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Optimal Blind Carrier Recovery
for MPSK Burst Transmissions

Yan Wang, Erchin Serpedin, and Philippe Ciblat

Abstract—This paper introduces and analyzes the asymptotic
(large sample) performance of a family of blind feedforward non-
linear least-squares (NLS) estimators for joint estimation of carrier
phase, frequency offset, and Doppler rate for burst-mode phase-
shift keying transmissions. An optimal or “matched” nonlinear es-
timator that exhibits the smallest asymptotic variance within the
family of envisaged blind NLS estimators is developed. The asymp-
totic variance of these estimators is established in closed-form ex-
pression and shown to approach the Cramèr–Rao lower bound of
an unmodulated carrier at medium and high signal-to-noise ra-
tios (SNR). Monomial nonlinear estimators that do not depend on
the SNR are also introduced and shown to perform similarly to
the SNR-dependent matched nonlinear estimator. Computer sim-
ulations are presented to corroborate the theoretical performance
analysis.

Index Terms—Burst transmission, carrier phase, Doppler rate,
frequency offset, -ary phase-shift keying (MPSK), synchroniza-
tion.

I. INTRODUCTION

BURST transmission of digital data and voice is em-
ployed in time-division multiple access (TDMA) and

packet demand-assignment multiple access (DAMA) satellite
communication and terrestrial mobile cellular radio systems.
Conventionally, carrier synchronization of burst transmissions
requires a large number of overhead symbols, which results in
reduced spectral efficiency and increased transmission delays
[7].

Non-data aided (NDA) or blind feedforward carrier syn-
chronization of burst -ary phase-shift keying (MPSK)
transmissions has received much attention in the literature. A
generalized form of the maximum-likelihood feedforward (ML
FF) algorithm was originally proposed by A. J. Viterbi and
A. M. Viterbi as a blind carrier phase estimator with improved
performance at low and intermediate signal-to-noise ratios
(SNRs) [21], [25]. This carrier phase estimator is referred
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to as the Viterbi and Viterbi (V&V) algorithm [8], [17], [19,
p. 280], and has been used to design blind frequency offset
estimators for burst MPSK modulations transmitted through
additive white Gaussian noise (AWGN) channels [2]–[5], [9].
Extensions of the V&V carrier estimator for flat Rayleigh and
Ricean fading channels were reported in [23] and [10]. The
V&V estimator exhibits several desirable features: its good
performance at low SNRs translates into improved bit-error
probability (BEP) performance in fading channels that tend to
be dominated by times when the signal experiences a deep fade
(low SNR), and its open-loop operation enables fast reliable
acquisitions after deep fades [23]. Reference [8] introduces
a different class of blind carrier frequency estimators that
assume fractional sampling of the received signal. However,
the statistical properties of the resulting estimators are partially
analyzed based on certain approximations [8]. A quite general
blind nonlinear least-squares (NLS) estimator for the carrier
phase, frequency offset, and Doppler rate was proposed in [18].
However, the performance of the NLS-type estimator was not
analyzed and exploited to develop carrier recovery algorithms
with improved performance [18].

In this paper, a family of blind feedforward joint carrier
phase, frequency offset, and Doppler rate NLS estimators for
carriers that are fully modulated by MPSK modulations is pro-
posed based on the V&V algorithm. An optimal or “matched”
nonlinear estimator that achieves the smallest asymptotic (large
sample) variance within the family of blind NLS estimators
is also proposed. Monomial nonlinear estimators that do not
require knowledge of the SNR are developed and shown
to perform similarly to the matched nonlinear estimator. A
thorough and rigorous analysis of the statistical properties of
the proposed family of NLS carrier synchronizers in AWGN
and flat Ricean-fading channels is proposed and exploited to
develop estimators with improved performance.

As we shall see, the proposed family of blind NLS estima-
tors presents high convergence rates, provides high accurate es-
timates for phase, frequency offset, and Doppler rate, and admits
low-complexity digital implementations, without being neces-
sary to oversample (or fractionally sample) the received signal
faster than the Nyquist rate [8]. The performance of these al-
gorithms coincides with the Cramèr–Rao bound (CRB) of an
unmodulated carrier at medium and high SNRs, and is robust to
Ricean fading effects and timing errors.

The rest of this paper is organized as follows. In Section II,
the discrete-time channel model is described. Section III intro-
duces the family of blind NLS estimators for carrier phase, fre-
quency offset, and Doppler rate. The asymptotic performance
of these estimators is established in closed-form expression and

0090-6778/03$17.00 © 2003 IEEE
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exploited to develop optimal or “matched” nonlinear estimators
that exhibit minimum variance. In Section IV, the optimal non-
linearity is approximated by a class of monomial transforma-
tions and the asymptotic performance of resulting estimators
is established. The results of Section IV are extended to flat
Ricean-fading channels in Section V. A high-order ambiguity
function (HAF)-based estimator is briefly introduced in Sec-
tion VI to decrease the computational load of the NLS estima-
tors. In Section VII, simulation results are conducted to confirm
our theoretical analysis. Finally, in Section VIII, conclusions are
drawn, and detailed mathematical derivations of the proposed
performance analyzes are reported in the Appendixes.

II. PROBLEM FORMULATION

Consider the baseband representation of an MPSK-modu-
lated signal transmitted through an AWGN channel. Assume
that filtering is evenly split between transmitter and receiver so
that the overall channel satisfies the first Nyquist condition. Fil-
tering the received waveform through a matched filter and sam-
pling at the right time instants yields

(1)

where is the sequence of zero-mean unit variance1

independently and identically
distributed (i.i.d.) MPSK symbols, , , and stand for
carrier phase, frequency offset, and Doppler rate, respectively,

denotes the symbol period, and is a zero-mean
circular white Gaussian noise process independent of
and with variance . The SNR is defined as

.
As depicted by (1), the problem that we pose is to estimate the

unknown phase parameters (, , and ) of a random amplitude
chirp signal embedded in unknown additive noise,
assuming knowledge of the received samples . The
solution that we pursue consists of evaluating first certain mo-
ments of the output that will remove the unwanted multiplica-
tive effects introduced by the MPSK modulated sequence .
It turns out that the resulting problem reduces to the standard
problem of estimating the phase parameters of a constant am-
plitude chirp signal embedded in additive noise, for which stan-
dard NLS-type estimators can be developed and their statistical
properties analyzed in a rigorous manner.

III. N ONLINEAR CARRIER SYNCHRONIZER

Consider the polar representation of

(2)

and define the process via the nonlinear transformation

(3)

where is a real-valued nonlinear function.
Conditioned on the MPSK symbol , is nor-

mally distributed with the probability density function (pdf)

1Notation “:=” stands for “is defined as”.

,
, ). Due to (2), it follows that

(4)

Based on (4), the joint pdf of and , and the marginal
pdf of take the expressions

(5)

(6)

respectively, where stands for the zero-order modified
Bessel function of the first kind [1, eq. (9.6.16)]. Moreover, it
is not difficult to find that the joint pdf of the random variables
(RVs) , , , satisfies the following
relation:

(7)

Exploiting (5) and (6), some calculations, whose details are pro-
vided in Appendix I, lead to the following relations:

(8)

(9)

where denotes the th-order modified Bessel function
of the first kind [1, eq. (9.6.19)], the expectation in (9) is with
respect to (w.r.t.) the marginal distribution of (6), and the
resulting amplitude is a real-valued constant which does not
depend on . Since and are i.i.d. and mutually inde-
pendent, from (7), it follows that is
i.i.d., too. Consequently

(10)

and can be viewed as a constant amplitude chirp signal
embedded in white noise. Note that, in general,

the white noise process is not circular.
Let ,

and introduce the following NLS estimator (c.f. [13], [18]):

(11)

(12)
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By equating to zero the gradient of , some simple algebra
calculations lead to the following expressions for the NLS esti-
mates of , 0, 1, 2 [13]:

angle (13)

It is well known that estimator (11) is asymptotically unbiased
and consistent, and also almost asymptotically efficient at high
SNR [6], [12], [13].

Following a procedure similar to the one presented in [13],
one can derive the asymptotic variances of estimates, 0,
1, 2. These calculations are established in Appendix II and are
summarized in the following theorem.

Theorem 1: The asymptotic variances of the NLS estimates
, 0, 1, 2 in (11)–(13) are given by

(14)

(15)

(16)

and is defined in (9).
Some remarks are now in order.
Remark 1: From (14)–(16), one can observe that the asymp-

totic variances of , 0, 1, 2 are independent of the unknown
phase parameters, , and .

Remark 2: It is of interest to compare the asymptotic vari-
ances (14) with the CRB. In [11] and [12], the CRB is derived
for the case when the random amplitude of model (1) is
a stationary Gaussian process. In [13], the CRB is obtained by
assuming that the additive noise of model (10) is colored
Gaussian and circularly symmetric. Note that in this paper, both
models (1) and (10) do not satisfy these assumptions. Therefore,
in this paper, we adopt the CRB for an unmodulated carrier wave
(UCRB), i.e., (c.f. [25]), which is a special case of the
CRB presented in [11]–[13]

(17)

Based on (14), one can observe that the asymptotic variances
of the NLS estimates , 0, 1, 2, decay at the same

rate as the UCRB, i.e., .
Remark 3: Estimator (13) involves a two-dimensional (2-D)

maximization problem which could be too intensive if a good
initial estimate cannot be provided. In this paper, the initial
values of and are obtained by the so-called HAF approach,
which has become a “standard” tool for analyzing constant
amplitude chirp signals since it provides a computationally
efficient yet statistically accurate estimator [6]. We will briefly
introduce the HAF-based estimator in Section VI.

Remark 4: The estimates of phase parameters, , and
present -fold ambiguity, which can be counteracted by

applying differential encoding [18] or unique word decoding
method [23]. The estimation range due to the ambiguity, e.g.,
for , is .

Next, we determine the optimal or “matched” nonlinearity
which minimizes the asymptotic variance (14).

Since in (14), only the terms , , and depend on ,
finding an optimal resorts to solving the optimization
problem

Using (9), (15), and (16), we obtain

Using Cauchy–Schwarz’ inequality, the optimum nonlinearity
is given by the following theorem.

Theorem 2: The optimal or “matched” nonlinearity
that minimizes the asymptotic variances of the proposed family
of NLS estimators (11) is given by

(18)

where is an arbitrary nonzero constant. Plugging (18) back
into (9), (15), and (16), and substituting these values into (14),
the minimal asymptotic variances of, 0, 1, 2 can be ex-
pressed as

(19)

IV. M ONOMIAL NONLINEARITY ESTIMATORS

As can be observed from (18), is a function that
depends on the SNR. This is not a restrictive requirement since
blind SNR estimators that exhibit good performance can be used
[22]. However, if the SNR estimation step is not desirable, we
show next that there exist optimal monomial approximations

, , of the matched nonlinearity
that exhibit almost the same asymptotic variance as (19) and
their implementation does not require knowledge of the SNR.

Exploiting the asymptotic formula [1, eq. (9.7.1)] in (18), it
turns out that at high SNRs the optimal monomial
is . Similarly, based on [1, eq. (9.6.7)], it turns
out that at low SNRs , the optimal monomial
is . These results parallel the derivations
reported in [21] and do not depend on the value of the frequency
shift or Doppler rate. In order to obtain a better understanding,
next we establish the asymptotic performance of the monomial
NLS estimators.
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Define the class of processes by means of the mono-
mial transformations

(20)

and the zero-mean processes ,
. As before, it turns out that is a constant am-

plitude chirp signal, and hence, can
be interpreted as a constant amplitude chirp signal embedded
in white noise. As a special case of (11), we introduce the fol-
lowing class of monomial NLS estimators:

(21)

whose asymptotic variances for , 0, 1, 2 are provided by
the following theorem.

Theorem 3: The asymptotic variances of the NLS estimates
, 0, 1, 2 in (21), are given by

(22)

Exploiting (6) and [15, eq. (6.643.4)], the following relation was
derived in [25, (A17)]:

(23)

Using (5), we can obtain that

(24)

where , , and . Based on
[15, eq. (6.643.2)] and [1, eq. (13.1.32)], can be expressed
in terms of the confluent hypergeometric function for

(25)
Similarly

(26)
It should be pointed out that whenis even ( is usually a
power of two), following a similar approach to that presented

in [25] or the formula [1, eq. (13.5.1)], one can obtain a slightly
more compact expression for the confluent hypergeometric
function in (25)

where and . Similarly

(27)

Plugging (23), (25), and (26) back into (22), closed-form
expressions for the asymptotic variances for

, and 0, 1, 2 are obtained.
Note that at very high SNR , using [1, eq.

(13.1.4)], some calculations show that

(28)

for any . Hence, based on (22), (23), (27), and
(28), we obtain

which does not depend on the estimator order, i.e., it turns out
that at very high SNRs, the performance of estimators (21) for
different nonlinearity orders is asymptotically the same.

We close this section with the following remark.
Remark 5: Assume that , i.e., the received signal is

affected only by phase offset and frequency offset. Then, the
estimator (21) reduces to

angle (29)

with . Based on (29), the frequency offset estimator
can be implemented efficiently by means of the fast Fourier
transform (FFT) algorithm applied on the sequence ,
which is generally zero-padded with a sufficiently large number
of zeros to achieve the precision provided by the asymptotic
CRB . The following corollary is obtained directly
from Theorem 3.
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Corollary 1: The asymptotic variance of the class of NLS
estimators (29) for is given by

(30)

where , , and are defined inTheorem 3.

V. EXTENSION TOFLAT RICEAN-FADING CHANNELS

In the foregoing discussion, we assumed AWGN channels.
In this section, we will see that the NLS estimators (11) remain
asymptotically unbiased and consistent in the presence of flat
Ricean-fading channels. To simplify our derivation, we will only
concentrate on the extension of the frequency offset estimators
(29).

Assuming a flat Ricean-fading channel model, the
input-output relationship of the channel can be expressed
as

(31)

where is the fading process
with nonzero mean and variance

. Using the Jakes model,
the second-order correlations of the fading are given by

, where denotes the zero-order Bessel
function of the first kind, and stands for the normalized
Doppler spread. The joint pdf of and , and the
marginal pdf of are given by

(32)

(33)

Conditioned on the fading process and the input symbol
, the joint pdf of and takes the form

(34)

Using (31)through (34), in a similar way to that presented in the
former sections, some straightforward but lengthy calculations
lead to

with and . Hence, can
still be viewed as a constant amplitude harmonic embedded in
additive noise , and the unbiased-
ness and consistency of estimators (29) hold true in the pres-
ence of flat Ricean-fading channels. However, we should note
that due to the fading effect, is not white any more, but
a zero-mean colored process. Establishing the asymptotic vari-
ance of estimators (29) in flat Ricean-fading effects for any

is generally, if not impossible, at least very complicated for

. In the special case , is a cir-
cular noise process, whose autocorrelation and spectral density
are given by and

, respectively. Therefore, the asymp-
totic variance of (29) is now given by [24]

(35)

The calculation of the power spectral density is tractable
and is briefly detailed next. Define the following variables:

Some direct but lengthy calculations lead to the following
expression:

(36)

Plugging (36) back into (35), a closed-form expression of the
asymptotic variance in the presence of flat Ricean-
fading effects is obtained.

VI. HAF-BASED ESTIMATOR

As mentioned in Section III, a HAF-based estimator is a
simple and computational efficient approach to provide the
initial estimates of NLS estimator (13), and combines the use
of the HAF in order to reduce the order of the polynomial
phase and that of the NLS approach in order to estimate
the parameters of an exponential signal embedded in noise [6].

First, let us rewrite (10) as

and define the following process:

(37)

where and is a zero-mean noise composed
of noise signal and noise noise terms. For a fixed ,

is an exponential signal with constant amplitude
embedded in additive noise

. Hence, it is natural to use an NLS estimator to obtain an
estimate of as follows:

(38)

Once is available, demodulate to obtain
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Fig. 1. Theoretical degradation of!̂ w.r.t. the matched nonlinear estimator
versus SNR (BPSK constellation,N = 50).

Fig. 2. Theoretical degradation of!̂ w.r.t. the matched nonlinear estimator
versus SNR (QPSK constellation,N = 50).

where combines the estimation errors inand the effect
of additive noise [6]. Similarly, can be obtained as

(39)

The HAF-based estimators (38) and (39) can decrease compu-
tational complexity and provide good initial values for NLS es-
timator (13). Examining its performance is beyond the scope of
this paper. We refer the reader to [6] for the detailed performance
analysis of HAF-based estimator.

VII. SIMULATION EXPERIMENTS

In this section, we study thoroughly the performance of es-
timators (11), (21), and (29) using computer simulations. The
experimental mean-square error (MSE) results of these estima-
tors will be compared with the theoretical asymptotic bounds
and the CRB-like bounds. The experimental results are obtained

Fig. 3. Performance loss w.r.t. the UCRB versus SNR (BPSK modulation,
N = 50).

Fig. 4. Performance loss w.r.t. the UCRB versus SNR (QPSK modulation,
N = 50).

by performing a number of 200 Monte Carlo trials, the addi-
tive noise is generated as zero-mean Gaussian white noise with
variance , and unless otherwise noted, all the simulations are
performed assuming the carrier phase , frequency offset

, and Doppler rate .
Experiment 1-Performance Loss of Estimators (20),

(21) w.r.t. the Matched Estimator (18), (11):Figs. 1 and
2 plot the loss in performance of estimators (20) and
(21) w.r.t. the optimal nonlinearity estimator (18), (11)

in the case of a bi-
nary phase-shift keying (BPSK) modulation and
quaternary phase-shift keying (QPSK) modulation ,
respectively. It turns out that in almost the entire SNR region
of interest, the optimal nonlinearity can be approx-
imated without much loss in performance by (BPSK) and

or (QPSK, depending on SNR), respectively.
Experiment 2-Asymptotic Variances of Estimators (18), (11),

(20), and (21) w.r.t. the UCRB:Figs. 3 and 4 depict the per-
formance loss of the asymptotic variances (19) and (22) w.r.t.



WANG et al.: OPTIMAL BLIND CARRIER RECOVERY FOR MPSK BURST TRANSMISSIONS 1577

(a)

(b)

(c)

Fig. 5. (a) MSEs of� versus SNR. (b) MSEs ofF T versus SNR. (c) MSEs
of �T versus SNR (BPSK modulation,N = 50).

the UCRB (i.e., , assuming
BPSK and QPSK modulations, respectively. It can be seen that

(a)

(b)

(c)

Fig. 6. (a) MSEs of� versusN . (b) MSEs ofF T versusN . (c) MSEs of�T
versusN (BPSK modulation, SNR= 5 dB).

the proposed estimators exhibit good accuracy. In high SNR
range they coincide with the UCRB. In low SNR range (near
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Fig. 7. MSEs ofF T versus SNR in the presence of a flat Ricean-fading
channel (BPSK modulation).

0 dB), monomial nonlinear estimators with improved perfor-
mance can be obtained by adopting low-order nonlinearities
( 1 and 2 for BPSK and QPSK modulations, respectively).
Although the matched nonlinear estimator is optimal in the en-
tire SNR range, its performance improvement relative to the
monomial estimators is observable only at low SNRs. From
Figs. 1–4, we can also observe that at very high SNRs, the mono-
mial estimators (20) and (21) for different ordersexhibit the
same asymptotic variance.

Experiment 3-Comparison of the MSE of Estimators (21)
With the Theoretical Bounds Versus SNR:In Fig. 5, the
theoretical bounds (22) are compared with the experimental
MSEs of estimators (21) versus SNR, assuming ,
symbols, and BPSK modulation. This figure shows that for
medium and high SNR, the experimental results are well
predicted by the asymptotic bounds derived in Section IV,
and the proposed estimators provide very good estimates of
carrier phase, frequency offset, and Doppler rate, even when a
reduced number of samples is used . This shows the
potential of these estimators for fast synchronization of burst
transmissions.

Experiment 4-Comparison of MSE of Estimators (21) with
the Theoretical Bounds Versus Number of Samples: Fig. 6
displays the influence of the number of sampleson the per-
formance of the estimators (21), assuming , SNR
dB, and a BPSK input modulation. One can observe from this
figure that even at low SNR, the proposed NLS estimators (21)
can approach very closely the UCRB using a small number of
samples ( 70 or 80 samples), i.e., a lower threshold of SNR,
at which large estimation errors of frequency offset and Doppler
rate begin to occur, can be achieved with a reduced number of
samples.

Experiment 5-Performance of Frequency Estimators (29) in
Flat Ricean-Fading Channels:This experiment illustrates that
the proposed frequency offset estimators (29) still perform well
in the presence of Ricean-fading effects. In Fig. 7, the asymp-
totic variance (35) and the modified CRB (MCRB) for NDA
frequency offset estimation in flat Ricean-fading channel are

Fig. 8. MSEs ofF T versus SNR in the presence of timing error (BPSK
modulation).

Fig. 9. MSEs ofF T versus SNR (QPSK modulation,N = 50).

plotted versus SNR. The latter was derived in [14], and with
the notations adopted so far admits the following expression
for large . We as-
sume that the Ricean-fading process has a normalized energy
(i.e., ) and the Ricean factor .
The Doppler spread is chosen as 0.005, 0.05, and 0.5, re-
spectively. The transmitted symbol is BPSK and the number of
samples is chosen as . In Fig. 7, the MSE of estimator
(29) with and is also plotted. From Fig. 7,
it turns out that although there exists an error floor due to the
random fading effects, the accuracy of the proposed frequency
offset estimators is still satisfying at medium and high SNRs,
and improves for large Doppler spreads.

Experiment 6-Performance of Frequency Offset Estimators
(29) in the Presence of Timing Error:Until now, we assumed
a perfect timing reference at receiver. The simulation results
presented in Fig. 8 illustrate that estimators (29) are robust to
timing errors. In this simulation, we assume that there is a nor-
malized timing-error , the transmit and receive filters
are square-root raised cosine filters with roll-off factor .
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The symbol modulation is BPSK, , and the number of
samples is chosen as 50, 200, and 300, respectively.

Experiment 7-Performance of Frequency Offset Estimator
With Optimal Nonlinearity: For the sake of completeness,
we illustrate in Fig. 9 the performance of frequency offset
estimator (29) with optimal nonlinearity (18), compared with
that of . Both theoretical bounds are shown, too. The
constellation is QPSK and the number of samples is .
Instead of using a fixed value, this experiment considers that the
true frequency offset assumes random values drawn uniformly
from the interval [ 0.1, 0.1] during each simulation run. Fig. 9
illustrates again the merit of the performance analysis presented
in this paper.

VIII. C ONCLUSIONS

In this paper, we have introduced and analyzed a family
of blind feedforward joint estimators for the carrier phase,
frequency offset, and Doppler rate of burst-mode MPSK mod-
ulations. A matched nonlinear estimator together with a class
of monomial nonlinear estimators were introduced and their
performance established in closed form. It has been shown
that the proposed estimators exhibit high convergence rates
and good accuracy, and are robust to Ricean fading effects and
timing errors. Extensions of this work to general polynomial
phase signals appear straightforward.

APPENDIX I

DERIVATION OF EQUATIONS (8) AND (9)

Using (5), we can express as follows:

(40)

where in deriving the third equality we made use of the defini-
tion of [1, eq. (9.6.19)]. Then, by exploiting (6), (8) and
(9) follow. Similar to (40), the following expression holds:

which proves (16).

APPENDIX II

PROOF OFTHEOREM1

In order to establishTheorem 1, let us first study the second-
order statistics of additive noise . From (10), can be
expressed as

Define the second-order unconjugate/conjugate autocorrela-
tions of as

respectively. Due to (7), it turns out that and
are both equal to zero if . Hence, we obtain from (9), (15),
and (16) the following relations:

(41)

(42)

where stands for Kronecker’s delta.
Next, we begin the derivation ofTheorem 1. Considering the

Taylor series expansion of in the neighbor-
hood of the true value , we can write
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where rem stands for the high-order remainder terms which
asymptotically as can be neglected. Thus, we can ap-
proximate (12) by

Setting the derivatives of w.r.t. to 0, we obtain2

We normalize the above equations by and ,
0, 1, 2, respectively, and obtain that asymptotically
the following relations hold (c.f. [13]):

(43)

(44)

where in deriving the last equality, we made use of the well-
known limit [16]

Next, we express (43) and (44) in the matrix compact form
equation

(45)

2The notations< and= stand for the real and imaginary part of a complex-
valued number, respectively.

(46)

Since in (45) only is random, the asymptotic covariance matrix
of can be expressed as

(47)

where .
Observe that

Using (41) and (42), can be written as

Similarly, we obtain , 2, 3, 4, which means
that the NLS estimators of the amplitude and phase parameters
are asymptotically decoupled.

To evaluate the asymptotic variance of, 0, 1, 2, we need
to compute for , 0, 1, 2

Using the same technique as for , we obtain

Thus, the matrix can be expressed as

(48)

where is the so-called Hilbert matrix
[20]. Note that

Therefore, the asymptotic covariance matrix ofis obtained as

(49)
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where the inverse of the Hilbert matrix is given by [20]

(50)

Based on (49) and (50), some direct computations lead to the
sought asymptotic variances (14). This concludes the proof of
Theorem 1.
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