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Blind Feedforward Cyclostationarity-Based Timing Estimation for
Linear Modulations
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Abstract—By exploiting a general cyclostationary (CS) sta-
tistics-based framework, this letter develops a rigorous and
unified asymptotic (large sample) performance analysis setup for
a class of blind feedforward timing epoch estimators for linear
modulations transmitted through time nonselective flat-fading
channels. Within the proposed CS framework, it is shown that
several estimators proposed in the literature can be asymptotically
interpreted as maximum likelihood (ML) estimators applied on
a (sub)set of the second- (and/or higher) order statistics of the
received signal. The asymptotic variance of these ML estimators
is established in closed-form expression and compared with the
modified Cramér–Rao bound. It is shown that the timing esti-
mator proposed by Oerder and Meyr achieves asymptotically the
best performance in the class of estimators which exploit all the
second-order statistics of the received signal, and its performance
is insensitive to oversampling rates as long as 3. Further,
an asymptotically best consistent estimator, which achieves the
lowest asymptotic variance among all the possible estimators that
can be derived by exploiting jointly the second- and fourth-order
statistics of the received signal, is also proposed.

Index Terms—Cramér–Rao bound (CRB), cyclostationarity,
maximum likelihood (ML), synchronization, timing estimation.

I. INTRODUCTION

T IMING estimation is a challenging but very important task
for reliable detection in synchronous receivers. For band-

width efficiency and burst transmission reasons, nondata aided
or blind feedforward timing estimation architectures have re-
ceived much attention in the literature [2], [3], [6]–[9], [12].
Originally in [8], Oerder and Meyr (O&M) proposed a blind
feedforward square timing recovery technique for digital data
transmission by linear modulation schemes. Several extensions
similar in form to the O&M estimator were later reported in
[2], [3], and [12]. These estimators employ a second-law non-
linearity (SLN) on the received samples, and exhibit weak per-
formance when operating with narrowband signaling pulses [5]
and [7]. With the assumption of low signal-to-noise ratio (SNR)
and phase-shift keying (PSK) constellations, [7] proposes an ad
hoc feedforward SNR-dependent maximum likelihood (ML)-
based timing estimator that assumes a logarithmic nonlinearity
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(LOGN) and is shown to exhibit better performance than the
SLN (O&M) estimator. However, good estimates are obtained
by fixing the SNR value to 5 dB. Moreover, since its perfor-
mance analysis is not fully investigated, no thorough conclu-
sions may be drawn [7]. Reference [9] proposes an approximate
performance analysis of the SLN, fourth-law (FLN), and abso-
lute value (AVN) nonlinearities-based estimators assuming bi-
nary PSK modulations and a stationary statistics framework.

Irrespective of the nonlinearity function used, one of the
common features of all the above-mentioned blind feedfor-
ward timing estimators is the exploitation of the cyclosta-
tionary (CS) statistics induced by oversampling the received
signal. Generalizing the previous results of [14], our goal
herein is to exploit optimally the CS-statistics of the received
signal in order to develop efficient estimators, and rigorous
and thorough performance analysis setups for the existing
blind timing estimators. We will show that the CS-based es-
timators can be asymptotically interpreted as ML-estimators
applied on a (sub)set of second- (and/or higher) order cyclic
correlations of the received signal. The asymptotic variances
of these ML estimators, which can serve as the lower bounds
of the performance of the CS-based timing estimators, are
established in closed-form expressions. (Due to space lim-
itations, our analysis concentrates only on SLN estimators.
As for other nonlinearities, since they can be approximated
by a finite power series expansion including second-order,
fourth-order, and generally up to sixth-order terms, those
estimators can also be analyzed similarly in the presented
framework.) It is also shown in this letter that the O&M es-
timator achieves asymptotically the best performance in the
class of SLN estimators, and its performance is insensitive
to oversampling rates whenever . Further, to assess
the best performance achievable by the CS-based estimators,
the asymptotically best consistent (ABC) timing estimator
will be derived. Computer simulations illustrate that the pro-
posed ABC estimator improves significantly the performance
of the existing timing estimators, especially when dealing with
strongly bandlimited signaling.

II. SYSTEM MODEL AND ASSUMPTIONS

Consider the following standard baseband received signal of
a linearly modulated data sequence transmitted through a time
nonselective flat-fading channel (see, e.g., [3], [11])

(1)
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where is the sequence of transmitted symbols, is
the oversampled additive noise, the integer
denotes the oversampling factor with and representing
the symbol period and sampling period, respectively,

where denotes the convolution of the trans-
mitter’s signaling pulse and the receiver filter,1 and stands for
the unknown (normalized) symbol timing epoch. We invoke the
following assumptions.

(AS1) is a zero-mean independently and identically
distributed (i.i.d.) sequence with values drawn from
a linearly modulated circular complex constellation
with unit variance, i.e., . This
assumption is not at all restrictive since all the deriva-
tions can be extended to noncircular modulations and
symbol streams with arbitrary correlations.

(AS2) is a complex-valued circular Gaussian process
independent of , with independent real and imag-
inary components and autocorrelations , where

is an integer lag. The variance of is equal to
and the SNR is defined as SNR .

(AS3) With no loss of generality, herein the combined filter
is assumed to be a raised cosine pulse of band-

width , where the param-
eter represents the rolloff factor [11,
Ch. 9].

(AS4) In [2], [3], and [6]–[8], the oversampling rate
is adopted to avoid certain aliasing effects. Reference
[14] points out that when , the aliasing effects
have to be taken into account, and a different form
for the SLN timing estimator results. To save space
and avoid any overlapping with the results of [14],
we assume .

(AS5) satisfies the so-called mixing conditions, i.e., its
th-order cumulant is absolutely summable for any

[1], [3].
Assumptions (AS1)–(AS4) are quite general, and the mixing

condition (AS5) resumes to the fact that sufficiently separated
samples are approximately independent, a condition which en-
sures the consistency of the estimators proposed herein and is
usually satisfied in practice by all finite memory signals [3].
Therefore, the results presented in this letter are quite general
and suitable for many applications of practical interest.

In Section III, first we briefly introduce the blind feedforward
SLN timing estimators proposed in [2], [3], [8], and [12], and
then propose a unifying ML framework that will enable to ana-
lyze their asymptotic performance.

III. SECOND-ORDER CS STATISTICS-BASED TIMING

ESTIMATORS

A. SLN Timing Estimators

By exploiting (1) and taking into account the assumptions
(AS1)–(AS4), straightforward calculations show that the cyclic

1The subscript is used to denote a continuous-time signal.

correlations of the nonstationary process are given for
by the expressions [3], [14]

(2)

where denotes the continuous-time Fourier transform
of , and the notation stands for the Kronecker’s delta.
The frequencies (or simply ), for ,
are referred to as cyclic frequencies or cycles [3]. Due to
the symmetry property of the raised-cosine function ,
it is easy to check that is real-valued, and
(thus, ) is nonzero only for cycles . Since

, it follows that only
the subset , , represents all the second-order
statistics that may be used for estimating the unknown timing
epoch . In practice, the cyclic correlations have to be
estimated from a finite number of samples , and the standard
sample estimate of is given by (see, e.g., [1] and [3])

(3)
which, under (AS5), is asymptotically unbiased and mean
square sense consistent.

Based on (2), the following general SLN timing estimator
may be proposed

(4)

Note that the second-order CS-based timing estimators pro-
posed in the literature choose different values for the timing lag

in (4) ( in [2] and [8], in [3], and in [12]).
Next, an ML framework is proposed to analyze the performance
of the general SLN timing estimator (4) and to possibly design
improved performance estimators by exploiting the entire
information provided by all the second-order statistics of the
received signal.

B. ML Framework and Asymptotic Performance Analysis

Define the vector of cyclic correlations:2

, where denotes an ar-
bitrary nonnegative integer. According to [1], the sample
cyclic correlation estimates , are asymptoti-
cally jointly complex-valued and normally distributed. Thus,

is asymptotically jointly complex normal

2The superscripts and denote transposition and conjugate transposition,
respectively.
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with zero-mean , and its covariance and relation
matrices are given by

respectively, whose closed-form expressions of the en-
tries, , are established in [14], and with the
notations adopted so far, can be expressed as

(5)

(6)

where stands for the kurtosis of and
denotes the cyclic spectrum of

at cyclic frequency .
Next, we transform the complex Gaussian probability density

function (pdf) into its equivalent algebraic form of
the real Gaussian pdf by defining the -di-
mensional vector:3 . Simple
calculations show that the covariance matrix of is given by

Now define the error vector and consider
the following nonlinear regression model: .
The ABC estimator of for the above model is given by the
nonlinear least-squares estimator weighted by the inverse of the
asymptotic covariance matrix of the error vector , and takes the
form [10, Ch. 3], [13, pp. 91–95]:

(7)

and means the trial value of . As is asymptotically nor-
mally distributed, the ABC estimator (7) is nothing else than
the asymptotic ML estimator of in terms of the observations
contained in the vector .

The ABC estimator is computationally very intensive and
may suffer from possible local convergence problems. By ex-

3The notations “re” and “im” stand for the real and imaginary part, respec-
tively.

ploiting (2), takes the following expression:
, where , and

Hence, can be rewritten as: , which
means that the determination of the ABC estimate of reduces
to finding a best linear unbiased estimate (BLUE) of for this
linear model. It follows that in this case the BLUE estimator
of admits the closed-from expression [4, Ch. 6], [13, Ch. 4]:

, and the corresponding 2-by-2
asymptotic covariance matrix of is given by

(8)

Given the BLUE estimate of , according to [4, Th. 7.4], the
ABC estimate of can be expressed as

(9)

Considering a Taylor series expansion of the right-hand side
of (9) and neglecting the terms of magnitude higher than

, one can derive the asymptotic variance of , which
is summarized in the result.

Theorem 1: The asymptotic variance of the timing epoch es-
timator (9) is given by

(10)

It turns out that the O&M estimator is just a special case of the
general estimator (7)–(9) with , and based on Theorem 1,
the asymptotic variance of the O&M estimator can be expressed
as

(11)

which coincides with the expression established earlier in [14].
As can be seen from the above derivations, the O&M estimator
is an ABC-estimator, i.e., asymptotically an ML estimator that
exploits only one cyclic correlation . Similar con-
clusions can be drawn on the other types of SLN timing estima-
tors [2], [3], [12].
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Fig. 1. Theoretical performance of SLN estimate �̂ for different values of � with (a) � = 0:2 and (b) � = 0:9.

Now it is of interest to ask whether the performance of
the O&M estimator can be improved by exploiting addi-
tional second-order statistical information at lags

. Surprisingly, from the plots shown in Fig. 1(a)
and (b), the answer is no. In Fig. 1(a) and (b), we evaluate
the theoretical (The.) mean-square error (MSE) of SLN
estimate , which asymptotically takes the following form:

, for different values
of in the case of rolloff factors and ,
respectively, assuming quadrature PSK (QPSK) input symbols,

, , and the number of samples (i.e.,
the observation length symbols). The modified
Cramér–Rao bound (MCRB) is adopted as a benchmark, and
takes the expression , where the
parameter , in the case of raised-cosine pulses, is given by [6,
p. 65]: . The results presented
in Fig. 1(a) and (b) are due to the fact that asymptotically, the
statistics at other than zero are quite correlated
with that at , hence, the cost function is totally
dominated by . Therefore, the following conclusion
can be drawn: The performance of all blind feedforward SLN
timing estimators which exploit the second-order statistics of
the received signal is asymptotically the same as long as the
statistical information at timing lag has
been considered.

C. Influence of the Oversampling Rate

In this subsection, we analyze the effect of the oversampling
rate on the SLN timing estimators. Due to the conclusion ob-
tained in the last subsection, we only focus on the O&M esti-
mator, whose asymptotic variance is given by (11). To properly
inspect the influence of , we need to evaluate the theoretical

MSE of . Under the assumption of , some straightfor-
ward calculations yield , where

Since and do not depend on , is independent of
whenever . One can observe that in the noiseless case

, , therefore, the asymptotic variance of the
O&M estimate is equal to zero, which means that asymptotically
in SNR and , the variance of the O&M estimate converges to
zero faster than .

IV. JOINT SECOND- AND FOURTH-ORDER CS-BASED

TIMING ESTIMATOR

Pulses with small rolloff factors are of interest with band-
width efficient modulations [7]. SLN timing epoch estimators
exhibit bad performance with small rolloffs due to the lack of
CS-information and their large self noise, especially in high
SNR range [5], [6], [14]. Hence, when dealing with strongly
bandlimited pulses, nonlinearities other than the SLN may be
considered to improve the performance of timing estimators.
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TABLE I
(a) OPT-ESTIMATE OF �̂ VERSUS SNR AND (b) OPT-ESTIMATE OF �̂ VERSUS �

Fig. 2. MSE of the O&M estimator versus P (� = 0:5, SNR = 10 dB).

The most commonly used one is the FLN nonlinearity, and the
corresponding estimator takes the form

(12)

whose asymptotic variance can be established in a similar ex-
pression to (11).

Although the FLN estimator has a better performance than
SLN in medium and high SNR ranges with small rolloffs, it
is inferior to the latter at low SNRs. Estimators (4) and (12)
suggest designing a new optimal (OPT) ABC timing estimator
of the following form:

(13)

to improve the performance of both SLN and FLN estimators.
The real-valued parameter is to be chosen so that the asymp-

totic variance of in (13) is minimized. By adopting the deriva-
tion presented in Section III, one can obtain the closed-form ex-
pression for the asymptotic variance of in (13), and hence,
can be found accordingly. Due to the space limitations, their de-
tailed derivations will not be presented in this letter, and the in-
terested reader is suggested to consult [15].

The computation of the OPT estimate requires the knowl-
edge of the operating SNR and the value (or estimate) of timing
epoch , which makes the OPT estimator impractical. Fortu-
nately, for most applications of interest, this difficulty can be
circumvented with very little performance penalty by fixing
to a constant. Next, we present a case study which illustrates
how to select . Consider an i.i.d. QPSK modulated symbol
sequence corrupted by additive circular white Gaussian noise
with variance . Assuming , and , the
OPT estimate is given in Table I(a) for various SNR levels.
Table I(b) shows the optimal value of versus the timing epoch
, assuming SNR dB. The results presented in Table I(a)

and (b) and extensive simulation experiments suggest that, in
this application, we can always fix to a value in the range

for implementing the estimator (13) without in-
curring any performance loss.
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Fig. 3. Comparison of asymptotic variances versus SNR with (a) � = 0:1 and (b) � = 0:9.

V. SIMULATION EXPERIMENTS

In this section, we conduct computer simulations to confirm
the analysis presented in the previous sections and to illustrate
the performance of the proposed OPT estimator. All the ex-
perimental results are obtained by performing a number of
Monte Carlo trials assuming a QPSK constellation, and the nor-
malized timing epoch . Unless otherwise noted, the over-
sampling rate is adopted.

Experiment 1—Performance of the O&M estimator versus
: By varying the oversampling rate , we compare the ex-

perimental (Exp.) MSE of O&M estimator with its theoretical
variance in Fig. 2. The number of symbols is set to ,

, and SNR dB. It turns out that increasing does
not improve the performance as long as . This result may
be also predicted using Shannon’s interpolation theorem, since
any guarantees the set of obtained statistics to be suffi-
cient within the class of second-order statistics.

Experiment 2—Comparison of asymptotic variances of the
O&M, FLN, and OPT estimators: Fig. 3(a) and (b) depicts the
asymptotic variances of the SLN, FLN, and OPT estimators,
and MCRB, in two extreme cases: a strongly bandlimited pulse

and a pulse with large bandwidth . The per-
formance of a practical implementation of the OPT estimator
(13) with fixed , which is just an approx-
imation of the OPT estimator, therefore, termed APP, is also
illustrated. It can be seen that when dealing with narrowband
pulse shapes, FLN is superior to SLN in medium and high SNR
ranges, but worse than the latter at low SNRs. The OPT esti-
mator outperforms both SLN and FLN estimators, and is closer
to MCRB. As expected, APP is a satisfying realizable alterna-
tive to OPT except at very low SNRs. In the case of large rolloffs,
FLN is always inferior to the SLN estimator, while the latter
is good enough to approach the performance of the OPT esti-

Fig. 4. Improvement of OPT over SLN versus � (SNR = 20 dB).

mator. Fig. 4 shows the improvement exhibited by the OPT es-
timator with respect to the SLN estimator versus rolloff factor

assuming SNR dB. It appears that the improvement is
negligible whenever .

Experiment 3—Comparison of the MSE of estimators versus
SNR: In Fig. 5(a) and (b), the experimental MSE of the proposed
APP estimator is compared with those of the existing methods,
assuming , , and , , respec-
tively. These figures corroborate the results of Experiment 2 and
show again the merit of the APP estimator.

VI. CONCLUSION

In this letter, we have established a rigorous CS statistics-
based ML framework to design and analyze a class of blind feed-
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Fig. 5. Comparison of MSEs with (a) � = 0:1 and (b) � = 0:9.

forward timing estimators. We have shown that these estima-
tors can be asymptotically interpreted as ML estimators and the
O&M estimator achieves asymptotically the best performance
in the class of SLN estimators, whose performance is insensi-
tive to the oversampling rate as long as . The asymp-
totic variance of these ML estimators is derived and can be em-
ployed as a benchmark for evaluating the system performance
of the timing estimators proposed in the literature. The proposed
analysis framework can be extended straightforwardly to the
case of correlated symbol streams and time-selective flat-fading
channels, and provides a systematic method to design optimal
ML timing recovery schemes. Moreover, in this letter, based on
the proposed performance analysis, we have introduced an effi-
cient estimator (OPT), which fully exploits the second- and the
fourth-order CS statistics of the received signal, that improves
significantly the performance of the existing methods, when
dealing with narrowband signaling pulses. One may ask whether
the performance of timing estimators may be further improved
if higher order nonlinearities (i.e., higher than the fourth order)
are considered. We conjecture that the improvement is negli-
gible, a fact that is corroborated by the plots depicted in Fig. 5
for the AVN and LOGN estimators, whose Taylor series expan-
sions involve higher order terms.
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