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Performance Analysis of a Class of Nondata-Aided
Frequency Offset and Symbol Timing Estimators
for Flat-Fading Channels
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Abstract—Nondata-aided carrier frequency offset and symbol delay estimators can increase by choosing pulse shapes with
timing delay estimators for linearly modulated waveforms trans- |arger bandwidths. By properly taking into account the aliasing
mitted through flat-fading channels have been recently developed effects, it is shown that the expressions of the symbol timing

by exploiting the received signal’'s second-order cyclostationary . . .
statistics. The goal of this paper is to establish and analyze the d€l2y estimators take a slightly different form than the expres-

asymptotic (large sample) performance of the estimators as a Sions reported in [6] and [7] wheR = 2.

function of the pulse shape bandwidth and the oversampling  The rest of this paper is organized as follows. In Section II,
factor. Itis shown that selecting larger values for the oversampling the discrete-time channel model is established, and the neces-
factor does not improve the performance of these estimators, and 51 modeling assumptions are invoked. Section 11l briefly in-
the accuracy of symbol timing delay estimators improves as the . .
pulse shape bandwidth increases. troduces the GG. and (.BSD.estlrjnators, whose_ asympt_otlc per-
formance analysis for time-invariant channels is established in
Section IV. The results of Section |V are extended to time-selec-
tive fading channels in Section V. In Section VI, simulation re-
sults are conducted to confirm our theoretical analysis. Finally,
|. INTRODUCTION in Section VII, conclusions are drawn, and detailed mathemat-
Ij]cal derivations of the proposed performance analyses are re-
pé)_rted in Appendices A and B.

Index Terms—Cyclic correlation, cyclostationarity, fractionally
sampling, synchronization.

N MOBILE radio channels, loss of synchronization ofte
occurs, and reacquisition must be performed in a fast and
liable way without sacrificing bandwidth for periodic retraining.
Therefore, developing improved performance nondata-aided (or Il. MODELING ASSUMPTIONS

blind) synchronization architectures appears to be an importantonsider the baseband representation of a linearly modulated

problem. Recently, blind carrier frequency offset and symbejgnal transmitted through a flat-fading channel. The receiver
timing delay estimators that exploit the second-order cyclosigatput is expressed agsee, e.g., [6] and [7])

tionary statistics, which have been introduced by oversampling
orfractionally sampling the continuous-time received waveform . ¢y =, (¢)c2im/<t Z w(l)he(t — €T —IT) +v.(t) (1)

at a rate faster than Nyquist rate, have been proposed in [6], [7], ‘ 7

and [14].

The goal of this paper is to analyze the performance of théere
feedforward nondata-aided carrier frequency offset and symbok.(t) fading-induced noise;
timing delay estimators [6], [7] with respect to (w.r.t.) the pulse {w(l)}  sequence of zero-mean unit variance indepen-
shape bandwidth and the oversampling factor. The theoretical dently and identically distributed (i.i.d.) symbols;
asymptotic (large sample) performance of the Gini-Giannakish.(t) convolution of the transmitter's signaling pulse
(GG) [7] and Ghogho—Swami—Durrani (GSD) [6] estimators is and the receiver filter;
established, and it is shown that the performance of these estiv.(t) complex-valued additive noise;
mators does not improve by selecting a large value for the over-l’ symbol period;

sampling factor P > 3) and that the accuracy of the timing f. ande carrier frequency offset and symbol timing delay,
respectively, and represent the parameters to be
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wherez(n) := z.(nTy), p(n) := p.(nTs), v(n) := v.(nTy), We also define the conjugate second-order time-varying cor-
andhi(n) := h.(nT, — €T). In order to derive the asymptoticrelation ofz(n) as
performance of estimators [6], [7], without any loss in gener-
ality, we assume the following: Fz(n; 7) == E{z(n)z(n + 1)}
AS1) w(n)is a zero-mean i.i.d. sequence with values dravri

from a linearly modulated complex constellation WlthpIS easy to check that,(n; 7) can be expressed as

unit variance, i.eg?2 = E{jw(n)|*} = 1. r—1
AS2) u(n) is a constant fading-induced noise with unit Ry (k; 7)e¥m((k42fTOn/ D)
power. Later on, this assumption will be relaxed k=0
by considering tha:(n) is a time-selective fading . _ . .
process. and the conjugate cyclic correlatid®, (k; 7) can be obtained
AS3) v(n) is a complex-valued zero-mean Gaussian proced¥ the generalized Fourier series expansion [5]
independent ofv(n), with variances2. N1
AS4) The cqmbined filterh.(¢) is a raised cosine pulse of Rm(k; )= lim 1 Fo(n; 7_)672i7r((k+2feT)n/P)'
bandwidth[—(1 + p)/2T", (1 + p)/2T], where the pa- N—=oo N &
rameterp represents the roll-off facto0(< p < 1) ) _ )
[12, ch. 9]. Similarly to (3), we can define the conjugate cyclic spectrum

AS5) Frequency offsef. is small enough so that the mis-S2,=(k; f) as the Fourier transform (FT) of the sequence
match of the receive filter due tfi. can be neglected {R (ks )}

[7]. Generally, the conditiorf.T < 0.2 is assumed. In practice, thre _cyclic correlationB,(k; 7) have to be es-
This assumption is required to ensure the validity dimated from a finite number of sample€, and the standard

channel models (1) and (2). sample estimate ak..(k; 7) is given by (see, e.qg., [4], [5], [7])
Based on these assumptions, in the ensuing section, we intro- e
duce the nondata-aided estimatorsfofande proposed in [6] £ (k; ) Z a(n +7)e" 2 /D) s g,

(GSD) and [7] (GG).

Ill. FREQUENCY OFFSET ANDSYMBOL TIMING ESTIMATORS B. Cl d-Form E . forthe S 4-Order Statisti
FOR TIME-INVARIANT CHANNELS . Closed-Form Expressions for the Second-Order Statistics
We now focus on the closed-form expressions of the second-

order statistics of the received signal obeying the model (2).
In this paper, the time-varying correlation of the nonsta- According to (2), we obtain

tionary process:(n) is defined as
re(n; 7) = E{a"(n)z(n+ 1)}
wherer is an integer lag, and the superscerigtands for com- <Z h*(n)h(n+7) —2i7r(kn/P)> Fo2ho(r)6(k)  (4)

A. Usual Definitions

0_2
Rx(k', 7_): “w 227r(feT‘r/P)

“U

plex conjugation. By exploiting (2) and taking into account the

assumption®S1)-AS3), straightforward calculations lead to
whered(.) stands for the Kronecker's delta. In order to show

rz(n; 7) = ry(n + P; 7), Vn, T. the dependency oR..(k; 7) on the timing delay, which is
hidden in the expression of the discrete-time charige), an
alternative expression fa@t,.(k; 7) is next derived, based on the
-1 Parseval's relation.

ro(n; 7) = R (k; T)e%w(’m/l’) First, the sum in (4) can be rewritten as

0

Being periodicy . (n; 7) admits a Fourier Series expansion

~

o
Il

OZ *(n)h(n + 1) 72”(’“"/13)
whose Fourier’s coefficients, whrch are also termed cyclic ¢

relations, are given fok = 0, — 1 by the following ex- 1/2 L ‘
pression [6], [7]: = / H*(f)H <f + _> 2+ D) g
~(1/2) P
1 r—1
7)== Z 1o (n; 7Y 2R/ D) whereH ( f) denotes the FT dfi(n). In a similar way [see (4)],
P = we obtain
The frequencie&/P (or simplyk),fork =0, ..., P—1,are . 02

#F? _ _ew CQiﬂ'(feT‘r/P)
referred to as cyclic frequencies or cycles [5] Furthermore fro P

these cyclic correlations, it is usual to define a cyclic spectrum ‘
for each cyclic frequency as <Z h(n)h(n + 7 —QW(kn/P)>
Sy o (ks f): ZR (k; 7)e2=/ (3)

whereo? ,, := E{w?(n)}.
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In order to point out the influence of the oversamplingy the (2), it is well known that the cyclic spectrumag(fn) can
factor, we wish to express the cyclic correlations w.r.t. thiee expressed fat # 0 as (cf. [17])

continuous-time filterh.(¢). Since the bandwidth ok.(¢) is

less thanl /T and the oversampling rate is equal to or larger So o (k; £)
than2/T, the oversampling does not introduce any aliasing for ’
Fourier transform oh(n). Therefore, thanks to Poisson’s sum

it follows that for|f| < 1/2[11, ch. 3]

i Hc i G—Qiﬂ'fpe
T T

whereH . (F') stands forthe FT oi.(¢). As shownin [6] and [7],
we can also express(f + k/P) for |f| < 1/P, andk = £1
(the cyclek = —1 is equivalent td: = P — 1 by periodicity) as

Ly (LEE0)

VP>2, H(f)= ()

VP >3, H(f+k/P)=

T, T.
.C—Qiﬂ(f—l—(k/lj))lje.

(6)

formula fory P > 3 [7]:

2
Rm(k; T) _ U_Pw o2im(£T7/P) jim(k7 /D)

.C—Qiﬂka(k; )+ 03hc(7)5(1€) )

r/2r k k
IR C VEACE )
_p/QT 2T 2T

_GQiW(TTF/P) dF.

2
— %w

P H(f_feTs)H*(f_feTs _k/P)

)

it follows that the supports of the functiogfs— H(f — f.T%)
andf — H*(f — f.I, — k/P) are disjoint as far as the cy-
cles|k| > 1, which leads to no cyclic correlation information
[|S2,=(k; £)] =0,V f,and henceR.(k; 7)| = 0for |k > 1].

In a similar way, the conjugate cyclic spectrum can be expressed
as

T2

P

g?,a}(’ﬁ f) = H(f_ feTS)H(feTs +k/P_ f)

C. GG and GSD Estimators
The GG estimator determines the frequency offsetnd the

Based on the previous equations, we can obtain thefollow'tg:a"ng delaye based on the following equations [7, Egs. (24)

d (25)]

¢ . P . .
fe= arg{R,(1; )R, (—1; 7)}, forP >2
47T ) :
.1 )
¢=—5_-arg h
{Rx(l; T>e—2m<feT+1/2>f/P}, for P >3
é = — arccos
T o
R,(1; 7)e iU TH)7 T
re| — ——, forP=2.
{ { < o2 G'(1; ) 4’
(10)

Unlike [6] and [7], we have observed that (6) cannot be usqghe |ast equation in the array (10) represents the right form of

in the case whew = 2. Indeed, ifP = 2, then the aliasing {he GG symbol timing delay estimator in the case wies: 2,
effects due to frequency shifting have to be taken into accougf, its expression follows directly from (8).

Therefore, (7) no longer holds, except for= 0. For P = 2
and|f| < 1/2, the Poisson’s sum leads to

(o) 4l (452

—1/2 . .
+Hc <f 7 / )6217re:| .6—4z7rfe.

For P = 2 andk = 1, it follows that

LN 2 am(fTHDT T /(1.
R.(k;T)y=07€ cos [27r (6 + 4>} G'(k;m) (8)
where
) 2 /1/2’-” k k
o [ — H|\F—-— H. | F+—
G (k7 T) T —1/2T ¢ 2T ¢ + 2T
_eiﬂ"rTF dF.

Note that the estimator presented in [14] can be obtained
by choosingr = P in (10). As described in [6], the perfor-
mance of the frequency offset and timing delay estimators does
not change significantly w.r.t.. Therefore, for sake of clarity,
throughout this paper, we choose- 1 for the GG estimator. In
this case, one can see that the GSD frequency offset estimator
[6, EQ. (7)] coincides with the GG algorithm. Consequently, it
is sufficient to analyze the GG frequency offset estimator. In
contrast, the timing delay estimator corresponding to the GSD
algorithm [6, Eq. (8)] is different than the GG symbol timing
delay estimator and is given by

€ forP >3

1 o
o arg{R.(1; 0)},
R.(1; 0)

1 g .
5 ALCcos {re<m>} , forP =2

é:

(11)

Due to the Symmetry property of the raised-cosine function In the next Section, we eStab“Sh the asymptOtIC variances of
h.(t), one can notice thal.(I") is a real-valued even function estimators (10) and (11), which are defined as

[12, p. 546]. Then, itis easy to check th@tk; ) andG' (k; 7)

are real-valued functions. Moreover, due to the bandlimited

property of the filterh.(¢), G(k; 7) andG’(k; ) are nonzero
only for cyclesk = 0, £1. In the same way, sincgn) is given

= Jim NE{(f. - )
e := lim NE{(%—&)Q}.

N—oo
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IV. PERFORMANCE ANALYSIS FOR for example, that ifP? > 4, then only the terms driven by
TIME-INVARIANT CHANNELS the indexk = 0 remain in the expression df::1 and
gy 1inT& =, WhenP = 2, only I'™: 1 is needed since

In order to establish the asymptotic variance of the asympt
(1;7) = Re(—1; 7).

ically unbiased and consistent estimators (10) and (11), itis n
essary to evaluate the normalized unconjugate/conjugate asympy

Performance Analysis of the GG Estimator
totic covariances of the cyclic correlations, which are defined as

The asymptotic performance of the GG estimator is estab-
kb = Jim NE lished in Appendix B. The following proposition sums up the
N . expressions of the asymptotic variance of the GG frequency
: {(Rw(k§ w) = Ra(k; w))(Ra(l; v) — Ra (4 U))*} offset estimator.
Proposition 2: For P > 3, the asymptotic variance of the
frequency offset estimator (10) is givensby

. {(Rx(/ﬂ; w)— Ry (k; ) (Rau(l; v)— R (l; v))} . pi (‘I,TN,* e {C—4i7rfeT/P‘I,Tf“I,})

As the estimators (10) and (11) are dealing only with the cyclic e = 32m?T20t G2(1; 1)
correlations at cycles = =+1, in the sequel, we concentrate,nere

on the derivation of the asymptotic covariances of the cyclic

correlations fork, I = +1. According to [1], we obtain © =y, 7,

R (ks 7) = 207/ D) Ry (— ks —7) N S ]
—1,1 —1,-1
iy iy

L) = lim NE

”(/) _ eQiﬂ'(e—l/QP)

which implies that
f\&k,’l}l) — i/ P)I\gk,_—vl). (12) andT is defined in a similar way aE.
’ ’ For P = 2, the asymptotic variance of the frequency offset
Thus, it is sufficient to evaluatF sinceI’ can be obtained estimator (10) is given by
directly based on (12). In [2] and [201,‘(171)' and rb are 1771 — re{ —Qiﬂ'feTle‘l}
obtained only for circular input sequences (i.e., input sequences _
that satisfy the conditiott{w(n)w(n + 7)} = 0). The fol- Ve = 8m2T20% sin®(2me)G'2(1; 1)
lowing proposition, which is an extension of the results pre-
sented in [2] and [20], is established in Appendix A.
Proposition 1: The asymptotic variances of the cyclic corre-
lation estimates are given by

wherel = [1, 1]%.

The closed-form expression of the GG timing symbol delay
estimator is drawn in the following proposition.

Proposition 3: For P > 3, the asymptotic variance of the

r-1 1 o . . .
o 1 timing delay estimator (10) is given b
r&{,bl): Z e?m’(k’b/l’)/ SQ,gg(k'; f)S;:m <k' f _ F) g y ( N) g Yy
o 0 P2re{e—4mfeT/Pr§ifl) _ 1/121‘83171)} 2
iy e = 2,4 (22(1- + 5z V5
2= g 4 Z o~ 2im((L+k+2£. T)v/P) 8r20t G2(1; 1) P
—0 For P = 2, the asymptotic variance of the timing delay esti-
mator (10) is given by
Lo (nr-1) ~
I‘(l D4 re{ —QiﬁfFTI‘g];il)}
eIl gf 4 kPR, (1; w)R;(1; v) T Tgn2 ok cos?(2me)G2(1; 1)
r—1 ) 1 1
riu=3%" 62”(’“""/’))/ Sz, x(k; £)53 4 </% -z f- F) B. Performance Analysis of the GSD Estimator
o 0
=0 Pl When compared with the GG algorithm (10), the symbol

L2 =)f gr o Z 2 ((L=k=2fT)v/P) timing delay estimators corresponding to the GSD algorithm
are obtained from (11) and by fixing = 0. Note that such a

h=0 choice ofr decouples the symbol timing delay estimators from

1
. / Sy o (k; f)S‘g‘?l, <k —-2; f— %) the frequency offset estimator in the sense that the estimation
0 of ¢ does not require an initial estimate f[6]. The following
. p2im(uto) f df + kPR,(1; w)R:(~1; v) result holds.
Proposition 4: For P > 3, the asymptotic variance of the
o =r; 0, rih b =il “)/P)I‘(_lbl)_u timing delay estimator (11) is given by
andx denotes the kurtosis @f(n). p? (I‘élél) _ re{e‘*”‘f‘(lél)})
In the above proposition, some terms within the sums may Ve = ’

cancel out. Indeed, since the filtér.(¢) is bandlimited, the 81207, G*(150)

cyclic spectra at cyclelg:| > 1 are zero. This remark implies, 3The notations re and im stand for the real and imaginary part, respectively.
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For P = 2, the asymptotic variance of the timing delay esti- "¢
mator (11) is given by s

gy + re{f‘éfal)} 107
Te= 87204 sin?(27e)G'2(1;0) :

We note that analyzing theoretically the influence of the w™s
system parameters such as oversampling factor or exc& I
bandwidth factor from the equations displayed in the previ0L§
propositions is quite difficult. Therefore, we need numerice 10°;;
illustrations to highlight the contribution of each parameterto th
performance. These simulation experiments show that selecti
of larger values for the oversampling faci@idoes not improve 10
the performance of estimators (10) and (11). In addition, w
also notice that the convergence rate of all the estimators (t : : :
mean-square error) decreases proportionally With', where 107, 3 " L . = s
N stands for the number of available observations. In particule P
the frequency offset estimators (10) and (11) converge slow :
than the estimator described in [3], which exploits the conjuga
cyclostationary statistics of the received waveform.

V. EXTENSION TO TIME-SELECTIVE CHANNELS

Due to the assumptiohS?2), the foregoing discussion applies '
only to time-invariant channels. In this section, we will see théz
the results obtained in the Section IV can be extended to the c:2
of time-selective fading effects as long as the fading distortic
1e(t) is approximately constant over a pulse duration or, equi\
alently, the Doppler spreall,I” is small, whereb,, denotes the
bandwidth ofyu.(t) [7].

Assuming now that(n) is a stationary complex process with
autocorrelation, (1) := E{*(n)p(n+7)} [7], we can rewrite

"

10"

[y

(4) fork = +1 as 107 ' . - ' L
2 3 4 5 6 7 8
2 P
oy = Jw 2in(fTr/P) —
Ra(k; 7) = P ru(7)e Z W (n)h(n +7) Fig. 1. GGIGSD estimators. MSE §f 1’ andé versusP for BPSK and time-
n invariant channel.

_672i7r(kn/1’)' (13)

Based on (13), it is not difficult to find that all the previousfH(T) o Jo(2mB,.7) (cf. [13]). Based on the assumpti&s6),

estimators [see (10) and (11)] still hold true, except thaFfes 7a(n; ) = 0 and the higher order cumulants ofn) are also
2, they take the form zero. Therefore, following the steps of Appendices Aand B, one

can find that in the presence of time-selective fading effects, the
fgx(l; 1)e—iﬂ(}eT+1) 1 performance analysis can be established in a similar way as in
re o2 G(1; Dr, (1) T4 the case of time-invariant fading channels. In fact, considering
R the assumptioAS6), only the first terms of' (-, andr{,
1 R,(1; 0) in Proposition 1 survive, and the asymptotic varianggsand
€ =g arccosqre o2& (1; 0)r(0) (14) 4, for the GG and GSD estimators in Propositions 2—4 still hold
¢ T true, except that some constants relateg),ta ) or+,(0) should
respectively. be added. For example, whéh = 2, based on (14), we now
Compared with the performance analysis reported in Seaptain the following expressions for the asymptotic variances
tion 1V, the exact asymptotic variance of GG and GSD estorresponding to the GG and GSD timing delay estimators:
mators in the case of time-selective channels supports several

€ = — arccos
27

modifications. We now introduce an additional assumption on I‘Sil) + re{e‘Q””fﬁTrfil)}
the fading channel. Te = 8n2a% cos?(2me) G2 (1; 1)r2(1)
AS6) The land-mobile channel is a Rayleigh fading channel, ~
which means that(n) is a zero-mean complex-valued 1‘8(31) + re{I‘&()l)}
circular Gaussian process [12]. Ve

. _ - 8204 sin?(2me)G2(1: 0)r2(0
For general land-mobile channel models, the autocorrelation v (2re)G(1; 0) “( )

of u(n) is proportional to the zero-order Bessel function, i.ergespectively.
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Fig.2. GGIGSD estimators. MSE §f7" and¢ versusp for BPSK and time- Fig. 3. GG/GSD estimators. MSE $§7" andz versus\ for BPSK and time-
invariant channel. invariant channel.

In closing this section, it is interesting to remark that for imraised cosine filters, and the additive noige) is generated by
plementing the GG and GSD frequency-offset estimators, no jfassing a Gaussian white noise through the square-root raised
formation regarding the time-varying fading procg$a) is re-  cosine filter to yield a discrete-time noise sequence with auto-
quired. If the oversampling factor satisfigs> 3, then the im-  correlation sequenee () := E{v*(n)v(n + 1)} = 02h.(7)
plementation of the GG and GSD timing delay estimators algp]. The signal-to-noise ratio (SNR) is defined as SNR
requires no knowledge ¢f(n). However, when” = 2, knowl- - 1910, (52 /52). Experiments 1 to 4 assume BPSK symbols
edge of the second-order statisticg0) andr,.(1) is required transmitted through time-invariant channels, whereas Experi-
to implement the GG and GSD timing delay estimators (14hents 5 to 6 are performed assuming time-selective Rayleigh
However, simulation experiments, which are reported in the n§XHing and QPSK constellations. In our simulations, the Doppler
section, s_how t_hat from a computational complexny_and perfogbread is set td,T = 0.005 (very slow fading), andi(n)
mance wewpom';, th? best value of the oversampling factori?created by passing a unit-power zero-mean white Gaussian
P ~ 3. Thus, estw_naﬂon of parameters(0) andr,.(1) can be noise process through a normalized discrete-time filter, which
avoided by selecting’ > 2. is obtained by bilinearly transforming a third-order continuous-
time all-pole filter, whose poles are the roots of the equation
(52 + 0.35wos + w3)(s + wo) = 0, wherewy = 27 B,,/1.2.

In this section, the experimental mean-square error (MSE)In all figures, the theoretical bounds of GG and GSD estima-
results and theoretical asymptotic bounds of estimators (10) dots are represented by the solid line and the dash line, respec-
(11) are compared. The experimental results are obtainedtiwely. The experimental results of GG and GSD estimators are
performing a number of 400 Monte Carlo trials, assuming thptotted using dash-dot lines with stars and squares, respectively.
the transmitted symbols are i.i.d. linearly modulated symbd&nce the frequency offset estimators of GG and GSD are equiv-
with o2 = 1. The transmit and receive filters are square-roaent, only the former will be presented.

VI. SIMULATION EXPERIMENTS
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SNR

10 ; ; ; s ; 10 ; i i .
o 5 10 15 20 25 30 35 40 2 3 4 5 6 7 8
‘ SNR : P

Fig. 4. GG/GSD estimators. MSE ¢t T and¢ versus SNR for BPSK and Fig-5. GG/GSD estimators. MSE ¢f T andz versusP for QPSK and time-
time- invariant channel. selective channel.

Experiment 1—Performance Versus the Oversampling Rate- 0.37. It can be seen that withincreasing, the performance
P for BPSK Constellation:By varying the oversampling rate of the timing delay estimators improves. This is an expected
P, we compare the MSE of GG and GSD estimators with thgiroperty since physically, wideband pulses have comparatively
theoretical asymptotic variances. The number of symbols is sébrt duration and, therefore, are better “seen” in the presence of
to N = 200, the roll-off factor of the pulse shape is= 0.5, noise [9, p. 65]. From another viewpoint, based on (9) and since
and SNR= 10 dB. The normalized frequency offset and timing..(¢) is bandlimited, it follows that as the bandwidth decreases,
delay aref.T" = 0.05 ande = 0.37, respectively. The results arethe second-order cyclic spectra are numerically weak, i.e., less
depicted in Fig. 1. It turns out that increasing the oversamplirmgclic correlation information is available.
rate does not improve performance of the frequency offset andExperiment 3—Performance Versus the Number of Input
timing delay estimators as long # > 3. This is a result that SymbolsV for BPSK Constellation:In Fig. 3, the theoretical
may be predicted by Shannon interpolation theorem, and siraoed experimental MSE of the frequency offset and symbol
the estimators (10) and (11) exploit the second-order statisttering delay estimators are plotted versus the number of sym-
of the received signat(n), an oversampling rate larger tharbols NV, assuming the following paramete®®:= 4, p = 0.5,
2 is necessary to make the cyclic spectra alias-free [8], [L@NR= 10 dB, f.7" = 0.05, ande = 0.37. Fig. 3 shows that the
Moreover, although more samples are collecte® @&screases, experimental MSE of all the estimators are well predicted by
their correlation increases as well, which is known to increasige theoretical bounds derived in Section IV.
the variance of the estimators [7]. Experiment 4—Performance Versus SNR for BPSK Constel-

Experiment 2—Performance Versus the Filter Bandwidth ftation: Fig. 4 depicts the experimental and theoretical MSE of
BPSK Constellation:Fig. 2 depicts the MSE of the estimatordhe GG and GSD estimators versus SNR, assuming the parame-
versus the roll-off factop, assuming oversampling rafe= 4, tersP =4, p= 0.9, N =500, f.T = 0.05, ande = 0.37. The
N = 200 transmitted symbols, SNR 10 dB, f. 7" = 0.1, and simulation results of timing estimators for high SNR range are
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VII. CONCLUSIONS

In this paper, we have analyzed the asymptotic performance
of the blind carrier frequency offset and timing delay estimators
introduced in [6] and [7]. Such estimators rely on the second-
order cyclostationary statistics generated by oversampling the
output of the receive filter. We have derived the asymptotic vari-
ance expressions ¢f andé and shown that a smaller oversam-
pling rate (°? = 3) can improve the estimation accuracy as well
as reduce the computational complexity of the estimators.

By properly taking into account the aliasing effects, we have
shown that whenP = 2, the timing delay estimators take a
different form than the expressions reported in [6] and [7]. In a
future paper, we will report the more complex performance anal-
ysis of these estimators in the presence of multipath channels.

APPENDIX A
DERIVATION OF PROPOSITION1

In [2] and [20], a powerful approach has been developed for
calculating the asymptotic covariance matrices of the cyclic cor-
relation estimates. In order to derii&!:1) andT'*:—1) we
strongly refer to the method introduced in the aforementioned
reference.

Define the mean-compensaté®Y + 1)-dimensional sto-
chastic process

ez(n) = xa(n) —r,(n)
where

Xo(n) = [z(n — V)z*(n), ..., z(n+ V)z*(n)]"
and

1046.1 032 ots 034 ois oi.s 057 ois . 0.9 I‘r(”) = [7’.7:(71% —T)a ceey 7’.7:(71% T)]T-
P

Fig. 6. GG/GSD estimators. MSE ¢f1' andé versusp for QPSK and time- Letr,, (n, 7) := E{es(n + 7)ebl(n)} be the time-varying cor-
selective channel. relation where the superscrift denotes complex-conjugation
nd transposition. Furthermore, &, (k, 7) and Se, (k; f)

resent the cyclic correlation and cyclic spectrunef),
respectively. In [2] and [20], it is shown that

supposed to agree with the theoretical bounds when the num
of samplesV is sufficiently large to make the self noise negli
gible (cf. [9, ch. 6]).

Experiment 5—Performance Versus the Oversampling Rate reb — Se,(0; 1/P).
P in Time-Selective Channels for QPSK Constellatiofie re-
peat Experiment 1 by assuming QPSK symbols passing througsed on similar arguments as the ones developed in [2] and
a time-selective channel. The number of symbols is safte  [20], it is not difficult to prove that
400, the roll-off factor of the pulse shape js= 0.5, SNR= 1 -1
10dB, f.T = 0.2, ande = 0.37. The results are depicted in r = S8e, (2, 1/P).
Fig. 5. It turns out again that wheR > 3, the performance
of GG and GSD estimators does not depend on the oVersayiy tion ofr (. —1) can be done similarly. First, we charac-

ling factor P. Therefore, larger oversampling factot® (= . :
Z, g, 8) are not justifiable fr?)m a compufati(?nal and p(erfort-enzef\ the CYC“C spectr_um of th_e proc&si(@). For a general
mance improvement viewpoint. noncircular input, the time-varying correlationef(n) can be
Experiment 6—Performance Versus the Filter Bandwidth frpressed as
Time-Selective Channels for QPSK Constellatidtig. 6 de- [Fe, (7 7). o
picts the MSE of the estimators versus the roll-off fagidn ST PR .
the presence of time-varying fading effects, assuming oversam- ~ = (n+w; 7+ u—w)rz(n; 7)

Next, we will only concentrate on the derivationBf: 1. The

pling rateP = 4, N = 400 transmitted symbols, SNR 10 dB, +oum{z(n+u+7), 2%(n+7), 2% (n+v), x(n)}
f' = 0.2, ande = 0.37. Both the theoretical and experimental + 7 (n; T+ WFE (4 v T — v)

results corroborate again the conclusion of Experiment 2. Pulse b

shapes with larger bandwidths can improve the performancevdiere(u, v) € {-7, ..., T}?. Let the notatiofM], . stand

the timing delay estimators. for the (u, v)th entry of an arbitrary matri . It follows that
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the cyclic correlations oé»(n) at the cyclic frequency = 0  where H.(F') represents the FT ok.(¢). As h.(¢) is ban-

are given by dlimited in [—(1 + p)/2T, (1 + p)/2T] with 0 < p < 1,
[Re, (0; )] » Sa . (k/T; F) will be nonzero only for cycle$k /T, |k| < 3}.
oz P’_l v We deduce that
= Z Ro(k; 7+ uw — v)RE (k; 7)™/ f—p
o 54 ac k f ng l; ZS T T
+Co(0; u+ 7, —7, —v) —3 ncz .
rP—1 N A 1 17
+ Z ok T+ W) R 7 — v)e FinkA2LTIv/P) 6< P med ) )
k=0 forall (f1, f2, f3) € (—1/2, 1/2]3.

where the cyclic cumulant sequen€e(k; 1), 7 := [r1, 72, 73] According to (15) and (17), we obtain that fBr> 3
can be expressed as

1 1/2 l 1/P
Colks; ) := / Sy o(k; £)e ™ gf s = <1/2> s s s
—-1/2 {=(0mod P)
. . i . L2 fru— fav
where S, ,.(k; f) stands for the cyclic trispectrum of the dis- AT gf df.
crete-time signak(n) at cyclic frequency:/P and frequency  Replacing the cyclic spectra af.(t) with their expressions
t = [f1, fo, f3]- given by (16) and then expressif).(F) in terms of H( f) by
Thus means of (5) leads to
Ll =156,(05 1/P)., KT, [*? 1
’ _ ’ _ C’u,,'n: T o )H(fl_feTe)H* <f1_ﬁ_f€T9>
~ —(1/2
= Z Rk,'u,, vt C’u,,'n + Z Rk,'u,, v 1 .
H*(fs - fT)H <f3— F—feTs>62”(f1“f3”) dfy dfs.

where . i .

it I . Using (9), we finally obtain
Rieuw =™ TN " Ry (ks 7w — o) Ry (k; m)e ™7/ T 12 1/2

TEZ cuyv - 52 ac(]- fl) 2 fiu dfy /
Cu,v = Z Co(0; u+ 7, —7, —v)e~ 2 /P Ts J-q (1/2)

Tez - Sy (15 fa)e 2 dfs

Rk,u,'l; :6—(217r(k+2pr)'v/P) Z Rx(k7 r+ U,) o
rez :?Rm(l; w) Ry (1; v).
SRk T — v)e” /D), ° . . .
The expressions in the casef= 2 can be obtained using
We still need to express, ... We recall that a similar approach.
1/2 ‘
Coi, v :/ S1,0(0; fi, fa, f3) Y A luATIforfon) APPENDIX B
—(1/2) ez PROOF OFPROPOSITION2

=TI dfy dfs dfs. (15) We establish next the asymptotic performance of the GG es-
Let S, .. (k/T; F) be the cyclic trispectrum of..(¢) at cyclic timators forP > 3. For7 = 1, (10) can be rewritten as
frequency k/T and frequencyF := [[], F5, F3]. From P e ) P é
[8], [10], and [16], Sy .(k; £) can be expressed in terms of fo = T alg{R“f(l’ DEa(=1; 1)} = g 2xetan i
S4,2.(k/T; F) by

(18)
Sy, (k5 1) where
2 DI (T T”)é(% modl) G = Ro(15 DR(=1:1) = Ry(1; DRI(-1; 1)
e ez B = Ro(1; DR,(— 1 1)+ R5(1; DRE(-1; 1).

for all (f1, f2, f3) € (=1/2, 1/2]3. The notation(a modb)
denotesz modulob, and by conventionz modb) belongs to
(=b/2, b/2]. a1 =R, (1; HR,(—1; 1) — Ri(1; DRI(-1; 1)

Sincez..(¢) is given by (1), it is well known that (see [2, App. By :=R.(1; DRy (—1; 1) + R:(1; DRA(-1; 1)
C], [15], and [20])

For convenience, we define

andAay = &1 — a1, APy := 1 — 1. Equation (18) can be

Sia, <E7 F) _FkE H.(F, — fO)H(Fy — f)H!(F5— f.) equivalently expressed as
T T 1 Aay
k —2inke fo= L T (19)
-H, <T_F1+F2+F3_fe>c (16) T 4xT T if1 1—}-Aal )
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According to [2] and [20],A«; and A3, are on the order
of o(1/v/N). Considering a Taylor series expansion of the
right-hand side of (19) and neglecting the terms of magnitude

higher tharo(1/+/N), it follows that

. P
Je= 4T
1 A Ap
. arctan< 1)—1—,06—1 5 < a /1> . (20)
i) ifh 1+(%) aq B

Simple manipulations of (20) lead to

. Aar AB\?
=2 hm NE < L —)
Y. =G NS o B
(e 2
' /32 By

where
(1 :=Ptan(4nTf./P)/[4xT(1 + tan?(4xT f. / P))]

Vip = lim NE{(Aay)?}
Viz:= lim NE{(AB)?}
Vis = Alim NE{Aa1 Ap .

SinceR,.(k; 7) = R.(k; 7) + o(1/v/N), the previous terms

can be easily computed as
Vii =2 re{RT(l)f‘R(l) . RT(l)I‘R*(l)}
Vip =2 re{RT(l)f‘R(l) +R7(1)rR* (1)}
Vis = 2iim {RT(l)f‘R(l)}

whereR(1) :=
can also check that
4
oy =21 P_L; sin(4n f.T/P)G*(1; 1)
’4
B =2 .Pl;

cos(4n f.T/P)G*(1; 1)

[R.(—1; 1) R,(1; D]*. According to (7), one
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ABy = (1 1)e —2im(f.T+1/2)/ P

+ R (1 1)62i7f(5‘eT+1/2)/P

_ Ra;(L 1)6—2i7r(fFT+1/2)/P

_ R;(lv 1)62i7r(feT+1/2)/P'

Then, the asymptotic variance &tan be expressed as

_ Aas  AB\?
. =¢2 lim NE< 2——)
Te =6 N— a2 B2

_¢2 V21 @ 2V
? /32 azf

(o := tan(2me) /[27 (1 + tan?(27¢))]
Va1 := Alim NE{(Aa,)?}
Vas i= Alim NE{(AB2)?}
V23 = Aliln NE{AO{QA/}Q}

(21)

where

The termVs; can be rewritten as
Vor = ]\lim NE

. { [6—(21%(5%T+1/2)/P)51 — AT (FTHL/D)/ P gr

. . 2
e~ IPIR (15 1)85 — /P RE(1; 1)5;} }
where
8 = Ro(15 1) — Ra(15 1)
and

—2ixf T/ P —2imf T/ P

b =¢ —e
A first-order Taylor series expansion implies further that
o= ETL THRLTI (] )
T e, (S Y
P ay B

which enables us to conclude the derivationygf after some After defining the intermediary variables

simple algebra manipulations of (7).

The derivation of the asymptotic performanceéas more
complicated because (10) depends on the estimafe when
7 is not equal to 0. Similarly to the derivation presented in (182 :=—

and (19), we obtain
R 1 " a1+ A(;ZQ
€= —— arctan | ——
2 ifly 1450

as = R (1; 1)6*2i77(feT+1/2)/P
— R*(1; 1)e2i7f(feT+1/2)/P

By = Ry(1; 1)~ (e THL/2)/P
+RE(1; 1)627177(fFT+1/2)/P

Ao :Rx(l; 1)6—2i7r(}FT+1/2)/P

where

— Re(1; 1)62iw(}eT+1/2)/P
_ Rm(l; 1)6—2i77(fFT+1/2)/P
*(1; 1)62717r(feT+1/2)/P

Z

20T

ALi= P AT
2L7rT G 2w T
and
= <ai1 B /3%) [Rw(l; DI Y 4 Ro(—1 1)118,11)}

it follows that
Vor =2re (e—4i7r(feT/P+1/2p)I:S,ln)

_ 21‘8711) Ldre (6_2m(feT/P+1/P))\2Rm(1; 1))
—4re (e‘Qi”fFT/P)\lR;(l; 1))

. 2ol ;
_ 4im? < L; 2T T/PH2P) R (. 1)> v

(22)
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The expressions df;; andVas, as well as the remaining parts of Yan Wang received the B.S. degree from the
the other propositions, can be derived using similar argumer Department of Electronics, Peking University,

Moreover, according to (7), we obtain that

and

Beijing, China, in 1996 and the M.Sc. degree from
the School of Telecommunications Engineering,
o2 Beijing University of Posts and Telecommunications
oy =—2i =¥ sin(2me)G(1; 1) (23) (BUPT), in 1999.
P From 1999 to 2000, he was a member of BUPT-
Nortel R&D Center, Beijing. Since 2000, he has been
o2 a Research Assistant with the Department of Elec-
Po =2 =2 cos(2me)G(1; 1). (24) - trical Engineering, Texas A&M University, College
r Station. His research interests are in the area of statis-

Finally, plugging (7), (23), and (24) back into (21) and (22) coriical signal processing and its applications in wireless communication systems.
cludes the proof.
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