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Performance Analysis of a Class of Nondata-Aided
Frequency Offset and Symbol Timing Estimators

for Flat-Fading Channels
Yan Wang, Philippe Ciblat, Erchin Serpedin, and Philippe Loubaton, Member, IEEE

Abstract—Nondata-aided carrier frequency offset and symbol
timing delay estimators for linearly modulated waveforms trans-
mitted through flat-fading channels have been recently developed
by exploiting the received signal’s second-order cyclostationary
statistics. The goal of this paper is to establish and analyze the
asymptotic (large sample) performance of the estimators as a
function of the pulse shape bandwidth and the oversampling
factor. It is shown that selecting larger values for the oversampling
factor does not improve the performance of these estimators, and
the accuracy of symbol timing delay estimators improves as the
pulse shape bandwidth increases.

Index Terms—Cyclic correlation, cyclostationarity, fractionally
sampling, synchronization.

I. INTRODUCTION

I N MOBILE radio channels, loss of synchronization often
occurs, and reacquisition must be performed in a fast and re-

liable way without sacrificing bandwidth for periodic retraining.
Therefore, developing improved performance nondata-aided (or
blind) synchronization architectures appears to be an important
problem. Recently, blind carrier frequency offset and symbol
timing delay estimators that exploit the second-order cyclosta-
tionary statistics, which have been introduced by oversampling
or fractionally sampling the continuous-time received waveform
at a rate faster than Nyquist rate, have been proposed in [6], [7],
and [14].

The goal of this paper is to analyze the performance of the
feedforward nondata-aided carrier frequency offset and symbol
timing delay estimators [6], [7] with respect to (w.r.t.) the pulse
shape bandwidth and the oversampling factor. The theoretical
asymptotic (large sample) performance of the Gini–Giannakis
(GG) [7] and Ghogho–Swami–Durrani (GSD) [6] estimators is
established, and it is shown that the performance of these esti-
mators does not improve by selecting a large value for the over-
sampling factor ( ) and that the accuracy of the timing
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delay estimators can increase by choosing pulse shapes with
larger bandwidths. By properly taking into account the aliasing
effects, it is shown that the expressions of the symbol timing
delay estimators take a slightly different form than the expres-
sions reported in [6] and [7] when .

The rest of this paper is organized as follows. In Section II,
the discrete-time channel model is established, and the neces-
sary modeling assumptions are invoked. Section III briefly in-
troduces the GG and GSD estimators, whose asymptotic per-
formance analysis for time-invariant channels is established in
Section IV. The results of Section IV are extended to time-selec-
tive fading channels in Section V. In Section VI, simulation re-
sults are conducted to confirm our theoretical analysis. Finally,
in Section VII, conclusions are drawn, and detailed mathemat-
ical derivations of the proposed performance analyses are re-
ported in Appendices A and B.

II. M ODELING ASSUMPTIONS

Consider the baseband representation of a linearly modulated
signal transmitted through a flat-fading channel. The receiver
output is expressed as1 (see, e.g., [6] and [7])

(1)

where
fading-induced noise;
sequence of zero-mean unit variance indepen-
dently and identically distributed (i.i.d.) symbols;
convolution of the transmitter’s signaling pulse
and the receiver filter;
complex-valued additive noise;
symbol period;

and carrier frequency offset and symbol timing delay,
respectively, and represent the parameters to be
estimated by exploiting the second-order cyclo-
stationary-statistics of the received waveform.

By fractionally oversampling the received signal [see
(1)] with the sampling period2 , the fol-
lowing discrete-time channel model is obtained:

(2)

1The subscriptc is used to denote a continuous-time signal.
2The notation:= stands foris defined as.
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where , , ,
and . In order to derive the asymptotic
performance of estimators [6], [7], without any loss in gener-
ality, we assume the following:

AS1) is a zero-mean i.i.d. sequence with values drawn
from a linearly modulated complex constellation with
unit variance, i.e., .

AS2) is a constant fading-induced noise with unit
power. Later on, this assumption will be relaxed
by considering that is a time-selective fading
process.

AS3) is a complex-valued zero-mean Gaussian process
independent of , with variance .

AS4) The combined filter is a raised cosine pulse of
bandwidth , where the pa-
rameter represents the roll-off factor ( )
[12, ch. 9].

AS5) Frequency offset is small enough so that the mis-
match of the receive filter due to can be neglected
[7]. Generally, the condition is assumed.
This assumption is required to ensure the validity of
channel models (1) and (2).

Based on these assumptions, in the ensuing section, we intro-
duce the nondata-aided estimators ofand proposed in [6]
(GSD) and [7] (GG).

III. FREQUENCYOFFSET ANDSYMBOL TIMING ESTIMATORS

FOR TIME-INVARIANT CHANNELS

A. Usual Definitions

In this paper, the time-varying correlation of the nonsta-
tionary process is defined as

where is an integer lag, and the superscriptstands for com-
plex conjugation. By exploiting (2) and taking into account the
assumptionsAS1)–AS3), straightforward calculations lead to

Being periodic, admits a Fourier Series expansion

whose Fourier’s coefficients, which are also termed cyclic cor-
relations, are given for by the following ex-
pression [6], [7]:

The frequencies (or simply ), for , are
referred to as cyclic frequencies or cycles [5]. Furthermore, from
these cyclic correlations, it is usual to define a cyclic spectrum
for each cyclic frequency as

(3)

We also define the conjugate second-order time-varying cor-
relation of as

It is easy to check that can be expressed as

and the conjugate cyclic correlation can be obtained
by the generalized Fourier series expansion [5]

Similarly to (3), we can define the conjugate cyclic spectrum
as the Fourier transform (FT) of the sequence
.

In practice, the cyclic correlations have to be es-
timated from a finite number of samples, and the standard
sample estimate of is given by (see, e.g., [4], [5], [7])

B. Closed-Form Expressions for the Second-Order Statistics

We now focus on the closed-form expressions of the second-
order statistics of the received signal obeying the model (2).

According to (2), we obtain

(4)

where stands for the Kronecker’s delta. In order to show
the dependency of on the timing delay , which is
hidden in the expression of the discrete-time channel , an
alternative expression for is next derived, based on the
Parseval’s relation.

First, the sum in (4) can be rewritten as

where denotes the FT of . In a similar way [see (4)],
we obtain

where .
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In order to point out the influence of the oversampling
factor, we wish to express the cyclic correlations w.r.t. the
continuous-time filter . Since the bandwidth of is
less than and the oversampling rate is equal to or larger
than , the oversampling does not introduce any aliasing for
Fourier transform of . Therefore, thanks to Poisson’s sum,
it follows that for [11, ch. 3]

(5)

where stands for the FT of . As shown in [6] and [7],
we can also express for , and
(the cycle is equivalent to by periodicity) as

(6)

Based on the previous equations, we can obtain the following
formula for [7]:

(7)

where

Unlike [6] and [7], we have observed that (6) cannot be used
in the case when . Indeed, if , then the aliasing
effects due to frequency shifting have to be taken into account.
Therefore, (7) no longer holds, except for . For
and , the Poisson’s sum leads to

For and , it follows that

(8)

where

Due to the symmetry property of the raised-cosine function
, one can notice that is a real-valued even function

[12, p. 546]. Then, it is easy to check that and
are real-valued functions. Moreover, due to the bandlimited
property of the filter , and are nonzero
only for cycles , 1. In the same way, since is given

by the (2), it is well known that the cyclic spectrum of can
be expressed for as (cf. [17])

(9)

It follows that the supports of the functions
and are disjoint as far as the cy-
cles , which leads to no cyclic correlation information
[ , , and hence, for ].
In a similar way, the conjugate cyclic spectrum can be expressed
as

C. GG and GSD Estimators

The GG estimator determines the frequency offsetand the
timing delay based on the following equations [7, Eqs. (24)
and (25)]

for

for

re for .

(10)
The last equation in the array (10) represents the right form of
the GG symbol timing delay estimator in the case when ,
and its expression follows directly from (8).

Note that the estimator presented in [14] can be obtained
by choosing in (10). As described in [6], the perfor-
mance of the frequency offset and timing delay estimators does
not change significantly w.r.t.. Therefore, for sake of clarity,
throughout this paper, we choose for the GG estimator. In
this case, one can see that the GSD frequency offset estimator
[6, Eq. (7)] coincides with the GG algorithm. Consequently, it
is sufficient to analyze the GG frequency offset estimator. In
contrast, the timing delay estimator corresponding to the GSD
algorithm [6, Eq. (8)] is different than the GG symbol timing
delay estimator and is given by

for

re for .

(11)
In the next section, we establish the asymptotic variances of

estimators (10) and (11), which are defined as
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IV. PERFORMANCE ANALYSIS FOR

TIME-INVARIANT CHANNELS

In order to establish the asymptotic variance of the asymptot-
ically unbiased and consistent estimators (10) and (11), it is nec-
essary to evaluate the normalized unconjugate/conjugate asymp-
totic covariances of the cyclic correlations, which are defined as

As the estimators (10) and (11) are dealing only with the cyclic
correlations at cycles , in the sequel, we concentrate
on the derivation of the asymptotic covariances of the cyclic
correlations for . According to [1], we obtain

which implies that

(12)

Thus, it is sufficient to evaluate since can be obtained
directly based on (12). In [2] and [20], and are
obtained only for circular input sequences (i.e., input sequences
that satisfy the condition ). The fol-
lowing proposition, which is an extension of the results pre-
sented in [2] and [20], is established in Appendix A.

Proposition 1: The asymptotic variances of the cyclic corre-
lation estimates are given by

and denotes the kurtosis of .
In the above proposition, some terms within the sums may

cancel out. Indeed, since the filter is bandlimited, the
cyclic spectra at cycles are zero. This remark implies,

for example, that if , then only the terms driven by
the index remain in the expression of and

in . When , only is needed since
.

A. Performance Analysis of the GG Estimator

The asymptotic performance of the GG estimator is estab-
lished in Appendix B. The following proposition sums up the
expressions of the asymptotic variance of the GG frequency
offset estimator.

Proposition 2: For , the asymptotic variance of the
frequency offset estimator (10) is given by3

re

where

and is defined in a similar way as.
For , the asymptotic variance of the frequency offset

estimator (10) is given by

re

where .
The closed-form expression of the GG timing symbol delay

estimator is drawn in the following proposition.
Proposition 3: For , the asymptotic variance of the

timing delay estimator (10) is given by

re

For , the asymptotic variance of the timing delay esti-
mator (10) is given by

re

B. Performance Analysis of the GSD Estimator

When compared with the GG algorithm (10), the symbol
timing delay estimators corresponding to the GSD algorithm
are obtained from (11) and by fixing . Note that such a
choice of decouples the symbol timing delay estimators from
the frequency offset estimator in the sense that the estimation
of does not require an initial estimate of [6]. The following
result holds.

Proposition 4: For , the asymptotic variance of the
timing delay estimator (11) is given by

re

3The notations re and im stand for the real and imaginary part, respectively.



WANG et al.: PERFORMANCE ANALYSIS OF A CLASS OF TIMING ESTIMATORS 2299

For , the asymptotic variance of the timing delay esti-
mator (11) is given by

re

We note that analyzing theoretically the influence of the
system parameters such as oversampling factor or excess
bandwidth factor from the equations displayed in the previous
propositions is quite difficult. Therefore, we need numerical
illustrations to highlight the contribution of each parameter to the
performance. These simulation experiments show that selection
of larger values for the oversampling factordoes not improve
the performance of estimators (10) and (11). In addition, we
also notice that the convergence rate of all the estimators (the
mean-square error) decreases proportionally with , where

stands for the number of available observations. In particular,
the frequency offset estimators (10) and (11) converge slower
than the estimator described in [3], which exploits the conjugate
cyclostationary statistics of the received waveform.

V. EXTENSION TOTIME-SELECTIVE CHANNELS

Due to the assumptionAS2), the foregoing discussion applies
only to time-invariant channels. In this section, we will see that
the results obtained in the Section IV can be extended to the case
of time-selective fading effects as long as the fading distortion

is approximately constant over a pulse duration or, equiv-
alently, the Doppler spread is small, where denotes the
bandwidth of [7].

Assuming now that is a stationary complex process with
autocorrelation [7], we can rewrite
(4) for as

(13)

Based on (13), it is not difficult to find that all the previous
estimators [see (10) and (11)] still hold true, except that for
, they take the form

re

re (14)

respectively.
Compared with the performance analysis reported in Sec-

tion IV, the exact asymptotic variance of GG and GSD esti-
mators in the case of time-selective channels supports several
modifications. We now introduce an additional assumption on
the fading channel.

AS6) The land-mobile channel is a Rayleigh fading channel,
which means that is a zero-mean complex-valued
circular Gaussian process [12].

For general land-mobile channel models, the autocorrelation
of is proportional to the zero-order Bessel function, i.e.,

Fig. 1. GG/GSD estimators. MSE off T and�̂ versusP for BPSK and time-
invariant channel.

(cf. [13]). Based on the assumptionAS6),
and the higher order cumulants of are also

zero. Therefore, following the steps of Appendices A and B, one
can find that in the presence of time-selective fading effects, the
performance analysis can be established in a similar way as in
the case of time-invariant fading channels. In fact, considering
the assumptionAS6), only the first terms of and
in Proposition 1 survive, and the asymptotic variancesand

for the GG and GSD estimators in Propositions 2–4 still hold
true, except that some constants related to or should
be added. For example, when , based on (14), we now
obtain the following expressions for the asymptotic variances
corresponding to the GG and GSD timing delay estimators:

re

re

respectively.
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Fig. 2. GG/GSD estimators. MSE off T and�̂ versus� for BPSK and time-
invariant channel.

In closing this section, it is interesting to remark that for im-
plementing the GG and GSD frequency-offset estimators, no in-
formation regarding the time-varying fading process is re-
quired. If the oversampling factor satisfies , then the im-
plementation of the GG and GSD timing delay estimators also
requires no knowledge of . However, when , knowl-
edge of the second-order statistics and is required
to implement the GG and GSD timing delay estimators (14).
However, simulation experiments, which are reported in the next
section, show that from a computational complexity and perfor-
mance viewpoint, the best value of the oversampling factor is

. Thus, estimation of parameters and can be
avoided by selecting .

VI. SIMULATION EXPERIMENTS

In this section, the experimental mean-square error (MSE)
results and theoretical asymptotic bounds of estimators (10) and
(11) are compared. The experimental results are obtained by
performing a number of 400 Monte Carlo trials, assuming that
the transmitted symbols are i.i.d. linearly modulated symbols
with . The transmit and receive filters are square-root

Fig. 3. GG/GSD estimators. MSE off T and�̂ versusN for BPSK and time-
invariant channel.

raised cosine filters, and the additive noise is generated by
passing a Gaussian white noise through the square-root raised
cosine filter to yield a discrete-time noise sequence with auto-
correlation sequence
[7]. The signal-to-noise ratio (SNR) is defined as SNR

. Experiments 1 to 4 assume BPSK symbols
transmitted through time-invariant channels, whereas Experi-
ments 5 to 6 are performed assuming time-selective Rayleigh
fading and QPSK constellations. In our simulations, the Doppler
spread is set to (very slow fading), and
is created by passing a unit-power zero-mean white Gaussian
noise process through a normalized discrete-time filter, which
is obtained by bilinearly transforming a third-order continuous-
time all-pole filter, whose poles are the roots of the equation

, where .
In all figures, the theoretical bounds of GG and GSD estima-

tors are represented by the solid line and the dash line, respec-
tively. The experimental results of GG and GSD estimators are
plotted using dash-dot lines with stars and squares, respectively.
Since the frequency offset estimators of GG and GSD are equiv-
alent, only the former will be presented.



WANG et al.: PERFORMANCE ANALYSIS OF A CLASS OF TIMING ESTIMATORS 2301

Fig. 4. GG/GSD estimators. MSE off T and �̂ versus SNR for BPSK and
time- invariant channel.

Experiment 1—Performance Versus the Oversampling Rate
for BPSK Constellation:By varying the oversampling rate

, we compare the MSE of GG and GSD estimators with their
theoretical asymptotic variances. The number of symbols is set
to , the roll-off factor of the pulse shape is ,
and SNR 10 dB. The normalized frequency offset and timing
delay are and , respectively. The results are
depicted in Fig. 1. It turns out that increasing the oversampling
rate does not improve performance of the frequency offset and
timing delay estimators as long as . This is a result that
may be predicted by Shannon interpolation theorem, and since
the estimators (10) and (11) exploit the second-order statistics
of the received signal , an oversampling rate larger than
2 is necessary to make the cyclic spectra alias-free [8], [10].
Moreover, although more samples are collected asincreases,
their correlation increases as well, which is known to increase
the variance of the estimators [7].

Experiment 2—Performance Versus the Filter Bandwidth for
BPSK Constellation:Fig. 2 depicts the MSE of the estimators
versus the roll-off factor , assuming oversampling rate ,

transmitted symbols, SNR 10 dB, , and

Fig. 5. GG/GSD estimators. MSE off T and�̂ versusP for QPSK and time-
selective channel.

. It can be seen that withincreasing, the performance
of the timing delay estimators improves. This is an expected
property since physically, wideband pulses have comparatively
short duration and, therefore, are better “seen” in the presence of
noise [9, p. 65]. From another viewpoint, based on (9) and since

is bandlimited, it follows that as the bandwidth decreases,
the second-order cyclic spectra are numerically weak, i.e., less
cyclic correlation information is available.

Experiment 3—Performance Versus the Number of Input
Symbols for BPSK Constellation:In Fig. 3, the theoretical
and experimental MSE of the frequency offset and symbol
timing delay estimators are plotted versus the number of sym-
bols , assuming the following parameters: , ,
SNR 10 dB, , and . Fig. 3 shows that the
experimental MSE of all the estimators are well predicted by
the theoretical bounds derived in Section IV.

Experiment 4—Performance Versus SNR for BPSK Constel-
lation: Fig. 4 depicts the experimental and theoretical MSE of
the GG and GSD estimators versus SNR, assuming the parame-
ters , , , , and . The
simulation results of timing estimators for high SNR range are
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Fig. 6. GG/GSD estimators. MSE off T and�̂ versus� for QPSK and time-
selective channel.

supposed to agree with the theoretical bounds when the number
of samples is sufficiently large to make the self noise negli-
gible (cf. [9, ch. 6]).

Experiment 5—Performance Versus the Oversampling Rate
in Time-Selective Channels for QPSK Constellation:We re-

peat Experiment 1 by assuming QPSK symbols passing through
a time-selective channel. The number of symbols is set to

, the roll-off factor of the pulse shape is , SNR
10 dB, , and . The results are depicted in
Fig. 5. It turns out again that when , the performance
of GG and GSD estimators does not depend on the oversam-
pling factor . Therefore, larger oversampling factors (

) are not justifiable from a computational and perfor-
mance improvement viewpoint.

Experiment 6—Performance Versus the Filter Bandwidth in
Time-Selective Channels for QPSK Constellation:Fig. 6 de-
picts the MSE of the estimators versus the roll-off factorin
the presence of time-varying fading effects, assuming oversam-
pling rate , transmitted symbols, SNR 10 dB,

, and . Both the theoretical and experimental
results corroborate again the conclusion of Experiment 2. Pulse
shapes with larger bandwidths can improve the performance of
the timing delay estimators.

VII. CONCLUSIONS

In this paper, we have analyzed the asymptotic performance
of the blind carrier frequency offset and timing delay estimators
introduced in [6] and [7]. Such estimators rely on the second-
order cyclostationary statistics generated by oversampling the
output of the receive filter. We have derived the asymptotic vari-
ance expressions of and and shown that a smaller oversam-
pling rate ( ) can improve the estimation accuracy as well
as reduce the computational complexity of the estimators.

By properly taking into account the aliasing effects, we have
shown that when , the timing delay estimators take a
different form than the expressions reported in [6] and [7]. In a
future paper, we will report the more complex performance anal-
ysis of these estimators in the presence of multipath channels.

APPENDIX A
DERIVATION OF PROPOSITION1

In [2] and [20], a powerful approach has been developed for
calculating the asymptotic covariance matrices of the cyclic cor-
relation estimates. In order to derive and , we
strongly refer to the method introduced in the aforementioned
reference.

Define the mean-compensated -dimensional sto-
chastic process

where

and

Let be the time-varying cor-
relation where the superscript denotes complex-conjugation
and transposition. Furthermore, let and
represent the cyclic correlation and cyclic spectrum of ,
respectively. In [2] and [20], it is shown that

Based on similar arguments as the ones developed in [2] and
[20], it is not difficult to prove that

Next, we will only concentrate on the derivation of . The
derivation of can be done similarly. First, we charac-
terize the cyclic spectrum of the process . For a general
noncircular input, the time-varying correlation of can be
expressed as

cum

where . Let the notation stand
for the th entry of an arbitrary matrix . It follows that
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the cyclic correlations of at the cyclic frequency
are given by

where the cyclic cumulant sequence ,
can be expressed as

where stands for the cyclic trispectrum of the dis-
crete-time signal at cyclic frequency and frequency

.
Thus

where

We still need to express . We recall that

(15)

Let be the cyclic trispectrum of at cyclic
frequency and frequency . From
[8], [10], and [16], can be expressed in terms of

by

mod

for all . The notation mod
denotes modulo , and by convention, mod belongs to

.
Since is given by (1), it is well known that (see [2, App.

C], [15], and [20])

(16)

where represents the FT of . As is ban-
dlimited in with ,

will be nonzero only for cycles .
We deduce that

mod (17)

for all .
According to (15) and (17), we obtain that for

Replacing the cyclic spectra of with their expressions
given by (16) and then expressing in terms of by
means of (5) leads to

Using (9), we finally obtain

The expressions in the case of can be obtained using
a similar approach.

APPENDIX B
PROOF OFPROPOSITION2

We establish next the asymptotic performance of the GG es-
timators for . For , (10) can be rewritten as

(18)

where

For convenience, we define

and , . Equation (18) can be
equivalently expressed as

(19)
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According to [2] and [20], and are on the order
of . Considering a Taylor series expansion of the
right-hand side of (19) and neglecting the terms of magnitude
higher than , it follows that

(20)

Simple manipulations of (20) lead to

where

Since , the previous terms
can be easily computed as

re

re

im

where . According to (7), one
can also check that

which enables us to conclude the derivation of after some
simple algebra manipulations of (7).

The derivation of the asymptotic performance ofis more
complicated because (10) depends on the estimate ofwhen

is not equal to 0. Similarly to the derivation presented in (18)
and (19), we obtain

where

Then, the asymptotic variance ofcan be expressed as

(21)

where

The term can be rewritten as

where

and

A first-order Taylor series expansion implies further that

After defining the intermediary variables

and

it follows that

re

re

re

im

(22)
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The expressions of and , as well as the remaining parts of
the other propositions, can be derived using similar arguments.
Moreover, according to (7), we obtain that

(23)

and

(24)

Finally, plugging (7), (23), and (24) back into (21) and (22) con-
cludes the proof.
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