equal to±α, the expression is more complex. We will write it as:

lim
M

1

M

∑

u

Ry(u + α,±α)R∗
y(u,±α)e−2iπ/α(1+β)((k−l)u−k(±α)) = O(12)

The matrixΓ has then the following formΓ =




(
1 + σ2

)2
+ O(1) O(1) O(1)

O(1)
. .. O(1)

O(1) O(1)
(
1 + σ2

)2
+ O(1)




Similarly, the coefficientsΓc are given by:

[Γc]k,l = lim
M

ME

{
R̂(−Nb+k/α(1+β))

y (α)R̂(−Nb+l/α(1+β))
y (α)

}
−MR(−Nb+k/α(1+β))

y (α)R(−Nb+l/α(1+β))
y (α)

After some calculations, we also get:

[Γc]k,l = lim
M

1

M

∑

u1,u2

Ry(u1, u1 − u2 + α)R∗
y(u2,−u1 + u2 + α)e−2iπ/α(1+β)(ku1+lu2)

[Γc]k,l does not vanishes only whenu1 = u2 which gives:

[Γc]k,l = lim
M

1

M

∑

u

Ry(u,+α)R∗
y(u, α)e−2iπ/α(1+β)(k+l)u = O(12)

The matrixΓc has then the following formΓc = [O(1)]

The matrix


 Γ Γc

Γ∗
c Γ∗


 simplifies hence to:


 Γ Γc

Γ∗
c Γ∗


 =




(
1 + σ2

)2
+ O(1) O(1) O(1)

O(1)
. . . O(1)

O(1) O(1)
(
1 + σ2

)2
+ O(1)




which leads to the expected result.

APPENDIX D

PROOF OFPROPOSITION2

ME{Ĵ (Nb)
CC (α̃, β̃)} writes as

1

2Nb + 1

Nb∑

p=−Nb

ME|R̂(p/eα(1+eβ))
y (α̃)|2.
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In terms of the received signaly(m), ME|R̂(p/eα(1+eβ))
y (α̃)|2 equals:

1

M

∑
m1
m2

E{y(m1 + α̃)y∗(m1)y
∗(m2 + α̃)y(m2)}e−

2iπk(m1−m2)

eα(1+ eβ) (29)

Writing the fourth order moment in terms of the fourth order cumulant,E{y(m1 + α̃)y∗(m1)y
∗(m2 +

α̃)y(m2)} expands to:

cum(y(m1 + α̃), y∗(m1), y
∗(m2 + α̃), y(m2)) (30)

+ E{y(m1 + α̃)y∗(m1)}E{y∗(m2 + α̃)y(m2)}

+ E{y(m1 + α̃)y(m2)}E{y∗(m1 + α̃)y∗(m1)}

+ E{y(m1 + α̃)y∗(m2 + α̃)}E{y∗(m1)y(m2)}

As y(m + α̃) and y(m) are independent wheñα > 0 and α̃ 6= α, the first term vanishes. The second

term vanishes sincẽα 6= α. The third term vanishes sincey(m) is circular. The fourth order moment

rewrites hence, in terms of the autocorrelation function ofthe received signal:

E{y(m1 + α̃)y∗(m1)y
∗(m2 + α̃)y(m2)}

= Ry(m2 + α̃,m1 − m2)R
∗
y(m2,m1 − m2)

We deduce from this result that Eq. (29) does not vanish only if m1 = m2, m1 = m2+α or m1 = m2−α.

If m1 = m2, we obtain the sum simplifies to(1 + σ2)2. For the other cases, we get the termO (1).

To compute this variance we first writeE
∣∣∣MĴ

(Nb)
CC (α̃, β̃)

∣∣∣
2

in terms of the cyclic coefficients. We then

apply the decomposition (30) to the cyclic coefficients (instead of applying it to the signaly). We get:

M2
E

∣∣∣Ĵ (Nb)
CC (α̃, β̃) − E

{
Ĵ

(Nb)
CC (α̃, β̃)

}∣∣∣
2

=
M2

(2Nb + 1)2

∑

k1,k2

∣∣∣E
{
R̂(k1/eα(1+eβ))

y (α̃)R̂(k2/eα(1+eβ))
y (α̃)

}∣∣∣
2

+
M2

(2Nb + 1)2

∑

k1,k2

∣∣∣E
{
R̂(k1/eα(1+eβ))

y (α̃)
(
R̂(k2/eα(1+eβ))

y (α̃)
)∗}∣∣∣

2

The result only requires to compute both expectations usinga similar technique as for the asymptotical

mean. The first oneE{R̂(k1/eα(1+eβ))
y (α̃)R̂

(k2/eα(1+eβ))
y (α̃)} vanishes except if̃α = α

2 . The second one can

be computed as the expectation that has been computed for theasymptotic mean.�
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Fig. 1. Correct detection rate vs. SNR (D/N = 1/32)
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