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Estimation for OFDM Signals:

Cramér–Rao Bound and Algorithms
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Abstract—This paper considers the problem of sampling
clock synchronization and channel estimation for orthogonal-fre-
quency-division multiplex (OFDM) systems. In such systems, when
the number of subcarriers is large, a sampling clock frequency
mismatch between the transmitter and the receiver dramatically
degrades the performance. So far, the literature proposes ad hoc
estimation algorithms. However, a complete performance analysis,
especially the Cramér–Rao bound (CRB) derivation, remains to
be done. Obviously, the channel-impulse response is unknown at
the receiver and also needs to be estimated. Therefore, the CRB
associated with this joint estimation is theoretically evaluated.
When the number of subcarriers and the channel degree are large,
very compact closed-form expressions for the CRB are obtained.
Furthermore, along with the maximum-likelihood (ML) estimator,
suboptimal estimation algorithms are introduced and compared
with some existing approaches and with the CRB.

Index Terms—Channel estimation, Cramér–Rao bound (CRB),
orthogonal-frequency-division multiplex (OFDM), power line
transmission (PLT), sampling clock offset estimation, very high
speed digital subscriber line (VDSL).

I. INTRODUCTION

THE detection of orthogonal-frequency-division-mul-
tiplexing (OFDM) symbols cannot be done properly

without a reliable clock synchronization. One synchronization
step consists of estimating the OFDM symbol timing, which is
the delay between the transmitted and the received OFDM sym-
bols. In a certain number of applications where these symbols
are short, estimating this delay is enough. However, as soon
as the number of samples per OFDM symbol (or equivalently,
the number of subcarriers) becomes large, the frequency offset
between the transmitter’s sampling clock and the receiver’s
sampling clock in its free oscillation mode has to be considered
too. Indeed, this offset leads to a sampling delay that drifts
linearly in time over the OFDM symbol. Without any compen-
sation, this drift hampers the receiver’s performance as soon
as the product of the relative clock frequency offset with the
number of subcarriers becomes non negligible in comparison
with one [1]. For instance, in very high speed digital subscriber
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line (VDSL) transmissions, these two quantities can reach
and 4096 [2], respectively, making the clock frequency offset
compensation mandatory. As an other example, power line
transmissions (PLTs) in the band [1 MHz, 20 MHz] [3] show a
similar behavior with respect to this phenomenon.

As it is well known, the part of the OFDM symbol that enters
the fast Fourier transform (FFT) device at the receiver comes
after a cyclic prefix. As the latter has a length comparable to
the channel impulse response length, it is precisely when the
channel is long that a long duration has to be chosen for the
useful part of the OFDM symbol, in order to reduce the im-
pact of the cyclic prefix on the spectral efficiency. It is there-
fore worth considering the problem of the joint estimation of
the clock frequency offset and of the channel-impulse response,
particularly in these situations where the observation window
has to be rather large.

The literature proposes several data-aided algorithms (in the
sense that one or several OFDM symbols are devoted to training)
to perform the estimation of the clock frequency offset [4]–[9].
In some of these approaches, the channel is implicitly assumed
perfectly known while in others, the knowledge of the channel
is not required to perform the frequency offset estimation. In
this paper, in order to better understand the interactions between
these two estimations, we begin in Section III by giving the
Cramér–Rao bound (CRB) associated with this joint estimation
problem. In Section IV, we simplify the closed-form expressions
of the CRB when the observation window length grows large.
It appears that these expressions can be simplified further when
the channel degree is large. This is, in particular, the case of
VDSL or the PLT wireline channels, whose degree is often of
the order 100. Section V deals with practical estimation algo-
rithms. We begin by the maximum-likelihood (ML) estimator
for which we propose a simplified version. Because the ML al-
gorithm remains complicated even in its simplified version, we
study simple estimation algorithms that require OFDM training
symbols having particular structures. In Section VI, the ML al-
gorithm as well as suboptimal algorithms are tested and com-
pared with the CRBs. Concluding remarks are drawn in Sec-
tion VII.

In the sequel, is the expectation operator and is the
probability measure. stands for the identity matrix
and is the matrix which element at the row and

column is for and
. The Kronecker product between matrices

is denoted . The argument of a complex-valued scalar is
denoted .
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II. SYSTEM MODEL

Let us consider the reception of one standard OFDM block
which has passed through a nonflat-fading channel. After re-
moving the guard interval, the observation window size is

, where is the number of subcarriers, is the sampling
period at the transmitter, and the spacing between two ad-
jacent subcarriers. Consequently, the continuous-time received
signal writes as follows:

(1)

where represents the output of the -fold in-
verse FFT (IFFT) device of the transmitter. This OFDM symbol
is devoted to training and therefore, is assumed to be known at
the receiver. As usual, is a power of 2. The unknown im-
pulse response represents the complete channel that in-
cludes the transmit filter, the propagation channel, and the re-
ceiver low-pass filter. Finally is an additive noise inde-
pendent of the data.

Because of the oscillators’ imperfection, the transmitter’s
and receiver’s clocks are not synchronized. Therefore,
is sampled at instead of , where is an unknown
offset lying in the known interval . The parameter

is related to the precision of the oscillators used in the
transmission chain. The ASDL/VDSL norms [2], for instance,
recommend that be equal to .

The discrete-time received signal
is then written

(2)

where is assumed white Gaussian
circular with zero-mean and known variance .
As usual, is assumed time limited with the time support
included in where is a known integer. We thus write

for . The Fourier transform
of is furthermore assumed to have an effective

frequency support included in the interval . With these
assumptions, it is possible to make the useful approximation

(3)

that can be justified by the following argument:
with being a chosen integer, let

, a function whose Fourier
transform is . Using
Poisson summation formula, we then have

The left-hand side (LHS) of this equation is precisely the
LHS of (3). Moreover, as the effective support of
belongs to , then the right-hand side (RHS) is

. By the sampling theorem,
this quantity coincides with ,
hence (3).

As a result of an IFFT operation, the transmitted samples
write

where are the training symbols in the fre-
quency domain, sometimes referred to as the pilot “subcarriers.”
Plugging this equation and the approximation (3) into (2), the
received signal writes

(4)

Let the superscript be the transposition operator. Putting
, ,

and , we can then write

(5)

where the element of the matrix is
for

and . After removing the
guard interval (the duration of which is assumed greater than

), the vector output of the FFT device at the receiver is then

(6)

In short, this equation describes the structure of the OFDM
symbol collected at the output of the FFT device during the
training phase.

When a sampling clock frequency offset (SFO) occurs, the
signal at the output of the sampler can be written as follows (see
(4)):

SFO

When a carrier frequency offset (CFO) occurs (and is equal to
), the signal at the output of the sampler writes as

follows:

CFO

One can see that estimating a SFO is not equivalent to estimating
a CFO since in the first case (SFO), the phase drift depends on

and , and in the second case (CFO) the phase drift only
depends on . Consequently, the CFO estimation algorithms can
not be used and even not be adapted to estimating the SFO.
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This paper will focus on the estimation issue of the param-
eter and also of the channel. In practice, we do not need
the knowledge of the channel but rather the knowledge of
its Fourier transform. Moreover, during the training and data
transmission modes, the OFDM symbols are often subjected
to a certain frequency mask constraint. Therefore, only the
knowledge of the frequency response of the channel at the
FFT frequency (with ) weighted by the
mask is actually necessary at the receiver. More precisely, let

be the sequence of positive real numbers
representing the mask profile and let be the matrix ex-
tracted from by keeping its first columns. Assuming
that the frequency clock offset is perfectly compensated for
during the data phase, it is easy to check that the FFT output
vector for an OFDM symbol during the data phase writes

, where is a
diagonal matrix that bears on its diagonal the random

information symbols, and .
Notice that stands for the Fourier transform of vector .
Because the receiver will have to compensate for the channel
distorsions in the frequency domain during the data trans-
mission phase, an estimate of the vector
should therefore be available at its site. Our purpose is there-
fore to derive the CRB on the column vector , where

, and where and denote the
real and the imaginary parts, respectively.

III. EXACT CRAMÉR–RAO BOUND

Considering the general model (6), the vector is cir-
cular Gaussian with the unknown mean
and the known covariance matrix . In addition, the com-
plex matrix function is differentiable. Conse-
quently, according to [10], the Fisher information matrix (FIM)
associated with the parameter vector with

expresses as follows:

where the superscript stands for the transpose-conjugate and
. More precisely,

as and , one can then
easily show that

(7)

where

and . The reason for introducing the fac-
tors , , and will become apparent later. By ap-
plying the well-known formulas for the inversion of block par-
titioned matrices, we obtain

(8)

where

(9)

(10)

(11)

with

(12)

(13)

As a consequence, we can find the following inequalities:

(14)
and

(15)

where and are estimates of and obtained from the
observation .

As , the CRB associated with the parame-

ters of interest can be written as follows:

where and . It

yields that

(16)
where is any unbiased estimate of and .

Expressions (15) and (16) provide the Cramér–Rao lower
bound for the parameters of interest. Nevertheless these expres-
sions are difficult to interpret. To overcome this drawback and
to obtain simpler expressions, we will analyze the asymptotic
behavior of these expressions. By “asymptotic,” we mean that
a large number of subcarriers, then a long channel impulse re-
sponse are considered.
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IV. ASYMPTOTIC CRAMÉR–RAO BOUND

By “asymptotic,” one frequently means that the number of
observed samples or equivalently the number of subcarriers
in our context, grows toward infinity, the channel length being
held fixed. With some assumptions, it will appear that in this
regime, matrices , , and converge elementwise to
deterministic matrices , , and , respectively. This will be
the first part of this section. However, in our particular situation,
it is interesting to go further and to assume in a second step
that . As said in the introduction, this assumption has
a practical interest in wireline communications. Notice that we
assume then . In practice, our study will be
relevant in situations where and are large but .

As a first step, we thus focus on the asymptotic analysis of
the CRB as . Most of the training sequence struc-
tures encountered in the literature [8], [9], [11] can be encom-
passed within an unique framework by writing the elements of
the training sequence as follows:

(17)

where is a bounded real function defined on the
interval [0, 1] and integrable in the Riemann sense. Note that

refers to the frequency mask constraint. The random vari-
ables are assumed to be independent with zero
mean. Let be any integer. We assume that the variables are
zero-mean and that the variance is different from 0
if divides , and is equal to 0 otherwise. In order to keep the
transmit power constant, we need to set when

divides . This variance model enables us to encompass usual
training sequences (e.g., for , the training sequence ad-
mits an equal power whatever the subcarriers; for , we
obtain the training sequences described in [11] and [12]). Fur-
thermore, the eighth moments of exist and are
uniformly bounded, i.e., there exists a constant such that

(18)

With this definition of , the energy consumed by the OFDM
symbol associated with does not depend on

.
The asymptotic behavior of the CRB is driven by the asymp-

totic behavior of the matrices , , and when
, with the channel length being fixed. The following lemma

will help us to do this asymptotic study, since the elements of
matrices , , and can be decomposed according to
the expression of .

Lemma 1: Let and let be a function such
that for every integer with , ,
where is a constant that does not depend on . Then, for
every real number

converges almost surely to 0 as .
Proof: See the Appendix.

Let us begin with the evaluation of . The element
of this matrix for writes

(19)

where

if
if

(20)
Equation (19) can be rewritten

where

Let us prove that converges to 0 almost surely. The proof
of the convergence of toward 0 can be done similarly.
can be written

where

and

and is the inner sum in the expression of . It is easy
to check that for . Lemma 1
can therefore be used after identifying the function in its
statement with , the number with

and with . By consequence,
a.s. when . The terms and can be treated
similarly after noticing that is periodic with period .

It leads to

a.s. (21)
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According to the definition of the sequence
introduced in (17), and by using tools similar to those of the
proof of lemma 1, it can be seen that

a.s. (22)

Moreover, as is assumed Riemann-integrable, we
get

(23)

where .
From (21)–(23), we deduce that the matrix converges

elementwise almost surely toward

(24)

One notices that coincides with the covariance matrix of a
stationary process having as a spectral density.

Let us now consider the asymptotic behavior of . The
element of this matrix writes

where [13]

if

if

Once again, it is possible to verify that for
. After some computations similar to those of

that lead to (21), we obtain

a.s.

Therefore, the almost sure limit of expresses as

(25)

Similar derivations lead to the almost sure limit of ,
which is expressed as follows:

(26)

In order to analyze the RHS of (16) in the asymptotic regime,
we also need to study the asymptotic behavior of as

. In parallel with the model (17) relative to the training se-
quence symbols, we will assume that diagonal elements of
(which represent the frequency mask for the data transmission
phase) satisfy for . The ele-
ment of for then writes as

Therefore, this matrix clearly converges to the Toeplitz matrix
defined as

(27)
In order to obtain more compact CRB expressions, we put

into profit the Toeplitz structure of matrices , , and ob-
tained above and study the asymptotic regime where the channel
length is large (i.e., ). The rest of the study will be
practically relevant in the situations, where and are large
but .

In practice, the mask profile is bandlimited. Indeed,
some frequencies are forbidden in order to mitigate the inter-
ference with systems operating at adjacent frequencies or with
systems using narrow-frequency bands within our band of in-
terest. A typical example of such a system is the radio amateur
system, which is known to use frequencies that lie in the interval
used by VDSL or PLT systems. Because of this bandlimited na-
ture of , the integration in (24)–(26) may be done only over
a subset of [0;1] having a Lebesgue measure less than one. Con-
sequently, due to well-known results provided in [14], these ma-
trices are rank deficient as soon as becomes large, that is to
say that, they admit some negligible eigenvalues which prevent
a standard inversion. By inspecting (7), one notices that the limit
of the FIM is also singular.

We shall neglect the eigenvalues of less than a given .
Let and define as

if and if . With a small
notation abuse, we denote by the “pseudo-inverse” matrix1

where is chosen small enough so as to retain
only the dominant eigenvalues of .

Using results introduced in [15] related to the CRB with sin-
gular FIMs, our CRB analysis remains valid by replacing the

1LetQ:diag([� ; . . . ; � ]):Q be the eigenvalue decomposition ofU, then
F (U) is defined as F (U) = Q:diag([F (� ); . . . ; F (� )]):Q .
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matrix with in the CRB expressions for .
Then, (15) and (16) and can be modified as follows:

(28)

(29)

Using results introduced in [16] concerning the asymptotic
behavior of Toeplitz matrices, it can be shown that, when
tends to infinity, (28) and (29) reduce to

(30)

and

(31)

with being the Lebesgue measure of the useful frequency
support and .

In [17], using different mathematical derivations and a time
domain approach, similar results were obtained in the context
of single-carrier transmissions.

Equations (30) and (31) call for some observations. First,
it is clear that the CRBs over the channel and the clock fre-
quency offset decrease in and in , respec-
tively. Furthermore, the activation of one subcarrier over has
no effect on the asymptotic CRBs. By inspecting (31), due to
the term in the integral, it also appears that a frequency
mask that is too constraining in the high-frequency region can
be detrimental to the clock frequency offset estimation. It can
also be noticed that in the asymptotic regime, the estimation
of has no effect on the CRB over the channel. Indeed, if
were perfectly known, then (16) would be replaced by

. Getting to (28), we only need
to remove the term in its right-hand member if we
want to suppress the effect of the estimation of . Now, if the
channel were perfectly known, then given by (13) would
have to be replaced by , resulting in

in the asymptotic
regime. Therefore, by comparing this expression with (31), we
notice that the absence of knowledge of the channel impulse re-
sponse leads to a 6-dB loss on the CRB over the clock frequency
offset.

V. ESTIMATION ALGORITHMS

A. ML-Like Algorithms

Getting back to the received signal model (6) in the frequency
domain, the log-likelihood function to be minimized is

The minimization of leads to the following ML-based es-
timates of and (see [10] and [18] for more explanations):

where

is the orthogonal projection matrix onto the subspace of
spanned by the columns of .

For estimating the sampling clock offset, each try of a value of
requires the inversion of . The implementation

of this algorithm is therefore impractical. However, it can be
simplified in the asymptotic regime described at the end of the
previous section. In this regime, can indeed be replaced
with

Notice that is independent of and so this matrix is com-
puted only once. Notice also that, because we are only able to
consider the significant eigenvalues of , we can only estimate

for . Nevertheless, as the parameter of in-
terest is , values of out of this set are not needed,
and therefore the estimate remains accurate. Here, the esti-
mation algorithm becomes

(32)

(33)

B. Suboptimal Algorithms

The complexity of the ML algorithm presented in the pre-
vious subsection prevents its implementation in most practical
situations even if one resorts to the simplification (32). It
appears that the estimation problem can be largely simplified
by endowing the OFDM training symbol with a particular
structure. The principle of the approach is the following.
Neglecting the additive noise, let us assume that the received
sequence consists of two identical
parts of length each, i.e., for

. This comes down to setting the
symbols at the odd subcarriers to zero in the transmitted
OFDM symbol, or in other words, the training sequence

in the frequency domain is asserted to
satisfy for . At the receiver
side, two consecutive FFTs with length each are per-
formed. If were equal to 0, then the outputs of these FFTs
would be identical. When , if we neglect the so-called
intercarrier interference (ICI) created by this mis-synchroniza-
tion, then the output of the second FFT is equal to the

output of the first FFT rotated by the angle . The
delay can thus be estimated from these rotations. With this
new model for the training sequence, the asymptotic analysis
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of Section IV remains obviously true as we have simply chosen
(see (17)).

The idea of transmitting two identical signal halves and ex-
ploiting this structure for synchronization is not new. It appeared
in [12] and [11] in the context of Doppler shift estimation. No-
tice that when a Doppler shift exists, the
output of the second FFT is equal to the output of the first
FFT rotated by a constant angle (instead of in
the sampling clock offset estimation context). Consequently, the
approach of [11] has to be modified. This modification is re-
ported in Section V-B-1).

In the context of sampling clock offset estimation, a close
idea, which consists of transmitting two whole identical OFDM
symbols, has already been exploited in [8] and [9]. A brief de-
scription of these other two algorithms will be given at the end
of this section.

1) An Approach Based on a Standard Structured
Symbol: Assume that and let ,

and for
. We have from (4)

(34)

Let and
be the vectors that represent

the two OFDM symbols of size received successively
before the FFT operation. Denote by and
the corresponding Fourier transformed vectors, and let

. Let be the matrix

whose element is

for , where is given by (20).
Finally, let . From
(34), we get after some simple computations

(35)

where

where , and rep-
resents the Gaussian additive noise term after Fourier transfor-
mation. Because , the vector
would be the output of any of the two FFT operations if we
had no noise and if we had . When , an ICI term,
accounted for by the nondiagonal terms of the matrix ,
appears at the outputs of both FFT operations. In addition, the
second FFT operates on rotated versions of the elements of ,
with element being rotated by the angle .

From (35), we notice that the noiseless part of the received
signal belongs to the subspace of generated by the
columns of the matrix . It is therefore
possible to look for the estimate that maximizes the norm of
the projection of over this subspace; in other words

To gain in simplicity, we approximate by a diagonal ma-
trix such as , thus neglecting the ICI term.
In this case, after some calculations, the last equation reduces to

(36)

where we have written and
. Notice that, in the context of

Doppler shift estimation, the previous equation is simpler since
has to be replaced with as in [11]. In

practice, denoting by the term to be maximized in (36), its
derivative with respect to writes

By canceling out this derivative, and by using the approxima-
tions et , which are valid for the
most common values of , we obtain

(37)

Let us now turn to the estimation of the channel . Merging
(35) and (17) leads to the following model:

(38)

where and
with

. The least-square (LS) estimate of the channel writes

(39)

The inversion operation in this equation increases dramatically
the implementation complexity. For this reason, the simpler es-
timate

(40)

can be used instead. Notice that (40) refers to the standard and
simple correlation estimator. We can further simplify (40) by
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neglecting the ICI represented by the nondiagonal terms and
by the slight attenuation on the diagonal terms in the matrix

. This simplification results in

(41)

where with
.

Even if we work in the frequency domain (i.e., after the
FFT), we do estimate first the temporal impulse response of
the channel (41) and not directly the frequency response
of the channel (42). Indeed a frequency estimation of the
channel, subcarrier by subcarrier, would not use the coherence
bandwidth of the channel and thus would not profit from the
induced correlation between adjacent subcarriers. Moreover, if
we plan to use 2048 subcarriers (as done in VDSL), we would
need to estimate about 2000 parameters instead of only about
100 for the temporal impulse response.

Once this is done, the channel response which is needed in
frequency domain for further operations such as equalization,
can then be easily obtained through

(42)

2) Other Methods for the Sampling Clock Offset Estima-
tion: Most of the algorithms met in the sampling clock offset
estimation literature are based on the phase comparison be-
tween two known OFDM symbols. Nevertheless, with minor
modifications, these algorithms can be adapted to the situation
where one transmitted OFDM symbol consists of two identical
halves. In this case, the received signal is described by (34).

Liu’s algorithm [8]: Let

One can remark that

(43)

where refers to a noise which vanishes in absence of the ad-
ditive noise and when the ICI is neglected. By applying
to (43) an LS approach, one can obtain, as done in [8], the fol-
lowing estimate for :

(44)

Speth’s Algorithm [9]: Let and
. Define and as

It can be shown that, without additive noise and ICI, is equal
to the quantity . Therefore, [9] suggests the fol-
lowing estimate:

(45)

Fig. 1. Magnitude of the channel transfer function.

VI. SIMULATIONS

We consider a power line OFDM system operating within the
band [1 MHz, 20 MHz]. The magnitude of the channel transfer
function used in this section is represented on Fig. 1. The corre-
sponding channel impulse response sampled at 20 MHz is made
up of 80 complex coefficients. Via computer simulations, we
compare the performance of the suboptimal methods introduced
in Section V with existing methods as well as with the CRBs.

In Fig. 2, mean-square errors (MSEs) of the estimates of
and are plotted versus the length of the known OFDM
symbol. Here, varies from 256 to 4096, the signal-to-noise
ratio (SNR) is fixed to 20 dB, and is equal to [i.e.,
70 ppm (parts per million)]. The MSE are averaged over 500
trials. At each trial, the training sequence made of quaternary
phase-shift keying (QPSK) symbols is different.

The figures show that the performance of the ML is very close
to the CRB. Concerning the estimation of , the estimator (37)
offers good performance. Its performance is even close to that of
the ML estimator until 2048. Recall that the estimator (37)
does not take into account the ICI. Unfortunately, from
2048, the ICI cannot be neglected anymore; therefore, the per-
formance of the estimator (37) reaches a floor. We also notice
that this estimator provides a better performance than each of
the estimators (44) introduced in [8] and (45) introduced in [9].
Concerning the channel estimation, the LS estimator given by
(39) and (42) provides a remarkable performance. On the con-
trary, the correlator estimator given by (41) and (42) shows bad
performance as soon as is greater than 512. Thus, the corre-
lator estimator is strongly sensitive to the presence of the ICI.
Finally, we remark that the asymptotic CRB fits well the exact
CRB whatever is the value of .

In Fig. 3, the MSE and asymptotic CRB are displayed versus
, for two different values of (10 and 70 ppm) and two dif-

ferent values of the SNR (10 and 20 dB). Recall that the asymp-
totic CRBs do not depend on .

We notice that, for small values of , the estimator (37)
shows a MSE that does not depend much on the value of . How-
ever, when is greater than 2048, then the ICI effect becomes
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Fig. 2. MSE and CRB for � (top) and h (bottom) versus N (� = 7:10 ).

important and affects the performance of this estimator. As for
the channel estimation, the ICI effect occurs at smaller values of

and dramatically affects the performance. Actually, the ICI
produces an effective noise that quickly dominates the additive
noise because its variance grows with and with . For this
reason, the MSE of the channel estimator at a SNR of 20 dB
meets the MSE at 10 dB as grows. The value of , where
these two MSEs become equal, decreases with .

The last figure (Fig. 4) shows the performance versus the
SNR, with being fixed to 2048 and to 70 ppm. The esti-
mator (37) of shows an MSE close to the CRB in these condi-
tions and outperforms the estimators (44) and (45). The channel
estimator given by (39) and (42) is also close to the CRB. Con-
cerning the channel estimator by correlation, as the SNR grows,
the Gaussian noise becomes negligible in comparison with the
ICI, which results in a performance floor.

VII. CONCLUSION

In this paper, we considered the issue of joint sampling clock
offset estimation and channel estimation for OFDM modulation
used in wireline transmissions. The estimation performance has
been studied through the CRB analysis. Simple expressions for

Fig. 3. MSE and CRB versus N for different values of � and SNR.

the CRB have been obtained in the asymptotic regime, i.e., when
the number of subcarriers and the channel length are large. The
ML joint algorithm has been derived. Suboptimal approaches
have also been proposed and compared to the existing literature.

APPENDIX

For proving Lemma 1, we show that decreases
rapidly enough so that almost sure convergence is guaranteed
by the Borel–Cantelli lemma. In this proof, designates a
constant that can change through the equations.

We have

(46)

Because of the independence of the random variables
and the fact that they are zero mean, the expectation term in
the right-hand side (RHS) member of this inequality is zero if
there exists in its argument at least one term that appears only
once. The situations where every term appears at least twice are
described by a finite number of systems of four equations in the
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Fig. 4. MSE and CRB versus SNR (� = 7:10 ).

indexes , . One such system is for instance
, , , . Let

be the corresponding term in the RHS member of (46). We have

where the first two inequalities result from Cauchy-Schwartz in-
equality and the third one is deduced from condition (18). Sim-
ilar results can be obtained for the other systems of equations in
the indices, leading finally to the inequality .
Markov’s inequality implies that ,

. Therefore, ,
and the result follows from the Borel–Cantelli lemma.
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