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Abstract

We address the problem of harmonic retrieval in the presence of multiplicative and additive noise sources. In

the new context of a complex-valued non-circular Gaussian multiplicative noise, we express the Cramér–Rao

bound (CRB) as well as the asymptotic (large sample) CRB in closed form. Below a certain SNR threshold and/or

when the number of samples is not large enough, the CRB becomes too optimistic and therefore we also

derive the Barankin bound (BB). The new theoretical expressions for the CRB and BB are then used to study

the behavior of the performance bound with respect to the signal parameters. We especially describe the region (in terms

of SNR and number of samples) for which the CRB and the BB differ. Finally we compare the performance

of the square-power-based frequency estimate, which is equivalent to the non-linear least-squares-based estimate, to

these bounds.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Harmonic retrieval in multiplicative and addi-
tive noise has received increasing attention during
e front matter r 2004 Elsevier B.V. All rights reserve
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the last decade [1–4]. The signal model is given by

yðnÞ ¼ aðnÞe2ipðf0þf1nÞ þ bðnÞ

for n ¼ 0; . . . ;N � 1; ð1Þ

where f0 and f1 are the phase and frequency
shifts to be estimated with the sole knowledge
of a finite number of samples, say N, of the
discrete-time process yðnÞ: The random pro-
cess aðnÞ represents, for example, (i) in digital
d.
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communications, the convolution of the symbol
stream with the transmit/receive filters and the
physical channel, or (ii) in the context of DOA
estimation, the Fourier coefficients of the source
signal. The random process bðnÞ is an additive
noise.
The frequency and phase are the parameters

to be estimated whereas the other para-
meters, including the multiplicative noise vector
aN ¼ ½að0Þ; . . . ; aðN � 1Þ�T (where the superscript T
stands for transposition) are considered nuisance
parameters. The literature about the performance
lower bound of such an estimation problem is
prolific. We first discuss the Cramér–Rao
bound (CRB), which is the most popular perfor-
mance bound. By making different assumptions
on the nuisance parameter vector aN ; several
CRBs can be obtained [5]. The unconditional
CRB (UCRB) is obtained when aN is modelled
as a random vector. Unfortunately, in most
practical problems, no interpretable closed-form
expressions exist for the UCRB. To overcome
this difficulty, other CRBs have been studied.
The Gaussian CRB (GCRB) is obtained
when a Gaussianity assumption is imposed
on aN : The GCRB coincides with the UCRB
only when the Gaussian assumption is satisfied.
The conditional CRB is obtained when the
nuisance parameters are considered to be determi-
nistic and are estimated jointly with the para-
meters of interest. The modified CRB (MCRB) is
obtained when the nuisance parameters are
considered to be known. It is worth pointing out
that different research communities seem to prefer
different types of CRBs. The MCRB is mostly
used by the Digital Communications community
in the context of synchronization, although the
UCRB has recently received some attention, but
only in the low SNR scenario. The GCRB is
mostly used by the Signal Processing community
mainly in the context of DOA estimation
[2–4,6–8].
In this paper, we focus on the GCRB. Notice

that this bound may be too pessimistic for the
case when the multiplicative noise is not Gaussian
since the high-order statistics are not taken
into account. Over the last few years,
several papers [2–4,6–8] have addressed the pro-
blem of evaluating the GCRB for the following
scenarios
�
 aðnÞ is real-valued [2–4,7],

�
 aðnÞ is complex-valued and circular [8].
Most of these papers only derive expressions for
the exact (i.e. finite-sample) GCRB [2,3,6,7]. These
expressions, unless numerically evaluated, do not
give insight into the influence of the signal
parameters on the GCRB. To overcome this
problem, expressions for the asymptotic (large-
sample) GCRB are very desirable [4,8]. Our first
contribution consists of providing closed-form
expressions for the asymptotic GCRB when the
multiplicative noise aðnÞ is assumed to be a
complex-valued and non-circular Gaussian pro-
cess. Notice that even in digital communications,
previous assumption on the multiplicative noise
can be encountered [9].
When the SNR and/or N, the number of

available samples, is less than a certain threshold,
the CRB is too optimistic. To investigate more
accurately the area of low SNR and/or small N; we
use the Barankin bound (BB) which is the tightest
lower bound for any unbiased estimate [10–16].
For harmonic retrieval in additive noise, several

works have addressed the evaluation of such a
bound ([12,15,16] and references therein). The
derivation of the Barankin bound for harmonic
retrieval in multiplicative noise has seldom been
investigated. To our knowledge, only [13] and [14]
have addressed this issue. These papers focus on
DOA estimation, which boils down to estimating
the frequency of an exponential harmonic in the
presence of a circular multiplicative noise.
Therefore, our second contribution consists of

deriving the BB when the multiplicative noise is
assumed to be a non-circular complex-valued
Gaussian process. Our derivations will be shown
to be extensions of the results presented in [13,14].
The paper is organized as follows. The exact

GCRB and the asymptotic GCRB are presented in
Sections 2 and 3, respectively. In Section 4, closed-
form expressions for the BB are provided.
The threshold beyond which the Barankin
bound becomes different from the CRB is
analyzed in Section 5. In Section 6, we review the
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square-power-based frequency estimator, whose
performance is close to that of the maximum
likelihood-based estimator [3,4,17,18]. Theoretical
comparisons with the asymptotic GCRB are also
carried out. Finally, Section 7 is devoted to
numerical simulations.
2. Exact Gaussian Cramér–Rao bound

Throughout the paper, the model given by Eq.
(1) is considered under the following assumptions:
�
 aðnÞ is a zero-mean complex-valued Gaussian
and non-circular stationary process; let its
correlation and conjugate correlation be de-
noted by raðtÞ ¼ E½aðn þ tÞaðnÞ� and uaðtÞ ¼
E½aðn þ tÞaðnÞ�; where the overline stands for
complex conjugate. Also, let the spectrum and
conjugate spectrum be defined as follows:

saðe
2ipf Þ ¼

X
t2Z

raðtÞe�2ipf t

and

caðe
2ipf Þ ¼

X
t2Z

uaðtÞe�2ipf t:

By construction, one can remark that caðe
2ipf Þ ¼

caðe
�2ipf Þ:
�
 The statistics of aðnÞ; i.e. fraðtÞ; uaðtÞgt2Z; are
entirely captured by a finite number (say K) of
unknown real-valued parameters, which we
denote by A ¼ f@kgk¼1;...;K :
�
 bðnÞ is a complex-valued Gaussian and circular
stationary process with zero-mean and un-
known variance s2 ¼ E½jbðnÞj2�:

In this section, our purpose is to derive the exact
GCRB, or equivalently the exact Fisher infor-
mation matrix F; for the deterministic parameter
vector y ¼ ½@1; . . . ;@K ;s2;f0;f1� when N samples
of fyðnÞg are available. Let yN ¼ ½yð0Þ; . . . ; y
ðN � 1Þ�T:
In order to use well-known results on the Fisher

information matrix [19], we work with real-
valued processes. Therefore, we consider �yN ¼

½R½yTN �;I½y
T
N ��

T; which is a multi-variate Gaussian
variable with zero-mean and covariance matrix �Ry:
We obtain

�Ry ¼
1

2

R½Ry þUy� �I½Ry �Uy�

I½Ry þUy� R½Ry �Uy�

" #
with Ry ¼ E½yNy

H
N � and Uy ¼ E½yNy

T
N �: Superscript

H stands for the complex conjugate transposition.
Due to the frequency shift, yðnÞ is stationary

with respect to its correlation but cyclostationary
with respect to its conjugate correlation [18]. Thus,
�Ry is symmetric but not block-Toeplitz. However,
we have checked that formula (5.2.1) in [19] holds
as long as the covariance matrix is symmetric. This
leads to

Fk;l ¼
1

2
Tr

@ �Ry

@yk

�R
�1

y

@ �Ry

@yl

�R
�1

y

� �
;

where Fk;l corresponds to the joint Fisher informa-
tion for parameters ðyk; ylÞ and where Trð:Þ denotes
the trace operator.
After straightforward algebraic manipulations,

we show that

Fk;l ¼
1

2
Tr

@eRy

@yk

eR�1

y

@eRy

@yl

eR�1

y

 !
;

where eRy is the covariance matrix of the random
variable eyN ¼ ½yTN ; y

H
N �

T; which takes the following
form:

eRy ¼
Ry Uy

Uy Ry

" #
: (2)

Model (1) can also be written as follows:

eyN ¼ CeaN þ ebN ;

where eaN and ebN are defined in a similar way aseyN : We get

eRy ¼ eCeRx
eCH

; (3)

where

eC ¼
C 0N ;N

0N ;N C

" #
(4)

with

C ¼ diagðe2ipðf0þf1nÞ; n ¼ 0; . . . ;N � 1Þ; (5)

0N;N ¼ zerosðN;NÞ;
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andeRx ¼ eRa þ s2I2N ;

with

eRa ¼
Ra Ua

Ua Ra

" #
:

Notice that Ra and Ua are defined like Ry; and Uy;
respectively. Notice also that eRx does not depend
on the phase parameters. Therefore, we obtain the
following expressions for the Fisher information
matrix:

F@k ;@l
¼
1

2
Tr

@eRa

@@k

eR�1

x

@eRa

@@l

eR�1

x

 !
;

Fs2;s2 ¼
1

2
Tr eR�2

x

	 

;

F@k ;s2 ¼
1

2
Tr

@eRa

@@k

eR�2

x

 !
;

Ffk ;fl
¼ 2p2 TrðDk

eRxDl
eR�1

x þDl
eRxDk

eR�1

x

� 2DkDlÞ;

F@k ;fk
¼ ipTr

@eRa

@@k

½eR�1

x Dk �Dk
eR�1

x �

 !
;

Fs2;fk
¼ 0;

where Dk ¼ ½dk; 0N ;N ; 0N ;N ;�dk� with d0 ¼ IN and
d1 ¼ diagð½0; . . . ;N � 1�Þ: The above expressions
are the extensions to the ones presented in [8]. It is
worth pointing out that unlike the case of circular
multiplicative noise [8], the phase in our case is
identifiable (i.e., Ff0;f0

a0).
3. Asymptotic Gaussian Cramér–Rao bound

We now focus on the behavior of the Fisher
information matrix F and the GCRB when N

becomes large.
Unlike [8], here we cannot apply Whittle’s

formula [20] to obtain simple asymptotic expres-
sions for the Fisher information matrix because
yðnÞ is cyclostationary. In the sequel, our deriva-
tions rely on theorems dealing with the inversion
of (large) Toeplitz matrices [21,22].
Let ftk; k ¼ 0;�1; . . .g be an absolutely summa-

ble sequence. Let tN ¼ ðtm�lÞ�Nol;moN be a Toe-
plitz matrix. Define

sðe2ipf Þ ¼
X
k2Z

tke
�2ipfk 3 tk ¼

Z 1

0

sðe2ipf Þe2ipfk df :

Matrix tN is thus entirely captured by f 7!sðe2ipf Þ

which justifies the following mapping:

tN ¼ TN ðsÞ:

Let AN and BN be two ðN � NÞ bounded matrices.
jAN j stands for ð 1

N
TrðANAH

NÞÞ
1=2: AN and BN are

said to be asymptotically equivalent (denoted by
�) iff jAN � BN j ! 0 when N ! 1:
One can remark that Ra and Ua are Toeplitz

matrices and can be written as

Ra ¼ TNðsaÞ and Ua ¼ TN ðcaÞ:

This implies that

Rx ¼ TN ðsÞ and Ux ¼ TNðcÞ (6)

with sðe2ipf Þ ¼ saðe
2ipf Þ þ s2 and cðe2ipf Þ ¼ caðe

2ipf Þ:
Furthermore, we get

Rx ¼ TN ðsÞ and Ux ¼ TNðcÞ;

where sðe2ipf Þ ¼ sðe�2ipf Þ and cðe2ipf Þ ¼ cðe�2ipf Þ:
To obtain an asymptotic value for F; we first

need an asymptotic equivalent for eR�1

x : According
to Schur’s lemma, we get

eR�1

x ¼
R�1

x þ R�1
x UxD

�1UxR
�1
x �R�1

x UxD
�1

�D�1UxR
�1
x D�1

" #

with

D ¼ Rx �UxR
�1
x Ux:

Thanks to Eq. (6), we have

D ¼ TN ðsÞ �TNðcÞTNðsÞ
�1TN ðcÞ:

Since the mapping s is real-valued and does not
admit zero over the interval [0,1), TN ðsÞ

�1
�

TNðs
�1Þ for large N. Thus

D � TN ðsÞ �TNðcÞTNðs
�1ÞTN ðcÞ:

Since s�1 and c are bounded over ½0; 1Þ;
TNðcÞTNðs

�1ÞTN ðcÞ � TN ðc c =sÞ for large N,
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and we finally get

D � TNð½s s�c c�=sÞ:¼TNðX=sÞ

with Xðe2ipf Þ ¼ sðe2ipf Þ sðe2ipf Þ � cðe2ipf Þ cðe2ipf Þ:
One can see that X is real-valued and positive.
This leads to

D�1
� TN ðs=XÞ:

After straightforward manipulations, we conclude
that

eR�1

x �
TN ðs =XÞ �TNðc=XÞ

�TN ðc =XÞ TNðs=XÞ

" #
:

Once again, after simple but tedious calculations,
the Fisher information matrix expresses as follows:

lim
N!1

1

N
F@k ;@l

¼
1

2
ak;l ;

lim
N!1

1

N
F@k ;s2 ¼

1

2
bk;

lim
N!1

1

N
F@k ;f0

¼ 4pdk;

lim
N!1

1

N2
F@k ;f1

¼ 2pdk;

lim
N!1

1

N
Fs2;s2 ¼

1

2
g;

lim
N!1

1

N
Ff0;f0

¼ 16p2x;

lim
N!1

1

N2
Ff0;f1

¼ 8p2x;

lim
N!1

1

N3
Ff1;f1

¼
16p2

3
x;

where

ak;l ¼

Z 1

0

@Xðe2ipf Þ

@@k

@Xðe2ipf Þ

@@l

Xðe2ipf Þ
2

þ
V

ðcÞ
k;lðe

2ipf Þ �V
ðsÞ
k;lðe

2ipf Þ

Xðe2ipf Þ
df ;

bk ¼

Z 1

0

1

Xðe2ipf Þ

@Xðe2ipf Þ

@@k

df ;
g ¼
Z 1

0

sðe2ipf Þ
2
þ sðe2ipf Þ

2
þ 2 cðe2ipf Þcðe2ipf Þ

Xðe2ipf Þ
2

df ;

dk ¼ I

Z 1

0

@cðe2ipf Þ

@@k

cðe2ipf Þ

Xðe2ipf Þ
df

� 
;

x ¼

Z 1

0

cðe2ipf Þ cðe2ipf Þ

Xðe2ipf Þ
df ;

with the following mapping

V
ðsÞ
k;lðe

2ipf Þ ¼
@sðe2ipf Þ

@@k

@ sðe2ipf Þ

@@l

þ
@ sðe2ipf Þ

@@k

@sðe2ipf Þ

@@l

;

and f 7!V
ðcÞ
k;lðe

2ipf Þ is defined similarly.
Firstly we consider that the receiver has a

knowledge of A ¼ ½@1; . . . ;@K � and s2; i.e., the
statistics of the multiplicative and additive noise
sources. In this case, we obtain

GCRBðf0ÞjðA;s2Þ known �
1

4p2xN
(7)

and

GCRBðf1ÞjðA;s2Þ known �
3

4p2xN3
: (8)

Secondly, in the case where A ¼ ½@1; . . . ;@K � and
s2 are unknown at the receiver, we obtain

GCRBðf0ÞjðA;s2Þ unknown

¼ GCRBðf0ÞjðA;s2Þ known þ
m

16p2x2N
;

where m is a bounded scalar given by

m ¼ dTða=2� ddT=x� bbT=ð2gÞÞ�1d;

where a ¼ ðak;lÞ1pk;lpK ; b ¼ ðbkÞ1pkpK ; d ¼

ðdkÞ1pkpK : Lastly, we have that

GCRBðf1ÞjðA;s2Þ unknown

¼ GCRBðf1ÞjðA;s2Þ known: ð9Þ

Thanks to the above expressions for the asympto-
tic CRB, we make the following comments:
�
 The convergence rates for the phase and
frequency estimation are 1=N (cf. Eq. (7)) and
1=N3 (cf. Eq. (8)), respectively, regardless of the
color (or spectrum) of the multiplicative noise.
Such rates were obtained in the case of real-
valued multiplicative noise [4]. We recall that
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for circular complex-valued processes, the
phase is not identifiable, the frequency may be
identifiable only if the multiplicative noise is
colored, and the convergence rate is 1=N [8]. As
far as estimation performance is concerned, the
complex-valued non-circular case is closer to
the real-valued case than to the complex-valued
circular case. Consequently, in terms of perfor-
mance, the main cut-off is not complex/real but
circular/non-circular.1
�
 Surprisingly, the asymptotic frequency estima-
tion performance is the same whether or not the
statistics of aðnÞ are known (cf. Eq. (9)).
�
 In the noiseless case, we observe a floor effect
(i.e., GCRBa0 when s2 ¼ 0) for the phase and
the frequency estimation performance. For
example, the floor for the frequency estimation
performance is given by
GCRBðf1Þjs2¼0

¼
3

4p2
R 1
0

caðe
2ipf Þcaðe�2ipf Þ

saðe2ipf Þsaðe�2ipf Þ � caðe2ipf Þcaðe�2ipf Þ
df

 !
N3

:

This effect vanishes iff saðe
2ipf Þsaðe�2ipf Þ ¼

caðe
2ipf Þcaðe�2ipf Þ for f belonging to a Borelian

open of ½0; 1Þ: For instance, this condition is
fulfilled when the multiplicative noise is real-
valued.

4. Barankin bound

For simplicity, we here assume that the
noise statistics, i.e., fraðtÞ; uaðtÞgt2Z and s2; are
known at the receiver. This assumption is usually
made because of the high computational
and analytical complexities of the derivation of
the Barankin bound [13,14]. Furthermore, as
shown in the previous section, the asymptotic
Gaussian CRB for the frequency shift is insensitive
to whether the noise statistics are known or
not. We can thus expect that the error induced
by neglecting the effects of noise statistics estima-
tion may be small, and that our subsequent results
Notice that a real-valued process can be viewed as a special

e of a non-circular complex-valued process with the

ginary part equal to zero.
will still be relevant in the case of unknown noise
statistics.
Our purpose now is to derive the BB for the

unknown deterministic vector / ¼ ½f0;f1�
T: We

first define the following set of so-called ‘‘test-
points’’fwðkÞ ¼ ½c0ðkÞ;c1ðkÞ�

Tg1pkpn: The BB of
order n is defined as follows:

BBnðf0;f1Þ ¼ sup
E

SðEÞ;

where

SðEÞ ¼ EðBðEÞ � 1n1
T
n Þ

�1ET

with E ¼ ½wð1Þ � /; . . . ;wðnÞ � /�; and 1n ¼ ones
ðn; 1Þ: Furthermore, B ¼ ðBk;lÞ1pk;lpn is the follow-
ing n � n matrix,

Bk;l ¼ E½LðeyN ;/;wðkÞÞLðeyN ;/;wðlÞÞ�;

with

LðeyN ;/;wðkÞÞ ¼
pðeyN jwðkÞÞ

pðeyN j/Þ

and pðeyN jhÞ is the likelihood function.
It is well known that the mean square error of

any unbiased estimator is greater than the BB of
any order. From an asymptotic point of view (i.e.
as n ! 1), the BB is the tightest lower bound
[10,14]. Finally, it is worth remarking that

GCRBðf0;f1Þ ¼ lim
E!0

SðEÞ: (10)

As for the choice of the test-points, it is usual to
consider [15,14]

E ¼
c0 � f0 0

0 c1 � f1

" #
¼ diagðe0; e1Þ: (11)

This choice is motivated, on the one hand, for the
sake of simplicity and, on the other hand, because
other more complex choices do not change
significantly the numerical value of the bound.
Our main concern hereafter is to derive a closed-

form expression for the matrix B for the above
test-points.
Let us first introduce some notations. The

covariance matrix eR/ of the multivariate processeyN can be written as

eR/:¼eRy ¼ eC/
eRa þ s2I2N

	 
eCH

/ ; (12)
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where eC/:¼eC (cf. Eq. (4)). Notice that we have re-
indexed the matrices with respect to the phase
parameters. The probability density function of eyN

is written as follows:

pðeyN jwÞ ¼
1

pN ðdetðeRwÞÞ
1=2

exp �
1

2
eyHN eR�1

w eyN

� �
:

According to Eq. (12), one can see that detðeRwÞ is
independent of w: This implies that

LðeyN ;/;wðkÞÞ ¼ exp �
1

2
eyHN eR�1

wðkÞ �
eR�1

/

	 
eyN

� �
:

We now seek to derive the following term:

Bk;l ¼ E exp �
1

2
eyHNWk;leyN

� �� 
with

Wk;l ¼ eR�1

wðkÞ þ
eR�1

wðlÞ � 2eR�1

/ :

Towards this objective, we first rewrite the above
term in terms of �yN as follows:

Bk;l ¼ E exp �
1

2
�yTN �Wk;l �yN

� �� 
;

where �Wk;l ¼ PHWk;lP with P ¼ ½IN ; iIN ; IN ;�iIN �:
Let �R/ ¼ E½�yN �yTN � be the covariance matrix of the
real-valued process �yN : Since �R/ is symmetric,
it can be diagonalized using eigen-decomposition
as follows: �R/ ¼ DT

x KxDx where Dx is an ortho-
gonal matrix and Kx is a diagonal matrix
composed of the eigenvalues of �R/: Let x ¼

K�1=2
x Dx �yN : By construction, vector x is still

Gaussian with covariance matrix Id2N : Thus the
components of x are mutually independent. Thus,
we obtain

Bk;l ¼ E½expf�1
2
xTVk;lxg�:

with Vk;l ¼ K1=2
x Dx

�Wk;lD
T
x K1=2

x : Once again, since
Vk;l is symmetric, it can be decomposed as follows:
Vk;l ¼ DTKD where D is an orthogonal matrix and
K ¼ diagð½l0; . . . ; l2N�1�Þ with flmg0pmp2N�1 being
the eigenvalues of Vk;l : Let z ¼ ½z0; . . . ; z2N�1�

T ¼

Dx: Vector z is Gaussian with the identity matrix
as covariance matrix, i.e., with independent
components. Therefore, we get

Bk;l ¼ E exp �
1

2
zTKz

� �� 
¼ E exp �

1

2

X2N�1

m¼0

lmz2m

( )" #

¼
Y2N�1

m¼0

E exp �
1

2
lmz2m

� �� 
:

One can easily check that z2m follows a Chi-square
distribution with one degree of freedom. This leads
to [19]

Bk;l ¼

Q2N�1

m¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lm

p if ð1þ lmÞ40;8m;

þ1 otherwise:

8><>:
The last expression can be compacted as follows:

Bk;l ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðId2N þ Vk;lÞ

p if Id2N þ Vk;l40;

þ1 otherwise:

8><>:
After straightforward algebraic manipulations, we
finally obtain

Bk;l ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQk;lÞ

p if Qk;l40;

þ1 otherwise;

8><>: (13)

with

Qk;l ¼ I2N þWk;l
eR/

¼ ðeR�1

wðkÞ þ
eR�1

wðlÞÞ
eR/ � I2N : ð14Þ

Let R/ ¼ E½yNy
H
N � and U/ ¼ E½yNy

T
N � be the

nonconjugate and conjugate correlation of the
received signal respectively. Matrix U/ is non-null
because of the non-circularity of the signal. In [13]
and [14], the expression for Bk;l is slightly different
from ours: the square root is removed and Qk;l

depends only on R/ instead of eR/: Actually, our
expression is an extension of the one obtained in
[13] and [14]. Indeed, by setting U/ ¼ 0 in Eq. (2),eR/ becomes block-diagonal and then our expres-
sion reduces to the one introduced in [13] and [14].
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In the sequel, we focus on the frequency
parameter because the outliers effect particularly
affects frequency estimation. For the standard
test-points described in Eq. (11), the BB for f1

takes the following form [14]:

BBðf1Þ

¼ sup
e0 ;e1

e21
ðB1;1 � 1Þ � ðB0;1 � 1ÞðB0;0 � 1Þ�1ðB0;1 � 1Þ

:

The term ðB0;1 � 1ÞðB0;0 � 1Þ�1ðB0;1 � 1Þ represents
the loss in performance due to joint phase
parameter estimation.
5. Threshold analysis

In this section, we derive a closed-form expres-
sion for the threshold beyond which the Barankin
bound and the CRB are different, in terms of the
SNR and N, the number of available samples.
As in [15], we only concentrate on the frequency

f1 by assuming the phase f0 to be known.
For simplicity, we also consider the multi-

plicative noise, faðnÞg; to be white with unit
variance. Consequently, the statistics of aðnÞ is
only characterized by the following parameter r ¼

E½sðnÞ2�: Notice that r captures the information
about the non-circularity power.
According to Eq. (8), we get

GCRBaðf1Þ ¼
n

N3

with

n ¼
3½ð1� jrj2Þ þ 2s2 þ s4�

8p2jrj2
:

We recall that

BBðf1Þ ¼ sup
e

SðeÞ;

where

SðeÞ ¼
e2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðQeÞ

p � 1

 ! (15)

with Qe:¼Q1;1 (cf. Eq. (14)).
According to Eq. (13), the determinant of Qe
can be simplified as follows:

detðQeÞ ¼

QN�1

k¼0

Wk

ðð1þs2Þ2�jrj2Þ2
if
QN�1

k¼0

Wk40;

þ1 otherwise;

8><>:
(16)

with

Wk ¼ ð1þ s2Þ2 � jrj2 � 8jrj2ðð1þ s2Þ2 � jrj2Þ

�sin2ð2pekÞ:

The proof of the above formula is straightforward
and is thus omitted.
We recall that the conjugate (resp. nonconju-

gate) correlation of the received signal yðnÞ takes
the following expression uaðtÞe2ipð2f1nþf1tÞ (resp.
raðtÞe2ipf1t). Consequently, if 2f1 belongs to an
interval larger than ½�1=2; 1=2�; then there would
be an a priori ambiguity on the frequency f1:
Without loss of generality, we thus choose the
search interval for f1 to be I ¼ ½�1=4; 1=4�:
Consequently the test point e is defined in I:
As already observed in [15], we show,

after intensive numerical trials, that the maximum
of the function SðeÞ is obtained either for e ¼ 0
or for e � 1=4 (see Fig. 5). Using Eq. (10),
we get

BBðf1Þ ¼ maxðGCRBðf1Þ;Sð1=4ÞÞ: (17)

After some simple but tedious algebraic manipula-
tions, detðQeÞ for e ¼ 1=4 is found to satisfy

detðQ1=4Þ ¼
WN=2 if W40;

þ1 otherwise;

(
with

W ¼
ð1þ s2Þ2 � 9jrj2

ð1þ s2Þ2 � jrj2
:

Consequently, the outliers effect surely occurs if

Sð1=4ÞXGCRB;

which implies that

NX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16n

1� WN=4

WN=4

3

s
: (18)
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The last equation enables us to predict the value of
the threshold below which there is a mismatch
between the BB (of order 1) and the CRB. For
instance, at SNR ¼ �5 dB and r ¼ 1; we can
assert that if N is less than 60, then a gap between
the two bounds appears. This gap prevents any
unbiased estimate to reach the CRB. Nevertheless,
Eq. (18) only provides a lower bound on the
threshold since we have only computed the BB of
order one.
6. Review of the square-power-based estimator

If the multiplicative noise is non-circular, the
following estimate, which is related to the squaring
loop method [17], makes sense:

f̂
ðNÞ

1 ¼ arg max
f2½�1=4;1=4Þ

JNðfÞ

with

JNðfÞ ¼
XL

l¼�L

1

N

XN�1

n¼0

yðnÞyðn þ lÞe�4ipfn

�����
�����
2

: (19)

In the real-valued case, this estimate with L ¼ 0 is
well known ([3,4,17,23] and references therein):
surprisingly, the choice L ¼ 0 was always made
even when the noise was colored. In [3], the
performance of this estimate and the GCRB were
derived for high SNR. In [4], the asymptotic
GCRB was compared with the asymptotic perfor-
mance of the estimate for each SNR. It was proven
that the estimate is asymptotically efficient for
high SNR.
The extension of the above estimator to

any value of L was presented and analyzed in
[18] in the case of a non-circular complex-valued
multiplicative. The asymptotic estimation covar-
iance was expressed for any L and any SNR. It
was shown in [18] that if the memory of aðnÞ is
finite, say M, the asymptotic covariance is mini-
mized for L ¼ M and takes (for L ¼ M) the
following form:

gf1
�

3Z
4p2N3

(20)
with

Z ¼

R 1
0
jcðe2ipf Þj2Xðe2ipf Þdf

ð
R 1
0 jcðe

2ipf Þj2 df Þ2
:

The above equation was obtained after simple
manipulations of the main equations provided in
Theorem 4 of [18].
The comparison between the square-power

estimate and the CRB has led to numerous papers
([3,4,23] and references therein). In particular, it
was shown via simulations in [23] that the
performance of the square-power-based estimate
is always close to the CRB except when the outliers
effect occurs. More specifically, in [3,4], this
estimator was proven to be asymptotically efficient
at high SNR regardless of the noise color. Using
Eqs. (20) and (8), we hereafter show that the
asymptotic covariance of the square-power-based
frequency estimate and the asymptotic GCRB are
equal only if the mapping f 7!Xðe2ipf Þ is constant.
Indeed, by using cðe2ipf Þ ¼ cðe�2ipf Þ and Schwartz’s
inequality, we have that ZX1=x; which means that
gf1

XGCRB: Equality holds only when
f 7!Xðe2ipf Þ is constant. This implies that the
square-power-based estimate (assuming L ¼ M)
is at least asymptotically efficient for any SNR if
the multiplicative noise is white.
The cost function to be maximized in Eq. (19)

admits numerous local maxima. However, it
generally has a particular shape which can be
exploited. Indeed, this cost function can usually be
depicted as a flat ground-level noise plus a peak
around the true value f1: Therefore, one can
proceed in two steps to compute the maximization
in Eq. (19):
�
 The first step, also called coarse search, detects
the main peak by means of the fast Fourier
transform (FFT).
�
 the second step, also called fine search, refines
the estimation around the detected peak by
means of the gradient-descent algorithm initi-
alized by the coarse estimate provided by the
first step.

Generally the outliers effect of the squared-power
estimate corresponds to the failure of the coarse
search [11].
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7. Numerical illustrations

For simplicity, the multiplicative noise is
assumed to be MA(1), i.e. aðnÞ ¼ sðnÞ þ asðn � 1Þ
where fsðnÞg is a white non-circular Gaussian
process with r ¼ E½sðnÞ2�: Notice that a (resp. r)
captures all the information about the color (resp.
the non-circularity) of the multiplicative noise. We
also set SNR ¼ 10 log10ðð1þ a2Þ=s2Þ:
In Fig. 1, the bounds and the MSE of the

square-power-based estimate are depicted versus
SNR with N ¼ 100; r ¼ 0:75; a ¼ 0: We also
display the threshold obtained via Eq. (18). First
of all, we observe that the GCRB and the
asymptotic GCRB are very close. Furthermore
the well-known outliers effect obviously occurs at
low and medium SNR [12]. We also remark that
the expected threshold is in perfect agreement with
the beginning of the real gap between both
bounds. The threshold corresponding to the
square-power-based estimate is much larger than
that observed with the BB.
In Fig. 2, the same performance measures are

displayed vs. N with SNR ¼ 10dB; r ¼ 0:25; a ¼ 0:
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Fig. 1. MSE v
The same comments can be drawn. Furthermore
the outliers effect vanishes as soon as N is chosen
large enough. Finally, the good fitting between the
exact CRB and the asymptotic CRB has been
observed whatever the value of a for reasonable
values of N (e.g., less than 50). Therefore, in the
sequel, we omit plotting the asymptotic GCRB.
In Fig. 3, the performance measures are depicted

vs. a with SNR ¼ 10dB; N ¼ 100; r ¼ 0:75: It is
seen that performance depends only slightly on a.
For this configuration, the empirical MSE fits well
with the theoretical MSE. The performance of the
square-power estimate almost reaches the GCRB
even if the multiplicative noise is colored.
In Fig. 4, the performance measures are

displayed versus r with SNR ¼ 10 dB; N ¼ 64;
a ¼ 0: According to Eq. (18), the threshold is equal
to r ¼ 0:275: One can notice that the more aðnÞ is
non-circular (i.e., r increases), the better the
estimation performance. Furthermore, the outliers
effect rapidly degrades the performance if aðnÞ is
not non-circular enough.
In Fig. 5, according to Eqs. (8), (15) and (16),

we plot the ratio SðeÞ to GCRB with N ¼ 64;
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r ¼ 0:75; a ¼ 0: This figure confirms that the
maximum of the mapping e 7!SðeÞ is close to 0 or
close to 1=4: This supports the approximation
done in Eq. (17).
8. Conclusion and future work

In this paper, closed-form expressions for the
asymptotic GCRB and the BB were derived. The
threshold beyond which the BB and the GCRB
differ was also evaluated theoretically.
The threshold provided by the BB of order 1

turned out to be far away from the empirical
threshold of the square-power estimate. As ob-
served in [24], the Ziv–Zakaı̈ bound seems to be
more accurate for analyzing the empirical thresh-
old of the square-power estimate. Therefore,
further work should concentrate on such a bound.
Furthermore, in the context of digital commu-

nications, the Gaussian assumption on the multi-
plicative noise is not justified, particularly in the
case of small memory channels. Therefore, other
bounds should be derived and compared with the
results presented in this paper.
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