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a b s t r a c t

In the context of cognitive radio or military applications, it is a crucial task to distinguish

blindly various OFDM based systems (e.g., Wifi, Wimax, 3GPP/LTE, DVB-T) from each

others. Existing OFDM based systems differ from their subcarrier spacing used in OFDM

modulation. One can thus carry out recognition algorithms based on the value of the

subcarrier spacing. Standard approaches developed in the literature rely on the

detection of the cyclic prefix which enables to exhibit the value of the used subcarrier

spacing. Nevertheless these approaches fail when either the cyclic prefix duration is

small or the channel impulse response is almost as large as the cyclic prefix. Therefore

we propose four new algorithms to estimate the parameters of OFDM modulated signal

(especially the subcarrier spacing) relying on (i) the normalized kurtosis, (ii) the

maximum-likelihood principle, (iii) the matched filter, and (iv) the second-order

cyclostationary property. We show the strong robustness of proposed algorithms to

short cyclic prefix, multipath channel, time offset, and frequency offset. Comparisons

between proposed algorithms and the state of art techniques are done by means of

computer simulations.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The blind characterization of digital communication
systems has been widely studied in the past decade for
military applications. These studies have given rise to
many contributions dealing with the identification of the
parameters of single carrier signals modulated by linear
modulations [1] or by CPM [2]. Concerning OFDM signals
identification, only a few papers can be found in the
literature [3–10]. This small amount of papers can be
explained by the fact that OFDM based systems have
emerged only for a few years. The introduction of the
cognitive radio concept by [11], which relies on develop-
ing flexible terminals able to adapt their transmission
parameters to their spectral environment, needs the
ll rights reserved.

ouzegzi),

(P. Jallon).
receiver to sense its electro-magnetic environment and
to identify the surrounding operating systems. Indeed, if
opportunistic spectrum access is allowed in some bands
of frequencies, an opportunistic receiver working has to be
able to distinguish the different kind of base station in
these bands, i.e., able to distinguish different modulations.
In this context, the carrier frequency f0 is hence not
relevant to characterize the system.

As OFDM modulations are now used in most of popular
standards, the receiver should recognize systems based on
OFDM modulations. As most of the popular OFDM based
standards use different subcarrier spacing (e.g., 15.625,
10.94, 312.5, 1.116, 15 kHz for fixed WiMAX, Mobile
WiMAX, WiFi, DVBT, 3GPP/LTE respectively), it is
sufficient to estimate the subcarrier spacing of an
OFDM modulated signal to identify the encountered
systems. Moreover in order to distinguish different
modes of a same standard or military context, it should
also be useful to estimate the cyclic prefix length.
Furthermore, for military applications, a time and frequency
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synchronization step is crucial since the final objective is
information retrieval. As the main objective for cognitive
radio applications is only system identification, the time and
frequency synchronization step may be optional.

In this paragraph, we remind the main results available
in the literature about the subcarrier spacing blind
estimation. In the case of cyclic prefixed (CP) OFDM, i.e.,
the most conventional OFDM, the existing papers propose
to extract the OFDM parameters (useful symbol part
duration which is equal to the inverse of the subcarrier
spacing; cyclic prefix duration) from the correlation
induced by the cyclic prefix. For instance, [9] first
suggested to estimate the useful part duration by search-
ing the peak of the autocorrelation function which may
occur at a time lag equal to the useful part duration. Once
the useful part duration is correctly estimated, the
estimation of the whole symbol duration1 is performed
using the smallest non-null cyclic frequency. In [8], same
estimators are proposed for the useful part and cyclic
prefix durations. The authors added the frame length
estimation which is obtained by using the correlation
between the pilot symbols inserted at the beginning of
each frame. In [7], a likelihood function between the cyclic
prefix samples and the useful part samples for which
the cyclic prefix is copied from is derived in the context
of additive white Gaussian noise (AWGN) channel. The
deduced cost function shows a great similitude with that
proposed in [9]. Recently, [6] proposed to estimate the
OFDM parameters with a three steps algorithm: they first
considered the OFDM modulation as a linear modulation
of symbols and estimates the symbol rate thanks to the
cyclostationarity test of [12]. Then, the autocorrelation
based method introduced in [9] is used to extract the
useful part duration. Finally, the length of the cyclic prefix
is estimated by means of cyclostationarity test.

The methods inspected in previous papers are all based
on the fact that the cyclic prefix is identical to a portion
of the useful part at the receiver side if an AWGN channel
is considered. Then the induced correlation enables to
estimate the OFDM parameters. All these methods
suffer from the same drawback: when the power of the
autocorrelation of the received signal is weak, the
performance of such algorithms is poor. Unfortunately
when the ratio between the cyclic prefix duration and the
useful part is small (e.g., this ratio can be equal to 1

32 in
WiMAX and DVB systems) or when the length of the
channel impulse response is close to the cycle prefix
length, the induced autocorrelation is weak and such
algorithms fall down. Notice that simulations in the
mentioned papers were often done in AWGN context
and/or large cyclic prefix preventing to exhibit this
phenomenon.

In [10], the particular context of zero-padded (ZP)
OFDM is treated. The method exploited the fact that the
autocorrelation function is time-periodic with period
equal to the whole symbol duration. Consequently, the
whole symbol duration can be estimated first by detecting
1 Notice the estimated whole symbol duration minus the estimated

useful part duration leads to the estimated cyclic prefix duration.
the smallest non-null cyclic frequency. Secondly, as null
samples are inserted between two OFDM symbols, an
entropy criterion is used to discriminate between the
guard time and the useful part.

In this paper, four new methods are proposed. These
four methods providing an estimation of the OFDM
parameters (the useful part length and the cyclic prefix
length) are robust to the context of small guard time
compared to the useful part and of the channel impulse
response as long as the guard time. Consequently,
whereas the autocorrelation based method fails in these
contexts, our four methods still work well. Our four
methods are based on the following different principles:
(i) kurtosis minimization, (ii) maximum likelihood, (iii)
matched filter, and (iv) cyclic frequency estimation.

The paper is organized as follows: in Section 2, we
briefly recall the OFDM signal model. In Section 3, three
methods also performing time and frequency offset
synchronization steps are described: the first one is based
on the kurtosis minimization, the second one on the
maximum likelihood and the third one on the matched
filter principle. In Section 4, a novel method which does
not need prior synchronization step is developed; it is
based on the cyclic correlation of the received signal.
Section 5 is devoted to numerical simulations. We
especially inspect the robustness of our four algorithms
to the presence of small cyclic prefix, multipath channel
and synchronization errors. Comparison with autocorrela-
tion based method is done. In Section 6, conclusions are
drawn.

2. Signal model

The transmitted continuous-time OFDM signal writes

saðtÞ ¼
1ffiffiffiffi
N
p

XK�1

k¼0

XN�1

n¼0

ak;ne�2ipnðt�DTc�kTsÞ=NTc gaðt � kTsÞ; ð1Þ

where the sequence ak;n represents the transmit unknown
data symbols at subcarrier n and OFDM block k. These
data symbols are assumed to be independent and
identically distributed (i.i.d). N is the number of sub-
carriers and 1=Tc is the information symbol rate in the
absence of guard interval. The inter-carrier spacing is then
equal to 1=NTc. The length of the cyclic prefix is set to DTc.
The duration of the whole OFDM symbol is then equal to
Ts ¼ ðN þ DÞTc . The shaping filter gaðtÞ is assumed to be
equal to 1 if 0rtoTs and 0 otherwise. A transmission of K

OFDM symbols has been considered. For sake of simpli-
city, we omit to introduce the ZP-OFDM scheme. Never-
theless, as it will be explained latter, the first three
proposed algorithms can be also carried out with minor
and straightforward modifications in ZP-OFDM context.

The transmitted signal passes through a noisy multi-
path fading channel composed by L paths. The amplitude
and the delay of the l th path are denoted by ll and tl,
respectively. Then the continuous-time received signal
takes the following form:

yaðtÞ ¼
XL

l¼1

llsaðt � tlÞ

 !
e2ipdft þ baðtÞ; ð2Þ
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where baðtÞ is a circularly symmetric zero-mean white
Gaussian noise with variance s2 per complex dimension,
and where df is the frequency offset due to local oscillator
drift or Doppler effect.

The continuous-time received signal yaðtÞ is sampled at
sampling frequency 1=Te where Te is the sampling period.
In order to satisfy the Shannon condition, the sampling
frequency must be larger than the OFDM signal band-
width, i.e., greater than 1=Tc. Let T0 be the observation
window duration. Let M ¼ bT0=Tec be the number of
available samples where bXc stands for the largest integer
not greater than X. Then the discrete-time received signal
is denoted by yðmÞ ¼ yaðmTeÞ and writes as

yðmÞ ¼
XL

l¼1

llsaðmTe � tlÞ

 !
e2ipDfm þ bðmÞ ð3Þ

with bðmÞ ¼ baðmTeÞ, and Df ¼ dfTe the normalized carrier
frequency offset.

Replacing Eq. (1) into Eq. (3) leads to the following
input/ouput model:

yðmÞ ¼
1ffiffiffiffi
N
p

XL

l¼1

XK�1

k¼0

XN�1

n¼0

lle
2ipntl=NTc ak;ne�2ipnmTe=NTc e2ipðkþ1ÞDTc=NTc

�gaðmTe � tl � kðN þ DÞTcÞe
2ipDfm þ bðmÞ: ð4Þ

In practice the cognitive terminal just has the knowl-
edge of fyðmÞgM�1

m¼0 , M, T0, Te and wishes to estimate the
values of N, NTc , DTc. For selecting the used standard,
the cognitive terminal firstly needs the knowledge of the
subcarrier spacing given by the inverse of NTc . Notice that
in Eq. (4), K, ak;n, L, fll; tlg

L
l¼1, and Df are unknown as well.

Methods introduced in Section 3.1 (based on kurtosis
optimization) and Section 4 (based on cyclic correlation)
rely on signal model provided by Eq. (4). In contrast
methods introduced in Section 3.2 (based on maximum
likelihood) and Section 3.3 (based on matched filter)
assume an AWGN channel, i.e., L ¼ 1, l1 ¼ 1, and t1 ¼ 0.
However, impact and robustness of a multipath channel
on these methods are addressed in Section 5 devoted to
numerical computations.

3. OFDM parameters estimation with synchronization
step

In this section, we present three novel methods to
perform the estimation of the OFDM parameters. These
methods either need a prior step of time and frequency
synchronization or insert a synchronization step into their
computations. Albeit high computational load, especially
due to the extra synchronization step, our proposed
methods are worth since they outperform the existing
autocorrelation based method as shown in Section 5. In
this section, only CP-OFDM is considered. However,
extension to other kind of OFDM (like ZP-OFDM) is
straightforward, and is omitted hereafter due to the lack
of space.

This long section is actually organized as follows.
Section 3.1 is devoted to the kurtosis optimization based
method. Section 3.2 focuses on the maximum likelihood
based method. Finally, the matched filter based method is
introduced in Section 3.3. In this section, notice that,
except otherwise stated, the prior synchronization is
assumed to be carried out. Algorithm adaptation to time
and frequency missynchronization scheme is done at the
end of each subsection. Moreover, empirical performance
in the realistic context of time and frequency missyn-
chronization is assessed in Section 5.
3.1. Kurtosis minimization based method

3.1.1. Algorithm description

The first new algorithm needs an adaptative receiver

which depends on the three following parameters eN , fNT c ,

and fDT c where eN , fNT c , and fDT c are trial values for N, NTc ,
and DTc , respectively. To simplify the presentation, we
first assume (i) that the received signal is noiseless, and
(ii) that the first received samples yð0Þ matches the
beginning of an OFDM symbol (perfect time synchroniza-

tion) and Df ¼ 0 (perfect frequency synchronization).
The adaptive receiver works as follows:
1.
 Split the received samples into estimated OFDM
symbols:

rk;p ¼ yaðpTe þ
fDT c þ kðfNT c þ

fDT cÞÞ: ð5Þ

In the sequel, we substitute eP with bfNT c=Tec and eK is
the estimate of the number of OFDM symbols within
the observation time. Note that if fNT c ¼ NTc andfDT c ¼ DTc , then rk;p corresponds to the p th element
of the kth OFDM block once the cyclic prefix has been
removed.
2.
 Estimate the transmit data symbols by applying the
normalized Fourier transform as follows:

8n 2 f0; . . . ; eN � 1g; âk;n ¼
1ffiffiffiffiePp
XeP�1

p¼0

rk;pe2ippnTe=
eNT c : ð6Þ

The first new algorithm is based on the following idea:
if the trial values fNT c and fDT c match with the true values
of NTc and DTc , respectively, then the decoded symbol âk;n

at block k and at subcarrier n is expected to depend only
on one of the transmitted symbols (for example ak;n). The
idea can be mathematically translated as follows: it exists
an unknown constant mn depending only on the channel
frequency response such that

âk;n ¼ mnak;n: ð7Þ

On the contrary, if the OFDM parameters are mis-
estimated, i.e., fNT caNTc and/or fDT caDTc, then an extra
term associated with inter-carrier and/or inter-symbol
interference should appear in Eq. (7).

In order to ensure that our estimation algorithm forces
the adaptive receiver to satisfy Eq. (7), we need a criterion
for which the optimization on fNT c and fDT c prevents
interference at the receiver side. Therefore, as done in
blind channel deconvolution [13,14] we advocate to use
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the kurtosis of the estimated symbols which is defined as

kðâk;nÞ ¼
cumðâk;n; â

�

k;n; âk;n; â
�

k;nÞ

ðE½jâk;nj
2�Þ

2
; ð8Þ

where the superscript ð�Þ� stands for the complex
conjugate.

Our objective is hence to prove that the kurtosis of
each decoded symbols defined as a function of fNT c andfDT c reaches its global minimum value if and only if fNT c ¼

NTc and fDT c ¼ DTc . Once this theoretical result is proved,
k̂ðâk;nÞ ¼

PeM�1
k¼0

PeN�1
n¼0 jâk;nj

4 � j
PeM�1

k¼0

PeN�1
n¼0 ðâk;nÞ

2
j2 � 2ð

PeM�1
k¼0

PeN�1
n¼0 jâk;nj

2Þ
2

ð
PeM�1

k¼0

PeN�1
n¼0 jâk;nj

2Þ
2

ð9Þ
we will be in position to develop a practical estimation
algorithm of NTc and DTc based on the minimization of
the kurtosis.

Before going further, in order to simplify forthcoming
derivations, we remark that the transmit symbols ak;n are
i.i.d. symbols; their kurtosis kðak;vÞ thus do not depend on
k nor v, and it will be denoted by kðaÞ. We remind that the
kurtosis is negative for standard linear modulations (PAM,
PSK, QAM) [3].

Now we introduce the main results of this subsection
related to the proof of the convergence of the kurtosis
optimization to the true values of the OFDM parameters.

Theorem 1. Consider the decoded symbols at subcarrier n
and OFDM symbol k. We have the following result:

Given ðk; nÞ; kðâk;nÞZkðaÞ

and the equality is achieved if and only if
�
 8p 2 f0; ~P � 1g, the samples rk;p from which are extracted

âk;n (see Eq. (5)) belong to the same transmitted OFDM

symbol, and
�
 fNT c ¼ NTc.

If the equality holds, we also have âk;n ¼ mvak0 ;n with mv a

constant depending on subcarrier n.
In fact, one can prove the previous inequality for any

subcarrier n and any OFDM symbol k, i.e., we have

8ðk; nÞ; kðâk;nÞZkðaÞ

and the equality is achieved if and only if
�
 fNT c ¼ NTc , and
�
 fDT c ¼ DTc.
Proof of Theorem 1 is given in Appendix A.

We remark that âk;n corresponds to the symbol
transmitted at the carrier n, but not necessarily at the k

th OFDM symbol. Moreover the proposed algorithm has a
very low sensitivity to eN . The algorithm works well if this
parameter is under-estimated. Consequently it can be
chosen equal to 64 since most of OFDM systems use at
least 64 subcarriers. To estimate accurately N, once NTc
and DTc have been estimated, several standard techniques
can be employed such that the Gaussianity test on each
subcarrier. Estimation of N is out of the scope of the paper
since the value of N does not allow to distinguish systems
from each other.

The question now is: How to estimate the kurtosis
of the decoded sequence of symbols âk;n? For instance,
we get cumðâk;n; â

�

k;n; âk;n; â
�

k;nÞ ¼ E½jâk;nj
4� � jE½â

2
k;n�j

2�

2ðE½jâk;nj
2�Þ

2. Then, when trial values eNð¼ 64Þ, fNT c , andfDT c are used, kðâk;nÞ can be usually estimated by k̂ðâk;nÞ

defined as follows:
with eM ¼ bM=ðfNT c þ
fDT cÞc.

Actually k̂ðâk;nÞ is a function of fNT c and fDT c and will be
the cost function of our first new algorithm associated
with kurtosis minimization (KM). Now denoting k̂ðâk;nÞ by
ĴKMð

fNT c ; fDT cÞ, we have

½ ^NTc ; ^DTc � ¼ arg mineNT c ; eDT c

ĴKMð
fNT c; fDT cÞ: ð10Þ

Theorem 1ensures that the minimization procedure given
in Eq. (10) leads to the identifiability of NTc and DTc in
noiseless context and infinite number of available
samples. In practice (i.e., when the signal is noisy
and when only a finite number of observations are
available), we can only conjecture that ^NTc and ^DTc are
close to NTc and DTc , respectively, if the noise is not so
strong and if the number of available samples is large
enough.

3.1.2. Adaptation to time and frequency missynchronization

We consider that minl tl ¼ tmin40. Due to this time
offset, the blind OFDM receiver should ensure that its first
sample r0;0 depends on the transmitted signal. For doing
that, a preliminary step has to be added to the receiver.
This step consists in dropping the first ~t samples where ~t
is a trial value for tmin.

Similarly, if the received signal undergoes a carrier
frequency offset ðDfa0Þ, another extra step has to be
added to the receiver to estimate and compensate it. The
received samples given by Eq. (5) should then be modified
into

rk;p ¼ yaðpTe þ
fDT c

þ kðfNT c þ
fDT cÞÞe

�2ip eDf ðpTeþ
eDT cþkð eNT cþ

eDT c ÞÞ=Te ; ð11Þ

where fDf is a trial value of Df .
The cost function has to be modified accordingly by

adding two parameters. Then we have

½ ^tmin ; D̂f ; ^NTc ; ^DTc � ¼ arg minet ; eDf ; eNT c ; eDT c

ĴKMðet;fDf ; fNT c ; fDT cÞ

with

ĴKMðet;fDf ; fNT c; fDT cÞ ¼

PeM�1
k¼0

PeN�1
n¼0 jâk;nj

4 � j
PeM�1

k¼0

PeN�1
n¼0 ðâk;nÞ

2
j2

ð
PeM�1

k¼0

PeN�1
n¼0 jâk;nj

2Þ
2

� 2:
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With similar techniques developed in Appendix A, one can
prove that Theorem 1 still holds and induces also the
equalities ^tmin ¼ tmin and D̂f ¼ Df .

3.2. Maximum likelihood based method

This subsection is organized as follows: in Section 3.2.1,
we describe the received signal thanks to matrix frame-
work. In Section 3.2.2, we focus on the so-called
deterministic maximum likelihood. The so-called Gaussian

maximum likelihood is introduced in Section 3.2.3.
These algorithms require prior synchronization step

or can be adapted similarly to Section 3.1.2 associated
with kurtosis minimization algorithm by adding once
again a synchronization step into the next proposed cost
functions.

In order to get tractable closed-form expressions, an
AWGN channel model is considered in this subsection.
Robustness to multipath channel is evaluated in Section 5.

3.2.1. Matrix framework

We assume AWGN channel and perfect time and
frequency synchronization.

Let
�
 ak ¼ ½ak;0; . . . ; ak;N�1�
T

�
 a ¼ ½aT
0; . . . ; a

T
K�1�

T

�
 b ¼ ½bð0Þ; . . . ; bðM � 1Þ�T
where the superscript ð�ÞT stands for the transpose
operator.

We stack all the received samples in the following
vector y ¼ ½yð0Þ; . . . ; yðM � 1Þ�T. Using Eq. (4) under AWGN
and perfect synchronization assumptions (L ¼ 1, l1 ¼ 1,
t1 ¼ 0, and Df ¼ 0), we have

y ¼ Fhaþ b; ð12Þ

where h ¼ ½N;NTc;DTc� denotes the set of OFDM para-
meters and Fh is a matrix expressed as below. As gaðtÞ is a
rectangular function, Eq. (4) leads to the following
constraint:

0rmTe � kðN þ DÞTcoðN þ DÞTc;

which implies that

m
Te

ðN þ DÞTc
� 1okrm

Te

ðN þ DÞTc
:

Consequently, for a given m, it exists only a unique value
of k, denoted by km. Fh is then composed of null
components except the next ones

½Fh�m;kmNþn ¼
1ffiffiffiffi
N
p e2ipnmTe=NTc e2ipnðkmþ1ÞDTc=NTc ð13Þ

for m ¼ 0; . . . ;M � 1 and n ¼ 0; . . . ;N � 1. Term ½Fh�m;kmNþn

corresponds to the element of the m th row and ðkmN þ

nÞth column of Fh.
As the transmit data a are unknown at the receiver, the

likelihood of y given N, DTc , NTc , and a has to be averaged
over a. The true maximum-likelihood based estimator
of N, DTc , and NTc is then complex to be carry out. To
overcome the problem, we propose either to consider
vector a as parameters of interest too which leads to the
so-called deterministic maximum likelihood or to con-
sider vector a as Gaussian (even if a is not Gaussian
vector) which leads to the so-called Gaussian maximum-
likelihood [15].
3.2.2. Deterministic maximum-Likelihood approach (DML)

Let pðyjh; aÞ be the likelihood of y given h and a.
The deterministic maximum-likelihood is defined as
follows [15]:

½N̂ ; ^DTc ; ^NTc ; â� ¼ argmaxeh ;ea pðyjeh; eaÞ:
As we assume the transmitted symbols a deterministics,

and thanks to (12), the vector â writes ðFHeh Feh Þ�1FHeh y.

In practice, the signal bandwidth (given by 1=Tc) can
be assumed to be roughly known. This enables us to
choose a reasonable value for 1=Te and also to filter the
received signal by an ideal low-pass filter of unit-
magnitude and bandwidth 1=Tc. This induces that the
discrete-time noise has the following autocorrelation
function:

rbðnÞ ¼ E½bðmþ nÞbðmÞ� ¼
2N0

Tc
sinc

pn

q

� �
with q ¼ Tc=Te the sampling factor. The discrete-time
noise is not white. In order to simplify the DML estimator,
the discrete-time noise will be, however, assumed to be
white. Obviously, in the simulation part, the noise process
color will not be neglected.

By assuming the noise vector b uncorrelated and by
considering KNrM, it is well known that the DML
estimator can take the following form [15]:

½N̂ ; ^NTc ; ^DTc � ¼ arg mineN ; eNT c ; eDT c

ĴDMLð
eN ; fNT c; fDT cÞ ð14Þ

with

ĴDMLð
eN ; fNT c ; fDT cÞ ¼ JðIdM � Feh ðFHeh Feh Þ�1FHeh ÞyJ; ð15Þ

eh ¼ ½eN ; fNT c; fDT c� and where ð�ÞH stands for the conjugate-
transposition.
3.2.3. Gaussian maximum-likelihood approach (GML)

In this subsection, the transmit data vector a is
assumed to be an i.i.d. random vector. Its true power
density function (pdf) is a product of a sum of Dirac
distribution for which the location is given by the used
constellation (either PAM or PSK or QAM). Due to the high
complexity of derivations, it is usual to model the vector a
as a circularly symmetric Gaussian multivariate process
with zero mean and covariance s2

a per real dimension
[15]. Then the so-called Gaussian likelihood, denoted by
pgðyjhÞ, can be expressed in closed-form when a is
assumed as above.

Consequently the multivariate process y is circularly
symmetric Gaussian process with zero mean and covar-

iance matrix E½yyH� ¼ 2s2
aFhFH

h þ 2N0IdM and yields the
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following likelihood:

pgðyjhÞ ¼
1

ð2pÞMdetð2s2
aFhFH

h þ 2N0IdMÞ
e�

1
2yHðs2

a FhFH
hþN0IdM Þ

�1y:

Let Id and A be the identity matrix and another matrix
compatible in size, respectively. We remind that detðIdþ
AAH
Þ ¼ detðIdþ AHAÞ and ðIdþ AAH

Þ
�1
¼ Id� AðIdþ

AHAÞ�1 AH. This leads to

pgðyjhÞp
1

detð2s2
aFH

h Fh þ 2N0IdKNÞ
eðs

2
a=N0Þy

HFhð2s2
a FH

h Fhþ2N0IdKN Þ
�1FH

h y :

As maximizing pgðyjhÞ is equivalent to minimizing
�logpgðyjhÞ, we get

½N̂ ; ^DTc ; ^NTc � ¼ arg mineN ; eNT c ; eDT c

ĴGMLð
eN ; fNT c ; fDT cÞ ð16Þ

with

ĴGMLð
eN ; fNT c; fDT cÞ ¼ logðdetð2s2

aFHeh Feh þ 2N0IdeKeN ÞÞ
�

s2
a

2N0
yHFeh ðs2

aFHeh Feh þ N0IdeKeN Þ�1FHeh y:

ð17Þ

Notice that eK , the trial value for the number of OFDM
symbols, depends on the trial value eh since eK ¼
bT0=ðfDT c þ

fNT cÞc. Moreover signal-to-noise ratio (pro-
vided by s2

a=N0) has to be estimated prior to computing
GML estimators. Similar estimator has been already
introduced by [16] in the context of symbol period
estimation for single carrier modulated signal.
3.3. Matched filter based method

The third new algorithm based on the matched filter
(MF) principle is proposed. The time and frequency offsets
are handled as for the maximum likelihood based
algorithms and the kurtosis minimization based algo-
rithm. Once again, we assume hereafter perfect time and
frequency synchronization. This method is introduced in
an AWGN context. Numerical analysis of its robustness to
multipath channel is done in Section 5.

By inspecting Eq. (4) under AWGN and perfect
synchronization assumptions, we see that the matched
filter receiver associated with true parameters h consists
in multiplying the receiver signal y by FH

h following by a
decision threshold. One can guess that applying an
imperfect matched filter FHeh associated with the trial
parameters eh leads to a degradation of SNR. Therefore we
propose to build a criterion related to the maximization of
the energy of FHeh y with respect to eh. As the norm of FehFHeh
depends on eh, we finally advocate the use of the following
‘‘normalized’’ cost function

½N̂ ; ^DTc ; ^NTc � ¼ arg maxeN ; eNT c ; eDT c

JMFð
eN ; fNT c ; fDT cÞ ð18Þ
with

JMFð
eN ; fNT c ; fDT cÞ ¼

E½JFHeh yJ2
�

JFehFHeh JF

; ð19Þ

where JxJ is the Euclidian norm of the vector x and JAJF is

the Frobenius norm of the matrix A equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðAHAÞ

q
.

In the next theorem, we prove that, in noiseless case,
the maximization of cost function JMFð�Þ yields the true
parameter vector h which justifies our intuition and the
proposed cost function.

Theorem 2. In noiseless context, we get the following

inequality:

8eN ; fNT c ; and fDT c ; JMFð
eN ; fNT c ; fDT cÞrJMFðN;NTc ;DTcÞ:

The equality is reached if and only if ½eN ; fNT c ; fDT c�

¼ ½N;NTc ;DTc�, and then the cost function has the following

value JFhFH
h JF .

Proof of Theorem 2 is given in Appendix B.
The matched filter estimator takes then the following

form:

½N̂ ; ^DTc ; ^NTc � ¼ arg maxeN ; eNT c ; eDT c

ĴMFð
eN ; fNT c; fDT cÞ;

where ĴMF is simply estimated as

ĴMFð
eN ; fNT c ; fDT cÞ ¼

JFHeh yJ2

JFehFHeh JF

:

4. OFDM parameters estimation without
synchronization step

This section is devoted to the presentation and the
analysis of the fourth new algorithm. The cyclic prefix in CP-
OFDM induces cyclostatonarity that can be used to identify
the OFDM parameters. This new algorithm relies on this
property and is a non-trivial extension of the well-spread
autocorrelation based algorithm described in [6–10]. Notice
that the algorithm does not require time and frequency
synchronization so that we can assume perfect time and
frequency synchronization without loss of generality. More-
over, as the multipath channel partially destroys the
interesting correlation property induced by the cyclic
prefix, the description of the algorithm is done under the
assumption of AWGN channel. Nevertheless, robustness of
this algorithm to multipath context is inspected in Section 5.
We observe that the new algorithm outperforms the
autocorrelation based method in realistic context (small
cyclic prefix and/or strong multipath channel).

4.1. Cyclic correlation (CC) based method

Let Ryðn;mÞ ¼ E½yðnþmÞy�ðnÞ� be the correlation func-
tion of the received signal given by Eq. (4) and let us
assume to simplify that NTc=Te is an integer. In the
context of AWGN (L ¼ 1, l1 ¼ 1, t1 ¼ 0), the presence
of the cyclic prefix induces a correlation since Ryðn;mÞ

does not vanish for the following three values m ¼
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0; bNTc=Tec;�bNTc=Tec. We can hence express the correla-
tion function as follows:

Ryðn;mÞ ¼ Ryðn;0ÞdðmÞ þ Ryðn;aÞdðm� aÞ
þ Ryðn;�aÞdðmþ aÞ ð20Þ

with a ¼ bNTc=Tec.
In Eq. (20), one can remark that
�
 The first term of the RHS Ryðn;0Þ is equal to 1þ s2 and
does not provide information about OFDM parameters.

�
 The second and third terms can be written as follows

(see Eq. (4)):

Ryðn;aÞ ¼
X
k2Z

gðnþ a� kað1þ bÞÞg�ðn� kað1þ bÞÞ ð21Þ

with b ¼ DTc=NTc ¼ D=N and gðnÞ ¼ gaðnTeÞ. These
terms provide useful information about OFDM para-
meters such as NTc and DTc. Thus they can be taken
into account to build an identification criterion.
Before going further, we notice that bað1þ bÞc is the
number of samples encompassed in a whole OFDM

symbol, and babc is the number of samples encompassed
in the cyclic prefix.

As n/Ryðn;aÞ is a pseudo-periodic function (or a
periodic function if að1þ bÞ is an integer), it can be
decomposed into the following Fourier series expansion:

Ryðn;aÞ ¼
X
p2Z

Rðp=að1þbÞÞy ðaÞe2ipnp=að1þbÞ; ð22Þ

where Rðp=að1þbÞÞy ðaÞ is the cyclic correlation coefficient of
the signal y at the cyclic frequency p=að1þ bÞ.

The estimation of the OFDM parameters NTc and DTc

can be performed through parameters a and b. Indeed, if ea
and eb are trial values of a and b, the cyclic correlation

Rðp=
eað1þebÞÞ

y ðeaÞ vanishes if eaaa. It also vanishes when ebab if

there is no p0 such as p=eað1þ ebÞ ¼ p0=að1þ bÞ. Conse-
quently, an estimation only based on the term p ¼ 0 does

not allow to estimate b. Notice that the standard
autocorrelation method introduced in [6–10] relies on
this principle but it is only based on the cyclic correlation
at the cyclic frequency 0.

The method we propose is hence a natural extension
by using cyclic correlation at several non-null cyclic
frequencies. We thus rely our identification scheme on
the maximization of the following cost function:

ðea; ebÞ/JðNbÞ

CC ð
ea; ebÞ ¼ 1

2Nb þ 1

XNb

p¼�Nb

jRðp=
eað1þebÞÞ

y ðeaÞj2; ð23Þ

where Nb is the number of cyclic frequencies taken into
account to compute the cost function. This function has to
be jointly maximized on ea and eb. This 2-D research
interval leads to a high computational load of the
proposed method. In order to mitigate this load, we
mention that usually the true b belongs to the following
small set f14 ;

1
8 ;

1
16 ;

1
32g. Therefore the method of estimating

the subcarrier spacing (directly related to a) boils down to
the following maximization:

â ¼ arg maxea maxeb2f1=4;1=8;1=16;1=32g

JðNbÞ

CC ð
ea; ebÞ

8<:
9=;: ð24Þ

We remind that the state of art methods are based on the
maximization of the cost function Jð0ÞCC ð

ea; ebÞ.
In practice, the criterion JðNbÞ

CC ð
ea; ebÞ is not available and

has to be estimated. We remind that the cyclic correlation
Rðp=
eað1þebÞÞ

y ðeaÞ is given by

lim
M-1

1

M

XM�1

m¼0

Efyðmþ eaÞy�ðmÞge�2ipmp=eað1þebÞ ð25Þ

and its empirical estimate, denoted by R̂
ðp=eað1þebÞÞ
y ðeaÞ, is

obtained as follows:

1

M

XM�1

m¼0

yðmþ eaÞy�ðmÞe�2ipmp=eað1þebÞ; ð26Þ

where M is the number of received samples.

Consequently, JðNbÞ

CC ð
ea; ebÞ has to be replaced with

Ĵ
ðNbÞ

CC ðea; ebÞ as follows:

Ĵ
ðNbÞ

CC ðea; ebÞ ¼ 1

2Nb þ 1

XNb

p¼�Nb

jR̂
ðp=eað1þebÞÞ
y ðeaÞj2:

Finally, by replacing the empirical cyclic correlation with

Eq. (26), and a, b with their expression in terms of OFDM
parameter, we obtain

^NTc ¼ argmaxeNT c

maxeDT c= eNT c2f1=4;1=8;1=16;1=32g

Ĵ
ðNbÞ

CC ð
fNT c ; fDT cÞ

( )

with

Ĵ
ðNbÞ

CC ð
fNT c ; fDT cÞ ¼

1

2Nb þ 1

XNb

p¼�Nb

�
1

M

XM�1

m¼0

y mþ fNT c=Te

j k� �
y�ðmÞe�2ipmp=b eNT c=Tecð1þ eDT c= eNT c Þ

�����
�����
2

:

It is clear that, Nb, the number of cyclic frequencies
taken into account to perform the estimation has a direct
impact on the algorithm performance. Therefore, in the
sequel, we provide some insights about the choice of this
parameter.

4.2. Influence of design parameter Nb

In this subsection, we discuss the impact of the before
mentioned factor by relying on some theoretical deriva-
tions.

To evaluate the influence of Nb, we focus on
�
 mean and variance of the estimated cost function at
the true point ða;bÞ (see Section 4.2.1).

�
 mean and variance of the estimated cost function at

the other points ðea; ebÞ with eaaa (see Section 4.2.2).

Hereafter, we assume that M is large enough in order to
satisfy an asymptotic regime.
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4.2.1. Influence of Nb on the estimated cost function at the

true point

Due to [17], it is known that
ffiffiffiffiffi
M
p
ðR̂
ðp=að1þbÞÞ
y ðaÞ �

Rðp=að1þbÞÞy ðaÞÞ converges, in distribution, to a normal

distribution with zero mean and a certain finite variance
when M tends to infinity. Thanks to [18], we can deduce

that
ffiffiffiffiffi
M
p
ðĴ
ðNbÞ

CC ða;bÞ � JðNbÞ

CC ða;bÞÞ is also asymptotically nor-

mal with zero-mean and a finite variance, denoted by s2
1.

In order to inspect the impact of Nb on the performance,

we have to analyze the variation of JðNbÞ

CC ða;bÞ and s2
1 vs. Nb

as done in next proposition.

Proposition 1. We assume that aþ b is an integer. We have

JðNbÞ

CC ða;bÞ ¼
1

2Nb þ 1

1

að1þ bÞ

���� ����2 XNb

p¼�Nb

sin p bp

1þ b

� �
sin p p

að1þ bÞ

� �
��������

��������
2

;

and

s2
1 ¼ Oð1Þ þO

ð1þ s2Þ
4

2Nb þ 1

 !
:

Proof of Proposition 1 is drawn in Appendix C. The case
where aþ b is not an integer is not dealt in this paper.
Nevertheless, if the condition is not met, the dependance
of JðNbÞ

CC ða;bÞ in term of Nb will not be significantly changed.
One can remark that, when p41=b, the value of

sinðpbp=ð1þ bÞÞ=sinðpp=að1þ bÞÞ is small compared to
the value taken around p ¼ 0, and the cyclic correlation at
lag p41=b does not provide significant information.
Therefore we can reasonably assume that Nbo1=b. Then
one can see that JðNbÞ

CC ða;bÞ is a decreasing function of Nb.
The greater JðNbÞ

CC ða;bÞ is, the better the performance should
be. On the contrary, the variance increases when Nb

decreases. Consequently, based on the mean, we advocate
to choose Nb as small as possible; based on the variance,
we advocate to choose Nb as large as possible. A trade-off
seems to be done to choose relevantly the value of Nb.

4.2.2. Influence of Nb on the estimated cost function at the

other points

Once again, we would like to analyze the influence
of Nb on the mean and variance of Ĵ

ðNbÞ

CC ðea; ebÞ when eaaa.
The result is given in next proposition.

Proposition 2. The mean of Ĵ
ðNbÞ

CC ðea; ebÞ has the following

asymptotic property:

lim
M-1

MEfĴ
ðNbÞ

CC ðea; ebÞg ¼ ð1þ s2Þ
2
þOð1Þ:

The variation of Ĵ
ðNbÞ

CC ðea; ebÞ around its mean can be analyzed

using the following variance defined as

s2
2ðea; ebÞ ¼ lim

M-1
M2EjĴ

ðNbÞ

CC ðea; ebÞ � EfĴ
ðNbÞ

CC ðea; ebÞgj2;
which has the following finite value:

s2
2ðea; ebÞ ¼ O ð1þ s2Þ

4

2Nb þ 1

 !
þOð1Þ

as long as eaaa.
Proof of Proposition 2 is given in Appendix D.
This proposition says, on one hand, that, as long

as 15s2, the asymptotic mean of Ĵ
ðNbÞ

CC ðea; ebÞ does not
depend on Nb, and, on the other hand, that the variation
of Ĵ

ðNbÞ

CC ðea; ebÞ around its mean is decreasing when Nb

increases, for low SNR.
We thus confirm that a trade-off has to be done to

choose relevantly the value of Nb.

5. Simulations

In this section we propose to evaluate the proposed
techniques by means of numerical simulations.

We have generated an IEEE 802.16.e signal with the
following settings: the number of carriers N ¼ 128, the
useful time duration NTc ¼ 102ms, and the oversampling
ratio Tc=Te ¼ 2. We consider that 20 OFDM symbols
are available at the receiver. The transmit signal
passes through a multipath fading channel (L ¼ 10 paths)
where each path delay is uniformly distributed between
½0; tmax� and each path magnitude is uniformly distributed
between ½10�2;1�. Except otherwise stated, tmax is
chosen to be equal to 3

4 DTc and the ratio D=N ¼ 1
32. A

Gaussian noise has also been added and its variance is
defined as

s2 ¼
Tc

Te

1

M

XM�1

m¼0

XL

l¼1

llsaðmTe � tlÞ

�����
�����
2

10�SNR=10;

where M is the number of samples. Except otherwise
stated, the number of cyclic frequencies taken into
account for the cyclic correlation based method is
Nb ¼ 10. We have remarked that the GML always outper-
forms the DML. Therefore, in the sequel, we only plot the
GML estimator performance.

The cost functions maximization/minimization have
been done with an exhaustive test over the interval
½0:5;2�NTc for the variable ^NTc with a step equal to
NTc=100 (150 points have hence been tested). The variable
^DTc belongs to the set of values ^NTc f

1
4 ;

1
8 ;

1
16 ;

1
32g. The

performance evaluation has been done thanks to Monte-
Carlo simulations with 1000 trials for every point.

As we treat an estimation problem, the performance
measure may be the mean square error on NTc . Never-
theless, our practical problem related to cognitive radio is
to identify the right system (WiMAX, WiFi, DAB, DVB-T or
3GPP/LTE, etc) by comparing the ^NTc to its theoretical
value for each considered system. As seen in introduction,
the smallest gap between two inter-carrier spacing values
is little larger than 1%. Therefore, for our practical system
identification issue, we only need an estimation of 1=NTc

up to 1%. Consequently rather than considering MSE as
performance measure, the performance has been evalu-
ated as the number of correct detection, i.e., the number of
realizations for which the ^NTc is equal to NTc up to 1%. As
a consequence, the probability of wrong detection which
includes the probability to take a system for another one,
equals 1 minus the probability of correct detection.

Note that a joint estimation of NTc and DTc has been
performed to estimate the OFDM parameters of interest
but the plotted curves only focus on the correct detection
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rate of the inter-carrier spacing parameter. Actually we
have observed that detections on NTc or DTc always yield
similar performance.

Firstly, we consider a perfect time and frequency
synchronization context. In Fig. 1, we plot the per-
formance of the proposed algorithms and of the state
of art method (denoted correlation-based technique) vs.
SNR. One can show that all the proposed techniques
outperform the standard correlation based method.

In Fig. 2, we display the correct detection rate of the
proposed algorithms and of the correlation based method
vs. D=N. In order to inspect properly only the impact of
the ratio between the cyclic prefix and the useful part
durations on the performance, simulations are done here
with AWGN channel. As stated in the Introduction, the
state of art technique falls down when the length of the
cyclic prefix is small compared to the length of the useful
part of the OFDM signal which may occur for DVB-T and
WiMax signals (D=N belongs to f 1

32 ;
1

16 ;
1
8 ;

1
4g). The cyclic

correlation based approach still performs well except for
D=N ¼ 0 (no correlation within the received signal). We
show also that the other proposed approaches (GML,
matched filter and kurtosis minimization) achieve good
performance whatever the ratio D=N and we can conclude
that these approaches are independent of the encountered
cyclic prefix length. Consequently, all the proposed
algorithms are perfectly adapted to recognize OFDM
systems in both cognitive radio and military contexts
and seem to be particularly attractive.

In Fig. 3, we plot the performance of the proposed
techniques and of the correlation based method vs. the
channel impulse response length. While the standard
correlation based technique is the most affected by the
frequency selective channel, the use of other cyclic
frequencies which leads to the proposed cyclic cor-
relation based method enables to improve the detection
efficiency significantly. Thus the novel second order based
technique is more robust. The other proposed techniques
are robust to frequency-selective channel, even the GML
and the matched filter techniques albeit initially derived
under AWGN channel assumption.

In Fig. 4, the algorithms performance have been plotted
in function of the number of available symbols. As
expected, the correlation methods require much symbols
to perform the recognition since they are based on the
OFDM symbols statistical properties, whereas the other
methods rely on the transmitted data symbols statistics.

We now consider that time and/or frequency offset
occur. For the methods proposed in Section 3, an
additional loop has been added to perform a joint
estimation of the offset and the parameters of interest.
As for the parameters ^NTc and ^DTc , and exhaustive search
is performed. The time offset has been randomly chosen in
the set ½0;NTc þ DTc� with an uniform law. The tested
offset takes values in the set ½0; ^NTc þ

^DTc � with a step
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equal to ð ^NTc þ
^DTc Þ=10. The frequency offset is randomly

chosen with an uniform law in ½0;1=NTc�. The tested value
belongs to ½0;1= ^NTc � with a step of 1=10 ^NTc .

The results are shown in Fig. 5 for the frequency offset
missynchronization and in Fig. 6 for the time-offset
missynchronization. As expected, the second order based
approaches are not disturbed by frequency and time
missynchronization. In contrast, the methods developed
in Section 3 (kurtosis minimization, GML and matched
filter) offer slightly degraded performance although
offsets estimation step have be carried out.
Based on these illustrations, the GML seems to be the
method which outperforms the others. Nevertheless, the
reader will easily understand that if the computational
time were taken into account, the methods presented in
Section 3 are penalized in regard to the method proposed
in Section 4.

In Fig. 7, the performance of the cyclic correlation
based method is studied vs. the number of cyclic
frequencies Nb for different cyclic prefix (CP) lengths. As
the performance of this method depends on the length of
the cyclic prefix, we have chosen the SNR for each tested
CP accordingly. We show that for each CP length, a trade-
off has to be done for selecting the value of Nb ensuring
the best performance. By comparing the different curves,
one can observe that the best value for Nb is lower than
N=D.
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6. Conclusion

Four new methods for blind identification of the
modulation parameters of OFDM based systems have
been proposed in this paper. These four algorithms that
exploit different principles have been sorted in two
categories. The first one contains the algorithms with
time and frequency synchronization steps. The three
proposed algorithms are based on various techniques:
(i) kurtosis minimization, (ii) maximum likelihood, (iii)
matched filter. The second kind of algorithms are the one
that do not need a synchronization step, including the
state of art methods, and the algorithm based on cyclic
frequencies estimation.

Most theoretical developments have been done assum-
ing a flat fading channel, but general contexts have been
numerically simulated to estimate the robustness of the
proposed algorithms. As shown in the section devoted to
simulations, there is no algorithm that outperforms the
others in every contexts. Nevertheless, in every simulated
contexts, all the proposed algorithms have much better
performance than the state of art methods.

Appendix A. Proof of Theorem 1

Without loss of generality, we only focus on the first
estimated OFDM block. According to Eqs. (2) and (5), the
first estimated OFDM block is composed by

r0;p ¼
XL

l¼1

llsaðpTe þ
fDT c � tlÞ; 8p 2 f0; eP � 1g:

Using Eqs. (6) and (1), the decoded symbols â0;v writes
then, 8v 2 f0;N0g

â0;v ¼
1ffiffiffiffiffiffiffiePN

p XL

l¼1

â
ðlÞ
0;v ð27Þ

with

â
ðlÞ
0;v ¼

X
k2Z

XN�1

n¼0

~aðlÞk;n

XP̂�1

p¼0

e�2ippTeðn=NTc�v= eNT c ÞllgaðpTe

þgDTc � tl � kTsÞ ð28Þ

and

~aðlÞk;n ¼ ak;ne�2ipðn=NTc Þð
eDT c�DTc�tl�kTsÞ: ð29Þ

We will first show that, for each path l, we get

kðâðlÞ0;vÞZkð ~aðlÞk;vÞ; 8k ð30Þ

and the equality holds for one particular k ¼ k0ðlÞ if and
only if the conditions of Theorem 1 are satisfied, i.e., if the

decoded symbol â
ðlÞ
0;v is proportional to one ~aðlÞk0ðlÞ;n. Due to

Eq. (29), it is equivalent to be proportional to ~aðlÞk0ðlÞ;n and to

the transmit symbol ak0ðlÞ;v.

As the summation over p is finite in Eq. (28) and as the
function gaðtÞ has a finite support, the summation over k

in Eq. (28) is also finite. Let Ol be the following set:

Ol ¼ fkj(p 2 f0; eP � 1g s:t: gaðpTe þ
gDTc � tl � kTsÞ ¼ 1g:
Let us consider that cardðOlÞ41. Under such an
assumption, it is clear that the decoded symbol â

ðlÞ
0;v

depends at least from 1 transmit symbols of each transmit
OFDM symbol which index is in Ol. So â

ðlÞ
0;v is a linear

combination of several symbols which implies that
the inequality of Eq. (30) is a strict inequality. Conse-
quently, in order to obtain equality in Eq. (30), we need
cardðOlÞ ¼ 1. Let us now consider that cardðOlÞ ¼ 1. Let
k0ðlÞ be the unique element of Ol. Under this assumption,
we have that r0;p for any p 2 f0; eP � 1g belongs to the same
k0th transmit OFDM symbol. Then â

ðlÞ
0;v simplifies as

follows:

â
ðlÞ
0;v ¼ ll

XN�1

n¼0

~aðlÞk0ðlÞ;n
eiyn

sin p
ePTe

NTc
n� v

NTcfNT c

 ! !

sin p Te

NTc
n� v

NTcfNT c

 ! !;

where yn still depends on n.
Once again, as â

ðlÞ
0;v is a linear combination of ~aðlÞk0ðlÞ;n

,
Eq. (30) holds. Equality occurs when the weights of the
linear combination vanish except one. These weights are
zero if and only if it exists n0 such that

sin p
ePTe

NTc
n� v

NTcfNT c

 ! !

sin p Te

NTc
n� v

NTcfNT c

 ! !a0 if n ¼ n0;

sin p
ePTe

NTc
n� v

NTcfNT c

 ! !

sin p Te

NTc
n� v

NTcfNT c

 ! ! ¼ 0 otherwise:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
As eP ¼ bfNT c=Tec, we have that ePTe=NTc is close tofNT c=NTc if N is large enough. One can see that the last

property is satisfied if and only if fNT c ¼ NTc and n0 ¼ v,
i.e., if â

ðlÞ
0;v is proportional to ~aðlÞk0ðlÞ;n and so to ak0ðlÞ;v.

Thanks to (27), it is then straightforward to conclude to
the kurtosis of â0;v is minimal if and only if 8l, k0ðlÞ ¼ k0.
Note that this condition can be achieved as long as
tloDTc. â0;v is then proportional to ak0 ;v.

This concludes the first part of Theorem 1 (associated
with the first inequality provided in Theorem 1).

The second part of Theorem 1 (associated with the second
inequality provided in Theorem 1) is proven as follows:
for each decoded symbol âk;n, the first part of Theorem 1
says that the kurtosis reaches its global minimum value if and
only if fNT c ¼ NTc and rk;p for p 2 f0; eP � 1g belong to
the same transmit OFDM symbol. The kurtosis of the
estimated sequence of symbols reaches hence its
global minima if both conditions are satisfied for all values
of k and n.

Equality fNT c ¼ NTc is thus trivial given the first part of

Theorem 1. Equality fDT c ¼ DTc is deduced from the second
condition provided in the first part of the theorem. Indeed, iffDT caDTc , one can always find a k� such that the set of points

rk� ;p for p 2 f0; eP � 1g belongs to two OFDM symbols. Then,
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kðâk� ;nÞ4kðaÞ and equality between the two kurtosis leads tofDT c ¼ DTc which concludes the proof.

Appendix B. Proof of Theorem 2

In noiseless flat-fading channel with perfect synchro-
nization, we have y ¼ Fha with i.i.d. data vector a. Then
this leads to

JMFð
ehÞ ¼ TrðFHeh FhFH

h Feh Þ
JFehFHeh JF

:

Let A ¼ Feh and B ¼ Fh. Due to the new notation, we
have

JMFð
ehÞ ¼ TrðAHBðBHAÞÞ

JAAHJF

¼
JAHBJ2

F

JAAHJF

:

First of all, we would like to prove that the following
inequality is satisfied:

JAHBJ2
F

JAAHJF

rJBBHJF

and that the equality holds if and only if AAH is

proportional to BBH, i.e., if and only if FehFHeh is proportional

to FhFH
h :

Let Aij and Bij be the element of the i th row and j th
column of A and B, respectively.

JAHBJ2
F ¼

XeKeN
i¼1

XKN

j¼1

XM
l¼1

ðAHÞilBlj

�����
�����
2

ð31Þ

¼
XM
l¼1

XM
l0¼1

XeKeN
i¼1

A�liAl0 i

0@ 1A XKN

j¼1

BljB
�
l0 j

0@ 1A: ð32Þ

For the sake of simplicity, we introduce the following
notations: let V ¼ AAH and W ¼ BBH be the matrices for
which the elements are expressed as

Vll0 ¼
XeKeN
i¼1

AliA
�
l0i; Wll0 ¼

XKN

j¼1

BljB
�
l0 j

for all l ¼ 1; . . . ;M and l0 ¼ 1; . . . ;M.
By replacing these expressions into Eq. (32), we get

JAHBJ2
F ¼

XM
l¼1

XM
l0¼1

Vl0lWll0 : ð33Þ

A first application of the Cauchy–Schwartz inequality
to the sum of index l0 in Eq. (33) leads to

JAHBJ2
Fr

XM
l¼1

XM
l0¼1

jVl0lj
2

 !1=2 XM
l0¼1

jWll0 j
2

 !1=2
24 35: ð34Þ

Equality holds if and only if it exits constants fclgl¼1;...;M

such that Vl0l ¼ clW
�
ll0 .

We consider the following notations:
�
 vl ¼ ð
PM

l0¼1 jVl0lj
2Þ

1=2,P

�
 wl ¼ ð

M
l0¼1 jWll0 j

2Þ
1=2.
to the sum of index l gives

A second application of the Cauchy–Schwartz inequality

JAHBJ2
Fr

XM
l¼1

jvlj
2

 !1=2 XM
l¼1

jwlj
2

 !1=2

: ð35Þ

Notice that
PM

l¼1 jvlj
2 ¼ TrðVHVÞ ¼ JAHAJ2

F andPM
l¼1 jwlj

2 ¼ TrðWHWÞ ¼ JBHBJ2
F which proofs the sought

inequality. Equality holds in Eq. (35) if and only if it exists

a constant c0 such that vl ¼ c0wl for all l ¼ 1; . . . ;M.
Finally equality holds jointly in Eqs. (34) and (35) if and

only if it exists a constant c such that Vll0 ¼ cW�
ll0 ¼ cWl0l for

all l; l0 ¼ 1; . . . ;M, i.e., V ¼ AAH is proportional to W ¼ BBH.

Now we would like to prove that AAH is proportional to

BBH, i.e., FehFHeh is proportional to FhFH
h only leads to eh ¼ h.

Using Eq. (13), one can prove that each element of

FehFHeh for l ¼ 1; . . . ;M and l0 ¼ 1; . . . ;M can be expressed

as follows:

½FehFHeh �l;l0 ¼
1eN

sin p
eNTefNT c

ðl� l0Þ

 !

sin p TefNT c

ðl� l0Þ

 !eipðl�l0 ÞTe
eN�1= eNT c

if jl� l0jTerfNT c þ
fDT c and lal0;

1 if l ¼ l0;

0 if jl� l0jTe4fNT c þ
fDT c:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
Each block in FehFHeh (except the last one) has bðfNT c þfDT cÞ=Tec rows and eN columns. Consequently, if FehFHeh is

proportional to FhFH
h , each block of both matrices must

have the same dimensions. Thus, we get fNT c þ
fDT c ¼

NTc þ DTc and eN ¼ N.
By considering l and l0 such as jl� l0jTerfNT c þ

fDT c and
lal0 and any integer k, proportionality between both
matrices leads to

ðl� l0ÞTe
N � 1fNT c

¼ ðl� l0ÞTe
N � 1

NTc
þ 2kþ f;

sin pNTefNT c

ðl� l0Þ

 !

sin p TefNT c

ðl� l0Þ

 ! ¼ jcjsin pNTe

NTc
ðl� l0Þ

� �
sin p Te

NTc
ðl� l0Þ

� �;

8>>>>>>>>>><>>>>>>>>>>:
where jcj and f are the magnitude and the phase of the
constant c, k 2 Z. Last equalities imply that c ¼ 1,fNT c ¼ NTc , and fDT c ¼ DTc . This concludes the proof.
Appendix C. Proof of Proposition 1

We recall that aþ b is assumed to be an integer. Using
Eqs. (21) and (25), the cyclic frequency coefficient
Rðp=að1þbÞÞy ðaÞ can be expressed as

Rðp=að1þbÞÞy ðaÞ ¼ 1

að1þ bÞ

Xað1þbÞ�1

n¼a
e�2ipnp=að1þbÞ:
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It is then straightforward to deduce the expected result on
the asymptotic mean.

To compute the estimator variance, we introduce the
vector

Ry ¼ ½R
ð�Nb=að1þbÞÞ
y ðaÞ; . . . ;Rð0Þy ðaÞ; . . . ;R

ðNb=að1þbÞÞ
y ðaÞ�T

and R̂y its estimate. The cost function Ĵ
ðNbÞ

CC ða;bÞ is then
given by

Ĵ
ðNbÞ

CC ða;bÞ ¼
1

2Nb þ 1
R̂

H

y R̂y:

Thanks to the law of large number, R̂y is asymptotically

normal, and as JRyJ
2 is strictly positive, we deduce thatffiffiffiffiffi

M
p
ðĴ
ðNbÞ

CC � JðNbÞ

CC Þ converges in distribution to N ð0;4SÞ (see

[18] for more details). S is given by

S ¼
1

2Nb þ 1

� �2

½RH
y RT

y �
G Gc

G�c G�

" #
Ry

R�y

" #
;

where R�y is the conjugate of Ry, and
1.
 G ¼ limM-1MEfðR̂y � RyÞðR̂y � RyÞ
H
g.
2.
 Gc ¼ limM-1MEfðR̂y � RyÞðR̂y � RyÞ
T
g.
The coefficients of G are given by

½G�k;l ¼ lim
M

MEfR̂
ð�Nbþk=að1þbÞÞ
y ðaÞðR̂

ð�Nbþl=að1þbÞÞ
y ðaÞÞ�g

�MRð�Nbþk=að1þbÞÞ
y ðaÞðRð�Nbþl=að1þbÞÞ

y ðaÞÞ�:

We get after some calculations:

EfR̂
ð�Nbþk=að1þbÞÞ
y ðaÞðR̂

ð�Nbþl=að1þbÞÞ
y ðaÞÞ�g

¼ Rð�Nbþk=að1þbÞÞ
y ðaÞðRð�Nbþl=að1þbÞÞ

y ðaÞÞ�

þ
1

M2

X
u;v

Ryðuþ a;vÞR�yðu;vÞe
�2ip=að1þbÞðk�lÞu:

Hence

½G�k;l ¼ lim
M

1

M

X
u;v

Ryðuþ a;vÞR�yðu;vÞe
�2ip=að1þbÞðkðuþvÞ�luÞ

Ryðu;vÞ vanishes when va0 and va7a: if v ¼ 0, R�yðu;0Þ
does not depend on u. Hence

lim
M

1

M

X
u

Ryðuþ a;0ÞR�yðu;0Þe
�2ip=að1þbÞðk�lÞu

¼ ð1þ s2Þ
2dðk� lÞ:

When v is equal to 7a, the expression is more complex.
We will write it as

lim
M

1

M

X
u

Ryðuþ a;7aÞR�yðu;7aÞe�2ip=að1þbÞððk�lÞu�kð7aÞÞ

¼ Oð12
Þ:

The matrix G has then the following form:

G ¼
ð1þ s2Þ

2
þOð1Þ Oð1Þ Oð1Þ

Oð1Þ & Oð1Þ
Oð1Þ Oð1Þ ð1þ s2Þ

2
þOð1Þ

264
375:
Similarly, the coefficients Gc are given by

½Gc�k;l ¼ lim
M

MEfR̂
ð�Nbþk=að1þbÞÞ
y ðaÞR̂

ð�Nbþl=að1þbÞÞ
y ðaÞg

�MRð�Nbþk=að1þbÞÞ
y ðaÞRð�Nbþl=að1þbÞÞ

y ðaÞ:

After some calculations, we also get

½Gc�k;l ¼ lim
M

1

M

X
u1 ;u2

Ryðu1;u1 � u2 þ aÞ

R�yðu2;�u1 þ u2 þ aÞe�2ip=að1þbÞðku1þlu2Þ

½Gc�k;l does not vanishes only when u1 ¼ u2 which gives

½Gc�k;l ¼ lim
M

1

M

X
u

Ryðu;þaÞR�yðu;aÞe
�2ip=að1þbÞðkþlÞu ¼ Oð12

Þ:

The matrix Gc has then the following form Gc ¼ ½Oð1Þ�.
The matrix

G Gc

G�c G�

" #
simplifies hence to

G Gc

G�c G�

" #
¼

ð1þ s2Þ
2
þOð1Þ Oð1Þ Oð1Þ

Oð1Þ & Oð1Þ
Oð1Þ Oð1Þ ð1þ s2Þ

2
þOð1Þ

264
375;

which leads to the expected result.

Appendix D. Proof of Proposition 2

MEfĴ
ðNbÞ

CC ðea; ebÞg writes as

1

2Nb þ 1

XNb

p¼�Nb

MEjR̂
ðp=eað1þebÞÞ
y ðeaÞj2:

In terms of the received signal yðmÞ, MEjR̂
ðp=eað1þebÞÞ
y ðeaÞj2

equals

1

M

X
m1
m2

Efyðm1 þ eaÞy�ðm1Þy
�ðm2

þ eaÞyðm2Þge
�2ipkðm1�m2Þ=eað1þebÞ: ð36Þ

Writing the fourth order moment in terms of the fourth
order cumulant, Efyðm1 þ eaÞy�ðm1Þy

�ðm2 þ eaÞyðm2Þg ex-
pands to

cumðyðm1 þ eaÞ; y�ðm1Þ; y
�ðm2 þ eaÞ; yðm2ÞÞ

þ Efyðm1 þ eaÞy�ðm1ÞgEfy
�ðm2 þ eaÞyðm2Þg

þ Efyðm1 þ eaÞyðm2ÞgEfy
�ðm1 þ eaÞy�ðm1Þg

þ Efyðm1 þ eaÞy�ðm2 þ eaÞgEfy�ðm1Þyðm2Þg: ð37Þ

As yðmþ eaÞ and yðmÞ are independent when ea40
and eaaa, the first term vanishes. The second term
vanishes since eaaa. The third term vanishes since yðmÞ

is circular. The fourth order moment rewrites hence, in
terms of the autocorrelation function of the received
signal:

Efyðm1 þ eaÞy�ðm1Þy
�ðm2 þ eaÞyðm2Þg

¼ Ryðm2 þ ea;m1 �m2ÞR
�
yðm2;m1 �m2Þ:

We deduce from this result that Eq. (36) does not vanish
only if m1 ¼ m2, m1 ¼ m2 þ a or m1 ¼ m2 � a. If m1 ¼ m2,
we obtain the sum simplifies to ð1þ s2Þ

2. For the other
cases, we get the term Oð1Þ.
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To compute this variance we first write EjMĴ
ðNbÞ

CC ðea; ebÞj2
in terms of the cyclic coefficients. We then apply the
decomposition (37) to the cyclic coefficients (instead of
applying it to the signal y). We get

M2EjĴ
ðNbÞ

CC ðea; ebÞ � EfĴ
ðNbÞ

CC ðea; ebÞgj2
¼

M2

ð2Nb þ 1Þ2

X
k1 ;k2

jEfR̂
ðk1=eað1þebÞÞ
y ðeaÞR̂ðk2=eað1þebÞÞ

y ðeaÞgj2
þ

M2

ð2Nb þ 1Þ2

X
k1 ;k2

jEfR̂
ðk1=eað1þebÞÞ
y ðeaÞðR̂ðk2=eað1þebÞÞ

y ðeaÞÞ�gj2:
The result only requires to compute both expectations
using a similar technique as for the asymptotical mean.

The first one EfR̂
ðk1=eað1þebÞÞ
y ðeaÞR̂ðk2=eað1þebÞÞ

y ðeaÞg vanishes except

if ea ¼ a=2. The second one can be computed as the
expectation that has been computed for the asymptotic
mean.
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