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Abstract—This paper introduces a family of blind feedforward
nonlinear least-squares (NLS) estimators for joint estimation of
the carrier phase and frequency offset of general quadrature
amplitude modulated (QAM) transmissions. As an extension
of the Viterbi and Viterbi (V&V) estimator, a constellation-de-
pendent optimal matched nonlinear estimator is derived such
that its asymptotic (large sample) variance is minimized. A
class of conventional monomial estimators is also proposed. The
asymptotic performance of these estimators is established in
closed-form expression and compared with the Cramér–Rao
lower bound. A practical implementation of the optimal matched
estimator, which is a computationally efficient approximation of
the latter and exhibits negligible performance loss, is also derived.
Finally, computer simulations are presented to corroborate the
theoretical performance analysis and indicate that the proposed
optimal matched nonlinear estimator improves significantly the
performance of the classic fourth-power estimator.

Index Terms—Blind estimation, carrier phase, frequency
offset, quadrature amplitude modulated (QAM) constellations,
synchronization.

I. INTRODUCTION

QUADRATURE amplitude modulation (QAM) is a highly
bandwidth efficient transmission technique for digital
communications. Currently, large QAMs are widely used

in throughput efficient high-speed communication applications
such as digital television and time-division multiple access
systems. One of the problems associated with the use of
large QAM modulations is that of carrier recovery, which for
efficiency reasons must be performed without using preambles
[8], [18], [20], i.e., in a blind or nondata-aided (NDA) mode.

Carrier recovery involves the acquisition of both the carrier
frequency and phase. Recently, assuming that the frequency re-
covery has already been achieved, a number of blind feedforward
phase estimators for square and cross-QAM modulations were
reported in [3]–[8], [12, pp. 281–282], and [15], and analyzed
in [18] and [20]. These estimators exploit the angle information
contained in the fourth-order or higher order statistics of the
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received signal. Reference [20] has shown that the seemingly
different estimators [3], [12, pp. 281–282], and [15] are equiva-
lent to the standard fourth-power estimator, while the estimator
[5] exhibits a larger asymptotic (large sample) variance than the
former class [3], [15]. A so-called reduced-constellation (RC)
fourth-power algorithm, which slightly improves the perfor-
mance of the classic fourth-power estimator, is proposed in [8].
However, it is well-known that both the RC and the standard
fourth-power estimators exhibit relatively poor performance
in the case of cross-QAM transmissions [8]. Also, [8] intro-
duces two signal-to-noise ratio (SNR)-dependent methods that
outperform the performance of standard and RC fourth-power
estimators in the case of cross- and square-QAM constellations,
at moderate to high SNR levels, respectively. However, in the
case of square-QAM constellations and low SNRs, the per-
formance of these two methods is inferior to the fourth-power
algorithm [8].

This paper proposes a family of NDA feedforward nonlinear
least-squares (NLS) estimators for joint phase and frequency
offset estimation of carriers that are fully QAM-modulated.
The proposed NLS estimators represent a generalized form of
a low SNR-approximation of the maximum likelihood (ML)
estimator, that was originally proposed by Viterbi and Viterbi
(V&V) as a blind carrier phase estimator for fully modulated
phase-shift keying (M-PSK) transmissions [16], [22]. This
carrier phase estimator is referred in the literature as the V&V
algorithm [12, p. 280]. Based on the V&V algorithm, Efstathiou
and Aghvami have introduced blind carrier phase and frequency
offset estimators for 16-QAM modulated transmissions [6],
[7], which are similar to the RC fourth-power algorithm in the
sense that they tend to emphasize the weight of the four corner
points in the signal constellation. Morelliet al.pointed out that
this solution was unsatisfactory with short bursts and proposed
a new blind scheme with superior performance to previous
methods [13]. However, it appears that it is not straightforward
to extend this algorithm to general QAM modulations that are
different from 16-QAM.

In this paper, we introduce optimal “matched” estimators as
well as computationally efficient approximate matched carrier
estimators for general square and cross-QAM modulations. The
proposed matched estimators are constellation-dependent and
are optimally designed such that their asymptotic variance is
minimized. The performance of these matched algorithms is
compared with the Cramér–Rao bound (CRB), calculated ac-
cording to [18], and shown that the optimal matched estimator
exhibits superior performance [smaller symbol error rate (SER)]
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with respect to the classic fourth-power estimator at any SNR
level, but significant improvements are observable especially at
medium and high SNRs. The proposed estimation techniques
represent a quite general and unifying framework to design blind
carrier synchronizers with improved performance. It appears
that some of the existing synchronizers [13], [19] may be ob-
tained as special cases of the proposed estimation framework.

The rest of this paper is organized as follows. In Section II,
the discrete-time channel model is described. Section III intro-
duces the family of blind NLS joint carrier phase and frequency
offset estimators for general square-QAM constellations. The
asymptotic performance of these estimators is established
in closed-form expression and exploited to develop optimal
matched nonlinear estimators that exhibit minimum variance.
A class of conventional monomial estimators is proposed
and their asymptotic performance established in closed-form
expression, too. This family of estimators is further extended
to general cross-QAM constellations in Section IV. Section V
presents a unifying approach for designing computationally
efficient approximations of the proposed optimal matched
estimator. In Section VI, simulation results are conducted
to confirm our theoretical analysis and show the superior
performance of the proposed optimal estimator. Finally, in
Section VII, conclusions are drawn and detailed mathematical
derivations of the proposed performance analysis are reported
in the appendixes.

II. PROBLEM FORMULATION

We consider a baseband QAM communication system where
the filtering is evenly split between transmitter and receiver so
that the overall channel satisfies the first Nyquist condition.
Sampling the receiver output at the right time instants yields1

(1)

where is the independently and identically dis-
tributed (i.i.d.) input M-QAM symbol stream with zero-mean
and unit variance ( ), denotes
the symbol period, is a zero-mean circular white
Gaussian noise process independent of and with variance

, and and stand for the unknown
carrier phase and frequency offset, respectively, which are
the parameters to be estimated based only on knowledge of
received samples . The SNR per symbol is defined
as .

Because the input QAM constellation has quadrant ()
symmetry, it follows that the estimates ofand present
four-fold ambiguities, which can be counteracted by applying
differential encoding. Without any loss of generality, we assume
that the unknown phaselies in the interval ( ) and

. The estimation approach that we will pursue con-
sists of exploiting a nonlinear transformation on the received
signal samples to remove the unwanted multiplicative
modulation-introduced effects due to the transmit random

1Notation := stands for “is defined as.”

symbols. It turns out that the resulting problem reduces to
the standard problem of estimating the phase parameters of
a constant amplitude harmonic embedded in additive noise,
for which standard NLS-type estimators can be developed and
their asymptotic variance can be established in closed-form
expression. The key element in deriving the optimal estimator
is to select the optimal nonlinear transformation so that the
estimator’s asymptotic variance is minimized.

III. ESTIMATORS FORSQUARE QAM CONSTELLATIONS

A. Matched Nonlinear Carrier Synchronizer

First, let us consider square-QAM constellations (i.e., with
sizes , ). With normalized energy,
takes a value from the set

with and

Represent in its polar form

(2)

and define the process via the nonlinear transformation

(3)

where is a real-valued nonnegative arbitrary nonlinear
function. We will show shortly that can be interpreted as a
constant amplitude harmonic embedded in additive noise, and
the unknown carrier phase can be extracted from the parameters
(phase/frequency) of this constant amplitude harmonic. It is
interesting to remark that the transformation (3) differs from the
class of nonlinear transformations introduced in [16] and [22].
This difference is due to the fact that all QAM constellations
exhibit quadrant symmetries which translate into nonzero
fourth-order moments ( ), and consequently
justify the special form of the exponential factor in (3).

Conditioned on the transmitted signal , is nor-
mally distributed with the probability density function (pdf)

. Throughout the
paper, the notation will stand for the pdf of certain random
variables (RVs). Due to (2), it follows that

(4)

where and denote the amplitude and phase angle
of , respectively. Based on (4), it is easy to infer that the
joint and marginal pdf of and take the expressions
shown in (5) and (6), at the bottom of the next page, where

,
, and stands for the zeroth-order modified

Bessel function of the first kind [1, eq. (9.6.16)]. Moreover,
since and are i.i.d. and mutually independent, based
on (1) and (2), it is not difficult to find that the joint pdf of
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the RVs , , , satisfies the following
factorization:

for (7)

Exploiting (5), some calculations, whose details are provided in
Appendix I, lead to the following relations:

(8)

(9)

where the amplitude is a real-valued constant which does not
depend on . Since and are i.i.d. and mutually inde-
pendent, from (7), it follows that is
wide sense stationary (WSS) i.i.d., too. Consequently

(10)

and can be viewed as a constant amplitude harmonic em-
bedded in additive WSS white noise. Note that, in general, the
WSS white noise process is neither Gaussian distributed
nor circular [17].

Let and be the trial
value of , and introduce the following NLS estimator (see, e.g.,
[2], [9], and [21]):

(11)

(12)

By equating to zero the gradient of , some simple algebra
calculations show that the NLS estimates of, , are
asymptotically equivalent to the following estimates (see, e.g.,
[9], [21]):

(13)

angle (14)

Note that the NLS estimates of the phase parameters,
, are decoupled from that of the amplitude[2].

From (13) and (14), it can be seen that the overall estimation
procedure includes two steps. First, a coarse estimate of the
frequency offset is determined efficiently by means of the
fast Fourier transform algorithm applied on the sequence,

which is generally zero-padded with a sufficiently large number
of zeros to achieve the precision provided by the asymptotic
CRB ( ). Then, a fine frequency offset estimate is
obtained by means of interpolation or using a gradient al-
gorithm. Finally, a closed-form estimate of the carrier phase
is obtained based on (14), which assumes knowledge of the
frequency estimate . It is well known that estimator (11) is
asymptotically unbiased and consistent [21]. If the distribution
of additive noise is approximated to be circular normal,
it turns out that the resulting NLS-estimator is asymptotically
efficient, in the sense that it achieves the performance of the
ML estimator [2], [9], and [21]. As the simulation experiments
illustrate, this approximation holds true for small-order QAM
constellations (e.g., quaternary PSK), and the departure from
circularity becomes more dominant for larger order QAM
constellations.

Following a quite standard procedure (see, e.g., [9], [11], and
[21]), one can derive closed-form expressions for the asymp-
totic variances of estimates, . These calculations are
established in the Appendix II and are summarized in the fol-
lowing theorem.

Theorem 1: The asymptotic variances of the NLS estimates
, in (11)–(14) are given by

(15)

(16)

(17)

and is defined in (9).
Some calculations in Appendix I show that, , and take

the following expressions:

(18)

(19)

(20)

where for , the following relations hold:

(21)

and .

(5)

(6)
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From the above expressions, one can observe that the asymp-
totic variances of , , are independent of the un-
known phase parametersand . It is of interest to compare
the asymptotic variances (15) with the CRB. In [18], the CRBs
for carrier phase and frequency offset estimates are derived for
fully QAM-modulated carriers, and with the notations adopted
so far admit the following expression for large:

(22)

where corresponds to the CRB for an unmodulated
carrier wave, and denotes the constellation-dependent
ratio of the true CRB to , which can be evaluated by
means of numerical integration or Monte Carlo evaluations [18].
Based on (15) and (22), one can observe that the asymptotic
variances of the NLS estimates , , decay at
the same rate as the CRB, i.e., .

In the absence of frequency offset (), the proposed NLS
estimator (11) reduces to the phase estimator

angle (23)

whose asymptotic variance is one quarter of that corresponding
to the case of joint phase and frequency offset estimation [18],
and is given by

(24)

Next, we determine the optimal “matched” nonlinearity
which minimizes the asymptotic variance (15). Since
in (15) only the terms , , depend on , finding an op-
timal resorts to solving the optimization problem

Based on (9), (16), and (17), the optimum nonlinearity is
obtained by using Cauchy–Schwarz’ inequality and is given by
the following theorem.

Theorem 2: The optimal “matched” nonlinearity
that minimizes the asymptotic variances of the proposed family
of NLS estimators (11) is given by

(25)

where is an arbitrary nonzero constant selected such that
is nonnegative.

Plugging (25) back into (18)–(20), and substituting these
values into (15), the asymptotic variances corresponding to the
optimal matched estimates, , can be expressed as

(26)

B. Monomial Nonlinear Estimators

The conventional V&V-like nonlinearities rely on the mono-
mial transformations , , and ex-

hibit computational efficiency and simplicity when compared
with the optimal matched estimator. In this subsection, we de-
rive closed-form expressions for the asymptotic variances of this
class of monomial phase and frequency offset estimators. Define
the class of processes ,

(27)

and the zero-mean processes: ,
. As before, it turns out that is a constant

amplitude harmonic, and hence,
can be interpreted as a constant amplitude harmonic embedded
in additive noise. As a special case of (11), we introduce the
following class of monomial NLS estimators:

(28)

whose asymptotic variances for , are provided by
the following theorem.

Theorem 3: The asymptotic variances of the NLS estimates
, , in (28), are given by

(29)

Exploiting (6) and [10, eq. (6.643.4)], the following
closed-form expression for can be derived:

(30)

From Appendix III, and , can be expressed in
terms of confluent hypergeometric function as follows:

(31)

(32)

It should be pointed out that whenis even ( is usually a
power of two), following a similar approach to that presented
in [22] or the formula [1, eq. (13.5.1)], one can obtain a slightly
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more compact expression for the confluent hypergeometric
function in (31)

if

if

Similarly

if

if

Plugging (30), (31), and (32) back into (29), closed-form expres-
sions for the asymptotic variances for
and are obtained. Note that when , the phase es-
timator (23) is just the standard fourth-power estimator [3], [12,
pp. 281–282], and [15], and (24) coincides with the expression
established earlier in [20, eq. (13)].

IV. EXTENSION TOCROSS-QAM CONSTELLATIONS

Following a similar approach to the one presented above,
one can develop an optimal matched joint carrier phase and
frequency offset estimator for general cross-QAM modulations
(i.e., with sizes , ). Observe that
for general cross-QAM constellations, takes a value from
the set , with

and an energy normalization constant. Therefore, we can still
express the joint and marginal pdf of and as in (5)
and (6). Similarly, to the derivations presented in Section III, by
considering the process [see (3)], it follows that can
be interpreted as the sum (10). Therefore, it is not difficult to
find that all the estimators proposed for square-QAM modula-
tions can be applied to cross-QAM constellations, and all the
expressions for the asymptotic variances still hold true without
any change. The constants, , are constellation-depen-
dent and their values should be computed accordingly. Due to
space limitations, we will not present any detailed derivations.

In Figs. 1–3, we evaluate the theoretical asymptotic variances
of the proposed optimal matched and monomial estimators
versus SNR. Fig. 1 depicts the performance loss of the asymp-
totic variances (26) and (29) with respect to the CRB (22) (i.e.,

) for 4-QAM modulation. It

turns out that the proposed optimal estimator approaches the
CRB in low and high SNR ranges, and in almost the entire SNR
region of interest, the optimal nonlinearity can
be approximated without much loss in performance by .
However, the same conclusion can not be drawn for larger
order QAM constellations. Assuming the number of samples

, Figs. 2 and 3 illustrate the theoretical asymptotic
variances for 16-QAM (square) and 32-QAM (cross), respec-
tively. Since the difference between the asymptotic variances
of and is just a constant for a given SNR, only the variance
of (24) is plotted. From Figs. 2 and 3, one can observe that
at low SNRs, both the optimal estimator and the fourth-power
estimator achieve CRB, which means that at very low SNRs,
the classic fourth-power estimator is always the best choice.
This is not a surprising result since the fourth-power estimator
is simply a low-SNR approximation of the ML estimator [15].
However, in the more practical regime of medium and high
SNRs, the optimum nonlinear estimator provides a significant
improvement over the class of monomial estimators while the
latter exhibits the error floor due to its self-induced noise [15],
[18].

V. IMPLEMENTATION OF THE OPTIMAL ESTIMATOR

The results shown in Figs. 2 and 3 illustrate the good property
of the optimal nonlinearity (25) for higher order QAM modu-
lations at medium and high SNR ranges. As can be observed
from (21) and (25), is a function that depends on
the SNR and presents high implementation complexity, which
makes the optimal estimator impractical. Fortunately, computer
simulations indicate that the sensitivity of the optimal estimator
to SNR is limited in medium and high SNR ranges. By consid-
ering approximations of (25), we propose next computationally
efficient SNR-independent estimators, which will be referred to
as approximate (APP)-estimators.

We select 16-QAM as an example to illustrate the derivation
of the constellation-dependent APP estimator. Fig. 4(a) plots the
optimal nonlinearity (25) versus the magnitudeof the received
data at SNR dB for 16-QAM modulation, while Fig. 4(b)
depicts the optimal nonlinearity (25) for a set of varying SNRs.
The curve presented in Fig. 4(a) suggests that for 16-QAM a
good design for the APP estimator is a piecewise linear approx-
imation of the following form:

if
if
elsewhere.

(33)
Similarly for 32-QAM and 64-QAM, since the optimal nonlin-
earity (25) appears to be well modeled by piecewise linear ap-
proximations, we can obtain the APP estimators

if
if
elsewhere

if
if
if
elsewhere
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Fig. 1. Performance loss with respect to the CRB versus SNR (4-QAM constellation).

Fig. 2. Theoretical bounds of^� versus SNR (16-QAM constellation).

respectively. Since is constellation-dependent, we will
not present the detailed expressions of for other QAM
modulations in this paper. The APP nonlinearities for general
QAM constellations can be obtained in a similar way. It is inter-
esting to observe that (33) is quite similar to the nonlin-
earity introduced in the Morelliet al.estimator [V&V algorithm

with selection (V&V-SEL)] [13], which takes the following ex-
pression:

if
if
elsewhere.
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Fig. 3. Theoretical bounds of^� versus SNR (32-QAM constellation).

(a) (b)

Fig. 4. (a)F versus� (16-QAM constellation at SNR= 20 dB). (b)F versus� (16-QAM constellation at varying SNRs).

Careful examination of the expressions of APP nonlinearities
illustrates that the intrinsic principle of APP estimators is to
emphasize the weight of the points located on the diagonals of
the signal constellation, and discard all the off-diagonal points.
It appears also that only a subset of the points located on the
diagonals is selected. This principle was implicitly exploited by
V&V-SEL estimator [13] for 16-QAM, and by Sari and Moridi
for 16-QAM and 64-QAM under quite different circumstances
[19].

In the next section, we will present simulation experiments
to corroborate the theoretical performance analysis and to il-
lustrate the performance of the proposed optimal estimators for
both square- and cross-QAM constellations.

VI. SIMULATION EXPERIMENTS

In this section, we study thoroughly the performance of
estimators (11), (23), and (28) using computer simulations. The
experimental mean-square error (MSE) results of the proposed
estimators will be compared with the theoretical asymptotic
bounds and the CRB. The impact of the nonlinearity
on SER is also assessed. The additive noise is generated as
zero-mean Gaussian white noise, the number of samples is
assumed , and the experimental results are obtained by
performing a number of Monte Carlo trials except
in Figs. 5–8, where we use a larger number
to ensure accuracy. Unless otherwise noted, the carrier phase

and frequency offset .
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Fig. 5. SER curves versus SNR (32-QAM constellation).

Fig. 6. SER curves versus SNR (64-QAM constellation).

A. Experiment 1—Comparison of the MSE of the Proposed
Estimators With the Theoretical Bounds Versus SNR

This experiment compares the theoretical (The.) bounds
with the experimental (Exp.) MSEs of the proposed estimators
for 16-QAM (Figs. 9 and 10) and 32-QAM (Fig. 11) assuming

no frequency offset. In Figs. 9 and 10, the performance of
V&V-SEL estimator [13] is illustrated, too, while in Fig. 11,
we also plot the MSE-result of the eighth-order statistics based
phase estimator (EOE) proposed for cross QAM in [4]. These
figures show that for medium and high SNRs, the experimental
results of the optimal estimator and the fourth-power estimator
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Fig. 7. MSE and SER versus SNR (128-QAM constellation).

Fig. 8. SER curves versus SNR (256-QAM constellation).

are well predicted by the asymptotic bounds derived in this
paper. Note that at low SNR (0 dB), the MSE of the phase
estimator (23) asymptotically converges toward the constant
value , which represents the variance of a uniformly
distributed phase estimate over the range [18],
[22]. From Figs. 9 and 10, we can observe that for 16-QAM,
the performance of the optimal estimator and the V&V-SEL
estimator is essentially identical, and both of them outper-
form significantly the standard fourth-power estimator in the
medium and high SNR ranges, and are very close to CRB. In
the case of cross-QAM constellations, the proposed optimal
phase estimator provides considerable improvement over the
fourth-power estimator and EOE.

B. Experiment 2—Impact of the Nonlinearity on SER

In Figs. 5 and 12, we show the SER performance of the
carrier synchronizers exploiting different nonlinearities and

QAM modulations. Because the choice of nonlinearity is
the same for both carrier phase and frequency offset estima-
tors, for simplicity we only concentrate on the carrier phase
estimator assuming the absence of frequency offset. Figs. 5
and 12 compare the performance of the proposed optimal and
APP estimators with that of the classic fourth-power estimator,
V&V-SEL estimator, and EOE for 16-QAM with
and 32-QAM with , respectively. To show the superior
performance of the optimal estimator, we also plot as a lower
bound the SER curves in the case of perfect carrier recovery,
i.e., in the case when the transmitted symbols are only corrupted
by additive white Gaussian noise (AWGN). Figs. 5 and 12
indicate that the proposed optimal estimator approaches closely
this lower bound and improves significantly the performance of
the conventional fourth-power estimator and EOE for medium
and high SNRs. We can also observe that APP is a satisfying
realizable alternative to the optimal estimator.
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Fig. 9. Comparison of MSEs of^� versus SNR (16-QAM constellation).

Fig. 10. Comparison of MSEs of^f versus SNR (16-QAM constellation).

C. Experiment 3—Performance of the Proposed Estimators in
the Case of Higher Order QAM Modulations

Figs. 6–8 illustrate the performance of the optimal estimator
and APP for larger order QAM modulations (64-QAM with

, 128-QAM, and 256-QAM, respectively) compared
with the existing methods. Since higher order QAM modula-
tions often operate at larger SNRs, we pay special attention to
the medium and high SNRs, where the SER is in the range

. These figures show again the merit of the pro-

posed optimal estimator and APP, and justify again our deriva-
tion of the asymptotic variance.

VII. CONCLUSION

In this paper, we have introduced and analyzed a family
of blind feedforward joint carrier phase and frequency offset
estimators for general QAM modulations. Based on a general-
ization of the V&V algorithm, a matched nonlinear estimator
together with a class of monomial nonlinear estimators were
introduced and their performance established in closed-form
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Fig. 11. Comparison of MSEs of^� versus SNR (32-QAM constellation).

Fig. 12. SER curves versus SNR (16-QAM constellation).

expressions. A framework for designing computationally
efficient approximations of the proposed optimal estimator
without incurring much performance loss, is also proposed.
The proposed (approximate) optimal estimator exhibits better
performance when compared with the existing methods. Sim-
ulation results indicate the merit of the performance analysis
presented in this paper. In a future paper, we will analyze the
performance of a generalized NLS estimator that exploits the

information provided by the two spectral lines present in the
process: , where

and are two arbitrary nonlinearities. It appears that
for square QAM or small-order QAM there is not too much
room for improvement, a fact that is corroborated by the SER
curves depicted in Figs. 5–8 and 12. However, for larger order
cross QAM, the exploitation of additional harmonics (lines)
may provide some performance gains.
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APPENDIX I
DERIVATION OF (18) AND (19)

Using (5), we can express as (34), at the bottom of
the page, where in deriving the third equality, we made use of
the definition of [1, eq. (9.6.19)]. For a fixed pair ( )
and , , so .
After defining and

we obtain from (34)

which is (19). Equations (18) and (20) can be obtained using a
similar procedure.

APPENDIX II
PROOF OFTHEOREM 1

In order to establish Theorem 1, let us first study the second-
order statistics of additive noise . From (10), can be
expressed as

Define the second-order covariance and relation functions of
as

respectively. Due to (7), it turns out that and
are both equal to zero if . Hence, we obtain from (9), (16),
and (17) the following relations:

(35)

(36)

where stands for the Kronecker’s delta.
Next, we begin the derivation of Theorem 1. Since ,

for simplicity, we replace by in the cost function (12). Con-
sidering the Taylor series expansion of in
the neighborhood of the true value , we can write

where stands for the high-order remainder terms which
asymptotically as can be neglected. Thus, we can ap-
proximate (12), as shown in the equation at the bottom of the
page. Setting the derivatives of with respect to to 0, we

(34)
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obtain the first equation at the bottom of the page.2 We nor-
malize the above equations by and , ,
respectively, and obtain that asymptotically (as ) the
relations hold, as shown in (37) and (38), at the bottom of the
page, where in deriving the last equality, we made use of the
well-known limit [11]

Next, we express (37) and (38) in the matrix compact form
equation

(39)

2The notationsre andim stand for the real and imaginary part of a complex-
valued number, respectively.

Since in (39) only is random, the asymptotic covariance matrix
of is given by

where . Observe that

Using (35) and (36), can be written as

Similarly, we obtain , , which means that
the NLS estimators of the amplitude and phase parameters are
asymptotically decoupled.

To evaluate the asymptotic variance of, , we need
to compute for , as shown in the equation at the
bottom of the page. Using a technique similar to the one devel-
oped in the evaluation of , we obtain

for

(37)

(38)
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(42)

Thus, the matrix can be expressed as

where is the so-called Hilbert ma-
trix [14]. Note that

Therefore, the asymptotic covariance matrix ofis obtained as

(40)

where the inverse of the Hilbert matrix is given by [14]

(41)

Based on (40) and (41), some direct computations lead to the
sought asymptotic variances (15). This concludes the proof of
Theorem 1.

APPENDIX III
DERIVATION OF EXPRESSIONS(31) AND (32)

Using (5), we can obtain (42), at the top of the page, where in
deriving the third equality in (42), we made use of the definition
of [1, eq. (9.6.19)]. Note that the first term of the sum in
(42) (i.e., and ) can be written as

(43)

where , , ,
denotes the confluent hypergeometric function, and the last
equality in (43) employs [10, eq. (6.643,2)] and [1, eq.
(13.1.32)]. By exploiting the same procedure as in (43) on
the other terms of in (42), we can obtain (31). The
expression (32) for can be derived in a similar way.
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