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Optimal Blind Carrier Recovery
for MPSK Burst Transmissions

Yan Wang, Erchin Serpedin, and Philippe Ciblat

Abstract—This paper introduces and analyzes the asymptotic to as the Viterbi and Viterbi (V&V) algorithm [8], [17], [19,
(large sample) performance of a family of blind feedforward non- . 280], and has been used to design blind frequency offset
linear least-squares (NLS) estimators for joint estimation of carrier estimators for burst MPSK modulations transmitted through
phase, frequency offset, and Doppler rate for burstmode phase- additive white Gaussian noise (AWGN) channels [2]-[5], [9]
shift keying transmissions. An optimal or “matched” nonlinear es- - . ' b el
timator that exhibits the smallest asymptotic variance within the EXtensions of the V&V carrier estimator for flat Rayleigh and
family of envisaged blind NLS estimators is developed. The asymp- Ricean fading channels were reported in [23] and [10]. The
totic variance of these estimators is established in closed-form ex- &V estimator exhibits several desirable features: its good
pression and shown to approach the Crameér—Rao lower bound of arformance at low SNRs translates into improved bit-error
an unmodulated carrier at medium and high signal-to-noise ra- bability (BEP f in fadi h Is that tend t
tios (SNR). Monomial nonlinear estimators that do not depend on proba '_' y ( )per ormance in _a Ing ¢ aqnes at tend 10
the SNR are also introduced and shown to perform similarly to € dominated by times when the signal experiences a deep fade
the SNR-dependent matched nonlinear estimator. Computer sim- (low SNR), and its open-loop operation enables fast reliable
ulations are presented to corroborate the theoretical performance acquisitions after deep fades [23]. Reference [8] introduces
analysis. a different class of blind carrier frequency estimators that

Index Terms—Burst transmission, carrier phase, Doppler rate, assume fractional sampling of the received signal. However,
frequency offset, M -ary phase-shift keying (MPSK), synchroniza-  the statistical properties of the resulting estimators are partially
tion. analyzed based on certain approximations [8]. A quite general

blind nonlinear least-squares (NLS) estimator for the carrier
|. INTRODUCTION phase, frequency offset, and Doppler rate was proposed in [18].
However, the performance of the NLS-type estimator was not

UIRS-L t_rant_smlsg!o_n_ of d'g'l'f[‘?‘ll data and \'1'0DKI:\; AIS er(‘J|15'1n51lyzed and exploited to develop carrier recovery algorithms
ployed in time-division multiple access ( ) an with improved performance [18].

packet demand-assignment multiple access (DAMA) satelliteIn this paper, a family of blind feedforward joint carrier

communication and terrestrial mobile cellular radio syste hase, frequency offset, and Doppler rate NLS estimators for
Conventionally, carrier synchronization of burst transmissio %rrier,s that are fully mo,dulated by MPSK modulations is pro-

requires a large number of overhead symbols, which results IDsed based on the V&V algorithm. An optimal or “matched”

reduced spectral eficiency and increased transmission delg)bﬁlinear estimator that achieves the smallest asymptotic (large

[7]. sam ) e . ) )
. . . ple) variance within the family of blind NLS estimators
Nop—dqta aided (NDA) or blind feed-forwar(-j carmer Synis also proposed. Monomial nonlinear estimators that do not
chronization of burstM-ary phase-shift keying (MPSK) require knowledge of the SNR are developed and shown

transmissions has received much attention in the IlteraturewA perform similarly to the matched nonlinear estimator. A

generalizgd form of th_e maximum-likelihood feedfor_vvaro_l (M horough and rigorous analysis of the statistical properties of
FF) algorithm was originally proposed by A. J. Viterbi an (i1e proposed family of NLS carrier synchronizers in AWGN

A. M. Viterbi as a blind carrier phasg estimator with IMPrOVed, g flat Ricean-fading channels is proposed and exploited to
performance at low and intermediate signal-to-noise rat'ﬂ%velop estimators with improved performance

(SNRs) [21], [25]. This carrier phase estimator is referred As we shall see, the proposed family of blind NLS estima-

tors presents high convergence rates, provides high accurate es-

o . o _timates for phase, frequency offset, and Doppler rate, and admits
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exploited to develop optimal or “matched” nonlinear estimator§ z(n)|w(n) = exp(j2rm/M), 0 < m < M — 1) ~
that exhibit minimum variance. In Section IV, the optimal nonA/ (w(n) exp(jé(n)), o2). Due to (2), it follows that
linearity is approximated by a class of monomial transforma- 9

. . . . 12™m

tions and the asymptotic performance of resulting estimatafd p(n), ¢(n)jw(n) = exp( i >>

is established. The results of Section IV are extended to flat ) .
Ricean-fading channels in Section V. A high-order ambiguity _ p(n) —("(ULI) 2p(n)w 4
function (HAF)-based estimator is briefly introduced in Sec- = w2 © e ’ - @

tion VI to decrease the computational load of the NLS estima- . .
tors. In Section VII, simulation results are conducted to confirr%ased on (4), the joint pdf qf(n) and(n), and the marginal

our theoretical analysis. Finally, in Section VIII, conclusions ar%OIf of p(n) take the expressions

drawn, and detailed mathematical derivations of the proposed 1 Ml 2
f | ted in the Appendi Flo(m), pm)==- 3" F(p(n), e(n) w(n) = exp( 27
performance analyzes are reported in the Appendixes. ) i ; Vi
m=0
Il. PROBLEM FORMULATION _ 1R () o
- 2
Consider the baseband representation of an MPSK-modu- M m=0 v
lated signal transmitted through an AWGN channel. Assume " e%cos[wn)_?%_ﬂn)] 5)
that filtering is evenly split between transmitter and receiver so -
that the overall channel satisfies the first Nyquist condition. Fil- [, J
tering the received waveform through a matched filter and sam- 7 (p(m))= [ f(p(n), ¢(n))de(n)
pling at the right time instants yields -
o) 2p(n) ~L20E) - 9p(n)
z(n) =w(n)e’ ™ + v(n), n=0,...,N—1 =—5¢ Iy ( — > (6)

B(n) =0 + 27 F. Tn + n1?n? Q) v
respectively, wherdy(-) stands for the zero-order modified
where {w(n)} is the sequence of zero-mean unit varianc@essel function of the first kind [1, eq. (9.6.16)]. Moreover, it
(02, = E{|lw(n)]’} = 1) independently and identically is not difficult to find that the joint pdf of the random variables
distributed (i.i.d.) MPSK symbols§, F., andn stand for (RVs) p(n1), @(n1), p(ns), @(ns) satisfies the following
carrier phase, frequency offset, and Doppler rate, respectiveMation:
T denotes the symbol period, arfd/(n)} is a zero-mean
circular white Gaussian noise process independent (of) F(p(n1), o(m), p(n2), e(n2)) = f (p(m1), p(n1))
and with variances2 := E{|v(n)|?}. The SNR is defined as f(p(na), p(n2)),  forny # ny. (M
SNR := 10log;o(02 /02).
As depicted by (1), the problem that we pose is to estimate

&xploiting (5) and (6), some calculations, whose details are pro-
unknown phase parametefs ., andn) of arandom amplitude

Ged in Appendix |, lead to the following relations:

chirp signalexp(j¢(n)) embedded in unknown additive noise, E{y(n)} =E {F (p(n)) eJ'M'P<")} = CelMe(n) ()
assuming knowledge of the received samgleg:)} Y= !. The

solution that we pursue consists of evaluating first certain mo- Iy (2’;—(f)>

ments of the output that will remove the unwanted multiplica- C:=[Efy(n)} =E{ F(p(n)) T(nv) 9)
tive effects introduced by the MPSK modulated sequenge). Ty ( o3 )

It turns out that the resulting problem reduces to the Sta”d%ﬁereIM(-) denotes thel/th-order modified Bessel function
problem of estimating the phase parameters of a constant e first kind [1, eq. (9.6.19)], the expectation in (9) is with
plitude chirp signal embedded in additive noise, for which stapsgpect to (w.r.t.) the marginal distribution efin) (6), and the
dard NLS-type estimators can be developed and their statistigad\,|ting amplitude is a real-valued constant which does not

properties analyzed in a rigorous manner. depend om. Sincew(n) andv(n) are i.i.d. and mutually inde-
pendent, from (7), it follows thak(n) := y(n) — E{y(n)} is
I1l. NONLINEAR CARRIER SYNCHRONIZER i.i.d., too. Consequently
Consider the polar representationagf) y(n) = CeIMP0) 4 yy(n), n=0,1,...,N—1 (10)
z(n) = p(n)eW("’) (2) andy(n) can be viewed as a constant amplitude chirp signal

exp(jM¢(n)) embedded in white noise. Note that, in general,
the white noise processgn) is not circular.

y(n) := F (p(n)) edMe) A3) Letw := [C wo w1 wo]? = [C MO 2rMF.T MyT?",
and introduce the following NLS estimator (c.f. [13], [18]):

and define the proceggn) via the nonlinear transformation

whereF'(+) is a real-valued nonlinear function.

Conditioned on the MPSK symbab(n), z(n) is nor- w = argmin J (@) (1)
mally distributed with the probability density function (pdf) [Nl e 2
J@ =% ‘y(n) —Cel 2| (12)
INotation “:=" stands for “is defined as”. 2 ne0
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By equating to zero the gradient dfw), some simple algebra applying differential encoding [18] or unique word decoding
calculations lead to the following expressions for the NLS estinethod [23]. The estimation range due to the ambiguity, e.qg.,

mates ofw;, [ =0, 1, 2 [13]: for Fe,is|F.| < 1/(2MT).
L |y , l 2 Next, we determine the optimal or “matched” nonlinearity
(&1, w2) = arg max Z y(n)e™ 2, @m F(-) which minimizes the asymptotic varianaear(c;) (14).
Cr.e2 N | o= Since in (14), only the term8#, C, and D depend onF'(-),
N-1 — finding an optimal F(-) resorts to solving the optimization
angle{ > y(n)e™ 2o, G } (13) problem
n=0
It is well known that estimator (11) is asymptotically unbiased Fouin (p(n)) = arg min 5 _2D
and consistent, and also almost asymptotically efficient at high F(¢) C
SNR [6], [12], [13]. Using (9), (15), and (16), we obtain
Following a procedure similar to the one presented in [13], o)
one can derive the asymptotic variances of estimates =0, 5l 2 1 T2nt (a—>
1, 2. These calculations are established in Appendix Il and are (p(n)) Io (M)
summarized in the following theorem. _ i
Theorem 1: The asymptotic variances of the NLS estimates c? Iy (%)
@1, 1 =0, 1, 2in (11)—(13) are given by EJ{ F(p(n)) W
o\ —_ 2

B-D 1 1 (+30 17
avar () = C2 oN2F 91+ 1 [(1')2( _ )J (14) Using Cauchy—Schwarz’ inequality, the optimum nonlinearity
Foin is given by the following theorem.

2

B:=FE {|y(n)| } =E{F?(p(n))} (15)  Theorem 2: The optimal or “matched” nonlinearitf,; (-)

_ 2 2 j2Mp(n) that minimizes the asymptotic variances of the proposed family
D= |E {y (")H ‘E {F (p(n))e H of NLS estimators (11) is given by
£ F2 (o) Loy ( p(n)) (16) I (2/,),_(271))

= pLn Fmin = - 18

IO (QZ_(Zn)) (p(’ﬂ)) [0 (2/)(271)) I » (2p(n)> ( )
andC is defined in (9). _ where ) is an arbitrary nonzero constant. Plugging (18) back
Some remarks are now in order. into (9), (15), and (16), and substituting these values into (14),

Remark 1: From (14)-(16), one can observe that the asympne minimal asymptotic variances éf, [ =0, 1, 2 can be ex-
totic variances ok, [ =0, 1, 2 are independent of the unknownyressed as
phase parametefs F., andy. 1 1

Remark 2: It is of interest to compare the asymptotic varl-avarmm(wl) T
ances (14) with the CRB. In [11] and [12], the CRB is derived 2N 20+1
for the case when the random amplitudén) of model (1) is . )
a stationary Gaussian process. In [13], the CRB is obtained by 2, %)
assuming that the additive noisén) of model (10) is colored E —

Gaussian and circularly symmetric. Note that in this paper, both I3 (%) —o (zi(gn))l 2u (L)
models (1) and (10) do not satisfy these assumptions. Therefore,

in this paper, we adopt the CRB for an unmodulated carrier wave IV. MONOMIAL NONLINEARITY ESTIMATORS
(UCRB), i.e.,M = 1 (c.f. [25]), which is a special case of the

CRB presented in [11]-[13]

(1+3)! 17
(l!)Q(Z—I)J

=

(19)

!

As can be observed from (18),,in(p(n)) is a function that
) S depends on the SNR. This is not a restrictive requirement since
UCRB(@r) = — 20 o [ (I +3)! ] (17) blind SNR estimators that exhibit good performance can be used
2N2H1 20+ 1 [(I)2(2-1)! [22]. However, if the SNR estimation step is not desirable, we
Based on (14), one can observe that the asymptotic varianshew next that there exist optimal monomial approximations
avar(w;) of the NLS estimate$;, [ =0, 1, 2, decay at the samep®(n), k = 0,..., M, of the matched nonlinearit,;,(p(n))
rate as the UCRB, i.eQ(1/N?2/+1), that exhibit almost the same asymptotic variance as (19) and
Remark 3: Estimator (13) involves a two-dimensional (2-D)}heir implementation does not require knowledge of the SNR.
maximization problem which could be too intensive if a good Exploiting the asymptotic formula [1, eq. (9.7.1)] in (18), it
initial estimate cannot be provided. In this paper, the initialirns out that at high SNRSNR — oo) the optimal monomial
values ofF, andr are obtained by the so-called HAF approachs G, (p(n)) = p(n). Similarly, based on [1, eq. (9.6.7)], it turns
which has become a “standard” tool for analyzing constaaut that at low SNRYSNR — —o0), the optimal monomial
amplitude chirp signals since it provides a computationallg G;(p(n)) = p™(n). These results parallel the derivations
efficient yet statistically accurate estimator [6]. We will brieflyreported in [21] and do not depend on the value of the frequency
introduce the HAF-based estimator in Section VI. shift or Doppler rate. In order to obtain a better understanding,
Remark 4: The estimates of phase parametérsF,, and next we establish the asymptotic performance of the monomial
7 presentM -fold ambiguity, which can be counteracted byNLS estimators.
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Define the class of processgs(n) by means of the mono- in [25] or the formula [1, eq. (13.5.1)], one can obtain a slightly
mial transformations more compact expression for the confluent hypergeometric
ye(n) = pk(n)eﬂw(n)? k=01,....M (20) function in (25)
s+t

and the zero-mean processg$n) := yr(n) —E{yr(n)}, k= ¢, = 1 |:7t Zp! (s + t) (s —t+p-— 1)
v

0,...,M.Asbefore, itturns out that{y, (n)} is a constantam- =0 p p
plitude chirp signal, and hencg,(n) = E{yx(n)} +ux(n) can o\ 9\ t1
() v ()

be interpreted as a constant amplitude chirp signal embedded

in white noise. As a special case of (11), we introduce the fol- v

Y

lowing class of monomial NLS estimators: “ S_ztjl <s +t+ p) (s+1t)! (g)p
N-1 e a2 (s—t-p-1)
()—argmln_ Z \yk — Wi Do @ M (22) 1fl<:—0,2,...,M—2
. . ) . Ch.=1, ifk=M
whose asymptotic variances fbf ,1 =0, 1, 2 are provided by .
the following theorem. wheres := M/2 andt := k/2. Similarly
) (;I")heorem 3 The asymptotip variances of the NLS estimatesD 1 kM+k MAE\N/M—k+p—1
@/, 1=0,1,2in (21), are given by k—_k Z »
2
w®\_Be—=Dp 1 1 [ (+3) NP k+1
avar (wl ) - CZ I2N2+1 9] +1 (l!)2(2 _ l)! % (_2 + (_1)]\/[+k+12ke*% (g)
Y v
2 X
Br ::E{w’“(")' }:E{pgk(n)} A’I§_1<M+k+p> (M + k)! <2>p
Cro = |E {yr(n)}] = ‘E {pk(n)eﬂW(">H e P (M—k—p-1)I\n) |’
. P20 if k=0,1,...,M—1
Dy = |E y2(n) = ‘E p2k(n)eﬂM('°(n) ‘ (22) ! Ty
[E{wi(m}] { } Dr=1, if k=M. 27)
Exploiting (6) and [15, eq. (6.643.4)], the following relation was
derived in [25, (AL7)]: Plugging (23), (25), and (26) back into (22), closed-form
. ) expressions for the asymptotic varlancasar(w,(k)) for
B ENT 5 k=0,1,...,M, andl =0, 1, 2 are obtained.
B = ;( ) Go” " ¢ (23) " Note that at very high SNR1/02 — o), using [1, eq.

) . (13.1.4)], some calculations show that
Using (5), we can obtain that

Slei{m Cr=1 (28)
E{yk(n)} = / /Pk(n)emwm)f (p(n), ¢(n))de(n)dp(n) foranyk = 0,1,..., M. Hence, based on (22), (23), (27), and

0 —= (28), we obtain

M-1 % e M? 1

— i Z / pk+1(2n) 6_ (5'12,)+ /ejMv(n) avar ((:}l(k)) XX SNR . W

M . To2

m=07p - which does not depend on the estimator ordere., it turns out
y 822(;) cos[v,o(n)—ﬂgﬁ—ﬂn)]d (n)dp(n) that at very high SNRs, the performance of estimators (21) for

- v P different nonlinearity orders is asymptotically the same.

We close this section with the following remark.
Remark 5: Assume that) = 0, i.e., the received signal is

. . 2
= e [T agac (@

0 affected only by phase offset and frequency offset. Then, the
wherea := /2/0,, v := a?, and( := ap(n). Based on estimator (21) reduces to

[15, eq. (6.643.2)] and [1, eq. (13.1.320}, can be expressed 1 o

in terms of the confluent hypergeometric functidy, -, -) for f(’“) = — arg max — Ye—i%mfon

E=0,1,....M M |fo|lN

N-1
I (M 4 1) e 2 k+M v jky _ L —jerMFH)n
Cr = P +1, M+1, 2. 0" = —angle yr(n)e 7T e (29)
T D(M + 1)oF < 2 ’ 2) M nz:%

Similarl (25) with f. := F.T. Based on (29), the frequency offset estimator
imitarly can be implemented efficiently by means of the fast Fourier
D T(k+ M+ 1)e transform (FFT) algorithm applied on the sequengén),

k=

~
(k + M+ 1, 2M 1, 2) which is generally zero-padded with a sufficiently large number

(26) of zeros to achieve the precision provided by the asymptotic
It should be pointed out that whenis even (/ is usually a CRB (O(1/N?3)). The following corollary is obtained directly
power of two), following a similar approach to that presenteflom Theorem 3

P(2M+1) 2M -2k
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Corollary 1: The asymptotic variance of the class of NLS = 0,..., M — 1. In the special cask = M, uy;(n) is a cir-
estimators (29) forf. is given by cular noise process, whose autocorrelation and spectral density
(*) 6(By. — Dr) 30 are given byr,,,, (1) := E{u};(n)upr(n+7)} andS,, (f) :=
avar (f ) 4n2M2C2N3 (30) > 7wy (T) exp(—j27 f7), respectively. Therefore, the asymp-
whereBy, Ci., andD;, are defined inTheorem 3 totic variance of (29) is now given by [24]
6S.,, (Mf.)
M
V. EXTENSION TO FLAT RICEAN-FADING CHANNELS avar (f( )> 472]\2;20—2 N3 (35)

In the foregoing discussion, we assumed AWGN channelﬁ,]e calculation of the power spectral density, (-) is tractable
In this section, we will see that the NLS estimators (11) rema d is briefly detailed next. Define the following variables:
asymptotically unbiased and consistent in the presence of flat

Ricean-fading channels. To simplify our derivation, wewillonly (k) .— {|U(n)|2k} =k .ok

concentrate on the extension of the frequency offset estimators

(29). oM i=E {|u(n) — E{u(n)} "} = k- o2
Assuming a flat Ricean-fading channel model, the

input-output relationship of the channel can be expressed ,r(k) —E{|M( } 2k+z< > 2k—21 (z)

as

_ 2w F.Tn _
(n) = p(n)w(n)e’ +o(n), n=0,....,N-1 (1) gome direct but lengthy calculations lead to the following
where pu(n) = pu(n)exp(jpu(n)) is the fading process expression:
with nonzero mearfi{u(n)} := p1exp(je1) and variance

o2 = B{|u(n) — E{u(n)}*}. Using the Jakes model, (Mf.) = ZZ( ) oM 2k

the second-order correlations of the fading are given by”M prt
-

E{lu(n) — E{u(m)}" - [u(n + 7) — E{u(n + 7)}]} = M )
o Jo(2rfar), where Jo(.) denotes the zero-order Bessel xe(k)J§(27rf,;T)+Z <M> () (M=F)  (36)
function of the first kind, andf; stands for the normalized " ' von
Doppler spread. The joint pdf n) and n), and the
ma?ginal szjf ofp,.(n) ajre giv%n g;f"( ) ouln) Plugging (36) back into (35) a closed-form expression of the
(n) b2 (m) 492 —2pp (m)oy con(p(m)—p1) asymptotic varlanceVar(fe ) in the presence of flat Ricean-
_pu(n) == . -2 fading effects is obtained.
f(pﬂ(n)7<pu(n))_ ’IIFO'Z k (32) g
20,,(n) AR 20,,(1) VI. HAF-BASED ESTIMATOR
Iz o2 Iz
Flpu(n))= Uﬁ 1 ( 0'/3 > (33) As mentioned in Section Ill, a HAF-based estimator is a

simple and computational efficient approach to provide the
initial estimates of NLS estimator (13), and combines the use
of the HAF in order to reduce the order of the polynomial

Conditioned on the fading procegé:) and the input symbol
w(n), the joint pdf ofp(n) andp(n) takes the form

f <p(n), o(n)|w(n) = exp (%) L pu(n), Lpu(n)> phaseg(n) and that of the NLS approach in order to estimate
i i the parameters of an exponential signal embedded in noise [6].
p(n) _M First, let us rewrite (10) as
702 ’ _ p j(MO4+2x MF. Tt MnT?n?
o[- L] y(n) = Cel 7T 4 ou(n)
2P (n) 2 _ (34) and define the following process:

Using (31)through (34), in a similar way to that presented mthqj (n;7) :=y*(n)y(n + 1)

former sections, some straightforward but lengthy calculations _ 02 CRMET T MaT* ) j2Mn T nr | W (n) (37)

lead to
Moy ,j27M fe N : H
E {yr(n)} =Cre? M #1271 k=0,1,....M wherer > 0 andu/(n) is a zero-mean noise composed
_F(M—i-l) e—%pil\f kE+M v of noise x signal and noisex noise terms. For a fixed,
= F(M+1) Nk 5 TLM+1 = y»(n;7) is an exponential signal with constant amplitude
, C%exp(j(2r M F.TT+ MnT?7?)) embedded in additive noise
with 07 := o7 + o) andy, := 2pi/of. Hence,yx(n) can

’4[ n). Hence, it is natural to use an NLS estimator to obtain an

still be viewed as a constant amplitude harmonic embedded |
imate ofy as follows:

additive noiseui(n) := yr(n) — E{yx(n)}, and the unbiased-
ness and consistency of estimators (29) hold true in the pres- 1

ence of flat Ricean-fading channels. However, we should note 7 = SMT2, 18 Igl‘igi
that due to the fading effect,;(n) is not white any more, but

a zero-mean colored process. Establishing the asymptotic v@hces is available, demodula@(n) to obtain

ance of estimators (29) in flat Ricean-fading effects for any L,

k is generally, if not impossible, at least very complicated for z(n) = y(n) - e ?MAT*"* ~ Cei(MO+2RMETn) 11y

ijn.

(38)
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whereu”(n) combines the estimation errorsijrand the effect by performing a number of 200 Monte Carlo trials, the addi-
of additive noise [6]. Similarly/F, can be obtained as tive noise is generated as zero-mean Gaussian white noise with
variances?, and unless otherwise noted, all the simulations are

R 1 N1 ionFon performed assuming the carrier phése 0.1, frequency offset
Fe= 105 arg max > z(n)e>mhon ) (39) F.T =0.011, and Doppler rate72 = 0.03.
iz n=0

Experiment 1-Performance Loss of Estimators (20),

The HAF-based estimators (38) and (39) can decrease com 2u1-) w.rt. the Ma_tched Estimator (18), (.11}::'95' 1 and
plot the loss in performance of estimators (20) and

tational complexity and provide good initial values for NLS es;, . . . .
timator (13). Examining its performance is beyond the scope Ezfl) w.r.t. the optimal nonlinearity estimator (18), (11)

. : —10log; o [avar(@)\¥)) /avarmm(@)]) in the case of a bi-
this paper. We refer the reader to [6] for the detailed performance 10 LI .
anal@s?s of HAF-based estimatoE ] P nary phase-shift keying (BPSK) modulatigd/ = 2) and
' quaternary phase-shift keying (QPSK) modulatidd = 4),

respectively. It turns out that in almost the entire SNR region
of interest, the optimal nonlinearit,.;,(p(n)) can be approx-

In this section, we study thoroughly the performance of egnated without much loss in performance b)) (BPSK) and
timators (11), (21), and (29) using computer simulations. Thgn) or p?(n) (QPSK, depending on SNR), respectively.
experimental mean-square error (MSE) results of these estimaExperiment 2-Asymptotic Variances of Estimators (18), (11),
tors will be compared with the theoretical asymptotic bound20), and (21) w.r.t. the UCRBFigs. 3 and 4 depict the per-
and the CRB-like bounds. The experimental results are obtaifedmance loss of the asymptotic variances (19) and (22) w.r.t.

VII. SIMULATION EXPERIMENTS
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Fig.5. (a) MSEs of versus SNR. (b) MSEs of. T versus SNR. (c) MSEs Fig.6. (a) MSEs of versus\'. (b) MSEs off. T versusV. (c) MSEs of7°
of nT™ versus SNR (BPSK modulatiotN' = 50). versusN (BPSK modulation, SNR= 5 dB).

the UCRB (i.e.,—10log;,[avar(&;)/UCRB(&;)]), assuming the proposed estimators exhibit good accuracy. In high SNR
BPSK and QPSK modulations, respectively. It can be seen tliahge they coincide with the UCRB. In low SNR range (near
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Fig. 7. MSEs of 7. T versus SNR in the presence of a flat Ricean-fadingr:gaﬁéﬁx]?lzs ofF.T" versus SNR in the presence of timing error (BPSK

channel (BPSK modulation).

0

10 T
0 dB), monomial nonlinear estimators with improved perfor- T D MAE a2
i i - i iti —-—--  Theoretical Bound: Optimal
mance can be obtained by adopting low: prder nonlme_arme e o el MO Cptmal
(k = 1 and 2 for BPSK and QPSK modulations, respectively). & —— UCRB

Although the matched nonlinear estimator is optimal in the en
tire SNR range, its performance improvement relative to the
monomial estimators is observable only at low SNRs. Fron _
Figs. 1-4, we can also observe that at very high SNRs, the mon §1o's
mial estimators (20) and (21) for different ordérexhibit the 2
same asymptotic variance.

Experiment 3-Comparison of the MSE of Estimators (21
With the Theoretical Bounds Versus SNR: Fig. 5, the
theoretical bounds (22) are compared with the experiment: 1o
MSEs of estimators (21) versus SNR, assunting 1, N = 50
symbols, and BPSK modulation. This figure shows that for - , ) ,
medium and high SNR, the experimental results are wel ° s 0 L, o % ®
predicted by the asymptotic bounds derived in Section 1V, .
and the proposed estimators provide very good estimatesFt§f - MSEs off". T" versus SNR (QPSK modulationy] = 50).
carrier phase, frequency offset, and Doppler rate, even when a
reduced number of samples is ug@d = 50). This shows the plotted versus SNR. The latter was derived in [14], and with
potential of these estimators for fast synchronization of burtste notations adopted so far admits the following expression
transmissions. for large N : MCRB(/f.) = 602/[4n2N>(p? + 02)]. We as-

Experiment 4-Comparison of MSE of Estimators (21) witbume that the Ricean-fading process has a normalized energy
the Theoretical Bounds Versus Number of SamplesFig. 6 (i.e., E{|x(n)|*} = 1) and the Ricean factor := pi /o), = 1.
displays the influence of the number of sampMé®n the per- The Doppler spread, is chosen as 0.005, 0.05, and 0.5, re-
formance of the estimators (21), assuming= 1, SNR= 5 spectively. The transmitted symbol is BPSK and the number of
dB, and a BPSK input modulation. One can observe from tteamples is chosen &6 = 200. In Fig. 7, the MSE of estimator
figure that even at low SNR, the proposed NLS estimators (2P9) with k£ = 2 and f; = 0.005 is also plotted. From Fig. 7,
can approach very closely the UCRB using a small numberibturns out that although there exists an error floor due to the
samplesV = 70 or 80 samples), i.e., a lower threshold of SNRandom fading effects, the accuracy of the proposed frequency
at which large estimation errors of frequency offset and Doppleffset estimators is still satisfying at medium and high SNRs,
rate begin to occur, can be achieved with a reduced numbefaofl improves for large Doppler spreads.
samples. Experiment 6-Performance of Frequency Offset Estimators

Experiment 5-Performance of Frequency Estimators (29) {@9) in the Presence of Timing Errortntil now, we assumed
Flat Ricean-Fading ChannelsThis experiment illustrates thata perfect timing reference at receiver. The simulation results
the proposed frequency offset estimators (29) still perform wedtesented in Fig. 8 illustrate that estimators (29) are robust to
in the presence of Ricean-fading effects. In Fig. 7, the asyntpming errors. In this simulation, we assume that there is a nor-
totic variance (35) and the modified CRB (MCRB) for NDAmalized timing-erroel’ = 0.1, the transmit and receive filters
frequency offset estimation in flat Ricean-fading channel aere square-root raised cosine filters with roll-off factioe 0.5.
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The symbol modulation is BPSK; = 2, and the number of where in deriving the third equality we made use of the defini-

samples is chosen & = 50, 200, and 300, respectively. tion of Ip,(+) [1, eq. (9.6.19)]. Then, by exploiting (6), (8) and
Experiment 7-Performance of Frequency Offset Estimat(®) follow. Similar to (40), the following expression holds:

With Optimal Nonlinearity: For the sake of completeness, 9 _ 9 j2Mp(n)

we illustrate in Fig. 9 the performance of frequency offset E{y n)} _E{F (p(n)) e }

estimator (29) with optimal nonlinearity (18), compared with oo Loas ( 2 )
that of & = 2. Both theoretical bounds are shown, too. The = I2M () /F2 (p(n)) ” i
constellation is QPSK and the number of sample¥is= 50. 5 ( )
Instead of using a fixed value, this experiment considers that the 20(n) - pz(n)+1 20(n)
true frequency offset assumes random values drawn uniformly e 3 ( = ) p(n)
from the interval 0.1, 0.1] during each simulation run. Fig. 9 Tv Tv
illustrates again the merit of the performance analysis presentédgch proves (16).
in this paper.

APPENDIX |l

PROOF OFTHEOREM1
VIIl. CONCLUSIONS ] )
In order to establisheorem 1let us first study the second-

In this paper, we have introduced and analyzed a fami@yder statistics of additive noisgn). From (10),u(n) can be
of blind feedforward joint estimators for the carrier phas€xpressed as
frequency offset, and Doppler rate of burst-mode MPSK mod-  4(n) :=y(n) — E {y(n)}
ulations. A matched nonlinear estimator together with a class Moln iMoln
of monomial nonlinear estimators were introduced and their = F (p(n)) M7 — E{F(p(n))eJMW( )}'
performance established in closed form. It has been shoBefine the second-order unconjugate/conjugate autocorrela-
that the proposed estimators exhibit high convergence ratems of u(n) as
and good accuracy, and are robust to Ricean fading effects a,nqn 7) :=E {u* (n)u(n + 1)}
timing errors. Extensions of this work to general polynomial

phase signals appear straightforward. { (p(n)) e IMeME (p(n _,_T))eﬂ\fso(nﬂ)}
{F(p(n)) *JZU»O(")}
APPENDIX | {F(ﬂ(n +7)) ]A[¢(n+r)}

Fu(n;7) = E{u(n)u(n + 1)}

JMep n)F JFMop(n+1)
DERIVATION OF EQUATIONS (8) AND (9) { (p(n)) e (p(n+7))e }

_ F JMp(n)
Using (5), we can expreds{y(n)} as follows: { (p(m)) e }
B{F (p(n+ 7)) iMoo}

E{y(n)} =E {F( (n)) ejM”O(")} respectively. Due to (7), it turns out that(n; 7) and s, (n; 7)
M1 o T are both equal to zeroif # 0. Hence, we obtain from (9), (15),
Z / e 2 /esta(n) and (16) the following relations:

M 7r02 ' 9
o o) = E{F? ()} = [E{F o 0} o)
- “ldgp(m)do(n)
S = (B - C)é(7) (41)
= Z (I 2mm i M(n) Fu(n;T) = [ { 2 (p(n ))eﬂM'*’(")}
=0 .
o0 2 —E? $ F (p(n)) /e 11 5(7)
2p(n)F (p(n)) —% 2 {'2M H
A et S =(D - %)M (7) (42)
0 20(n) whereé(.) stands for Kronecker’s delta.
X Inr < p 5 ) dp(n) Next, we begin the der[vation dtheorem 1Considering the
Tv Taylor series expansion Gfexp(j Z,zzo @in!) in the neighbor-
® Iy (QZ(Q”)) hood of the true valug€ wy w; w»]?, we can write
— iMo(n) /F(p(n)) N/ T iy . ) 7
Iy 2P(2")) Cel 2u=o " = Cel Lui=0“'™ + (C — C)e] =0 @™
0 (e
2
_P2()+1 . ~ j 2 wint
' Zpa(zn )~ E g, <2po(2n )> dp(n) (40) + kznk(% — wg)Ce! L= “™ 4 rem
v v 70
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where rem stands for the high-order remainder terms which [ 1 = —jiM¢(n) T
; > R{u(n)e }
asymptotically asV — oo can be neglected. Thus, we can ap- VN S
. N-1
proximate (12) by LY 3 {u(n) M)}
1 N-1 .Zz 1 N .Zz ! €= ]7\1[:701 (46)
J(@) = 3 Z;) ’y(n) —Cel Zu=0“"" — (C — C)e! Lu=0 ™" ﬁ - (2) S {u( )e—jM¢(n)}
| 2 - 1 Nil (2)2 S {u(n)e—iMom)}
—J Z n* (@ — wi)Ce’ 2o VN o N .
k=0

Since in (45) onlye is random, the asymptotic covariance matrix
of w can be expressed as

¥, = lim E{KN(w w) (@ —w)TKNT }

Setting the derivatives of (w) w.r.t. @ to 0, we obtaif

N-1 ) . N —oo
nz::o %{u(n)e iMe( )} -N(C-C)= = lim E {A leeTA™ }
N_lnk% {u(n)e—jM¢(n)} — =ATRA )

whereR; := limy_ ., E{ee’}.

3
[=}

2 N-1 Observe that
CY (@ —w) Yy n**=0 k=012 N-1 o 2
1=0 n=0 R.(1,1) = hm NE Z %{u(n)e J d’(")}
o n=0

We normalize the above equations§y/2 andN*+1/2 | =
0, 1, 2, respectively, and obtain that asymptotically — oo)
the following relations hold (c.f. [13]):

1 N—-1
Ngnoo 4N Z

ni ,n2:0

N-1 _ . —jiMep(n1) * JM$(n1)
\/LN R {u(n)e—JW(n)} - VN -0) (43) x B { [“(”1)6 +ut(m)e ]
n=0 % [u(m)e—jwwz) —}—u*(ng)ejM‘/’(n?)] }
N—-1
1 AR —iMé(n) Usi i
S — n sing (41) and (42 1,1) can be written as
\/NZ:(N) \s{u(n)e } g (41) ( )R;:V( 1 )
N — 1
2 N-1 kel R.(1,1) = lim — D+B-2C%) = =(D+B-2C?).
= Z 2 wl_wl _ ( ) E( ) N oo 2N n:[)( ) 2( )
=0 N n=0

2

=0

C o oern B
= Y e, k=02 @)

Similarly, we obtainR.(1,%) = 0, £ = 2, 3, 4, which means
that the NLS estimators of the amplitude and phase parameters
are asymptotically decoupled.

To evaluate the asymptotic variancewf! =0, 1, 2, we need

where in deriving the last equality, we made use of the welle compute fork, m =0, 1, 2

known limit [16]

lim

N;OONZ( ) =

k—l—l

Re(2+k,2+m)

xE [3 {u(m

g > (%) <—>
b {utmgemsea)].

6 —jiMep(n1)

Next, we express (43) and (44) in the matrix compact forr(gsmg the same technique as R (1, 1), we obtain

equation

Kn(w—w)=A""e

=

KN'

oooz

oS O O =
wlana O ©

2The notationg® and< stand for the real and imaginary part of a complex-
valued number, respectively.

OZOO
wlw

BlAawannNn o © O T
ulQkQw O©

Zooo

wjor

45)

1

24k, 2 =——(B-D), ; =0,1,2.
RE( +k/ +m) 2(k+m+ 1) (B )/ k7m 07 7
Thus, the matriR. can be expressed as
_1[B+D-2c? 0
Re=3 [ 0 (B - D)H] (48)

whereH := {1/(k+l+1)}§,l=0 is the so-called Hilbert matrix
[20]. Note that
11 0
[ etin]

Therefore, the asymptotic covariance matrixuas obtained as
Yo =AT'RAT!
1 [B +D-2C? 0
2

0 (B- D)c—QH—l} (49)
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where the inverse of the Hilbert matH is given by [20]

(k + 3)!(1 + 3)!
(R — )@ — DIk + 1+ 1)
(50)

[21]

H™(k,1) = (-1)** [22]

(23]
Based on (49) and (50), some direct computations lead to the
sought asymptotic variances (14). This concludes the proof q§4]

Theorem 1
[25]
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