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Block-wise Digital Signal Processing for
PolMux QAM/PSK Optical Coherent Systems

M. Selmi, C. Gosset, M. Noelle, P. Ciblat, Y. Jaouën

Abstract—In polarization multiplexing based coherent optical
transmission, two main kinds of impairements have to be counter-
acted: i) the inter-symbol interference generated by the chromatic
dispersion and the polarization mode dispersion, andii) the
frequency offset. Usually adaptive approaches are carriedout
to mitigate them. Since the channel is very slowly time-varying,
we propose to combat these impairements by using block-wise
methods. Therefore we introduce two new algorithms: the first
one is a block-wise version of blind time equalizer (such as
CMA), and the second one estimates the frequency offset in
block-wise way. These algorithms are suitable for PSK and
QAM constellations. By simulation investigations, we showthat
they outperform the standard approach in terms of convergence
speed only at a moderate expense of computational load. We
also experimentally evaluate their performance using 8-PSK real
data traces and off-line processing which takes into account other
physical impairments such as phase noise and non-linear effects.

Index Terms—optical coherent communications, block pro-
cessing, blind equalization, frequency offset estimation, constant
phase estimation, constant modulus algorithm, decision-directed
algorithm, optimal step-size gradient algorithm, bursty transmis-
sion.

I. I NTRODUCTION

COHERENT detection combined with multilevel modu-
lation such as M-ary quadrature modulation (M-QAM)

formats are one of the most relevant techniques to increase
the spectral efficiency and reach higher bit rates [1], [2], [3].
Indeed, it has been shown that up to 400Gb/s optical coherent
transmission can be done by combining a real Analog to Dig-
ital Converter (ADC) with offline signal processing [4], [5].
Nevertheless, only 112 Gb/s coherent transmission has been
experimentally tested in real-time [6], [7] and 40Gb/s (and
even 100Gb/s very recently) is now proposed in commercial
products [8]. Therefore coherent transmission is the leading
candidate for the next generation optical transmission network
at 100 Gb/s (also, called, 100Gbit Ethernet). However, due
to the increase of the data traffic in a mid-term future, very
high bit rate will be required (up to 1Tb/s). To satisfy such
a rate, the symbol rate and the constellation size have to
be increased accordingly. Unfortunately, this ultra-highdata
rate transmission will be more sensitive to the various signal
distortions generated by the optical fiber and the transmit-
ter/receiver devices. Consequently the main challenge will
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be to develop digital signal processing algorithms counter-
acting the propagation impairments (typically, the transmission
distance is about several thousand kilometers) but compatible
with electronic circuits complexity and speed.

Throughout this paper, only the linear propagation im-
pairments listed below will be assumed. When polarization
multiplexing (PolMux) is carried out, there are two kinds of
interference:i) Inter-Symbol Interference (ISI) associated with
its own polarization due to the (residual) chromatic dispersion
(CD) and with the filtering effect at the transmitter and receiver
sides, andii) Polarization-Dependent Impairments (PDI) due
to the mixing of both polarizations given rise by the polariza-
tion mode dispersion (PMD) and the polarization-dependent
loss (PDL) [9], [10]. Another source of degradation concerns
the phase errors which can be split into three categories:i)
frequency offset,ii) constant phase offset, andiii) laser phase
noise [11]. When the launched power is too high, some non-
linear distortions such as those induced by the Kerr effect have
to be taken into account as well [12], [13].

In the ”signal processing” literature, numerous blind tech-
niques1 have been developed for mitigating the ISI/PDI, the
frequency offset, and the constant phase offset. In the ”opti-
cal coherent receiver design” literature, the most widespread
technique for the blind ISI/PDI compensation is the Constant
Modulus Algorithm (CMA) [14] and its variants such as the
Radius Directed Equalizer (RDE) [15] or the Multi Modulus
Algorithm (MMA) (potentially followed by the Decision-
Directed (DD) algorithm) [16]. For instance, these algorithms
as implemented in [16] can compensate up to 1000ps/nm of
CD in a 16-QAM coherent system, and lead to reach 100 Gb/s.
Notice that all the above-mentioned algorithms belong to the
set of the blind linear equalizers. So far in optical communica-
tions, the blind ISI compensator has been implemented through
adaptive algorithms,i.e., the linear equalizer coefficients are
updated as soon as one sample is incoming. Usually, for the
sake of simplicity, the update equations are derived by means
of the so-called stochastic gradient descent algorithm carried
out either with a constant step-size (as in [14]) or with a
Hessian matrix based time-varying step-size (as done in [17]).

Before going further, we remind that the propagation chan-
nel in optical communications is static over a large observation
window since it varies very slowly compared to the symbol
period. Indeed, the symbol period for 100 Gb/s QPSK systems
is about 40 ps whereas the coherence time of the channel is of

1We do not consider here training approaches for which a symbol sequence
known both at the transmitter and receiver sides is periodically sent in order
to estimate all the impairments parameters. Then, once those parameters
are estimated, impairments are mitigated using particulartechniques. The
description of these techniques is out of scope of this paper.
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order of a few milli-seconds [18], [19], [20]. Consequentlyit
is worth treating the data block-by-block rather than sample-
by-sample. Thereforethe main contribution of this paper is to
propose an implementation of all the algorithms (dealing with
ISI/PDI cancellation and phase errors mitigation) in a block-
wise way. The main advantage of the block-wise approach
compared to the sample-wise one is the convergence speed
and the steady-state performance. Moreover, if bursty commu-
nications (with typical values of frame duration equal to a few
micro-seconds) are considered, the first samples of the burst
are enough to converge2 to an adequate equalizer whereas,
as we will see later, the adaptive approach has not always
converged at the burst end. In addition, a lot of calculations
can be also done in parallel and thus can be implemented
with the current electronic devices. More precisely,in this
paper, we introduce a block-wise version of the CMA and
DD equalizer in the framework of optical system architecture
and an improvement of a block-wise version of a frequency
offset estimator. All the proposed algorithms work well for any
PSK3 and QAM constellation. In the simulation part, 16-QAM
is considered while, in the experimental part, 8-PSK is. Notice
that block-wise approaches have been already proposed for
optical communications but usually either when multi-carrier
transmission (such as OFDM) is employed since it is inherent
to the signal structure [21], [22] or when frequency-domain
equalizer (FDE) is carried out in single-carrier transmission
[23], [22]. Here although working with time-domain equalizer
and single-carrier transmission, we propose to estimate the
transmission parameters by using a ”block” manner.

One of the main drawback of the block-wise algorithms may
be its less ability to track the propagation channel variation.
Nevertheless, given the quasi-static property of the optical fiber
channel, we will see later that our approach is still robust to
its time-variation, especially to its PMD variation and also to
the phase noise.

The paper is organized as follows: in Section II, the signal
model, the propagation channel model and the impairments
models are defined. In Section III, we introduce our block-
wise blind equalizers. In Section IV, we propose a new block-
wise estimator for frequency offset. In Section V, we remind
some interesting results about the constant phase correction.
In Section VI, we illustrate the performance of each new
estimator and of the whole system via extensive simulations.
In Section VII, experimental study is done. Finally concluding
remarks are drawn in Section VIII.

II. SIGNAL MODEL

Throughout the paper, we consider only the linear impair-
ments generated by the transmission along the optical fiber.
Therefore the continuous-time received signal (in baseband)
after the received filter can be written as follows

ya(t) = (Ca(t) ⋆ xa(t)) e2iπδfat + ba(t) (1)

2In burst mode, the algorithm is usually initialized by a trivial equalizer
at each burst beginning since the CD and the PMD can be strongly different
and unknown for each burst since they depend on the wavelength routing and
switching.

3Except BPSK when CMA is carried out (for more details, see [24]).

with

• ya(t) = [ya,1(t), ya,2(t)]
T the bivariate received signal

whereya,1(t) (resp.ya,2(t)) is the received signal on X-
polarization (resp. Y-polarization), and where the super-
script (.)T stands for the transposition operator.

• xa(t) = [xa,1(t), xa,2(t)]
T the bivariate transmitted sig-

nal wherexa,1(t) (resp.xa,2(t)) is the transmitted signal
on X-polarization (resp. Y-polarization).

• ba(t) = [ba,1(t), ba,2(t)]
T the bivariate circularly-

symmetric Gaussian noise with zero mean and variance
N0 per real dimension [25]. We also assume that the noise
is white in time and in polarization. As it is circularly-
symmetric [25], the In-phase and Quadrature components
are independent and identically distributed (iid).

• the 2 × 2 MIMO channel whose the impulse response is
given as follows

Ca(t) =

[

ca,1,1(t) ca,1,2(t)
ca,2,1(t) ca,2,2(t)

]

whereca,p,p(t) corresponds to the inter-symbol interfer-
ence created by its own polarization, and whereca,p,q(t)
(p 6= q) corresponds to the inter-polarization interference
created by the first-order PMD phenomenon.

• δfa is the continuous-time frequency offset expressed in
Hertz.

• ⋆ stands for the convolution product.

Notice that the subscripta stands for a continuous-time/analog
signal.

The transmitted signal (in baseband) on polarizationp is
linearly modulated by a iid sequence of QAM/PSK symbols,
denoted by{sp(k)}k, as follows

xa,p(t) =
∑

k

sp(k)ga(t − kTs) (2)

whereTs is the symbol period andga(t) is the shaping filter
and may be, for instance, a NRZ pulse.

In order to satisfy Shannon’s sampling theorem, the re-
ceived signal is sampled at twice the baud rate. Due to the
oversampling, no information is lost, and we can omit timing
synchronization step. We thus focus onyp(n) = ya,p(nTs/2)
where we remind thatp stands for the polarizationp. In
order to ”work” at the symbol rate, we stack two consecutive
received samples into a bivariate process as follows

yp(n) = [ya,p(nTs), ya,p(nTs + Ts/2)]T. (3)

Before going further let us introduce the global filter:
ha,p,q(t) = ca,p,q(t) ⋆ ga(t). We assume that the dispersion
time of the channel is roughly upper-bounded by(K − 1)Ts

whatever the considered polarizations. The discrete-timere-
ceived signal for the polarizationp takes the following form

yp(n) = e2iπϕ̃1n

K−1
∑

k=0

hp,1(k)s1(n − k)

+ e2iπϕ̃1n

K−1
∑

k=0

hp,2(k)s2(n − k)

+ bp(n) (4)
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wherehp,q(n) = [ha,p,q(nTs), ha,p,q(nTs+Ts/2)]T, bp(n) =
[ba,p(nTs), ba,p(nTs + Ts/2)]T, and ϕ̃1 = δfaTs/2 is one
discrete-time frequency offset. Notice, in our model, the
constant phase offset is encompassed in the channel impulse
response and the laser phase error is neglected. Moreover,
we will assume that the channel impulse response and the
frequency offset is static over the entire observation window.

The aim of the paper is to retrieve the transmitted symbols
sp(n) only given the noisy observationsyp(n) and the signal
model (Eq. (4)). To reach our goal, we will proceed into three
steps as shown in Fig. 1:

• the blind ISI/PDI compensation through the evaluation of
a MIMO linear fractionally spaced equalizer (FSE). By
construction, our blind equalizer is robust to the presence
of the frequency offset.

• the blind frequency offset (FO) estimation through the
periodogram maximization. We will see that our estimator
performs better if it relies on the post-equalized signal
instead of on the pre-equalized signal.

• the blind constant phase estimation. After ISI/PDI and
frequency compensations, the constellation may be still
rotated by a constant phase since the blind equalizer has
phase ambiguity. Therefore we still need to implement
constant phase compensation. Adaptive version of this
phase estimator will be then able to manage the presence
of the laser phase noise.

.
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Fig. 1. Receiver structure

III. B LOCK-WISE BLIND EQUALIZATION

In order to compensate for the channel impulse response,
we introduce aTs/2-fractionally spaced equalizer. Letzp(n)

be the scalar output of the FSE associated with the polarization
p. We have

zp(n) =

L−1
∑

k=0

(

wp,1(k)y1(n − k) + wp,2(k)y2(n − k)
)

(5)

where{wp,q(k)}k=0,··· ,L is the filter of lengthL (notice that
each coefficientwp,q(k) is a1×2 vector,i.e., corresponds to a
filter with 2 inputs and 1 output) between the input polarization
p and the output polarizationq. The overline stands for the
complex conjugation.

Eq. (5) can be re-shaped easily by means of matrices as
follows

zp(n) = wH
p y(L)(n) (6)

where
• wp = [wp,1(0), · · · ,wp,1(L−1),wp,2(0), · · · ,wp,2(L−

1)]T,
• y(L)(n) = [y1(n)T,y1(n − 1)T, · · · ,y1(n − L +

1)T,y2(n)T,y2(n − 1)T, · · · ,y2(n − L + 1)T]T.
• the superscript(.)H stands for conjugate transposition.

Notice that the filterswp,q have2L coefficients as the received
signals have been sampled at twice the baud rate.

We now would like to exhibit the filterwp enabling us to
havezp(n) close tosp(n). To do that, it is relevant to use the
CMA criterion defined as the minimization of the following
cost function [26].

Jp(wp) = E[Jp,n(wp)] (7)

with
• Jp,n(wp) = (|zp(n)|2 − R)2, and
• R = E[|sp(n)|4]/E[|sp(n)|2].
Here start the main difference with the usual approach

employed in coherent optical communications so far. Indeed,
instead of implementing an adaptive version of this cost
function, we decide to estimate the mathematical expectation
of Eq. (7) given an observation block. Therefore we propose
to minimize the following estimated cost function

Ĵp,N (wp) =
1

N

N−1
∑

n=0

Jp,n(wp) (8)

where N is the number of available quadrivariate samples
[y1(n)T,y2(n)T]. Our purpose boils down to find the min-
imum of wp 7→ Ĵp,N (wp). To do that, we suggest to use the
(non-stochastic) gradient descent algorithm with optimalstep
size. Ifwℓ

p is the estimated equalizer at theℓ-th iteration (note
that the data block is the same for each iteration), we have the
following update relation [27][28]

wℓ+1
p = wℓ

p − µℓ∆ℓ (9)

with

∆ℓ =
∂Ĵp,N(w)

∂w

∣

∣

∣

∣

∣

w
ℓ
p

.

One can check that

∆ℓ =
1

N

N−1
∑

n=0

(|zp(n)|2 − R)zp(n)y(L)(n) (10)
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wherezp(n) is calculated by insertingwℓ
p into Eq. (6).

In order to find the optimal step sizeµℓ at theℓ-th iteration,
we minimize the estimated cost function with respect toµℓ,
i.e.,

µℓ = argmin
µ

Ĵp,N (wℓ
p − µ∆ℓ). (11)

The derivative ofµ 7→ Ĵp,N (wℓ
p−µ∆ℓ) is the following third-

order polynomial function [27][28]

P ℓ(µ) = pℓ
3µ

3 + pℓ
2µ

2 + pℓ
1µ + pℓ

0 (12)

where

pℓ
3 =

1

N

N−1
∑

n=0

a2
n,

pℓ
2 =

1

N

N−1
∑

n=0

anbn,

pℓ
1 =

1

N

N−1
∑

n=0

(2anbn + b2
n),

pℓ
0 =

1

N

N−1
∑

n=0

bncn

with an = |zp(n)|2, bn = −2ℜ(zp(n)δ
ℓ

n), cn = (|zp(n)|2−R)
andδℓ

n = (∆ℓ)Hy(L)(n).
Thanks to Eq. (12), we obtain in closed-form the roots

of polynomial P ℓ(.) and the real-valued root providing the
minimum value ofµ 7→ Ĵp,N(wℓ

p −µ∆ℓ) will be the selected
step size at theℓ-th iteration. Finally, the architecture of the
proposed blockwise equalizer is summarized in Fig. 2.

.
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Fig. 2. Structure of the proposed block-wise equalizer

Obviously the same derivations have to be done for the
polarizationq. Here we decide arbitrary to treat the ISI/PDI
compensation onzp(n) and zq(n) separately which implies
the minimization of the following both cost functionsJp

and Jq. An alternative way is possible by minimizing the
mixed functionJp + Jq. After extensive simulations, we have
remarked that such an approach leads to similar results and
thus is omitted hereafter. The block-wise approach has been

introduced here by minimizing the CMA criterion. It is clear
that this block-wise approach can be mimicked for other
criteria, such as, the Decision-Directed (DD). For example, the
DD is very useful when the blind compensation has converged
in order either to track slight channel modification and to
improve the estimation quality.

For instance, the block-wise DD equalizer carried out with
the (non-stochastic) gradient algorithm using optimal step size
is very simple to implement since we are able to exhibit
closed-form expression for the optimal step size. Indeed, we
have

∆ℓ
DD =

1

N

N−1
∑

n=0

(zp(n) − ŝp(n))y(L)(n) (13)

whereŝp(n) is the current decision on the symbolsp(n). Then
minimizing the functionµ 7→ Ĵp,N,DD(wℓ

p − µ∆ℓ
DD) leads to

µℓ
DD =

∑N−1
n=0 ℜ{δℓ

n,DD(zp(n) − ŝp(n))}

2
∑N−1

n=0 |δℓ
n,DD|

2
(14)

with δℓ
n,DD = (∆ℓ

DD)Hy(L)(n).
We now check that the complexity of the blockwise ap-

proaches is kept to reasonable values. In Table 1, we put
the number of flops (complex multiplications) required for
various algorithms to reach the same BER performance (in
the simulation, the target-BER was fixed to2.10−3 without
channel coding technique). The equalizer length is fixed to
L = 3 (i.e. the equalizer has6 taps at twice baud rate). The
considered algorithms are listed below:

• A-CMA: the standard Adaptive CMA.
• AN-CMA: the Adaptive CMA with Newton principle

based step-size [17].
• BF-CMA: the block-wise CMA with fixed step-size (here,

the step-size isµ = 0.02 which is a standard value).
• BO-CMA: optimal step-size block-wise CMA.

As the number of real multiplications, divisions, additions
and subtractions are negligible, and as the extraction of the
third-order degree polynomial roots for the BO-CMA is also
negligible, we have neglected these operations in the calcu-
lation of the computational load. Moreover, the optimal step-
size associated withJ1(.) can be taken almost identical to
the optimal step-size associated withJ2(.). Consequently, we
only compute the polynomial once per iteration (either on
J1(.) or on J2(.)). If assuming a frame of 10000 symbols,
we have a complexity of 52flops/symbol for the A-CMA and
of 230flops/symbol for the BO-CMA (by considering that the
equalizer obtained with the BO-CMA during the first block of
length 1000 of the frame is applied on the remainder of the
frame).

We remark that the BF-CMA (resp. BO-CMA) is only
third times (resp. fifth times) more complex than the A-CMA
but uses a much smaller set of samples. At the expense of
a higher (but not unreasonable) complexity, the block-wise
approaches thus converge with few samples and are especially
well-adapted for burst mode transmission. Moreover the block-
wise approaches are less complex than the Newton-based step-
size adaptive CMA and converge much faster.
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Approach Adaptive Block (N = 1000)
Algorithm A-CMA [14] AN-CMA [17] BF-CMA BO-CMA

Update equation cost (per iteration and polarization) 2(4L + 1) 80L2 + 8L + 5 2N(4L + 1) 2N(4L + 1)
Polynomial evaluation cost (per iteration) - - - 4N(3L + 1) + 4L

# iterations 10000 6000 40 25
Total Flops (×103) 520 8988 2080 2300

TABLE I
COMPLEXITY FOR VARIOUS CMA.

IV. B LOCK-WISE FREQUENCY OFFSET ESTIMATION

Thanks to the previous section, we can now assume that
ISI/PDI perfectly removed,i.e., the (residual) CD and the
PMD can be omitted. Therefore the (baud-rate) output of the
equalizer on polarizationp, already denoted byzp(n), can be
written as follows

zp(n) = sp(n)e2iπ(ϕ0,p+nϕ1) + b′p(n) (15)

where it remains two drawbacks:

• ϕ1 = δfaTs is the discrete-time (baud-rate) frequency
offset. Notice that the frequency offset is independent of
the polarization state of the received PolMux signals.

• ϕ0,p corresponds to the constant phase. This constant
phase occurs since the blind equalizer is only able to
determine the filter up to a constant phase.

and where b′p(n) is the additive zero-mean circularly-
symmetric complex-valued Gaussian noise.

The construction of relevant block-wise blind estimators for
the frequency offset in the context of either PSK or QAM
modulations can be done by using the unique framework of the
non-circularity [29], [30]. Indeed, due to rotation symmetry,
it is well-known that for M-PSK, the termE[sp(n)Q] 6= 0
with Q = M . For M-QAM, we haveE[sp(n)Q] 6= 0 with
Q = 4. Then one can writezp(n)Q as E[zp(n)Q] + ep(n)
where ep(n) is a zero-mean process that can be viewed as
disturbing noise. Moreover as the noiseb′p(n) is a circularly-
symmetric Gaussian noise, we have that

E[zp(n)Q] = E[sp(n)Q]e2iπQϕ1 .

Consequently, we get

zQ
p (n) = Ape

2iπQ(ϕ0,p+nϕ1) + ep(n) (16)

whereAp = E[sQ
p (k)] 6= 0 is a constant amplitude. The most

important thing now is to remark thatzQ
p (n) is actually a

constant-amplitude complex exponential with frequencyQϕ1

disturbed by a zero-mean additive noise. One can thus deduce
the following frequency offset estimator based on the maxi-
mization of the periodogram ofzQ

p (n).

ϕ̂1,N =
1

Q
arg max

ϕ∈[− 1

2
, 1

2
)
(f1(ϕ) + f2(ϕ)) (17)

where

fp(ϕ) =

∣

∣

∣

∣

∣

1

N

N−1
∑

n=0

zp(n)Qe−2iπϕn

∣

∣

∣

∣

∣

2

(18)

with N the number of available samples.

When PSK is encountered, our algorithm is a natural
extension of the so-called Viterbi-Viterbi algorithm [31], [32]
by combining linearly the periodogram obtained on each
polarization. When QAM is encountered, our algorithm is
also a natural extension of an existing algorithm [30]. Notice
that even if the same framework enables us to treat PSK
and QAM together, the performance of these algorithms are
constellation-dependent. Actually, PSK works better since
E[sp(n)Q] = sQ

p (n) whereas, for QAM,E[sp(n)Q] 6= sQ
p (n)

[33].
The main issue now concerns the evaluation of the maxi-

mum in Eq. (17). Actually, in the ”optical communications”
literature, the maximization is done through the computation
of a discrete-frequency spectrum (FFT). This FFT either has
N points or has been zero-padded withαN points (α > 1 is
fixed once). Thanks to [33], the Mean Square Error (MSE) on
the frequency offset decreases as1/N2 for such algorithms
implementation. As M-QAM is more sensitive to frequency
offset, such MSE decreasing trend is not enough and more
accurate estimator is required. Therefore we here propose to
maximize the periodogram in different way. We compute the
maximization of periodogram into two steps as follows

1) a coarse step which detects the maximum magnitude
peak which should be located around the true frequency
offset. This is carried out via a Fast Fourier Transform
(FFT) of sizeN (N-FFT).

2) a fine step which inspects the cost function around
the peak detected by the coarse step. This step may
be implemented by a gradient-descent algorithm or the
Newton algorithm [33].

Since [33], we know that the MSE associated with the algo-
rithm carrying out the two steps decreases as1/N3 and thus is
significantly more accurate than the FFT based maximization.

In the second step, a Newton based gradient-descent algo-
rithm is used, and the update equation is as follows

ϕℓ+1
1 = ϕℓ

1 + µ
f ′

1(ϕ
ℓ
1) + f ′

2(ϕ
ℓ
1)

|f ′′

1 (ϕℓ
1) + f ′′

2 (ϕℓ
1)|

with f ′

p(ϕ) = ∂fp(ϕ)/∂ϕ andf ′′

p (ϕ) = ∂2fp(ϕ)/∂ϕ2.
As a conclusion, while the two-steps based maximization

has been already used in ”wireless communications” literature,
the proposition of combining two periodograms of both ways
(i.e. two polarizations in optical context or two antennas in
wireless context) is new.

V. CONSTANT PHASE ESTIMATION

Thanks to previous sections, one can now assume that
there is no more ISI/PDI and even no more frequency offset.
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Therefore, the signal may be written as follows

vp(n) = sp(n)e2iπϕ0,p + b′′p(n) (19)

where b′′p(n) is still an additive zero-mean circularly-
symmetric complex-valued Gaussian noise.

The phase can be estimated in blindly manner via the block-
wise Viterbi-Viterbi algorithm (for PSK) [31], [34] and Fourth-
Power algorithm (for QAM) [30]. Thus, we have

ϕ̂0,p,N =
1

Q
∠

(

1

N

N−1
∑

n=0

vp(n)Q

)

(20)

where∠(.) stands for the angle of complex-valued number.
Notice that this previous algorithm can be improved, if nec-
essary, by applying another (but more complicate) non-linear
function tovp(n) depending on the OSNR value [29].

Once the blind phase estimator has worked, one can move
to Decision-Directed phase estimator which is given by [32]

ϕ̂0,p,N,DD = ∠

(

1

N

N−1
∑

n=0

vp(n)ŝp(n)

)

. (21)

These estimators are already widely used by the ”optical
communications” community (see [14] and references therein).

In order to track the phase variation due to laser phase noise,
adaptive versions of these block-wise algorithms described in
Eqs (20)-(21) have to be implemented

ϕ̂0,p,n+1 = ϕ̂0,p,n + µblindℑ[vp(n)Qe−2iπQϕ̂0,p,n ] (22)

whereµblind is the step size, and

ϕ̂0,p,n+1,DD = ϕ̂0,p,n,DD + µDDℑ[vp(n)ŝp(n)e−2iπϕ̂0,p,n,DD ]
(23)

whereµDD is the step-size parameter as done in [16], [35].

VI. SIMULATION RESULTS AND DISCUSSION

This section is organized as follows: in Section VI-A, we
introduce the simulation set-up and especially the fiber model.
In Section VI-B, we focus on the block CMA equalizer
performance when the channel is either static or time-varying.
In Section VI-C, we inspect the performance of the proposed
frequency offset estimator.

A. Simulation set-up

Our simulation setup of the optical coherent system is as
follows: a 112Gbit/s transmission is achieved by multiplexing
both polarizations with 16-QAM modulated signals which
corresponds to 14Gbaud transmission per polarization (which
leads toTs = 71ps). The transmit shaping filter is a square
root raised cosine filter with a roll-off factor equal to 1. This
filter is used to reduce the bandwidth of the QAM pulse since
rectangular pulses produce very large frequency spectrum.The
ASE noise is loaded at the receiver before a 50GHz optical
filter. A matched filter associated with the shaping filter is
applied at the receiver side. The continuous received electrical
signal is sampled at a rate of 2 samples per symbol. A fifth-
order Bessel low-pass filter with a 3dB bandwidth equal to
80% of the symbol rate was used as anti-aliasing filter.

In this section, we only simulate the main linear channel
impairments in fiber-optic transmission: CD and PMD. Let
C̃(ω) =

∫

Ca(t)eiωtdt be the Fourier transform of the
continuous-time channel impulse response. We have

C̃(ω) = C̃CD(ω)C̃PMD(ω)

where

• the frequency channel response for theCD phenomenon
is given by

C̃CD(ω) =





ei
λ2ω2DLf

4πc 0

0 ei
λ2ω2DLf

4πc



 . (24)

with the fiber lengthLf , the wavelengthλ, the dispersion
parameterD at λ, and the light velocityc.

• the frequency channel response for thePMD phe-
nomenon is given [36], [37]

C̃PMD(ω) = RθDτDGD,φ(ω)R−1
θ (25)

with the following birefringence diagonal matrix

DτDGD,φ(ω) =

[

ei(ω
τDGD

2
+φ) 0

0 e−i(ω
τDGD

2
+φ)

]

(26)
associated with the differential group delay between the
principal states of polarizations (PSP)τDGD. Moreover,
we have

Rθ =

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]

(27)

which represents the rotation of the reference polarization
axis of the fiber’s PSPs.

As the singularity issue is out of the scope of this paper, we
decide to putφ = 0. Indeed, such parameter choices enable
us to avoid the singularity issue. Notice that there exists a
few algorithms to handle the singularity issue in the literature
[38], [39] which can be slightly modified in order to once
again implement them in a block-wise manner.

Finally no phase noise was considered throughout this
section devoted to simulation except in Fig. 13.

B. Block equalization performance

In this subsection, we firstly focus on the static channel
impulse response along the entire observation window in the
next paragraph. The channel is simulated as described in
Section VI-A.

1) Static channel case: Except otherwise stated, in order
to evaluate the performance of our algorithms, we considered
the following transmission channel: the chromatic dispersion
DLf = 1000ps/nm (such aDLf value corresponds to a
standard residual CD), the DGD delayτDGD = 50ps, and
the polarization rotationθ = π/4. The OSNR (in0.1nm) is
set to20dB. The equalizer length is fixed toL = 3.

We test our block-wise CMA algorithms by initializing each
equalizer filterw1 andw2 with the filterw0 whose coefficients
are 0 except the central one equal to1. These equalizer
filters are initialized withw0. Then, inside each block, the
coefficients of these equalizer filters are updated according
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to Eq. (9). When we stop to update the filter, we apply the
obtained equalizer filter to the entire considered block. The
BER point of any figure is obtained by averaging150 block
trials.

In Fig. 3, we depict the BER of the BO-CMA versus the
number of iterations for various block sizesN . The algorithm
convergence is mostly obtained for a number of iterations
larger than 25. We are able to obtain a BER equal to10−3

(so just below the FEC limit) when the block sizes are larger
than 1000. We obviously remark that the steady state of the
BO-CMA is better for large block sizes.
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Fig. 3. BER of the BO-CMA versus the number of iterations for various
block sizesN (OSNR=20dB, DLf = 1000ps/nm,τDGD = 50ps,θ = π/4).

In Fig. 4, we then compare the convergence speed for the
BO-CMA and the BF-CMA versus the number of iterations
whenN = 1000. The BO-CMA is the fastest one since only
25 iterations were required to obtain a BER equal to10−3

whereas40 iterations are needed for the BF-CMA. However
their steady-states are similar.

For the sake of clarity and simplicity, we now only display
performance associated with the BO-CMA. So far, we only
compare block-wise CMA algorithms to each others. To
inspect the real usefulness of block-wise CMA algorithms,
we will compare them (actually, only the BO-CMA) to the
well-known adaptive CMA (A-CMA). In Fig. 5, we plot
the BER of the BO-CMA (with50 iterations inside each
block) and the A-CMA (with fixed step-size equal to10−3)
versus the observation window length. Notice that, for the BO-
CMA, the observation window length is identical to the block
size N , whereas, for the A-CMA, the observation window
length is identical to the number of iterations. Both algorithms
are initialized withw0 at the beginning of the observation
window. We show that the BO-CMA significantly improves
the convergence speed since only1000 symbols are necessary
to reach the usual target BER (around10−3) instead of10000
for the A-CMA. Notice that the values used for Table I have
been chosen according to this Fig. 5.

Until now, we only looked the performance for one block
transmission. Such an approach is of interest when we would
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Fig. 4. BER of the BO-CMA and the BF-CMA versus the number of
iterations (N = 1000, OSNR=20dB, DLf = 1000ps/nm,τDGD = 50ps,
θ = π/4).
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Fig. 5. BER of the BO-CMA and the A-CMA versus the observationwindow
length (OSNR=20dB, DLf = 1000ps/nm,τDGD = 50ps, θ = π/4). For
the BO-CMA, the observation window length is identical to the block size
N . For A-CMA and AN-CMA, the observation window length is identical to
the number of iterations.

like to analyze a transmission start. In the context of successive
block transmission, it is clear that we have to look at the
behavior of these algorithms when the initialization of thek-
th block is provided by the equalizer filters obtained in the(k−
1)-th block. Hereafter, the channel realization is still assumed
to be the same whatever the considered block.

In Fig. 6, we plot the number of iterations versus the
position of the block within the transmission flow. As the
channel is static, we see that the number of iterations decreases
with respect to the block number. It makes sense since at the
beginning of the transmission (corresponding to a transition
phase), the algorithm has to learn more about the channel
compared to the middle and to the end of the transmission.
At the end of the transmission, the algorithm is already
well-initialized and just has to update slightly the equalizer
coefficients. So, the more block number is high, the less
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iteration number is needed. For a block sizeN = 1000, less
than10 iterations is necessary after the transition phase.
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Fig. 6. The number of iterations versus the block number for the BO-CMA,
(OSNR=20dB, DLf = 1000ps/nm, τDGD = 50ps, θ = π/4) when the
proposed stopping condition is applied on the BO-CMA.

As the number of iterations depends on the block number,
on the channel realization, it is worth developing a stopping
criterion different from the number of iterations. We propose
to stop the update when the term

αℓ
p =

||wℓ+1
p − wℓ

p||

||wℓ
p||

(28)

is below a certain threshold. It is clear that if the steady-state is
almost reached, the termαℓ

p will be very small. After extensive
simulations not reported in this paper, we found that a target
BER of 10−3 is usually reached whenαℓ

p is around5.10−3.
Therefore, concerning the BO-CMA, we fix the threshold for
αℓ

p to 5.10−3. To be sure to stop the algorithm (even if it
does not converge) , we add a second constraint by fixing the
maximum number of iterations to be equal to40.

In Fig. 7, we plot the BER for the BO-CMA versus the
block sizeN when the BO-CMA applied on thek-th block
is initialized by the equalizer filters provided by the(k − 1)-
th block and when the aforementioned stopping condition is
considered. We have observed that when the block size is too
small (e.g., N = 100), the performance are poor. The reason
is that the necessary number of iterations is then higher than
40. As soon asN is large enough, the stopping condition is
well-designed and the performance in terms of BER are really
good.

2) Non-static channel case: In this paragraph, we would
like to analyze the ability of the BO-CMA to track channel
time-variation. For the sake of simplicity, we only consider
infinite polarization rotation modelled by the Jones matrix.
Consequently, the residual CD is assumed to be null, and
the PMD only gives rise to one time-varying rotation. The
polarization mixing is thus instantaneous and does not lead
to inter-symbol interference (ISI) but just to inter-polarization
interference (PDI). The channel impulse response at timet0,
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Fig. 7. BER versus the block sizeN for the BO-CMA (OSNR=20dB,
DLf = 1000ps/nm,τDGD = 50ps, θ = π/4).

denoted byt 7→ Ca,t0(t), can be written as [14]

Ca,t0(t) =

[

cos(Ωt0) sin(Ωt0)
− sin(Ωt0) cos(Ωt0)

]

δ(t) (29)

whereΩ is the rotation speed in rad/s.
In Fig. 8, the BER for the BO-CMA and the A-CMA is

numerically evaluated versus the rotation speedΩ. We inspect
several values of the block sizeN in the case of the BO-
CMA. We remind that the BO-CMA algorithm for thek-th
block is initialized with the equalizer filters provided by the
(k− 1)-th block, and the stopping condition onαℓ

p is applied.
The tracking ability is better for small block sizes. Moreover
the BO-CMA has better tracking ability than the A-CMA. For
example, forN = 1000, a target BER of10−3 is reached up
to Ω = 3Mrad/s while the A-CMA is unable to track variation
aboveΩ = 1Mrad/s. The steady-state is better for larger block
sizes and for low rotation speed of polarization. Notice that
the steady-states are different from those offered in previous
figures since the channel is built differently and is easier for
small equalizer lengths due to the absence of inter-symbol
interference. Besides, the smaller the block size is, the better
the track ability is. As a conclusion, the block-wise CMA
approach is an very promising solution since it needs smaller
observation window and it offers better tracking ability.

C. Frequency offset estimation performance

In order to evaluate the performances of the proposed block-
wise frequency offset (FO) estimator, we used the above
described model to generate the PolMux 16-QAM signal.
Except otherwise stated, we simulate a channel without CD
and PMD (as explained in Section IV, we have assumed a
perfect channel compensation). We then added FO randomly
chosen between 0 and 3.5GHz. The FO is estimated using one
of the 4 following methods:

• Coarse step based on one polarization,
• Coarse step based on both polarizations,
• Coarse and fine steps based on one polarization,
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Fig. 8. BER of the BO-CMA (with different block sizesN ) and the A-CMA
versus the rotation speedΩ of the polarization

• Coarse and fine steps based on both polarizations.

The mean square error (MSE) is defined asE[|ϕ1 − ϕ̂1,N |2].
In Fig. 9, we plot the MSE when the FFT size (equivalently

the observation window) isN = 1024. The most important
gain in performance is due to the use of the fine step.
For instance, a MSE below10−11 (corresponding to some
hundreds of kHz of residual FO) can be reached by using both
polarizations and both steps. The outlier effect observed for
low OSNR is reduced thanks to the use of both polarizations
and the fine step. In Fig. 10, we plot the MSE versusN when
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Fig. 9. MSE versus OSNR (N = 1024).

OSNR=18dB. One can easily check that the MSE decays as
1/N2 for the methods based on the coarse step and1/N3 for
those based on both the coarse and fine steps.

In Fig. 11, we plot the BER versus the true value of the
frequency offsetδfa. The extrema for the x-label in Fig. 11 are
chosen such that4ϕ1 correspond to two adjacent FFT points
k0/N and(k0 + 1)/N . Thanks to the fine step, the BER is is
insensitive to the location of the true frequency offset andis
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Fig. 10. MSE versusN (OSNR=18dB).

below the standard target BER of10−3. In contrast, using the
methods only based on the coarse step often leads to a BER
much higher than the target BER.
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Fig. 11. BER versus the true frequency offset value for different methods
(N = 1024, OSNR=18dB). For example, the gap inδfa between two FFT
points is here equal to3.439MHz.

Now, we would like to analyze the robustness of the pro-
posed FO estimator against the fiber channel impulse response
and especially against the birefringence,i.e., the PMD. For the
sake of simplicity, we consider the following channel filter
[38], [37]

C̃a(ω) = RθD0,φ(ω).

We thus omit CD sinceτDGD = 0. In Fig. 12, we plot
different MSE for FO estimation versusφ andθ defined in Eqs.
(26)-(27). For each channel realization, the MSE is averaged
over 100 different values of FO randomly chosen between
0 and 3.5GHz. We inspect four cases: i) one polarization
based estimator implemented before CMA equalization, ii)
both polarizations based estimator implemented before CMA
equalization, iii) one polarization based estimator implemented
after CMA equalization, iv) both polarizations based estimator
implemented after CMA equalization. Notice that in order to
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avoid the singularity issue, we implement the CMA proposed
in [38] which handles the singularity issue4. When the FO
estimator is implemented before PMD compensation, we fail
to estimate correctly the FO whenθ is between 30◦ and 60◦.
The failure probability is stronger when only one polarization
is used as already seen for the outlier effect in Fig. 9. In
contrast, the failure probability totally vanishes when the
FO estimator is implemented after the PMD compensation.
Therefore, we advocate to equalize the received signal before
to estimate the FO which confirms the receiver structure
described in Fig. 1.
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Fig. 12. log10(MSE) (N = 1024, OSNR=18dB). i) one polarization before
equalization, ii) both polarizations before equalization, iii) one polarization
after equalization, and iv) both polarizations after equalization (when FO is
chosen randomly between0 and3.5GHz).

Finally, we would like to inspect the impact of the phase
noise on our entire receiver structure (BO-CMA, the proposed
frequency offset estimator). We just proceed into two steps
for handling the phase estimation in Fig. 13 . The first step
consists in operating the estimator given by Eq. (20) with
N = 1000 to counter-act the common phase. The second step
will correct locally the phase noise by implementing the DD
estimator given by Eq. (23). For typical value of phase noise
∆νTs = 10−4 [16], the OSNR penalty is1dB. Notice that
more sophisticated techniques developed in [40], [41] can be
also considered.

VII. E XPERIMENTAL RESULTS

We will validate the proposed block-based algorithms
through experimental data. This enables us to investigate the
effects that we did not take into account, such as, non-linear
effects or non-ideal signal generation. The experimental data
have been obtained by using the testbed of theHeinrich
Hertz Institute (HHI) in Berlin. In Section VII-A, we describe
the experimental set-up. In Section VII-B, the experimental
performance of the BO-CMA algorithm are analyzed and
compared to the A-CMA for a PolMux 8PSK transmission.

A. Experimental set-up

The experimental set-up is based on an optical 8PSK trans-
mitter at10GBaud corresponding to a bit rate of30Gbit/s. The

4Notice that we implement the adaptive version of this CMA as in [38],
and an adaptation to a block-wise version would be straightforward.
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Fig. 13. BER versus OSNR (N = 1000, DLf = 1000ps/nm,τDGD =
50ps, θ = π/4). The theoretical curve corresponds to 16QAM on AWGN
channel.

optical modulated signal is then multiplexed in polarization by
using a polarization beam splitter (PBS) and a polarization
beam combiner (PBC). A delay line is inserted into one
out of the two branches in order to decorrelate the two
multiplexed streams. The total bit rate of the generated PolMux
8PSK signal is thus60Gbits/s. The transmission is performed
through a recirculating loop which consists of one span of
80km of Standard Single Mode Fiber (SSMF) characterized
by a cumulative dispersion of1365ps/nm. The fiber loss is
compensated for after each loop by using an Erbium-doped-
fiber-amplifier (EDFA). A 5nm width filter is carried out
in order to remove the out of band amplified spontaneous
emission (ASE). A second EDFA is used to control the injected
power at the input of each span. At the receiver side, the
PolMux 8PSK signal is sent to a PBS whose outputs feed a90o

hybrid device for each polarization. The same external cavity
laser (ECL) is used for generating the 8PSK modulated signal
and is shared by the local oscillator for both polarizations
which implies that the frequency offset is zero5. The spectral
linewidth of the ECL is100kHz which leads to a no significant
phase noise level. The outputs of the two90o hybrid devices
are converted with four balanced photodiodes to generate
the I and Q components for each polarization. Finally, these
four signals are sampled by analog-to-digital converters at
50Gsamples/s which corresponds to5 samples per symbol.
The discrete-time data composed by750000 samples,i.e.,
150000 symbols, are stored and processed offline. More details
can be found in [42].

B. Performance

Except otherwise stated, we have considered a transmis-
sion over Lf = 800km, i.e., 10 loops without inline CD
compensation. The power at the input of each span was set
to −0.9dBm. The cumulative CD (equal to13650ps/nm for

5Consequently, the proposed frequency offset estimator is not tested with
experimental data.
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the 800km transmission) is partially compensated through a
finite impulse response filter of length512 [14], such as
the residual cumulative CD is1000ps/nm. On the one hand,
this corresponds to practical situation when the fiber length
is not perfectly known and, on the other hand, this enables
us to exhibit the impact of residual CD on the proposed
algorithms. The signal is then re-sampled in order to obtain
exactly 2 samples per symbol. The proposed BO-CMA is
finally used to compensate for the residual cumulative CD and
the polarization dependent effects. As described in Section II,
we compute aTs/2 FSE with L = 3, i.e., w1 and w2 have
12 complex taps each. Furthermore, we have OSNR=23.7dB.

In Fig. 14, we plot the BER versus the number of iterations
inside each block for different block sizesN . The BO-CMA
is initialized with w0 and the BER is obtained by averaging
over at least50 block observations. The target BER of10−3

is obtained with a reasonable number of iterations when data
blocks are larger than500. Unlike 16QAM (see Section VI),
the BO-CMA with very small block size (i.e., N = 100) offers
a higher steady-state BER. In 8PSK, the A-CMA (not plotted
here) still needs tens of thousand samples to converge.
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Fig. 14. BER versus the number of iterations for variousN . (8PSK,
OSNR=23.7dB, residual CD of1000ps/nm, transmission distanceLf =
800km.)

In Fig. 15, we plot the BER versus the launched power
at the input of each span for different block sizesN in
order to study the influence of the intra-channel non-linear
impairments. Along the data flow, the BO-CMA applied on
the k-th block (of sizeN ) is initialized with the equalizer
provided by the(k − 1)-th block (of sizeN ). The equalizer
provided by the BO-CMA (after a certain number of iterations)
on thek-th block is only used on thek-th block. The number
of iterations for each block is given by the stopping condition
as explained in Section VI-B. Constant phase are estimated by
using the algorithms described in Section V. Notice that the
block size of the constant phase estimator has been fixed to
10 in order to be robust to the potential phase noise. As soon
as the block sizeN is larger than500, the steady-state of the
BO-CMA is slightly better than that of the A-CMA (computed

with µ = 10−3). Moreover, the BO-CMA is as robust to the
non-linear effect as the A-CMA.
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Fig. 15. BER versus the power at the input of the SSMF for various N .
(8PSK, residual CD of1000ps/nm, transmission distanceLf = 800km.)

In Fig. 16, we display the BER versus the residual CD.
For the BO-CMA, we fixN = 1000. In order to handle high
residual CD, the equalizer length is now increased toL = 6.
We observe that the BO-CMA ensures slightly lower BER
than the A-CMA.
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Fig. 16. BER versus the residual CD (8PSK, OSNR=23.7dB, transmission
distanceLf = 800km.)

Even if the steady-state performance between the BO-CMA
and the A-CMA are very close, we remind that the BO-CMA
converges much faster than the A-CMA and thus is very well-
adapted for bursty traffic mode as well as circuit mode.

VIII. C ONCLUSION

The performance of block-wise CMA equalizer and fre-
quency offset estimator are investigated. We showed that the
observation window size required to converge for block-wise
CMA approach is divided by∼10 at the expense of an increase
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of the computational complexity by a factor∼ 4. Moreover,
the block-wise frequency offset estimation algorithm ensures
low residual frequency offset. Finally, the block-wise digital
signal processing enables us to relax the real-time implemen-
tation constraints on digital circuits running at some hundred
of MHz and to offer a data throughput at a rate of tens of
Gbaud. Those performances are validated through simulations
and also through experimental data using a60Gbit/s coherent
optical system based on polarization multiplexing and RZ-
8PSK modulation. Therefore the proposed algorithms are
strong candidates for the next generation optical transmission
systems.
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