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An Alternative Blind Feedforward Symbol Timing
Estimator Using Two Samples per Symbol

Yan Wang, Erchin Serpedin, and Philippe Ciblat

Abstract—Recently, Lee has proposed a blind feedforward
symbol timing estimator that exhibits low computational com-
plexity and requires only two samples per symbol. In this paper,
Lee’s estimator is analyzed rigorously by exploiting efficiently
the cyclostationary statistics present in the received oversampled
signal, and its asymptotic (large sample) bias and mean-square
error (MSE) are derived in closed-form expression. A new blind
feedforward timing estimator that requires only two samples per
symbol and presents the same computational complexity as Lee’s
estimator is proposed. It is shown that the proposed new estimator
is asymptotically unbiased and exhibits smaller MSE than Lee’s
estimator. Computer simulations are presented to illustrate the
performance of the proposed new estimator with respect to Lee’s
estimator and the existing conventional estimators.

Index Terms—Asymptotic performance analysis, blind feedfor-
ward estimation, cyclostationarity, symbol timing estimation.

I. INTRODUCTION

DURING the last decade, nondata-aided (or blind) feed-
forward timing estimation architectures have received

much attention in synchronization of bandwidth efficient and
burst-mode transmissions (see, e.g., [2]–[7] and [10]). Most
of the methods proposed in the literature require a sampling
frequency of at least three times larger than the symbol rate [2],
[5]–[7]. However, such high sampling rates are not desirable for
high-rate transmissions, since the hardware cost of the receiver
depends heavily on the required processing speed [10].

Recently, Lee proposed a new blind feedforward timing
estimation algorithm that requires only two samples per symbol
[3]. Compared with other two-samples-per-symbol-based
timing estimators [4], [10], Lee’s estimator has the advantage
that it does not necessitate any low-pass filters. Lee’s estimator
exhibits a reduced computational complexity comparable
with that of the second-law nonlinearity (SLN) estimator [6],
which is known to be the simplest among the estimators using
four samples per symbol and admits a very suitable digital
implementation [3], [10]. However, Lee’s estimator is asymp-
totically biased and its performance has not been analyzed
thoroughly. The goal of this letter is to analyze and evaluate
the performance of Lee’s estimator and to propose a new
unbiased timing estimator with improved mean-square error
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(MSE) performance. It is also shown that the proposed new
estimator exhibits the same computational complexity as Lee’s
estimator, and significant MSE improvements are observable,
especially in the case of pulse shapes with moderate and large
excess bandwidth. The asymptotic (large sample) MSEs of
these two estimators, together with the asymptotic bias of Lee’s
estimator, are established in closed form. Computer simulations
illustrate the merits of the proposed new timing estimator.

II. SYSTEM MODEL

Let us consider the same baseband model as used in [3]

(1)

where is the sequence of independently and identically
distributed (i.i.d.) phase-shift keying (PSK) symbols with

[this assumption is not mandatory, in fact,
can be drawn from any linear memoryless modulation, e.g.,
quadrature amplitude modulation (QAM), pulse amplitude
modulation (PAM)], denotes the convolution of the trans-
mitter’s signaling pulse and the receiver filter, which is assumed
to be a raised cosine pulse shape of bandwidth

, where the parameter represents the rolloff
factor , is the complex-valued additive
Gaussian noise with variance , is the symbol period,
denotes the received signal phase, stands
for the (normalized) symbol timing delay, and represents the
parameter to be estimated.

To generate two samples per symbol, we oversample the re-
ceived signal (1) with the sampling period1 ,
and obtain the following discrete-time model:

(2)

with , and .
Based on the above model, Lee proposed a blind feedforward

symbol timing estimator, which with the notation adopted so far
takes the following form (c.f. [3, Eq. (2)]):

Lee

(3)

where the notation “ ” stands for the real part of the operand
contained within the curly brackets.

1The notation “:=” stands for “is defined as”.
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III. A N EW BLIND FEEDFORWARD

SYMBOL TIMING ESTIMATOR

The time-varying correlation of the nonstationary process
is defined as and satisfies

the relation , where is an integer
lag. Being periodic, admits a Fourier series expansion,
whose Fourier’s coefficients, also termed cyclic correlations,
are given for 0, 1, by the following expression [2]:

For , the following expression of is obtained in
[9]:

(4)

with

where stands for the Fourier transform (FT) of .
Due to the symmetry property of the raised-cosine function

, one can find that is a real-valued even function
[8, p. 546]. Note also that and are real-valued
functions, since . Some straightforward calcula-
tions lead to the following more explicit expressions:

and

In practice, the cyclic correlations have to be es-
timated from a finite number of samples, and the standard
sample estimate of is given by [1]

which is asymptotically unbiased and consistent in the mean-
square sense. Thus, one can observe that Lee’s estimator (3) can
be expressed as

Lee

and its asymptotic mean is given by

Lee
(5)

Based on (4) and (5), and for , can be expressed
as

Fig. 1. Asymptotic bias of Lee estimator.

with . Obviously, is not equal to the
true value of the timing delayexcept for several special values
of , since, in general, whenever . Now, it is
not difficult to compute the asymptotic bias of Lee’s estimator
as

(6)

When assumes values other than [0, 1/4], the asymptotic
bias of Lee’s estimator can be obtained in a similar way and
takes the same expression as (6). Fig. 1 plots versus

for several values of, which is similar to the plot [3, Fig. 2],
obtained by means of more laborious numerical calculations.
From Fig. 1, it can be seen that the asymptotic bias is tolerable
for small rolloff factors, but increases with.

The above derivation suggests that by compensating the term
, we can design a new blind asymptotically unbiased feed-

forward symbol timing estimator of the following form:

(7)

Note that this new estimator (7) has the same implementation
complexity as that of Lee’s estimator (3). In the next section,
we establish in closed-form expressions the asymptotic MSEs
of estimators (3) and (7), which are defined as follows:

Lee Lee

new
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IV. PERFORMANCEANALYSIS FOR ESTIMATORS

In order to establish the asymptotic MSEs of estimators (3)
and (7), it is necessary to evaluate the normalized asymptotic
covariances of the cyclic correlations, which are defined as

The detailed expression foris established in [9, Prop. 1], and
will not be shown herein due to the space limitations. The inter-
ested reader is referred to [9].

The following theorem sums up the expressions of the asymp-
totic MSEs of the estimators (3) and (7), whose detailed deriva-
tion is presented in the Appendix.

Theorem 1: The asymptotic MSEs of the symbol timing
delay estimators (7) and (3) are given by

new

Lee new

respectively.
Note that both estimators (3) and (7) assume that the fre-

quency recovery has been achieved. If a symbol-normalized fre-
quency offset is present, it can be shown that the cyclic cor-
relation (4) becomes [9]

The additional -related term can introduce the bias into the
proposed estimator (7) and the resulting asymptotic bias can
be obtained by following a similar procedure to that used in
deriving (6)

This bias can be counteracted by applying a blind feedforward
frequency offset estimator, proposed in [2] and [9], which takes
the form , and then compensating the

-related term in the timing estimator (7).
A direct analytical comparison betweenLee and new

seems intractable. Therefore, in the next section, we will resort
to numerical illustrations.

V. SIMULATION EXPERIMENTS

To corroborate the proposed asymptotic performance anal-
ysis, we conduct computer simulations to compare the theoret-
ical bounds (The.) of estimators (3) and (7) (i.e.,Leeand new
normalized with the number of samples) with the experi-
mental (Exp.) MSE results. The performance of conventional
four-samples/symbol-based blind feedforward symbol timing
delay estimators SLN [6], log nonlinearity (LOGN) [5], fourth-
law nonlinearity (FLN) and absolute-value nonlinearity (AVN)
[7], is also illustrated. The experimental results are obtained
by performing 800 Monte Carlo trials assuming that the trans-
mitted symbols are drawn from a quarternary phase-shift keying

Fig. 2. MSEs of timing delay estimators versus SNR(� = 0:1).

Fig. 3. MSEs of timing delay estimators versus SNR(� = 0:35).

(QPSK) constellation, the number of symbols , and the
value of . The signal-to-noise ratio (SNR) is defined
as . Figs. 2–5 show the simulation re-
sults for the rolloff factors , , and ,
respectively. From these figures, the following conclusions can
be drawn.

• The experimental MSE of the estimators (3) and (7) are
well predicted by the theoretical bounds derived in Sec-
tion IV.

• The improvement of the proposed new estimator (7) over
Lee’s estimator (3) in medium and high SNR ranges is
more and more significant when the rolloff factorin-
creases.

• At small rolloffs, both (3) and (7) outperform the SLN esti-
mator, and are inferior to FLN, AVN, and LOGN estima-
tors which, however, exhibit much higher computational
load than estimators (3) and (7), which require only two
samples per symbol.

• With increasing, the difference of the estimation accu-
racy between the proposed algorithm (7) and FLN, AVN,
and LOGN decreases, and further simulation results (not
reported due to space limitations) show that at large
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Fig. 4. MSEs of timing delay estimators versus SNR(� = 0:5).

Fig. 5. MSEs of timing delay estimators versus SNR(� = 0:5).

rolloffs , the estimator (7) outperforms FLN,
AVN, and LOGN estimators.

• In the presence of frequency offset, the proposed es-
timator (7) is robust against small frequency offsets. In
the case of larger frequency offsets, can be first es-
timated by adopting the blind frequency offset estima-
tors proposed in [2] and [9], and then compensated in the
timing estimator (7), which will result in an asymptotically
unbiased timing estimator.

VI. CONCLUSIONS

In this letter, we have analyzed Lee’s symbol timing delay
estimator using a cyclostationary statistics framework. Al-
though Lee’s estimator presents the attractive property of a
low computational load, it is asymptotically biased. To remedy
this disadvantage, we have proposed a new unbiased estimator
which outperforms significantly Lee’s estimator at medium
and high SNRs for large rolloff factors , and which
exhibits the same computational complexity as the latter. More-
over, the asymptotic MSEs of these two estimators, together
with the asymptotic bias of Lee’s estimator, are established in
closed-form expressions. Computer simulations corroborate

the theoretical performance analysis, evaluate the performance
in the presence and absence of frequency offset, and illustrate
the merits of the proposed new timing delay estimator.

APPENDIX

DERIVATION OF THEOREM1

Equation (7) can be rewritten as

(8)

where

For convenience, we define the following:

and , . Equation (8) can be equiva-
lently expressed as

(9)

According to [9], and are on the order of .
Considering a Taylor series expansion of the right-hand side
of (9), and neglecting the terms of magnitude higher than

, it follows that:

(10)

Simple manipulations of (10) lead to

new

where

After some simple algebra manipulations of the above terms ac-
cording to the definition of , the expression ofnew fol-
lows. As for Lee, we obtain

Lee Lee

Lee

Lee

Lee
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where the ensuing derivation of the first term is similar to that
of new. This concludes the proof ofTheorem 1.
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